
A Modular Benchmarking Infrastructure for
High-Performance and Reproducible Deep Learning

Tal Ben-Nun, Maciej Besta, Simon Huber, Alexandros Nikolaos Ziogas, Daniel Peter, Torsten Hoefler
Department of Computer Science, ETH Zurich

Abstract—We introduce Deep500: the first customizable bench-
marking infrastructure that enables fair comparison of the
plethora of deep learning frameworks, algorithms, libraries,
and techniques. The key idea behind Deep500 is its modular
design, where deep learning is factorized into four distinct levels:
operators, network processing, training, and distributed training.
Our evaluation illustrates that Deep500 is customizable (enables
combining and benchmarking different deep learning codes)
and fair (uses carefully selected metrics). Moreover, Deep500 is
fast (incurs negligible overheads), verifiable (offers infrastructure
to analyze correctness), and reproducible. Finally, as the first
distributed and reproducible benchmarking system for deep
learning, Deep500 provides software infrastructure to utilize the
most powerful supercomputers for extreme-scale workloads.

Index Terms—Deep Learning, High-Performance Computing,
Benchmarks, Distributed Deep Learning

Deep500 Code: https://www.github.com/deep500/deep500

I. INTRODUCTION

Deep Learning (DL) has transformed the world and is now
ubiquitous in areas such as speech recognition, image classi-
fication, or autonomous driving [3]. Its central concept is a
Deep Neural Network (DNN), a structure modeled after the
human brain. Thanks to rigorous training, DNNs are able to
solve various problems, previously deemed unsolvable.

Recent years saw an unprecedented growth in the number
of approaches, schemes, algorithms, applications, platforms,
and frameworks for DL. First, DL computations can aim at
inference or training. Second, hardware platforms can vary
significantly, including CPUs, GPUs, or FPGAs. Third, oper-
ators can be computed using different methods, e.g., im2col [5]
or Winograd [27] in convolutions. Next, DL functionalities
have been deployed in a variety of frameworks, such as
TensorFlow [14] or Caffe [21]. These functionalities may in-
corporate many parallel and distributed optimizations, such as
data, model, and pipeline parallelism. Finally, DL workloads
are executed in wildly varying environments, such as mobile
phones, multi-GPU clusters, or large-scale supercomputers.

This richness of the DL domain raises an important ques-
tion: How can one ensure a leveled, fair ground for compar-
ison, competition, and benchmarking in Deep Learning?
The key issue is that, due to the complex nature of DL
workloads, there is no single metric by which one DNN or
hardware is objectively better than another on all counts. This
is an open question and there are multiple proposed metrics
(e.g., throughput, time-to-solution), especially for hardware
ranking for distributed DL. Thus, it is necessary to design an
abstraction that supports these and future potential metrics for
DL evaluation. Several benchmarks [9, 31, 50, 2, 19, 22, 13,
31] have been designed for DL, but they are either specialized
for a given aspect (e.g., single-layer performance) or perform
black-box tests, which hinder verifiability and reproducibility.

Since DL is converging in terms of procedures, it is possible to
design a white-box abstraction that covers key functionalities
of the problem, enabling arbitrary metric measurement and
full integration of the different software stacks (see Table I)
for benchmarking.

We propose Deep500: a white-box benchmarking infras-
tructure that enables fair analysis and comparison of diverse
DL workloads and algorithms. Deep500 is based on the
following five pillars: ¶ Customizability, · Metrics, ¸
Performance, ¹ Validation, and º Reproducibility. ¶ “Cus-
tomizability” indicates that Deep500 enables benchmarking
of arbitrary combinations of DL elements, such as various
frameworks running on different platforms, and executing
custom algorithms. To achieve this, we design Deep500 to
be a meta-framework that can be straightforwardly extended
to benchmark any DL code. Table I illustrates how various
DL frameworks, libraries, and frontends can be integrated
in Deep500 to enable easier and faster DL programming. ·
“Metrics” indicates that Deep500 embraces a complex nature
of DL that, unlike benchmarks such as Top500 [15], makes
a single number such as FLOPS an insufficient measure. To
this end, we propose metrics that consider the accuracy-related

System Operators Networks Training Dist. Training

Sta Cus Def EagComTra Dat Opt Cus PS Dec AsyCus

(L) cuDNN - � � � � � � � � � � � �
(L) MKL-DNN - � � � � � � � � � � � �

(F) TensorFlow [1] - - - - � � - UR - - � - �
(F) Caffe, Caffe2† [21] - � - � � � � UR � � - � �
(F) [Py]Torch† [10, 35] - - � - � � � - - � - � �
(F) MXNet [6] - � - � � � - UR � - � - �
(F) CNTK [48] - � - � � � - UR � � - � �
(F) Theano [4] - - - - - - � � � � � � �
(F) Chainer[MN] [44] - - � - � � - � - � - � �
(F) Darknet [38] - � - � � � � � � � � � �
(F) DL4j [43] - - - � � � - UR � - � � �
(F) DSSTNE - � - � � � � UR � � � � �
(F) PaddlePaddle - - - � � � � UR � - � - �
(F) TVM [7] - - - � - - � � � � � � �

(E) Keras [8] - � � � � � � UR � � � � �
(E) Horovod [42] � � � � � � � � � � - � �
(E) TensorLayer [14] - � � � � � � UR � � � � �
(E) Lasagne � - � � � � � UR � � � � �
(E) TFLearn [11] � � � � � � - � � � � � �

Integration within
Deep500 [This work]-

∗‡ -∗ -∗‡-∗‡ - -∗-∗‡-∗‡ -∗ -∗‡-∗‡-∗‡-∗

TABLE I: An overview of DL frameworks, related systems that can be inte-
grated within Deep500, and the advantages of such integration. Each column
is a specific feature/functionality; they are explained in more detail in Background
(§ II). Sta: Standard Operators, Cus: Customizable (without full recompilation),
Def: Deferred Execution Mode, Eag: Eager Execution Mode (also called “define-
by-run”), Com: Network Compilation, Tra: Transformable, Dat: Dataset Network
Integration, Opt: Standard Optimizers, PS: Parameter Server, Dec: Decentralized,
Asy: Asynchronous SGD, UR: Update Rule Optimizers, -, �, �: A given system
does offer a given feature, offers a given feature in a limited way, or does not offer
it. (L): a library, (F): a framework, (E): a frontend. †Caffe2 and PyTorch exist as
a single repository of code, but execute as two separate frameworks. ∗ Deep500
provides an isolated modular abstraction of a given feature. ‡Deep500 provides
a reference implementation. Native system support for a category of features:
none , partial , full .

Agent

Operators N
e
tw

o
rks

Parameter
store

TrainingDistributed training

Fig. 1: Components in Deep Learning

aspects of DL (e.g., time required to ensure a specific test-set
accuracy) and performance-related issues (e.g., communica-
tion volume). ¸ “Performance” means that Deep500 is the first
DL benchmarking infrastructure that can be integrated with
parallel and distributed DL codes. ¹ “Validation” indicates
that Deep500 provides infrastructure to ensure correctness of
aspects such as convergence. Finally, Deep500 embraces º
“Reproducibility” as specified in recent HPC initiatives [18]
to help developing reproducible DL codes.

Table II compares Deep500 to other benchmarking infras-
tructures with respect to the offered functionalities. Deep500
is the only system that focuses on performance, accuracy, and
convergence, while simultaneously offering a wide spectrum
of metrics and criteria for benchmarking, enabling customiz-
ability of design, and considering a diversity of workloads.

Towards these goals, we contribute:
• the identification and analysis of challenges in high-

performance reproducible benchmarking of deep learning,
• the design and implementation of the Deep500 Benchmark,

a meta-framework for customizable, fast, validatable, and re-
producible benchmarking of extreme-scale DL frameworks,
applications, algorithms, and techniques,

• extensive evaluation, illustrating that Deep500 ¶ incurs
negligible (<1%) overheads of benchmarking on top of
tested systems, and · vastly reduces development efforts to
integrate and benchmark various elements of deep learning.

II. BACKGROUND

We start with describing background on deep learning.

A. Deep Learning
We focus on Deep Learning (DL): a subclass of Machine
Learning (ML) that uses Deep Neural Networks (DNNs) [3]
for approximating certain complex functions. In this paper, we
mostly discuss supervised learning, but Deep500 can be used
to benchmark workloads for other tasks, such as unsupervised
and reinforcement learning. A DNN is first trained: it is
provided with various input data samples in a randomized
order to minimize the difference (loss) between the obtained
and the desired outcome (this difference is computed with
some loss function `). After training, a DNN is used to infer
outcomes for given inputs.

Intuitively, a DNN is a composition of multiple functions
called operators. Operators can range from fully-connected
neural networks, through multi-dimensional convolution, to
recurrent operators that maintain state. The process of eval-

uating a given operator for a given input data (referred to as a
sample) is called inference. These operators are organized as
a Directed Acyclic Graph (DAG) (Fig. 1, top right).

Formally, for an input dataset S ⊂ (X × Y) ∼ D of labeled
samples (sampled from a data distribution D), and a parametric
model f : X → Y (denoted by f(w, x)), the goal is to min-
imize the expected loss over the dataset, i.e., find a minimiz-
ing set of parameters w∗ = argminw E(x,y) [` (f(w, x), y)],
where ` is a certain norm function for assessing difference.
Training To minimize the expected loss, we use algorithms
such as Stochastic Gradient Descent (SGD) [41] for training.
In SGD, dataset elements are sampled at random in mini-
batches (data portions) of size B; usually 16 ≤ B ≤ 64k [20].
In training, one iterates over the whole dataset (one such
loop iteration is called an epoch) multiple times, and modifies
minimizing parameters w(t) at iteration t according to the av-
erage gradient and possibly historical values of w. Algorithm 1
depicts such an SGD optimizer with a weight update rule U .

