
spcl.inf.ethz.ch

@spcl_eth

TORSTEN HOEFLER

Advanced MPI: New Features of MPI-3

Online materials: http://htor.inf.ethz.ch/teaching/mpi_tutorials/speedup15/

spcl.inf.ethz.ch

@spcl_eth

1. Introduction to Advanced MPI Usage

2. Nonblocking Collective Communication

3. One-Sided Communication

4. Topology Mapping and Neighborhood Collective

Communication

5. Bonus Material (only if time)

1. Hybrid Programming Primer

2. Datatypes

 All materials (slides, code examples) at:

http://htor.inf.ethz.ch/teaching/mpi_tutorials/speedup15/

Tutorial Outline

2

spcl.inf.ethz.ch

@spcl_eth

 Benjamin Franklin "Tell me, I forget, show me, I remember,

involve me, I understand.“

 Tell: I will explain the abstract concepts and interfaces/APIs to use them

 Show: I will demonstrate one or two examples for using the concepts

 Involve: You will transform a simple MPI code into different semantically

equivalent optimized ones

 Please interrupt me with any question at any point!

Used Techniques

3

spcl.inf.ethz.ch

@spcl_eth

Section I - Introduction

4

spcl.inf.ethz.ch

@spcl_eth

 Programming model Overview

 Different systems: UMA, ccNUMA, nccNUMA, RDMA, DM

Introduction

5

spcl.inf.ethz.ch

@spcl_eth

 Different programming models: UMA, PGAS, DM

 The question is all about memory consistency

Introduction

TBB, CILK, OpenMP, MPI-3 SM UPC, CAF, MPI-3 OS MPI-1, PVM

6

spcl.inf.ethz.ch

@spcl_eth

 Provide abstract machine models (contract)

 Shared memory

 PGAS

 Distributed memory

 All models can be mapped to any architecture, more or less

efficient (execution model)

 MPI is not a programming model

 And has never been one!

Programming Models

7

spcl.inf.ethz.ch

@spcl_eth

 (Performance) Portability

 Declarative vs. imperative

 Abstraction (of processes)

 Composability (Libraries)

 Isolation (no interference)

 Opaque object attributes

 Transparent Tool Support

 PMPI, MPI-T

 Inspect performance and correctness

MPI Governing Principles

8

spcl.inf.ethz.ch

@spcl_eth

 Communication Concepts:

 Point-to-point Communication

 Collective Communication

 One Sided Communication

 (Collective) I/O Operations

 Declarative Concepts:

 Groups and Communicators

 Derived Datatypes

 Process Topologies

 Process Management

 Malleability, ensemble applications

 Tool support

 Linking and runtime

Main MPI Concepts

9

spcl.inf.ethz.ch

@spcl_eth

 An open standard library interface for message passing, ratified

by the MPI Forum

 Versions: 1.0 (‟94), 1.1 (‟95), 1.2 (‟97), 1.3 (‟08)

 Basic Message Passing Concepts

 2.0 (‟97), 2.1 (‟08)

 Added One Sided and I/O concepts

 2.2 (‟09)

 Merging and smaller fixes

 3.0 (‟12)

 Several additions to react to new challenges

 3.1 (‟15)

 Several smaller issues and (hopefully) FT

 4.0 („??)

 Unclear (come next week to Kobe!!)

MPI History

10

spcl.inf.ethz.ch

@spcl_eth

 No explicit support for active messages

 Can be emulated at the library level

 Not a programming language

 But it’s close, semantics of library calls are clearly specified

 MPI-aware compilers under development

 It‟s not magic

 Manual data decomposition (cf. libraries, e.g., ParMETIS)

Some MPI mechanisms (Process Topologies, Neighbor Colls.)

 Manual load-balancing (see libraries, e.g., ADLB)

 It‟s neither complicated nor bloated

 Six functions are sufficient for any program

 250+ additional functions that offer abstraction, performance portability and

convenience for experts

What MPI is Not

11

spcl.inf.ethz.ch

@spcl_eth

 An open Forum to discuss MPI

 You can join! No membership fee, no perks either

 Since 2008 meetings every two months for three days (switching

to four months and four days)

 5x in the US, once in Europe (with EuroMPI → next week)

 Votes by organization, eligible after attending two of the three

last meetings, often unanimously

 Everything is voted twice in two distinct meetings

 Tickets as well as chapters

What is this MPI Forum?

