Omnia vincit amor
Home -> Publications
Home
  Publications
    
all years
    2019
    2018
    2017
    2016
    2015
    2014
    2013
    2012
    2011
    2010
    2009
    2008
    2007
    2006
    2005
    2004
    theses
    techreports
    presentations
    edited volumes
    conferences
  Awards
  Research
  Teaching
  BLOG
  Miscellaneous
  Full CV [pdf]






  Events








  Past Events





Publications of Torsten Hoefler
Copyright Notice:

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a noncommercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

T. Ben-Nun, M. Besta, S. Huber, A. N. Ziogas, D. Peter, T. Hoefler:

 A Modular Benchmarking Infrastructure for High-Performance and Reproducible Deep Learning

(IEEE, May 2019, Accepted at the 33rd IEEE International Parallel & Distributed Processing Symposium (IPDPS'19) )

Abstract

We introduce Deep500: the first customizable benchmarking infrastructure that enables fair comparison of the plethora of deep learning frameworks, algorithms, libraries, and techniques. The key idea behind Deep500 is its modular design, where deep learning is factorized into four distinct levels: operators, network processing, training, and distributed training. Our evaluation illustrates that Deep500 is customizable (enables combining and benchmarking different deep learning codes) and fair (uses carefully selected metrics). Moreover, Deep500 is fast (incurs negligible overheads), verifiable (offers infrastructure to analyze correctness), and reproducible. Finally, as the first distributed and reproducible benchmarking system for deep learning, Deep500 provides software infrastructure to utilize the most powerful supercomputers for extreme-scale workloads.

Documents

download article:
 

BibTeX

@inproceedings{deep500,
  author={T. Ben-Nun and M. Besta and S. Huber and A. N. Ziogas and D. Peter and T. Hoefler},
  title={{A Modular Benchmarking Infrastructure for High-Performance and Reproducible Deep Learning}},
  year={2019},
  month={May},
  publisher={IEEE},
  note={Accepted at the 33rd IEEE International Parallel \& Distributed Processing Symposium (IPDPS'19) },
  source={http://www.unixer.de/~htor/publications/},
}

serving: 18.232.147.215:43662© Torsten Hoefler