Algorithm 1 Minibatch Stochastic Gradient Descent [41]
1: for t = 0 to |S|

B
·#epochs do . |S|: input dataset size

2: ~x, ~y ← Sample B elements from S . ~x, ~y: samples of input data
3: wmb ← w(t) . Load minimizing parameters from iteration t
4: ~z ← `(wmb, ~x, ~y) . Inference; ~z is a full minibatch.
5: gmb ← 1

B

∑B
i=0∇`(wmb, ~zi) . Backpropagation; ~zi is a sample.

6: ∆w ← U(gmb, w
(0,...,t), t) . Apply an update rule

7: w(t+1) ← wmb + ∆w . Store updated minimizing parameters
8: end for

Distributed Training When distributing training among com-
pute nodes, it is common to use data parallelism, i.e., parti-
tioning across minibatches. The gradient average (Algorithm 1,
line 5), necessary for descent, becomes a parallel reduction that
is performed collectively (allreduce in MPI nomenclature).
Data-parallel distributed training can be implemented in one
of two general approaches: decentralized, using an allreduce
operation; or centralized, where a (possibly sharded) “pa-
rameter server” (PS) governs optimization [12] by receiving
individual gradients and broadcasting back new parameters
(Algorithm 1, lines 3 and 5–7). Deep500 enables all these
distributed schemes while vastly reducing development effort.

B. Frameworks
Many frameworks for training and inference exist; see Ta-
ble I. According to GitHub [16], the three most popular DL
frameworks are TensorFlow [1], Caffe [21], and PyTorch [10].
We use these three frameworks (except for Caffe, which we
replace with Caffe2, an improved Caffe version written by
the same authors) as use cases to demonstrate the flexibility
of Deep500. Now, the frameworks can differ vastly, ranging
from how operators are implemented and how extensible (Cus-
tomizable) the frameworks are; to how DNNs are evaluated
and trained. Some frameworks compute operators on-the-fly,
i.e., as they are called (Eager Execution). Others construct a
graph in advance (Deferred Execution) and modify it for high-
level optimizations (Transformable), ahead-of-time Network
Compilation, or employ Dataset Integration by adding data
loading operators to the graph, enabling automatic pipelining
of samples to accelerators and distributed storage integration.
As for training, most frameworks support the aforementioned

Benchmark Focus Metrics Criteria Customizability DL Workloads Remarks

Perf Con Acc Tim Cos Ene Util Mem Tput Brk Sca Com TTA FTA Lat Clo Ope Inf Ops Img Obj Spe Txt RL

DeepBench [40] - � � - � � � � � � � � � � - - � - - � � � � � Ops: Conv., GEMM,
RNN, Allreduce

TBD [50] - � � � � � - - - � � � � � - - � � � - - - - - +GANs
Fathom [2] - � � - � � � � - - - � � � - - � � � - � - - - +Auto-encoders
DLBS [19] - � � - � � � � - � � � � � � - � - � - � � � �
DAWNBench [9] - - � - - � � � � � � � - � - � - � � - � � - �
Kaggle [22] � � - � � � � � � � � � � - � � - � � - - - - - Varying workloads
ImageNet [13] � � - � � � � � � � � � � - � � - � � - - � � �
MLPerf [31] - - - - - - � � � � � � - - - - - � � - - - - -

Deep500 - - - - - � - � - - - - - - - - - - - - � � � �

TABLE II: An overview of available DL benchmarks, focusing on the offered functionalities. Perf: Performance, Con: Convergence, Acc: Accuracy, Tim: Time,
Cos: Cost, Ene: Energy, Util: Utilization, Mem: Memory Footprint, Tput: Throughput (Samples per Second), Brk: Timing Breakdown, Sca: Strong Scaling, Com:
Communication and Load Balancing, TTA: Time to Accuracy, FTA: Final Test Accuracy, Lat: Latency (Inference), Clo: Closed (Fixed) Model Contests, Ope: Open
Model Contests, Inf: Fixed Infrastructure for Benchmarking, Ops: Operator Benchmarks, Img: Image Processing, Obj: Object Detection and Localization, Spe: Speech
Recognition, Txt: Text Processing and Machine Translation, RL: Reinforcement Learning Problems, -: A given benchmark does offer the feature. �: Planned benchmark
feature. �: A given benchmark does not offer the feature.

Update Rule SGD, but some also provide other optimizers, or
enable implementing arbitrary algorithms.

A complete DL framework provides: ¶ operator representa-
tion and implementations, · network definition (connections
between operators), ¸ schemes for loading datasets and for
data augmentation (i.e., increasing variation in samples by
perturbing data), ¹ inference and gradient computation, º
stochastic optimization (training), and » distributed optimiza-
tion and communication infrastructure. Elements ¶–· are
partially standardized by initiatives such as ONNX [33] and
NNEF [23] that define portable (up to framework limitations)
file formats. Other elements are not standardized at all. More-
over, frameworks do not provide standardized metrics, such as
accuracy and performance, which are absolutely necessary for
scientific computing purposes, high-performance computing,
and reproducibility. Table I illustrates the various DL frame-
works, libraries, and frontends, and how Deep500 integrates
them through its meta-framework design. These systems can
then be analyzed using a set of carefully selected metrics.

C. Benchmarks

There exist preliminary efforts to benchmark DL and general
ML. Table II analyzes the functionalities of these efforts. In
general, only Deep500 focuses on performance, accuracy, and
convergence, considering the five challenges of large-scale DL
benchmarking discussed in the introduction.

D. Data Model and Format

We use the Open Neural Network Exchange (ONNX) [33]
format to store DNNs reproducibly. ONNX provides a bi-
nary file format capable of describing an arbitrary DAG and
standardizes a list of 118 common operators (as of version
1.3.0) used in DL and in general ML. Many popular frame-
works provide and are actively improving interoperability with
ONNX. Thus, we select ONNX as the basis of data format
for Deep500. To use ONNX for reproducible training and to
enable extensibility, we augment the ONNX with additional
built-in operators and with support for user-defined operators.

III. BENCHMARKING DEEP LEARNING: CHALLENGES

We analyze challenges in benchmarking large-scale DL.

A. Motivation

We first describe motivating example use cases.

1 tf.layers.conv2d(
2 inputs , filters ,
3 kernel_size , strides , padding ,
4 data_format , dilation_rate ,
5 activation , use_bias ,
6 kernel_initializer , bias_initializer ,
7 kernel_constraint , bias_constraint ,
8 kernel_regularizer ,
9 activity_regularizer ,

10 trainable , name , reuse
11)

Listing 1: TensorFlow: 19 parame-
ters to init 2D convolution.

1 cntk.layers.Convolution2D(
2 filter_shape , num_filters ,
3 activation , init ,
4 pad , strides , bias , init_bias ,
5 reduction_rank , name
6)

Listing 2: CNTK: 10 parameters to init
2D convolution.

Use Case 1 We observe that different frameworks come with
significant differences between basic functionalities. For ex-
ample, we present the initialization of 2D convolution in
TensorFlow and CNTK in Listings 1–2. TensorFlow uses 19
parameters while CNTK needs 10. Thus, comparing fairly
both frameworks in metrics such as runtime or accuracy
is unclear (“Which parameters correspond to each other?”),
and for some operators impossible due to implementation
differences. Among the factors that vary between frameworks
is data layout, which is unclear in the CNTK example. For the
case of performance, we use the Adam SGD optimizer [24]
as a second example. As TensorFlow provides general tensor
operators (using the Eigen linear algebra library), it requires
sequentially executing several short operations on the GPU
(e.g. subtraction, division) to compute the optimizer update.
Conversely, Caffe2 implements a specific “Adam” operator
that performs the entire update using a single GPU kernel,
drastically reducing invocation and GPU scheduling over-
heads. This operation fusion in Caffe2 is a common op-
timization technique, and Deep500 enables straightforward
comparison of such TensorFlow and Caffe2 instances, both
in an isolated environment and as an integrated part of
training over existing datasets. In general, this use case calls
for an infrastructure that enables straightforward invocation
of existing and custom implementations, in order to enable
simple, maintainable comparison and benchmarking.

Use Case 2 Constructing a complex DNN may be a sig-
nificant time investment. Yet, today’s DL frameworks do
not enable a straightforward use of a network developed
in a different framework. For example, networks designed
in TensorFlow cannot easily be used in Caffe2 (e.g., due
to the aforementioned differences in operators). One would
welcome a system that facilitates porting between different
DNN formats, in order to develop DNN-related techniques
independently, as well as reuse networks across frameworks.

Use Case 3 No single framework provides all the required
functionalities. Thus, one may be interested in extending a
selected framework. Unfortunately, this is usually difficult
and time-consuming. For example, implementing a second-
order optimization, such as Stochastic L-BFGS [32], requires
a training loop that is vastly different than that in Algorithm 1,
which is the basis of many frameworks. Now, while some
frameworks (e.g., TensorFlow) enable the creation of custom
training loops (e.g., using optimized tensor operations), the
CNTK Learner extension does not enable this straightfor-
wardly. An infrastructure for combining the best of different
DL frameworks would be advantageous in such cases.
Use Case 4 Many DL tools are distributed. In such cases, to
ensure scalability and high performance, one needs a system
that can benchmark and analyze aspects related to distributed
processing, such as the amount of communicated data.
Others There are many other situations requiring a standard
benchmarking platform for DL. They can be pictured by
the following example questions: “What is the reduction in
communication over the network, when a certain compression
scheme is applied in training?”, “How to illustrate performance
and power advantages of using a novel ASIC for a particular
class of DL workloads?”, “How fast and accurate is a certain
provably optimal operator?”, “What is the advantage of using
FPGAs for DL training?”, “For a given DL workload, which
one of the available machines will perform best?”.