12

spcl.inf.ethz.ch

@spcl_eth

1. Identify a scalable algorithm

 Analyze for memory and runtime

2. Is there a library that can help me?

 Computational libraries

PPM, PBGL, PETSc, PMTL, ScaLAPACK

 Communication libraries

AM++, LibNBC

 Programming Model Libraries

ADLB, AP

 Utility Libraries

HDF5, Boost.MPI

3. Plan for modularity

 Writing (parallel) libraries has numerous benefits

Recommended Development Workflow

13

spcl.inf.ethz.ch

@spcl_eth

 MPI is an open standardization effort

 Talk to us or join the forum

 There will be a public comment period

 The MPI standard

 Is free for everybody

 Is not intended for end-users (no replacement for books and tutorials)

 Is the last instance in MPI questions

Things to Keep in Mind

14

spcl.inf.ethz.ch

@spcl_eth

15

Any Deeper Questions – Advanced MPI

appeared November 2014

(on sale on Amazon now)

includes all of MPI-3.0

spcl.inf.ethz.ch

@spcl_eth

Section II - Nonblocking and

Collective Communication

16

spcl.inf.ethz.ch

@spcl_eth

 Nonblocking communication

 Deadlock avoidance

 Overlapping communication/computation

 Collective communication

 Collection of pre-defined optimized routines

 Nonblocking collective communication

 Combines both advantages

 System noise/imbalance resiliency

 Semantic advantages

 Examples

17

Nonblocking and Collective Communication

spcl.inf.ethz.ch

@spcl_eth

 Semantics are simple:

 Function returns no matter what

 No progress guarantee!

 E.g., MPI_Isend(<send-args>, MPI_Request *req);

 Nonblocking tests:

 Test, Testany, Testall, Testsome

 Blocking wait:

 Wait, Waitany, Waitall, Waitsome

Nonblocking Communication

18

spcl.inf.ethz.ch

@spcl_eth

 Blocking vs. nonblocking communication

 Mostly equivalent, nonblocking has constant request management

overhead

 Nonblocking may have other non-trivial overheads

 Request queue length

 Linear impact on

performance

 E.g., BG/P: 100ns/req

Tune unexpected queue length!

Nonblocking Communication

19

spcl.inf.ethz.ch

@spcl_eth

 An (important) implementation detail

 Eager vs. Rendezvous

 Most/All MPIs switch protocols

 Small messages are copied to internal remote buffers

And then copied to user buffer

Frees sender immediately (cf. bsend)

 Large messages wait until receiver is ready

Blocks sender until receiver arrived

 Tune eager limits!

Nonblocking Communication

20

spcl.inf.ethz.ch

@spcl_eth

 Overlapping comp/comm

 pipelining

Software Pipelining - Motivation

if(r == 0) {

 for(int i=0; i<size; ++i) {

 arr[i] = compute(arr, size);

 }

 MPI_Send(arr, size, MPI_DOUBLE, 1, 99, comm);

} else {

 MPI_Recv(arr, size, MPI_DOUBLE, 0, 99, comm, &stat);

}

21

spcl.inf.ethz.ch

@spcl_eth

 Overlapping comp/comm

 pipelining

Software Pipelining - Motivation

if(r == 0) {

 MPI_Request req=MPI_REQUEST_NULL;

 for(int b=0; b<nblocks; ++b) {

 if(b) {

 if(req != MPI_REQUEST_NULL) MPI_Wait(&req, &stat);

 MPI_Isend(&arr[(b-1)*bs], bs, MPI_DOUBLE, 1, 99, comm, &req);

 }

 for(int i=b*bs; i<(b+1)*bs; ++i) arr[i] = compute(arr, size);

 }

 MPI_Send(&arr[(nblocks-1)*bs], bs, MPI_DOUBLE, 1, 99, comm);

} else {

 for(int b=0; b<nblocks; ++b)

 MPI_Recv(&arr[b*bs], bs, MPI_DOUBLE, 0, 99, comm, &stat);

}

22

spcl.inf.ethz.ch

@spcl_eth

 No pipeline:

 T = Tcomp(s) + Tcomm(s) + Tstartc(s)

 Pipeline:

 T = nblocks * [max(Tcomp(bs) , Tcomm(bs)) + Tstartc(bs)]

A Simple Pipeline Model

23

spcl.inf.ethz.ch

@spcl_eth

 Many 2d electrostatic problems can be reduced to solving

Poisson‟s or Laplace‟s equation

 Solution by finite difference methods

 pnew(i,j) = (p(i-1,j)+p(i+1,j)+p(i,j-1)+p(i,j+1))/4

 natural 2d domain decomposition

 State of the Art:

Compute, communicate

Maybe overlap inner computation

2D Jacobi Example

24

spcl.inf.ethz.ch

@spcl_eth

Simplified Serial Code

for(int iter=0; iter<niters; ++iter) {

 for(int i=1; i<n+1; ++i) {

 for(int j=1; j<n+1; ++j) {

 anew[ind(i,j)] = apply(stencil); // actual computation

 heat += anew[ind(i,j)]; // total heat in system

 }

 }

 for(int i=0; i<nsources; ++i) {

 anew[ind(sources[i][0],sources[i][1])] += energy; // heat source

 }

 tmp=anew; anew=aold; aold=tmp; // swap arrays

}

25

spcl.inf.ethz.ch

@spcl_eth

 Why 2D parallelization?

 Minimizes surface-to-volume ratio

 Specify decomposition on command line (px, py)

 Compute process neighbors manually

 Add halo zones (depth 1 in each direction)

 Same loop with changed iteration domain

 Pack halo, communicate, unpack halo

 Global reduction to determine total heat

Simple 2D Parallelization

26

spcl.inf.ethz.ch

@spcl_eth

 Browse through code (stencil_mpi.cpp)

Source Code Example

27

spcl.inf.ethz.ch

@spcl_eth

 stencil_mpi_ddt_overlap.cpp

 Steps:

 Start halo communication

 Compute inner zone

 Wait for halo communication

 Compute outer zone

 Swap arrays

Stencil Example - Overlap

wait

28

spcl.inf.ethz.ch

@spcl_eth

 Three types:

 Synchronization (Barrier)

 Data Movement (Scatter, Gather, Alltoall, Allgather)

 Reductions (Reduce, Allreduce, (Ex)Scan, Reduce_scatter)

 Common semantics:

 no tags (communicators can serve as such)

 Blocking semantics (return when complete)

 Not necessarily synchronizing (only barrier and all*)

 Overview of functions and performance models

Collective Communication

29

spcl.inf.ethz.ch

@spcl_eth

 Barrier –

 Often α+β log2P

 Scatter, Gather –

 Often αP+βPs

 Alltoall, Allgather -

 Often αP+βPs

Collective Communication

30

spcl.inf.ethz.ch

@spcl_eth

 Reduce –

 Often αlog2P+βm+γm

 Allreduce –

 Often αlog2P+βm+γm

 (Ex)scan –

 Often αP+βm+γm

Collective Communication

31

spcl.inf.ethz.ch

@spcl_eth

 Nonblocking variants of all collectives

 MPI_Ibcast(<bcast args>, MPI_Request *req);

 Semantics:

 Function returns no matter what

 No guaranteed progress (quality of implementation)

 Usual completion calls (wait, test) + mixing

 Out-of order completion

 Restrictions:

 No tags, in-order matching

 Send and vector buffers may not be touched during operation

 MPI_Cancel not supported

 No matching with blocking collectives

Nonblocking Collective Communication

TH, Lumsdaine, Rehm: Implementation and Performance Analysis of Non-Blocking Collective Operations for MPI, SC07 32

spcl.inf.ethz.ch

@spcl_eth

 Semantic advantages:

 Enable asynchronous progression (and manual)

Software pipelinling

 Decouple data transfer and synchronization

Noise resiliency!

 Allow overlapping communicators

See also neighborhood collectives

 Multiple outstanding operations at any time

Enables pipelining window

Nonblocking Collective Communication

33 TH, Lumsdaine, Rehm: Implementation and Performance Analysis of Non-Blocking Collective Operations for MPI, SC07

spcl.inf.ethz.ch

@spcl_eth

 Software pipelining, similar to point-to-point

 More complex parameters

 Progression issues

 Not scale-invariant

Nonblocking Collectives Overlap

34 TH, Lumsdaine, Rehm: Implementation and Performance Analysis of Non-Blocking Collective Operations for MPI, SC07

spcl.inf.ethz.ch

@spcl_eth

 Complex progression

 MPI’s global progress rule!

 Higher CPU overhead (offloading?)