B. Challenge 1: Customizability
The first challenge emerging from the above examples is cus-
tomizability: the ability to seamlessly and effortlessly combine
different features of different frameworks and still be able to
provide fair analysis of their performance and accuracy.

Deep500 enables customizability and interoperability
with various DL codes through its meta-framework design.
By incorporating both Python and C/C++ capabilities, we pro-
vide an infrastructure that can be straightforwardly extended
to virtually any DL framework or arbitrary operator code.

C. Challenge 2: Metrics
Another challenge lies in a proper selection of metrics. On one
hand, some metrics may simply be too detailed, for example
the number of cache misses in 2D convolution implemented
in TensorFlow or Caffe2. Due to the sheer complexity of such
frameworks, this metric would probably not provide useful
insights in potential performance regressions. On the other
hand, other metrics may be too generic, for example simple
runtime does not offer any meaningful details and does not
relate to accuracy. Thus, one must select metrics that find the
right balance between accuracy and genericness.

In Deep500, we offer carefully selected metrics, con-
sidering performance, correctness, and convergence in
shared- as well as distributed-memory environments. ¶
Some metrics can test the performance of both the whole
computation and fine-grained elements, for example latency
or overhead. · Others, such as accuracy or bias, assess the
quality of a given algorithm, its convergence, and its gener-
alization towards previously-unseen data. ¸ We also combine
performance and accuracy (time-to-accuracy) to analyze the

Pre-
2013

2013 2014 2015 2016 2017-
PresentYear

1

10

100

1000

10000

N
u

m
b

er
 o

f
N

o
d

es

DistBelief

Project Adam

Titan Supercomputer

Median 25th/75th Percentile Min/Max

Fig. 2: Statistics of using compute nodes in distributed DL [3]

tradeoffs. ¹ Finally, we propose metrics for the distributed
part of DL codes: communication volume and I/O latency.

D. Challenge 3: Performance and Scalability
Another unaddressed challenge is the design of distributed
benchmarking of DL to ensure high performance and scal-
ability. As DL datasets and training complexity continue to
grow, large-scale distributed training is becoming an essential
DL component [3] (Fig. 2). Every top competitor in DAWN-
Bench [9] uses multiple multi-GPU nodes, and recently the
entire Titan supercomputer (18,000 nodes) was used for a full
24 hours to perform distributed DL via meta-optimization (i.e.,
where the DNN structure may change) [47]. To deliver high-
quality scalable distributed DL codes, one must be able to
debug scalability issues, simultaneously preventing negative
performance impact coming from the benchmarking infras-
tructure. Moreover, we need proper techniques to understand
such scalability bugs in the context of DL workloads. As we
show later (§ V), the Deep500 benchmarking infrastruc-
ture potentially scales to thousands of cores and incurs
negligible overheads over native performance.

E. Challenge 4: Validation
A benchmarking infrastructure for DL must allow to validate
results with respect to several criteria. As we discuss in § V,
Deep500 offers validation of convergence, correctness,
accuracy, and performance. Validation comes in the form of
`1, `2, `∞ norms, but also in forms of heatmaps, to highlight
regions of interest, or repeatability via a map of output
variance. In addition, we provide gradient validation through
numerical differentiation with similar metrics. We also test
optimizers in similar ways, making sure that optimization
trajectories do not diverge given the same inputs.

F. Challenge 5: Reproducibility
The final challenge in distributed DL benchmarking is the abil-
ity to reproduce or at least interpret [18] results. In Deep500,
we ensure these properties by using our interfaces and
several careful design decisions, described in § IV.

IV. DESIGN AND IMPLEMENTATION OF DEEP500

We now describe the purpose and design of Deep500, ad-
dressing the above-discussed challenges. The core enabler in
Deep500 is the modular design that groups all the required
functionalities into four levels: ¶ “Operators”, · “Network
Processing”, ¸ “Training”, and ¹ “Distributed Training”.
Each level provides relevant abstractions, interfaces, reference
implementations, validation procedures, and metrics. We illus-

L
e
v
e
l
0

:
O

p
er

at
or

s
L
e
v
e
l
1

:
N

et
w

or
k

Pr
oc

es
si

n
g

L
e
v
e
l
2

:
Tr

ai
n
in

g
L
e
v
e
l
3

:
D

is
tr

ib
u
te

d
Tr

ai
n
in

g

Enablers of interoperability Main Deep500 Components Example Combined SystemsAssociated Metrics

Python
operators

Custom
operators

CMake
interface

ONNX test
parser

Network Visitor

Executor ONNX
parser

Sampler

Optimizer

Consistency
model

§
 I

V
.F

§
 I

V
.E

§
 I

V
.D

§
 I

V
.C

Reference
executor

reference
optimizers

L1 framework
integration

Reference
MPI optimizer
(decentralized)

Horovod

Framework
overhead

Training
accuracy

Training
time

Dataset bias

performance
per operator

accuracy
per operator

I/O latency

Communication
volume

Training / test
accuracy

Training / test time

extern "C"
+Python's

ctypes

Python
+CMake

ONNX
object-oriented
representation

Visitor
design
pattern

Python+MPI

Three-step
optimizer

Te
n
so

r
d
es

cr
ip

to
rs

,
d
ev

ic
e

d
es

cr
ip

to
rs

mpi4py
for new
codes OS forking

for existing
Python codes

common
to all
levels

used in
Levels 2-3

Level 3:
distributed Level 2: non

distributed

+

interoperability with
ONNX in two steps

support
across:

arg typesOperator interface frameworks

OSes

G
en

er
ic

 i
n
te

rf
ac

e:
 T

es
tM

et
ri

c

Wallclock
time

FLOPs

Heatmap Max error

Norms

performance
per DNN

accuracy
per DNN

Wallclock time

FLOPs

Variance Max error

Norms

assessing
dataset

samplers
 Test accuracy Test time

support for
JIT and AOT compilation

embracing ONNX
correctness tests

represents
DNN

controls DNN
execution

load
& build
a DNN

execute training

UpdateRule
optimizer SGD

abstractions

facilitates
distributed

optimization

D
at

as
et

 I
n
te

rf
ac

es

Distributed
dataset
sampler

PFS support and
partitioning

Three-step
optimizer

ResNetAlexNetLeNet

cuDNN
MKL-DNN

MNIST

CIFAR

O
N

N
X

datasets

operator libraries for
DNN architecturesV

ar
io

u
s

fr
am

ew
or

ks
 a

n
d
 f
ro

n
te

n
d
s

(s
ee

 T
ab

le
 I

)

DNN
architectures

AdaGrad

Momentum

Adam

AcceleGrad

distributed reference
optimizers, wrappers

for optimizers

1 2 3 4

Runner

training
and testing

loop manager

Distributed
optimizer

Dataset

validation

training

ImageNet

Fig. 3: The design of Deep500.

trate levels and their relationships in Fig. 1; the full design of
the Deep500 meta-framework is shown in Fig. 3.

A. Intended Purpose and Roles
The Deep500 meta-framework is a benchmarking environ-
ment, and as such it is not meant to be a DL framework
that provides optimized implementations of its own. Rather,
Deep500 assumes high-performance frameworks exist. By ab-
stracting the high-level aspects of DL (e.g., data loading) in a
platform-agnostic manner, Deep500 enables the measurement
and development of various metrics (performance, accuracy)
in the different contexts of DL and distributed DL.

By taking the white-box approach, the user roles that
Deep500 enables can be of a benchmark evaluator, or of an
experimental scientist. In the former, one might use Deep500
and the various built-in metrics to choose hardware (or soft-
ware) that performs best given a target workload. The latter
role can use metrics and automatic integration with existing
frameworks in order to empirically evaluate new operators,
training algorithms, or communication schemes for DL. Since
Deep500 provides reference code for nearly every concept,
new methods can be validated against existing verified (yet
slow) implementations.

Deep500 complements existing DL frameworks in assisting
user efforts. DL frameworks and other integrations provide
baselines for both performance and convergence, and all a
user has to do is implement their own part, reusing the rest
of the existing components. In the rest of this paper, we show
that such extensions to the algorithms and metrics are simple to
implement in a concise manner, and that the incurred overhead
on performance is relatively low.