 Differences in asymptotic behavior

 Collective time often

 Computation

 → Performance modeling

 One term often dominates and complicates overlap

Nonblocking Collectives Overlap

TH, Gottschling, Lumsdaine: Leveraging Non-blocking Collective Communication in High-performance Applications, SPAA’08 35

spcl.inf.ethz.ch

@spcl_eth

 CPUs are time-shared

 Deamons, interrupts, etc. steal cycles

 No problem for single-core performance

Maximum seen: 0.26%, average: 0.05% overhead

 “Resonance” at large scale (Petrini et al ’03)

 Numerous studies

 Theoretical (Agarwal’05, Tsafrir’05, Seelam’10)

 Injection (Beckman’06, Ferreira’08)

 Simulation (Sottile’04)

System Noise – Introduction

TH, Schneider, Lumsadine: Characterizing the Influence of System Noise on Large-Scale Applications by Simulation, SC10 36

spcl.inf.ethz.ch

@spcl_eth

 Resolution: 32.9 ns, noise overhead: 0.02%

Measurement Results – Cray XE

37 TH, Schneider, Lumsdaine: Characterizing the Influence of System Noise on Large-Scale Applications by Simulation, SC10

spcl.inf.ethz.ch

@spcl_eth

 Process 4 is delayed

 Noise propagates “wildly” (of course deterministic)

A Noisy Example – Dissemination

38 TH, Schneider, Lumsdaine: Characterizing the Influence of System Noise on Large-Scale Applications by Simulation, SC10

spcl.inf.ethz.ch

@spcl_eth

39

Single Byte Dissemination on Jaguar

no impact!

some outliers

deterministic

slowdown

(noise bottleneck)

TH, Schneider, Lumsdaine: Characterizing the Influence of System Noise on Large-Scale Applications by Simulation, SC10

spcl.inf.ethz.ch

@spcl_eth

Nonblocking Collectives vs. Noise

No Noise, blocking

Noise, blocking

Noise, nonblocking

40 TH, Schneider, Lumsdaine: Characterizing the Influence of System Noise on Large-Scale Applications by Simulation, SC10

spcl.inf.ethz.ch

@spcl_eth

 What can that be good for? Well, quite a bit!

 Semantics:

 MPI_Ibarrier() – calling process entered the barrier, no synchronization

happens

 Synchronization may happen asynchronously

 MPI_Test/Wait() – synchronization happens if necessary

 Uses:

 Overlap barrier latency (small benefit)

 Use the split semantics! Processes notify non-collectively but

synchronize collectively!

 A Non-Blocking Barrier?

41

spcl.inf.ethz.ch

@spcl_eth

 Dynamic Sparse Data Exchange

 Dynamic: comm. pattern varies across iterations

 Sparse: number of neighbors is limited ()

 Data exchange: only senders know neighbors

42

A Semantics Example: DSDE

TH, Siebert, Lumsdaine: Scalable Communication Protocols for Dynamic Sparse Data Exchange, PPoPP’’10

spcl.inf.ethz.ch

@spcl_eth

 Main Problem: metadata

 Determine who wants to send how much data to me

(I must post receive and reserve memory)

OR:

 Use MPI semantics:

Unknown sender

MPI_ANY_SOURCE

Unknown message size

MPI_PROBE

Reduces problem to counting

the number of neighbors

Allow faster implementation!

43

Dynamic Sparse Data Exchange (DSDE)

TH, Siebert, Lumsdaine: Scalable Communication Protocols for Dynamic Sparse Data Exchange, PPoPP’’10

spcl.inf.ethz.ch

@spcl_eth

 Based on Personalized Exchange ()

 Processes exchange

metadata (sizes)

about neighborhoods

with all-to-all

 Processes post

receives afterwards

 Most intuitive but

least performance

and scalability!

44

Using Alltoall (PEX)

TH, Siebert, Lumsdaine: Scalable Communication Protocols for Dynamic Sparse Data Exchange, PPoPP’’10

spcl.inf.ethz.ch

@spcl_eth

 Bases on Personalized Census ()

 Processes exchange

metadata (counts) about

neighborhoods with

reduce_scatter

 Receivers checks with

wildcard MPI_IPROBE

and receives messages

 Better than PEX but

non-deterministic!

45

Reduce_scatter (PCX)

TH, Siebert, Lumsdaine: Scalable Communication Protocols for Dynamic Sparse Data Exchange, PPoPP’’10

spcl.inf.ethz.ch

@spcl_eth

 Complexity - census (barrier): ()

 Combines metadata with actual transmission

 Point-to-point

synchronization

 Continue receiving

until barrier completes

 Processes start coll.

synch. (barrier) when

p2p phase ended

barrier = distributed

marker!

 Better than PEX,

PCX, RSX!

46

MPI_Ibarrier (NBX)

TH, Siebert, Lumsdaine: Scalable Communication Protocols for Dynamic Sparse Data Exchange, PPoPP’’10

spcl.inf.ethz.ch

@spcl_eth

 On a clustered Erdős-Rényi graph, weak scaling

 6.75 million edges per node (filled 1 GiB)

 HW barrier support is significant at large scale!

47

Parallel Breadth First Search

BlueGene/P – with HW barrier! Myrinet 2000 with LibNBC

TH, Siebert, Lumsdaine: Scalable Communication Protocols for Dynamic Sparse Data Exchange, PPoPP’’10

spcl.inf.ethz.ch

@spcl_eth

 1D FFTs in all three dimensions

 Assume 1D decomposition (each process holds a set of planes)

 Best way: call optimized 1D FFTs in parallel alltoall

 Red/yellow/green are the (three) different processes!

48

Parallel Fast Fourier Transform

 Alltoall

spcl.inf.ethz.ch

@spcl_eth

49

A Complex Example: FFT

for(int x=0; x<n/p; ++x) 1d_fft(/* x-th stencil */);

// pack data for alltoall

MPI_Alltoall(&in, n/p*n/p, cplx_t, &out, n/p*n/p, cplx_t, comm);

// unpack data from alltoall and transpose

for(int y=0; y<n/p; ++y) 1d_fft(/* y-th stencil */);

// pack data for alltoall

MPI_Alltoall(&in, n/p*n/p, cplx_t, &out, n/p*n/p, cplx_t, comm);

// unpack data from alltoall and transpose

TH, Gottschling, Lumsdaine: Leveraging Non-blocking Collective Communication in High-performance Applications, , SPAA’08

spcl.inf.ethz.ch

@spcl_eth

 Data already transformed in y-direction

50

Parallel Fast Fourier Transform

spcl.inf.ethz.ch

@spcl_eth

 Transform first y plane in z

51

Parallel Fast Fourier Transform

spcl.inf.ethz.ch

@spcl_eth

 Start ialltoall and transform second plane

52

Parallel Fast Fourier Transform

spcl.inf.ethz.ch

@spcl_eth

 Start ialltoall (second plane) and transform third

53

Parallel Fast Fourier Transform

spcl.inf.ethz.ch

@spcl_eth

 Start ialltoall of third plane and …

54

Parallel Fast Fourier Transform

spcl.inf.ethz.ch

@spcl_eth

 Finish ialltoall of first plane, start x transform

55

Parallel Fast Fourier Transform

spcl.inf.ethz.ch

@spcl_eth

 Finish second ialltoall, transform second plane

56

Parallel Fast Fourier Transform

spcl.inf.ethz.ch

@spcl_eth

 Transform last plane → done

57

Parallel Fast Fourier Transform

spcl.inf.ethz.ch

@spcl_eth

58

FFT Software Pipelining

MPI_Request req[nb];

for(int b=0; b<nb; ++b) { // loop over blocks

 for(int x=b*n/p/nb; x<(b+1)n/p/nb; ++x) 1d_fft(/* x-th stencil*/);

 // pack b-th block of data for alltoall

 MPI_Ialltoall(&in, n/p*n/p/bs, cplx_t, &out, n/p*n/p, cplx_t, comm, &req[b]);

}

MPI_Waitall(nb, req, MPI_STATUSES_IGNORE);

// modified unpack data from alltoall and transpose

for(int y=0; y<n/p; ++y) 1d_fft(/* y-th stencil */);

// pack data for alltoall

MPI_Alltoall(&in, n/p*n/p, cplx_t, &out, n/p*n/p, cplx_t, comm);

// unpack data from alltoall and transpose

TH, Gottschling, Lumsdaine: Leveraging Non-blocking Collective Communication in High-performance Applications, , SPAA’08

spcl.inf.ethz.ch

@spcl_eth

 Nonblocking comm does two things:

 Overlap and relax synchronization

 Collective comm does one thing

 Specialized pre-optimized routines

 Performance portability

 Hopefully transparent performance

 They can be composed

 E.g., software pipelining

59

Nonblocking And Collective Summary

spcl.inf.ethz.ch

@spcl_eth

60

Section III - One Sided Communication

spcl.inf.ethz.ch

@spcl_eth

 Terminology

 Memory exposure

 Communication

 Accumulation

 Ordering, atomics

 Synchronization

 Shared memory windows

 Memory models & semantics

One Sided Communication

61

spcl.inf.ethz.ch

@spcl_eth

 The syntax is weird, really!