B. Common Components
We first describe elements common to all four levels.
Metrics Answering Use Cases 1, 3 and the resulting Chal-
lenge 2, Deep500 provides a general-purpose interface to
access and use metrics. In particular, the TestMetric class
contains methods to obtain the number of re-runs needed for
a selected measurement (e.g., used in ensuring numerical sta-
bility), to make or summarize a measurement, and to generate
a selected result (e.g., a plot file or a series of numbers).
Interoperability: DNN Format To read and write DNNs, we
use the ONNX format, and thus need to interoperate with its
Python package. As we show in more detail later (§ IV-D),
Deep500 converts the ONNX format to an object-oriented
notation for easier interoperability. To support this, we auto-

generate code from the ONNX operator definition files. We
also extend ONNX with new operations for computing loss
functions and optimization, as well as distributed optimiza-
tion. Finally, we embrace the ONNX correctness tests. This
addresses Use Case 2 and Challenge 1: customizability and
interoperability with various data formats. By using ONNX
operators, we also address Use Case 1 : Since ONNX stan-
dardizes a wide range of ML-related operators, Deep500 can
be used to construct conforming DNNs between frameworks,
such as TensorFlow and CNTK in the example.
Interoperability: Datasets and Networks Deep500 can down-
load the MNIST [28], Fashion-MNIST [46], and CIFAR-
10/100 [26] datasets on demand, as well as parse Ima-
geNet [13]. Similarly, it facilitates access to DNN architec-
tures (as ONNX files) for LeNet [29], ResNet [17] with
varying depths, and Wide ResNet [49]. Facilitating access to
various datasets enhances DL programmability and addresses
Use Case 2 .
Interoperability: Frameworks and Platforms Deep500 uses
its own descriptors for tensors and devices to enable interop-
erability with frameworks and platforms (Use Case 1). Ten-
sor descriptors (tensordesc), which are also C Application
Binary Interface (ABI) compatible, extend the types given in
ONNX by describing the data type in more detail (e.g., allow-
ing bitsets, or including data layout types). These extensions
enable each implemented framework to convert types back
and forth from Deep500 tensor descriptors. Additionally, we
provide extensible Device Descriptors (CPU, GPU, FPGA,
etc.), for example used to identify the most advantageous
compute device for a specific operator computation, addressing
several use cases from “ Others ”.
Interoperability: Distributed Training To facilitate distributed
training and thus address Use Case 4 and Challenge 3 (per-
formance and scalability), we use a Python interface with MPI,
mpi4py, to link with MPI, and use OS forking to turn an
existing Python application into an MPI-capable one, all while
keeping the proper distributed DL semantics w.r.t. dataset
sampling and distributed storage, as well as to the DNN model.

C. Level 0: Operators

Level 0 enables implementing, computing, and benchmarking
individual operators, which are the building blocks of DNNs.
An operator’s functionality is general, and spans DNN layers
(e.g., convolution) as well as training-related operations (e.g.,
distributed gradient accumulation).

Interfaces Deep500 Level 0 allows to integrate new custom
operators with real datasets, networks, or frameworks,
without having to implement other operators. For this,
we provide the CustomOperator interface, available
in Python (addressing high-level ML researchers and
experimentation) or in C++ (addressing high-performance
implementations). CustomOperator provides two
functions, forward(inputs) and backward(grad inputs,
fwd inputs, fwd outputs). To support the integration of
arbitrary C++ code in existing frameworks and abstractions,
we provide a runtime compilation interface. The compiler
interface is a simple wrapper around CMake, which includes
stub templates for each implemented DL framework. These
templates include the custom C++ code to create a framework-
compatible interface of an operator, which can be seamlessly
used in the frameworks, even without the rest of Deep500.
Using this abstraction, Deep500 supports both Just-In-Time
(JIT) or Ahead-Of-Time (AOT) compilation of operators,
enabling flexible benchmarking of high-performance code.
Example Use Case Listings 3–4 illustrate Deep500’s interop-
erability with frameworks: they contain an example definition
of a custom median-pooling operator in C++ and its straight-
forward registration as well as compilation for PyTorch.

1 template <typename T>
2 class MedianPooling : public deep500 :: CustomOperator {
3 public:
4 void forward(const T *input , T *output) { /* Inference code */ }
5 void backward(const T *nextop_grad , const T *fwd_input_tensor ,
6 const T *fwd_output_tensor , T *input_tensor_grad) {
7 /* Backpropagation code */ }
8 }; Operator definition
9

10 D500_REGISTER_OP(MedianPooling <DTYPE >); // Register a custom operator
11 D500_EXPORTED void *create_new_op(deep500 :: tensor_t *input_descs ,
12 int ninputs , deep500 :: tensor_t *output_descs , int noutputs) {
13 // Create the actual operator object.
14 return new MedianPooling <DTYPE >(/* ... */);
15 } Operator registration

Listing 3: (§ IV-C) Defining a custom operator in Deep500 with C++.

1 import deep500 as d5
2 from deep500.frameworks import pytorch as d5pt

3 # Create an operator descriptor for compilation Operator compilation

4 opdesc = d5.compile_custom_cppop('MedianPooling ', 'mp.cpp',
5 [d5.tensordesc(tf.float32 , [256, 256])] , # Input tensor shapes
6 [d5.tensordesc(tf.float32 , [128, 128])] , # Output tensor shapes
7 additional_definitions ={'DTYPE ': 'float '})
8 mycppop = d5pt.custom_op(opdesc) # Compiles operator for framework

Listing 4: (§ IV-C) Using a custom operator in Deep500 with Python.

Interoperability When an operator has more than one input
or output, supporting a high-performance C++ implementa-
tion is complicated. Arrays incur overheads due to dynamic
memory management and the code becomes less readable.
To solve this issue, Deep500 uses variable arguments in
the C++ interface, then exports a C ABI-compatible function
(extern "C", containing no defined arguments), and uses
Python’s dynamic library invocation interface (ctypes) to call
the function with unpacked arguments. We also automatically
convert native tensor types into C pointers, so that any operator
is implemented only once for all frameworks.

To support custom C++ operators across frameworks and
OSes (Deep500 supports Linux, Windows, and Mac OS), we
use CMake. To enable JIT/AOT compilation of operations, we

ONNX Network

Node

op_type

output

attribute

op_type

input

input

Node

Network

ONNX Specification

Network {
 name: "net1"
 Node {
 name: "Add"
 input: "A"
 input: "B"
 output: "C"
 op_type: "Add"
 }
 Node {
 output: "D"
 op_type: "Constant"
 attribute: {
 name: "value"
 attributetype: 2
 i: 5
} } }

Loading

Deep500 Network
(object-oriented)

Parsing

A

C

B

Add

Network...

Networks in Deep500
are networkx graphs

Automatically
generated
from ONNX
specification

1

2

3

4

5 Frameworks

7

DFS traverse

6

Automatic
conversion
using node

visitor

Caffe2
network

PyTorch
network

...

Constant

value

output

attribute

Fig. 4: An automatic transformation of an ONNX network to a Deep500 network.

wrap CMake process with a cross-platform Python interface
that can accept multiple files for compilation.

Finally, our operator interface allows to convert native
operators from frameworks into custom Deep500 operators for
use in, e.g., other frameworks, see Listing 5.

1 import tensorflow as tf
2 from deep500.frameworks import tensorflow as d5tf

3 # ... Define A, B and C as TensorFlow tensors Operator customization

4 op = d5tf.custom_op_from_native(tf.matmul ,
5 [d5tf.desc_from_tensor(A), d5tf.desc_from_tensor(B)],
6 [d5tf.desc_from_tensor(C)])
7 # Deep500 can now use the operator interface to test `op`

Listing 5: (§ IV-C) Using a native operator as a custom one in Deep500 (Python).

Provided Implementations Deep500 provides reference im-
plementations of all operators required for the DNNs
in § IV-B.
Metrics One family of the associated metrics are performance
per operator, for example wallclock time, FLOPs, or consumed
energy. Another family are accuracy per operator: norms (e.g.,
`1, `2, `∞), variance in output, and 2D/3D heatmaps.
Validation Validation is enabled by two functions. First,
test forward tests operator correctness and performance.
Second, test gradient uses numerical differentiation (Ja-
cobian matrix evaluation using finite differences) to provide
automatic gradient checking, as well as measure the perfor-
mance of the backward method.

D. Level 1: Network Processing
Level 1 is dedicated to the construction, modification, evalua-
tion, and backpropagation of entire neural networks. Deep500
separates the network abstraction from file formats, operators,
and training to enable a fair and extensible infrastructure upon
which researchers can build their own graph transformations
to optimize between operators.
Interfaces To represent a DNN, we use two classes: Network
and GraphExecutor. Network defines the network struc-
ture and exposes a standard graph API that allows to add
and remove nodes/edges, fetch node data contents, feed
nodes with new values, and others. GraphExecutor con-
trols the DNN execution. It provides two functions that en-
able inference and possibly backpropagation: inference, and
inference and backprop.

To enable fine-grained measurements and support early
exits, graph executors must be able to invoke certain Events at
the right time. Events are user-specified “hooks” that are called
at certain points during complex actions such as backpropaga-
tion and training. An example of an event “hook” is providing

an early stopping condition. To enable benchmarking events
with a selected metric, the same metric class can extend both
the TestMetric and Event classes.
Interoperability While Networks can be created manually
(node by node), Deep500 also provides a convenient interface
to construct networks from ONNX files. This entails a non-
trivial processing scheme, depicted in Fig. 4, in which an
ONNX graph is first transformed to an intermediate, object-
oriented representation. Deep500 then uses the Visitor design
pattern to invoke Network construction by calling the right
functions. An example construction is in Listing 6.