 It grew – MPI-3.0 is backwards compatible!

 Think PGAS (with a library interface)

 Remote memory access (put, get, accumulates)

 Forget locks

 Win_lock_all is not a lock, opens an epoch

 Think transactional memory with optional isolation ;-)

 That’s really what “lock” means (lock/unlock can be like an atomic region,

does not necessarily “lock” anything)

 Decouple transfers from synchronization

 Separate transfer and synch functions

One Sided Communication – The Shock

62

spcl.inf.ethz.ch

@spcl_eth

 Origin process: Process with the source buffer, initiates the

operation

 Target process: Process with the destination buffer, does not

explicitly call communication functions

 Epoch: Virtual time where operations are in flight. Data is

consistent after new epoch is started.

 Access epoch: rank acts as origin for RMA calls

 Exposure epoch: rank acts as target for RMA calls

 Ordering: only for accumulate operations: order of messages

between two processes (default: in order, can be relaxed)

 Assert: assertions about how One Sided functions are used,

“fast” optimization hints, cf. Info objects (slower)

One Sided Communication – Terms

63

spcl.inf.ethz.ch

@spcl_eth

 Creation

 Expose memory collectively - Win_create

 Allocate exposed memory – Win_allocate

 Dynamic memory exposure – Win_create_dynamic

 Communication

 Data movement (put, get, rput, rget)

 Accumulate (acc, racc, get_acc, rget_acc, fetch&op, cas)

 Synchronization

 Active - Collective (fence); Group (PSCW)

 Passive - P2P (lock/unlock); One epoch (lock _all)

One Sided Overview

64

spcl.inf.ethz.ch

@spcl_eth

 Exposes consecutive memory (base, size)

 Collective call

 Info args:

 no_locks – user asserts to not lock win

 accumulate_ordering – comma-separated rar, war, raw,

waw

 accumulate_ops – same_op or same_op_no_op

(default) – assert used ops for related accumulates

Memory Exposure

MPI_Win_create(void *base, MPI_Aint size, int disp_unit, MPI_Info info,

MPI_Comm comm, MPI_Win *win)

MPI_Win_free(MPI_Win *win)

65

spcl.inf.ethz.ch

@spcl_eth

 Similar to win_create but allocates memory

 Should be used whenever possible!

 May consume significantly less resources

 Similar info arguments plus

 same_size – if true, user asserts that size is identical on all calling

processes

 Win_free will deallocate memory!

 Be careful

Memory Exposure

MPI_Win_allocate(MPI_Aint size, int disp_unit, MPI_Info info,

MPI_Comm comm, void *baseptr, MPI_Win *win)

66

spcl.inf.ethz.ch

@spcl_eth

 Coll. memory exposure may be cumbersome

 Especially for irregular applications

 Win_create_dynamic creates a window with no memory attached

 Register non-overlapping regions locally

 Addresses are communicated for remote access!

 MPI_Aint will be big enough on heterogeneous systems

Memory Exposure

MPI_Win_create_dynamic(MPI_Info info, MPI_Comm comm, MPI_Win

*win)

MPI_Win_attach(MPI_Win win, void *base, MPI_Aint size)

MPI_Win_detach(MPI_Win win, const void *base)

67

spcl.inf.ethz.ch

@spcl_eth

 Two similar communication functions:

 Put, Get

 Nonblocking, bulk completion at end of epoch

 Conflicting accesses are not erroneous

 But outcome is undefined!

 One exception: polling on a single byte in the unified model (for fast

synchronization)

One Sided Communication

MPI_Put(const void *origin_addr, int origin_count, MPI_Datatype

origin_datatype, int target_rank, MPI_Aint target_disp, int target_count,

MPI_Datatype target_datatype, MPI_Win win)

68

spcl.inf.ethz.ch

@spcl_eth

 MPI_Rput, MPI_Rget for request-based completion

 Also non-blocking but return request

 Expensive for each operation (vs. bulk completion)

 Only for local buffer consistency

 Get means complete!

 Put means buffer can be re-used, nothing known about remote completion

One Sided Communication

MPI_Rput(…, MPI_Request *request)

69

spcl.inf.ethz.ch

@spcl_eth

 Remote accumulations (only predefined ops)

 Replace value in target buffer with accumulated

 MPI_REPLACE to emulate MPI_Put

 Allows for non-recursive derived datatypes

 No overlapping entries at target (datatype)

 Conflicting accesses are allowed!

 Ordering rules apply

One Sided Accumulation

MPI_Accumulate(const void *origin_addr, int origin_count,

MPI_Datatype origin_datatype, int target_rank, MPI_Aint target_disp, int

target_count, MPI_Datatype target_datatype, MPI_Op op, MPI_Win win)

70

spcl.inf.ethz.ch

@spcl_eth

 MPI‟s generalized fetch and add

 12 arguments

 MPI_REPLACE allows for fetch & set

 New op: MPI_NO_OP to emulate get

 Accumulates origin into the target , returns content before

accumulation in result

 Atomically of course

One Sided Accumulation

MPI_Get_accumulate(const void *origin_addr, int origin_count,

MPI_Datatype origin_datatype, void *result_addr, int result_count,

MPI_Datatype result_datatype, int target_rank, MPI_Aint target_disp, int

target_count, MPI_Datatype target_datatype, MPI_Op op, MPI_Win win)

71

spcl.inf.ethz.ch

@spcl_eth

 Get_accumulate may be very slow (needs to cover many cases,

e.g., large arrays etc.)

 Common use-case is single element fetch&op

 Fetch_and_op offers relevant subset of Get_acc

 Very similar to Get_accumulate

 Same semantics, just more limited interface

 No request-based version

One Sided Accumulation

MPI_Fetch_and_op(const void *origin_addr, void *result_addr,

MPI_Datatype datatype, int target_rank, MPI_Aint target_disp,

MPI_Op op, MPI_Win win)

72

spcl.inf.ethz.ch

@spcl_eth

 CAS for MPI (no CAS2 but can be emulated)

 Single element, binary compare (!)

 Compares compare buffer with target and replaces value at

target with origin if compare and target are identical. Original

target value is returned in result.

One Sided Accumulation

MPI_Compare_and_swap(const void *origin_addr, const void

*compare_addr, void *result_addr, MPI_Datatype datatype, int target_rank,

MPI_Aint target_disp, MPI_Win win)

73

spcl.inf.ethz.ch

@spcl_eth

 Accumulates allow concurrent access!

 Put/Get does not! They’re not atomic

 Emulating atomic put/get

 Put = MPI_Accumulate(…, op=MPI_REPLACE, …)

 Get = MPI_Get_accumulate(…, op=MPI_NO_OP, …)

 Will be slow (thus we left it ugly!)

 Ordering modes

 Default ordering allows “no surprises” (cf. UPC)

 Can (should) be relaxed with info (accumulate_ordering = raw, waw, rar,

war) during window creation

Accumulation Semantics

74

spcl.inf.ethz.ch

@spcl_eth

 Active target mode

 Target ranks are calling MPI

 Either BSP-like collective: MPI_Win_fence

 Or group-wise (cf. neighborhood collectives): PSCW

 Passive target mode

 Lock/unlock: no traditional lock, more like TM (without rollback)

 Lockall: locking all processes isn’t really a lock

Synchronization Modes

75

spcl.inf.ethz.ch

@spcl_eth

 Collectively synchronizes all RMA calls on win

 All RMA calls started before fence will complete

 Ends/starts access and/or exposure epochs

 Does not guarantee barrier semantics (but often synchronizes)

 Assert allows optimizations, is usually 0

 MPI_MODE_NOPRECEDE if no communication (neither as origin or

destination) is outstanding on win

MPI_Win_fence Synchronization

MPI_Win_fence(int assert, MPI_Win win)

76

spcl.inf.ethz.ch

@spcl_eth

 Specification of access/exposure epochs separately:

 Post: start exposure epoch to group, nonblocking

 Start: start access epoch to group, may wait for post

 Complete: finish prev. access epoch, origin completion only (not target)

 Wait: will wait for complete, completes at (active) target

 As asynchronous as possible

PSCW Synchronization

MPI_Win_post(MPI_Group group, int assert, MPI_Win win)

MPI_Win_start(MPI_Group group, int assert, MPI_Win win)

MPI_Win_complete(MPI_Win win)

MPI_Win_wait(MPI_Win win)

77

spcl.inf.ethz.ch

@spcl_eth

 Initiates RMA access epoch to rank

 No concept of exposure epoch

 Unlock closes access epoch

 Operations have completed at origin and target

 Type:

 Exclusive: no other process may hold lock to rank

More like a real lock, e.g., for local accesses

 Shared: other processes may hold lock

Lock/Unlock Synchronization

MPI_Win_lock(int lock_type, int rank, int assert, MPI_Win win)

MPI_Win_unlock(int rank, MPI_Win win)

78

spcl.inf.ethz.ch

@spcl_eth

 Starts a shared access epoch from origin to all ranks!