1 class TensorflowVisitor(d5.OnnxBaseVisitor):
2 # ... other definitions ...
3 def visit_dropout(self , op: d5.ops.Dropout , network: TFNetwork):
4 X = network.fetch_internal_tensor(op.i_data)
5 ratio = op.ratio.get_value () if op.ratio else 0.5
6 Y = tf.nn.dropout(X, ratio)
7 network.feed_internal_tensor(op.o_output , Y) Dropout visitor
8
9 def visit_sub(self , op: d5.ops.Sub , network: TFNetwork):

10 A, B = network.fetch_internal_tensors ([op.i_A , op.i_B])
11 C = tf.subtract(A, B)
12 network.feed_internal_tensor(op.o_C , C) Subtraction visitor
13
14 def visit_mul(self , op: d5.ops.Mul , network: TFNetwork):
15 A, B = network.fetch_internal_tensors ([op.i_A , op.i_B])
16 C = tf.multiply(A, B)
17 network.feed_internal_tensor(op.o_C , C) Multiplication visitor

Listing 6: An example DNN construction using the TensorFlow ONNX visitor.

Provided Implementations Deep500 implements a refer-
ence Network using the networkx Python graph library.
GraphExecutor is implemented by a topological graph sort.
Metrics We adapt the metrics from Level 0 to full DNN
execution. We also add the FrameworkOverhead metric, which
measures the overall time for inference and backpropagation
and compares it with the sum of running times of individual
operators. This evaluates the impact from framework and
hardware management (e.g., GPU kernel invocation latency).
Validation To validate the accuracy and performance of
Network and GraphExecutor, we provide two functions:
test executor, and test executor backprop for infer-
ence and backpropagation, respectively.

E. Level 2: Training
Level 2 of Deep500 implements DNN training.
Interfaces The main Level 2 interfaces are DatasetSampler
and Optimizer. First, DatasetSampler provides minibatches
by sampling a given dataset, and can be extended to test dif-
ferent sampling schemes. For more performance, samplers can
be implemented as custom operators in C++ and plugged into
a DNN Network as native operators. Existing native sampler
operators, such as tf.Dataset in TensorFlow, can also seam-
lessly be used. The second main interface, Optimizer, uses a
GraphExecutor and a DatasetSampler, and can run any code
as the training procedure. We provide two abstractions of SGD
optimizers: UpdateRuleOptimizer, which runs an update
rule akin to U in Algorithm 1, and ThreeStepOptimizer,
a novel abstraction that facilitates distributed optimization.
To facilitate automatic distribution of optimization, we divide
optimizer’s execution into three steps: ¶ input sampling
(Algorithm 1, line 2), · adjusting parameters prior to inference
(line 3), and ¸ applying an update rule (line 6).

Interoperability Implementing new optimizers in DL frame-
works, especially ones that do not conform to simple update
rules, is a notoriously hard task. This hinders testing new al-
gorithms with good convergence guarantees [30] or non-SGD
methods such as second-order optimization. Additionally, in-
terfacing with datasets is not standardized across frameworks,
with varying data augmentation methods, and minibatch sam-
pling being hardcoded into frameworks. Deep500 alleviates
these issues with the ThreeStepOptimizer interface.
Example Use Case Listing 7 illustrates the full implementa-
tion of AcceleGrad, a state-of-the-art DL optimizer [30], using
Deep500’s ThreeStepOptimizer. It is apparent that the code
retains its algorithmic form.

1 class AcceleGradOptimizer(d5.ThreeStepOptimizer):

2 def new_input(self): New input

3 self.t = self.t + 1
4 self.alpha_t = 1 if 0 <= self.t <= 2 else 1 / 4 * (self.t + 1)
5 self.tau_t = 1 / self.alpha_t
6
7 def prepare_param(self , param_name): Adjust parameters

8 param = self.executor.network.fetch_tensors ([param_name])[0]
9 if not self.init:

10 self.y[param_name] = param
11 self.z[param_name] = param
12 self.squares[param_name] = 0
13 y = self.y[param_name]
14 z = self.z[param_name]
15 new_param = self.tau_t * z + (1 - self.tau_t) * y
16 self.executor.network.feed_tensor(param_name , new_param)
17
18 def update_rule(self , grad , old_param , param_name):
19 squared_grad = self.squares[param_name]
20 squared_grad += self.alpha_t ** 2 * np.linalg.norm(grad) ** 2
21 eta_t = 2 * self.D / np.sqrt(self.G ** 2 + squared_grad)
22 z_t = self.z[param_name]
23 z_t2 = z_t - self.alpha_t * eta_t * grad
24 y_t2 = old_param - eta_t * grad
25 self.z[param_name] = z_t2
26 self.y[param_name] = y_t2
27 self.squares[param_name] = squared_grad
28 adjusted_lr = self.lr / (self.eps + np.sqrt(squared_grad))
29 self.init = False
30
31 return old_param - adjusted_lr * grad Update rule

Listing 7: Implementation of AcceleGrad in Deep500.

Provided Implementations Deep500 provides many popular
optimizers written in Python, such as Gradient Descent with
learning rate schedule, momentum, Adam [24], and AdaGrad.
Metrics Deep500 provides two main metrics in Level 2:
TrainingAccuracy (measures the training accuracy at every
kth step) and TestAccuracy (measures the test accuracy at
every kth epoch). Additionally, dataset samplers can be tested
individually by running test sampler with the DatasetBias
metric, which collects a histogram of sampled elements w.r.t.
corresponding labels.
Validation First, test optimizer verifies the performance
and correctness of one step of the optimizer (ensuring that an
optimizer trajectory does not diverge from the Deep500 one).
Second, test training tests the convergence, performance,
and the related tradeoff of the overall training.

F. Level 3: Distributed Training
A cornerstone feature of Deep500 is that it distributes DNN
training with virtually no effort from an API user. The core
enablers are the two class interfaces from Level 2: an update-
rule optimizer and a three-step optimizer. The distributed MPI-
based optimizer uses these classes to distribute new gradients
and parameters before or after executing update rules.

Parameter server

Agent

Agent

Time

synchronization(a) Consistent Centralized

Parameter server

Agent

Agent

Time

(b) Inconsistent Centralized

Parameter server

Agent

Agent

Time

(c) Stale-Synchronized
Centralized

Max. staleness

Agent

Agent

Time

All-
Reduce

(d) Consistent Decentralized

All-
Reduce

Fig. 5: Examples of distributed deep learning schemes (w(x,m) are minimizing parameters in iteration x belonging to agent m; see § II-A for more details).

Interfaces We provide two interfaces: DistributedSampler
and DistributedOptimizer. The former refers to a poten-
tially distributed data store. The latter refers to a specific
subclass of Optimizers from Level 2, which support dis-
tributed communication. Still, there are no pre-defined con-
straints on how and when communication should occur, so this
could potentially be a gradient-free optimizer, e.g., employing
Genetic Algorithms [36, 47]. The three-step and update-rule
optimizers from Level 2 also extend DistributedOptimizer,
so implementing a custom optimizer based on these methods
automatically grants distribution capabilities.
Example Use Case Testing for cluster-wide performance of
different communication and parameter consistency schemes
are notoriously hard tasks. In most codes, they require an al-
most total re-write of the program logic, depend on additional
libraries (sometimes entailing framework recompilation), and
not supported on all platforms, especially supercomputers. Due
to the modularity of Deep500, the task is a matter of wrapping
an optimizer with the right distributed scheme (Listing 8).

1 gexec = # ... (the definition uses previous levels)
2 opt = d5ref.AdamOptimizer(gexec)
3 ds = d5ref.ShuffleDistributedSampler(dataset , batch_size)
4 # Collect metrics for different training schemes and topologies
5 ref = d5.test_training(d5ref.ConsistentDecentralized(opt), ds)
6 ps = d5.test_training(d5ref.ConsistentCentralized(opt), ds)
7 asgd = d5.test_training(d5ref.InconsistentCentralized(opt), ds)
8 hvd = d5.test_training(d5tf.HorovodDistributedOptimizer(opt), ds)

Listing 8: Testing cluster-wide performance of distributed training in Deep500.

Interoperability Deep500 also facilitates the construction of
new communication methods, topologies, and interfaces. None
of these features are natively supported by frameworks. For
example, modifying a DNN graph to create pipeline paral-
lelism across processes is impossible automatically in any of
the frameworks, but can straightforwardly be done in Deep500.
Provided Implementations Deep500 implements different
distributed SGD variants. This includes centralized and de-
centralized optimization (§ II-A), a variant with a globally-
consistent model (synchronous SGD) [3], inconsistent model
(asynchronous SGD, e.g., HOGWILD [37]), and stale-
synchronous SGD, which enables inconsistency in the param-
eters up to a certain delay. Fig. 5 illustrates possible timelines
of each method. These methods are, of course, compatible
with all frameworks, as they use the MPI library separately.
Listing 9 illustrates the achieved compatibility using the full
implementation of the Consistent Decentralized optimizer.

As opposed to native distributed optimization, using ref-
erence implementations in conjunction with a GPU incurs
a synchronous GPU-to-host copy prior to communicating,
and vice versa. This could be further improved by custom
C++ operators that implement a specialized forward cuda
method, e.g., using CUDA-aware MPI or GPUDirect.

1 class ConsistentDecentralized(DistributedOptimizer):
2 # self.base_optimizer is a `ThreeStepOptimizer ` object
3 def train(self , inputs):
4 self.base_optimizer.new_input ()
5 for param in self.network.get_params ():
6 self.base_optimizer.prepare_param(param)
7 output = self.executor.inference_and_backprop(inputs)
8 gradients = self.network.gradient ()
9 for pname , grad_name in gradients:

10 param , grad = self.network.fetch_tensors ([pname , grad_name])
11 grad = self.communication.sync_all(grad)
12 param = self.base_optimizer.update_rule(grad , param , pname)
13 self.network.feed_tensor(pname , param)
14 return output

Listing 9: Consistent Decentralized reference optimizer in Deep500.

Metrics We provide two metrics: CommunicationVolume and
DatasetLatency.
Validation We reuse the two validation functions from
Level 2: test optimizer and test training. However,
instead of an Optimizer and a DatasetSampler, we feed
DistributedOptimizer and DistributedSampler classes.

V. EVALUATION

Our key goal in this section is to show that Deep500 enables
detailed, accurate, and customizable benchmarking of DL
codes while incurring negligible overheads.

A. Methodology, Setup, Parameters
Neural Networks Operator dimensions and types for Level 0
tests were collected from the DeepBench [40] low-level bench-
mark. For convergence tests, we use ResNet-18 and 50 [17].
We use the small datasets MNIST [28] and CIFAR-10 [26], as
well as the large-scale Imagenet [13] dataset, where the latter
uses JPEG files packed in the TFRecord file format.
Experimental Setup and Architectures We use the CSCS Piz
Daint supercomputer. Each XC50 compute node contains a 12-
core HT-enabled Intel Xeon E5-2690 CPU with 64 GiB RAM,
and one NVIDIA Tesla P100 GPU. The nodes communicate
using Cray’s Aries interconnect.
Evaluation Methodology To gather data for the non-
distributed experiments (Levels 0–2), we run them 30 times
and report median results and nonparametric 95% confidence
intervals. We use 32-bit (single precision) floating point values
for all DNN parameters and errors.

In all following benchmarks, Deep500 incurs certain over-
heads caused by additional data copying while conducting
measurements and recording the outcomes. We expect that
— as with any other benchmarking infrastructure — Deep500
users would switch off unnecessary benchmarking metrics and
instrumentation for production runs and other performance-
critical scenarios.

B. Level 0: Operators
We first investigate performance and accuracy of opera-
tors implemented with Deep500, PyTorch, TensorFlow, and
Caffe2. We also consider NVIDIA native results obtained

Caffe2 TensorFlow PyTorch DeepBench
Framework

0

2

4

6

8

10

12

14
Ti

m
e

[m
s]

Native
Deep500

Caffe2 TensorFlowPyTorchDeepBench
Framework

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Ti
m

e
[m

s]

Native
Deep500

(a) Convolution Performance (left: violin plot of all kernels, right: box plot of
size N = 16, C = 3, H = W = 224, filter size 3× 3).

Caffe2 TensorFlowPyTorchDeepBench
Framework

0

50

100

150

200

250

300

350

400

Ti
m

e
[m

s]

Native
Deep500

Caffe2 TensorFlowPyTorch DeepBench
Framework

0.0

0.2

0.4

0.6

0.8

1.0

Ti
m

e
[m

s]

Native
Deep500

(b) Matrix Multiplication Performance (left: violin plot of all kernels, right: box
plot of size M = K = 2560, N = 64).

Fig. 6: Analysis of Deep500 Level 0: Performance of operators implemented with Deep500 and selected frameworks, together with the DeepBench baseline.

with DeepBench. DeepBench provides 160 different matrix
multiplication sizes and 94 convolution dimensions, typically
found in DL workloads. We aggregate the results and present
the running time distribution and accuracy of each framework.

We seek to show that Deep500’s Level 0 is reliable and
fast. Indeed, Fig. 6 shows that for all frameworks, Deep500
operator runtime differs negligibly (within CIs) from the native
frameworks. Moreover, DeepBench can be used as a baseline
for operator runtime (assuming all frameworks are imple-
mented over the same low-level libraries, such as cuDNN),
as it only calls a given kernel and outputs the resulting GPU
runtime. This is not the case in other frameworks, as they
contain management overhead and additional actions, such as
copying tensors.

Since convolution and matrix multiplications vary widely
in size and runtime, we choose two common problem sizes
from DeepBench and present the results in the right-hand side
of Figures 6a and 6b. The figures show that DeepBench is
indeed faster than all frameworks, and the processing time
varies between frameworks, where TensorFlow is the slowest
and PyTorch is on average the fastest. The trends in a single
example are similar to the overall results, however, TensorFlow
and PyTorch over Deep500 are slightly faster than their native
counterparts. Upon closer inspection, though, the runtime
distributions are statistically indistinguishable.

As for correctness, the median (over the set of problem
sizes) of the `∞ norms between Deep500 and the frame-
works are ≈0.0007, ≈0.00068, and ≈0.00073 for TensorFlow,
Caffe2, and PyTorch respectively.

C. Level 1: Networks
In the Level 1 analysis, we investigate the performance and
accuracy benefits of transforming a DNN convolution by
splitting input minibatches into smaller micro-batches, as
Oyama et al. propose [34]. We apply the transformation on the
network independently of the framework by solving an Integer
Linear Program (ILP) to maximize performance and preserve
memory utilization constraints. The Level 1 code then replaces
convolutions with a split, followed by micro-batch convolution
and concatenation operations, as illustrated in Fig. 7.

We use Deep500 to apply this transformation on both
PyTorch and TensorFlow. Before the transformation, PyTorch
suffered out-of-memory (OOM) errors for AlexNet [25] for

Transformed Deep500 NetworkOriginal Deep500 Network

Minibatch transformation

...

1

2

3

...Conv2D
468x96x256x5x5

... ...

Conv2D
16x96x256x5x5

Split(axis=0,
[4, 16, ..., 16]

Conv2D
4x96x256x5x5

... Concat
(axis=0)Use Implicit Precompute

GEMM algorithm

Use Wingrad non-
fused algorithm

Use Wingrad non-
fused algorithm

Fig. 7: The illustration of the Microbatch transformation.

minibatch sizes of 468 or higher. Deep500’s transformation
decreases memory requirements, eliminating OOM issues
and enabling PyTorch to process a given dataset in
≈225ms. Yet, the same optimization slows down TensorFlow
from ≈350ms to ≈380ms, because splitting and concatenating
nodes in TensorFlow incur additional memory copies. To
alleviate this, one could modify the ONNX format to allow
referencing sub-tensors instead of copying them.

D. Level 2: Training
In the Level 2 analysis, we compare the performance and
accuracy of training using TensorFlow, Caffe2, and Deep500
reference optimizers.
Optimization Overhead We first measure the runtime of train-
ing in native TensorFlow and using the Deep500 TensorFlow
integration. Apart from an instantiation overhead in the first
epoch, Deep500 consistently incurs negligible (<1%) over-
head, where both implementations take ≈243ms per epoch.

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

CIFAR−10

CIFAR−100
F−MNIST

MNIST

T
im

e
[s

]

Generator
Real
Synth

0.00

0.05

0.10

0.15

0.20

ImageNet

T
im

e
[s

] Generator
1024files+1node
1024files+64nodes
1file+1node
1file+64nodes
Synth

Fig. 8: The latency of loading various datasets.

Dataset Latency In Fig. 8, we measure the latency
of loading data from different image processing datasets
(DatasetLatency metric), which include reading the files,
decoding data, and constructing minibatches of size 128. We
test different formats (binary, TFRecord, POSIX tar) on one
node and a distributed training setting with 64 nodes. For each
dataset, we measure both data loading as well as synthetic
data generation. In the left-hand side of the figure (using
raw binary files), we see that for small datasets (MNIST,
Fashion-MNIST), data loading is faster than allocating and
generating synthetic data. This is because the dataset is already
stored in memory, and not encoded. In larger datasets, such

as CIFAR-10 and 100, new data is occasionally loaded from
the filesystem, thus synthetic generation is faster.

For ImageNet, the figure (right-hand side) shows synthetic
dataset generation is 2 orders of magnitude faster than loading
images, as opposed to the other datasets. The main differences
between ImageNet and the aforementioned datasets are the
container (TFRecord) and image (encoded JPEG) format. To
break down the image pipeline latency, we create an ImageNet
dataset in a POSIX tar container with precomputed indexing
(IndexedTarDataset in Deep500) and ingest it through two
JPEG decoding pipelines (PIL and libjpeg-turbo). In Table
III we see that using the TFRecord format and the TensorFlow
pipeline is advantageous over the tar format. When using the
POSIX format, both random file access and JPEG decoding
play a role in slowdown. Even though for a single image
libjpeg-turbo decodes images faster than the TensorFlow
native decoder, the ratios between runtime of a minibatch
and one image suggest that TensorFlow employs parallel
decoding. Additionally, as opposed to the true random image
selection in the tar format, TensorFlow uses pseudo-shuffling,
where a buffer of (10,000) images is loaded into memory
once and shuffled internally. This chunk-based loading reduces
stochasticity, but, as the table shows, enables pipelining file I/O
and in-memory shuffling.

Data Type Time [ms]

Indexed tar TFRecord

PIL libjpeg-turbo Native Decoder

1 image (sequential) 10.04 2.80 7.43
1 image (shuffled) 51.19 34.60 9.50
128 images (sequential) 1,378.34 315.18 127.02
128 images (shuffled) 6,849.45 6,433.72 139.13

TABLE III: ImageNet decoding latency breakdown (median time).

For the distributed experiment, we test the ImageNet train-
ing set sharded to 1024 files (default) vs. 1 large file. In HPC,
Parallel File Systems (PFS) generally prefer one segmented file
rather than querying strings and inodes. Indeed, the latency of
loading one file on a single node is lower than 1024. However,
when using 64 nodes, we observe that surprisingly, 1024 files
are ≈10% faster on Piz Daint. In all cases, the latency of
loading a batch can be hidden by pipelining loading with
DNN computation, a technique that is standard practice in
large-scale ML.
Convergence In Fig. 9 and 10, we analyze the convergence
of different native optimizers in Caffe2, Deep500, and of
AcceleGrad [30], the Deep500 custom Python operator from
Listing 7. While the AcceleGrad algorithm is short and
descriptive, it exhibits lower performance than the native
Caffe2 optimizers (≈1.6× slower). This can be attributed to
the native Caffe2 weight update kernels, which are written
specifically for GPUs. AcceleGrad also achieves comparable
accuracy to similar algorithms (e.g., AdaGrad). Furthermore,
while Deep500’s Adam, which was directly translated from
the original algorithm [24], is ≈5× slower than native, it still
achieves high accuracy, even when the framework does not
(Fig. 10).

In an attempt to understand this difference, we test the

20

40

60

80

0 2 4 6 8 10
Epoch

Te
st

 a
cc

ur
ac

y
(%

)

0

1

2

3

4

0 500 1000 1500 2000 2500
Time [s]

Tr
ai

ni
ng

 lo
ss

op
tim

ize
r

AcceleGrad: Reference (custom) implementation over Caffe2 Executor
Adam−Ref Deep500: Reference optimizer over Caffe2 executor
AdaGrad native: Caffe2 optimizer over Caffe2 executor
Adam native: Caffe2 optimizer over Caffe2 executor
GradDescent native: Caffe2 optimizer (SGD) over Caffe2 executor
Momentum native: Caffe2 optimizer over Caffe2 executor
RmsProp native: Caffe2 optimizer over Caffe2 executor
GradDescent Deep500: Reference optimizer over Caffe2 executor
Momentum Deep500: Reference optimizer over Caffe2 executor

RmsProp

Accele
Grad

Adam

AdaGrad

Grad
Descent

Momentum

RmsProp

Accele
Grad

Adam

AdaGrad

Grad
Descent

Momentum

Fig. 9: The analysis of test accuracy vs. epoch number and training loss
vs. elapsed time for different optimizers (assuming Caffe2, ResNet-18, CIFAR).

20

40

60

80

0 2 4 6 8 10
Epoch

Te
st

 a
cc

ur
ac

y
(%

)

Adam TF

Adam
CF2

Adam TF
Deep500

Adam CF2
Deep500

0.5

1.0

1.5

0 1000 2000 3000 4000
Time [s]

Te
st

 a
cc

ur
ac

y
(%

)

Adam TF

Adam
CF2

Adam TF
Deep500

Adam CF2
Deep500

op
tim

ize
r Adam TF Deep500: Reference optimizer over TF executor

Adam TF: TF optimizer over TF executor
Adam CF2 Deep500: Reference optimizer over Caffe2 executor
Adam CF2: Caffe2 optimizer over Caffe2 executor

Fig. 10: The analysis of test accuracy vs. epoch number and training loss
vs. elapsed time for different frameworks (assuming Adam, ResNet-18, CIFAR).

accuracy of the TensorFlow Adam optimizer on a smaller scale
by comparing its trajectory with the Deep500 implementation.
Fig. 11 shows the `2 and `∞ norms of the difference between
the parameters, illustrating the chaotic divergence of deep
learning, now easily visualized by Deep500. We observe that a
single step of TensorFlow is faithful to the original algorithm,
however, continuing training increases divergence, where some
parameters (e.g., fully connected, layers 5,7) diverge faster
than others (additive bias, layers 2,4,6,8).

The Deep500 reference optimizers are evidently slower
(e.g., Figure 10), as they are unoptimized reference imple-
mentations. Here, our primary goal is not to offer tuned com-
petitive codes, but instead to illustrate that Deep500 enables
comparison and convergence of a multitude of optimizers.

E. Level 3: Distributed Training
Finally, we analyze Deep500’s Level 3. We compare dis-
tributed variants of SGD, including TensorFlow’s native pa-
rameter server (TF-PS), Horovod, as well as Deep500 refer-
ence implementations of centralized SGD (PSSGD), decen-
tralized (DSGD), decentralized with a neighbor-based com-
munication graph (DPSGD), asynchronous (ASGD), model-
averaging (MAVG), DSGD with a Deep500 custom C++/MPI
allreduce operator (CDSGD), and the custom distributed
communication scheme SparCML [39], written as a custom
Deep500 operator. All compared Deep500 implementations
are distributed over the TensorFlow graph executor. We use
ResNet-50 for strong and weak scaling, and up to 256 compute

0

10

20

30

0 250 500 750

Iteration

layers
2,4,6,8

layer 5

total (sum
of all layers)

layer 3

layer 1 layer 7

D
iv

er
ge

nc
e

(d
iff

er
en

ce
)

(a) Divergence for the `2 norm.

0

1

2

3

0 250 500 750

Iteration

total (sum
of all layers) layers

2,4,6,8

layers 5,7
layer 3

layer 1

D
iv

er
ge

nc
e

(d
iff

er
en

ce
)

(b) Divergence for the `∞ norm.

Fig. 11: The difference (divergence) between DNN weights in the native optimiza-
tion (Adam on TensorFlow) and the Deep500 Adam optimization (MNIST).

nodes. We use the CommunicationVolume metric in conjunc-
tion with mpiP [45] to collect communication statistics.

Fig. 12 (left) presents strong scaling results of the distributed
implementations and competitors, compared with two base-
lines — TF-PS and Horovod — both measured using the
TensorFlow Benchmark1. We use a minibatch size of 1,024
images on 8–64 nodes (since fewer nodes run out of memory
and more nodes become ineffective). The figure shows that
while Python distributed optimizers provide reference results
for correctness analysis, C++ operators can deliver high-
performance necessary for large-scale training, which are on-
par with the state-of-the-art (Horovod). In particular, several
effects can be seen: ¶ ASGD is centralized but does not
use broadcast/gather operations. Consequently, despite being
asynchronous, ASGD becomes slower the more worker nodes
queue up to communicate. · PSSGD, MAVG, and DSGD
all start with similar epoch times, but as nodes increase, the
decentralized versions (MAVG, DSGD) prove more efficient.
¸ DSGD written in C++, which uses direct CPU/GPU point-
ers, scales strongly up to 32 nodes and is almost an order of
magnitude faster than its Python counterpart, which undergoes
conversions to/from NumPy arrays.

In terms of communication volume, the collected metrics
indicate that the reference DSGD and C++ DSGD exhibit
the same communication volume, as expected. The number of
PSSGD messages, however, scales linearly with the number
of nodes. DPSGD communication volume remains constant
with respect to the number of nodes, but usually converges
slower and to a less accurate result [3]. As for SparCML’s
sparse allreduce (183 lines of C++ code), we see that while
communication is greatly reduced (up to 2× on 8 nodes), the
running time is still high compared to the DSGD allreduce
custom operator (23 lines of code), and increases with the
number of participating nodes. This is both due to the reduced
vector representation, which becomes denser with increasing
nodes [39] (every allreduce step aggregates more sparse vec-
tors with different indices), and due to the time it takes to filter
the dense gradient to the sparse representation, which could
potentially be optimized by using a CUDA custom operator.

In Fig. 12 (right), we study the weak scaling of the same
implementations on 1–256 nodes. The baseline for this test is
TF-PS, the default distributed implementation available in Ten-
sorFlow. Although simple, the allreduce operator (CDSGD)
provides full DSGD, and is able to scale better than the PS

1https://www.github.com/tensorflow/benchmarks

architecture and Horovod, as in point · above. This result is
also non-trivial, since the parameters are stored on the GPUs,
and they are copied automatically using Deep500 for use with
MPI. Also observe that the native TensorFlow and Horovod
implementations are missing results at 256 nodes. For TF-PS,
the application crashed, whereas on Horovod the test ran but
produced exploding (infinitely increasing) loss values, which
is an indicator of incorrect gradient accumulation.

Overall, the plots show that using Deep500, comparing
multiple communication schemes is as easy as replacing
an operator. Deep500 facilitates the tradeoff analysis between
different topologies, operator overhead (e.g., gradient sparsi-
fication), and optimizer quality (async. vs. sync. SGD); and
enables benchmarking results on large node configurations.

VI. RELATED WORK

Our work touches on various areas. We now discuss related
works, briefly summarizing the ones covered in previous
sections: DL frameworks in § II-B and Table I, DL data model
and format in § II-D, and DL benchmarks in Table II.
DL Benchmarks The DL community has recently gained
interest in benchmarking DL codes. Example benchmarks
are DAWNBench [9], MLPerf [31], or DeepBench [40];
see Table II for a full list and analysis of their function-
alities. Deep500 is the only benchmark that addresses the
five challenges described in § III: customizability, metrics,
performance, validation, and reproducibility.
DL Frameworks There exist many DL frameworks and related
libraries as well as frontends [1, 21, 6, 35]. As we illustrate in
Table I, none of them offers a full spectrum of functionalities.
Deep500 does not only enable benchmarking of these systems.
On top of that – through its meta-framework design – it
enables integrating arbitrary elements of the considered DL
systems to combine the best of different DL worlds.
DL Data Formats Finally, we use and extend the established
ONNX DNN format [33] with an object-oriented notation, new
operations, and others. Thus, Deep500 significantly improves
interoperability between ONNX and DL frameworks.

VII. CONCLUSION

Deep Learning (DL) has become ubiquitous in areas as diverse
as speech recognition and autonomous driving. However, it is
still unclear how to compare and benchmark the plethora of
available DL algorithms and systems, especially in extreme-
scale distributed environments.

To answer these questions, we introduce Deep500: a cus-
tomizable infrastructure that enables detailed, accurate, fast,
and fair benchmarking of DL codes. The essence of Deep500
is its layered and modular design that allows to independently
extend and benchmark DL procedures related to simple opera-
tors, whole neural networks, training schemes, and distributed
training. The principles behind this design can be reused
to enable interpretable and reproducible benchmarking of
extreme-scale codes in domains outside DL.

To ensure the best design decisions for Deep500, we ana-
lyze challenges in benchmarking complex and large-scale DL
codes. To this end, we identify five core challenges: customiz-
ability, metrics, performance, validation, and reproducibility.

0

1000

2000

3000

8 16 32 64

T
hr

ou
gh

pu
t [

im
ag

es
/s

] Optimizer
CSGD
Horovod
REF−asgd
REF−dpsgd
REF−dsgd
REF−mavg
REF−pssgd
SparCML
TF−PS

Communicated data amount:
see caption

Number of nodes

0

10000

20000

30000

40000

1 4 16 64 256

T
hr

ou
gh

pu
t [

im
ag

es
/s

] Optimizer
CDSGD
Horovod
SPARCML
TF−PS

Number of nodes

Communicated data amount: see caption

Fig. 12: Scaling of Level 3: Strong (left) and weak (right) scaling on Piz Daint and ImageNet. Communicated data per node: 0.952 GB (CDSGD), 0.951 GB (SparCML),
0.952 GB (REF-dsgd), 28.573 GB (REF-asgd), 1.904 GB (REF-dpsgd), 1.903 GB (REF-pssgd).

Through extensive evaluation, we illustrate that Deep500 sat-
isfies these challenges. For example, it ensures identical accu-
racy while offering negligible (<1%) performance overheads
over native operators or whole DNNs in state-of-the-art DL
frameworks, including TensorFlow, PyTorch, and Caffe2.

Finally, we predict that Deep Learning will become a part
of computing as important as general dense or sparse linear
algebra. Thus, we construct Deep500 such that it can be freely
modified to ensure fair benchmarking, produce artifacts for
DL papers, provide insightful analyses, and enable effective
development of any future DL effort.

ACKNOWLEDGMENTS

We thank Cédric Renggli, Dan Alistarh, Yosuke Oyama, and
Kfir Y. Levy for valuable discussions; and Hussein Harake,
Colin McMurtrie, and the whole CSCS team granting access
to the Greina and Daint machines, and for their excellent
technical support. This project has received funding from
the European Research Council (ERC) under the European
Union’s Horizon 2020 programme (grant agreement DAPP,
No. 678880). T.B.N. is supported by the ETH Zurich Post-
doctoral Fellowship and Marie Curie Actions for People
COFUND program.

REFERENCES
[1] M. Abadi et al. “Tensorflow: a system for large-scale machine learning.” In:

OSDI. 2016.
[2] R. Adolf et al. “Fathom: Reference Workloads for Modern Deep Learning

Methods”. In: arXiv:1608.06581 (2016).
[3] T. Ben-Nun and T. Hoefler. “Demystifying Parallel and Distributed Deep Learn-

ing: An In-Depth Concurrency Analysis”. In: arXiv:1802.09941 (2018).
[4] J. Bergstra et al. “Theano: Deep learning on GPUs with Python”. In: NIPS,

BigLearning Workshop, Granada, Spain. 2011.
[5] K. Chellapilla, S. Puri, and P. Simard. “High Performance Convolutional Neural

Networks for Document Processing”. In: ICFHR. 2006.
[6] T. Chen et al. “Mxnet: A flexible and efficient machine learning library for

heterogeneous distributed systems”. In: arXiv:1512.01274 (2015).
[7] T. Chen et al. “TVM: End-to-End Optimization Stack for Deep Learning”. In:

arXiv:1802.04799 (2018).
[8] F. Chollet. Keras. 2015. URL: https://github.com/keras-team/keras.
[9] C. Coleman et al. “DAWNBench: An End-to-End Deep Learning Benchmark and

Competition”. In: ML Systems Workshop @ NIPS (2017).
[10] R. Collobert, S. Bengio, and J. Mariéthoz. Torch: a modular machine learning

software library. Tech. rep. Idiap, 2002.
[11] A. Damien et al. TFLearn. 2016. URL: https://github.com/tflearn/tflearn.
[12] J. Dean et al. “Large scale distributed deep networks”. In: NIPS. 2012.
[13] J. Deng et al. “ImageNet: A Large-Scale Hierarchical Image Database”. In: CVPR.

2009.
[14] H. Dong et al. “TensorLayer: a versatile library for efficient deep learning

development”. In: ACMMM. 2017.
[15] J. J. Dongarra et al. Top500 supercomputer sites. 1994.
[16] GitHub. Deep Learning Repositories on GitHub. 2018. URL: https://github.com/

topics/deep-learning.

[17] K. He et al. “Deep Residual Learning for Image Recognition”. In: CVPR. 2016.
[18] T. Hoefler and R. Belli. “Scientific benchmarking of parallel computing systems”.

In: SC. 2015.
[19] HPE. Deep Learning Benchmarking Suite. 2018. URL: https://developer.hpe.com/

platform/hpe-deep-learning-cookbook/home.
[20] X. Jia et al. “Highly Scalable Deep Learning Training System with Mixed-

Precision: Training ImageNet in Four Minutes”. In: arXiv:1807.11205 (2018).
[21] Y. Jia et al. “Caffe: Convolutional architecture for fast feature embedding”. In:

ACMMM. 2014.
[22] Kaggle. Data Science Competition Repository. 2018. URL: https://www.kaggle.

com.
[23] Khronos Group. Neural Network Exchange Format. 2018.
[24] D. P. Kingma and J. Ba. “Adam: A Method for Stochastic Optimization”. In:

ICLR. 2015.
[25] A. Krizhevsky, I. Sutskever, and G. Hinton. “ImageNet Classification with Deep

Convolutional Neural Networks”. In: NIPS. 2012, pp. 1097–1105.
[26] A. Krizhevsky. “Learning Multiple Layers of Features from Tiny Images”. MA

thesis. 2009.
[27] A. Lavin and S. Gray. “Fast algorithms for convolutional neural networks”. In:

CVPR. 2016.
[28] Y. LeCun and C. Cortes. The MNIST database of handwritten digits. 1998.
[29] Y. LeCun et al. “Gradient-based learning applied to document recognition”. In:

Proc. IEEE (1998).
[30] Y. K. Levy, A. Yurtsever, and V. Cevher. “Online Adaptive Methods, Universality

and Acceleration”. In: NIPS. 2018, pp. 6500–6509.
[31] MLPerf. A broad ML benchmark suite. 2018. URL: https://www.mlperf.org.
[32] P. Moritz, R. Nishihara, and M. I. Jordan. “A Linearly-Convergent Stochastic

L-BFGS Algorithm”. In: ICAIS. 2016.
[33] Open Neural Network Exchange. ONNX Github repository. 2018. URL: https :

//www.github.com/onnx.
[34] Y. Oyama et al. “Accelerating Deep Learning Frameworks with Micro-batches”.

In: IEEE International Conference on Cluster Computing (CLUSTER). 2018.
[35] A. Paszke et al. Automatic differentiation in PyTorch. Tech. rep. 2017.
[36] E. Real et al. “Regularized Evolution for Image Classifier Architecture Search”.

In: arXiv:1802.01548 (2018).
[37] B. Recht et al. “Hogwild: A lock-free approach to parallelizing stochastic gradient

descent”. In: NIPS. 2011.
[38] J. Redmon. Darknet: Open Source Neural Networks in C. 2013–2018.
[39] C. Renggli, D. Alistarh, and T. Hoefler. “SparCML: High-Performance Sparse

Communication for Machine Learning”. In: arXiv:1802.08021 (2018).
[40] B. Research. DeepBench: Benchmarking Deep Learning operations on different

hardware. 2018. URL: https://github.com/baidu-research/DeepBench.
[41] H. Robbins and S. Monro. “A Stochastic Approximation Method”. In: The Annals

of Mathematical Statistics (1951).
[42] A. Sergeev and M. Del Balso. “Horovod: fast and easy distributed deep learning

in TensorFlow”. In: arXiv:1802.05799 (2018).
[43] Skymind. Deeplearning4j: Open-source distributed deep learning for the JVM.

2016. URL: https://deeplearning4j.org.
[44] S. Tokui et al. “Chainer: a next-generation open source framework for deep

learning”. In: LearningSys @NIPS. 2015.
[45] J. S. Vetter and M. O. McCracken. “Statistical Scalability Analysis of Commu-

nication Operations in Distributed Applications”. In: Proceedings of the Eighth
ACM SIGPLAN Symposium on Principles and Practices of Parallel Programming.
PPoPP ’01. Snowbird, Utah, USA: ACM, 2001, pp. 123–132.

[46] H. Xiao, K. Rasul, and R. Vollgraf. “Fashion-MNIST: a Novel Image Dataset for
Benchmarking Machine Learning Algorithms”. In: arXiv:1708.07747 (2017).

[47] S. R. Young et al. “Evolving Deep Networks Using HPC”. In: MLHPC’17. 2017.
[48] D. Yu et al. “An introduction to computational networks and the computational

network toolkit”. In: Microsoft Technical Report MSR-TR-2014–112 (2014).
[49] S. Zagoruyko and N. Komodakis. “Wide Residual Networks”. In:

arXiv:1605.07146 (2016).
[50] H. Zhu et al. “TBD: Benchmarking and Analyzing Deep Neural Network

Training”. In: IISWC, 2018.