 Not collective!

 Does not really lock anything

 Opens a different mode of use, see following slides!

Lock_all Synchronization

MPI_Win_lock_all(int assert, MPI_Win win)

MPI_Win_unlock_all(MPI_Win win)

79

spcl.inf.ethz.ch

@spcl_eth

 Flush/Flush_all

 Completes all outstanding operations at the target rank (or all) at

origin and target

 Only in passive target mode

 Completes all outstanding operations at the target rank (or all) at

origin (buffer reuse)

 Only in passive target mode

Synchronization Primitives (passive)

MPI_Win_flush(int rank, MPI_Win win)

MPI_Win_flush_all(MPI_Win win)

MPI_Win_flush_local(int rank, MPI_Win win)

MPI_Win_flush_local_all(MPI_Win win)

80

spcl.inf.ethz.ch

@spcl_eth

 Synchronizes private and public window copies

 Same as closing and opening access and exposure epochs on the window

 Does not complete any operations though!

 Cf. memory barrier

Synchronization Primitives (passive)

MPI_Win_sync(MPI_Win win)

81

spcl.inf.ethz.ch

@spcl_eth

 MPI offers two memory models:

 Unified: public and private window are identical

 Separate: public and private window are separate

 Type is attached as attribute to window

 MPI_WIN_MODEL

Memory Models

MPI_UNIFIED MPI_SEPARATE

82

spcl.inf.ethz.ch

@spcl_eth

 Very complex, rules-of-thumb at target:

 OVL – overlapping

 NOVL - non-overlapping

 X - undefined

Separate Semantics

Load Store Get Put Acc

Load OVL+NOV

L

OVL+NOV

L

OVL+NOV

L

NOVL NOVL

Store OVL+NOV

L

OVL+NOV

L

NOVL X X

Get OVL+NOV

L

NOVL OVL+NOV

L

NOVL NOVL

Put NOVL X NOVL NOVL NOVL

Acc NOVL X NOVL NOVL OVL+NOV

L

Credits: RMA Working Group, MPI Forum 83

spcl.inf.ethz.ch

@spcl_eth

 Very complex, rules-of-thumb at target:

 OVL – Overlapping operations

 NOVL – Nonoverlapping operations

 BOVL – Overlapping operations at a byte granularity

 X – undefined

Unified Semantics

Load Store Get Put Acc

Load OVL+NOV

L

OVL+NOV

L

OVL+NOV

L

NOVL+BO

VL

NOVL+BO

VL

Store OVL+NOV

L

OVL+NOV

L

NOVL NOVL NOVL

Get OVL+NOV

L

NOVL OVL+NOV

L

NOVL NOVL

Put NOVL+BO

VL

NOVL NOVL NOVL NOVL

Acc NOVL+BO

VL

NOVL NOVL NOVL OVL+NOV

L

Credits: RMA Working Group, MPI Forum 84

spcl.inf.ethz.ch

@spcl_eth

 stencil_mpi_ddt_rma.cpp

85

Stencil One-Sided Example

spcl.inf.ethz.ch

@spcl_eth

 hashtable_mpi.cpp

 Use first two bytes as hash

 Trivial hash function (216 values)

 Static 216 table size

 One direct value

 Conflicts as linked list

 Static heap

 Linked list indexes into heap

 Offset as pointer

Distributed Hashtable Example

86

spcl.inf.ethz.ch

@spcl_eth

 Source Code

Distributed Hashtable Example

int insert(t_hash *hash, int elem) {

 int pos = hashfunc(elem);

 if(hash->table[pos].value == -1) { // direct value in table

 hash->table[pos].value = elem;

 } else { // put on heap

 int newelem=hash->nextfree++; // next free element

 if(hash->table[pos].next == -1) { // first heap element

 // link new elem from table

 hash->table[pos].next = newelem;

 } else { // direct pointer to end of collision list

 int newpos=hash->last[pos];

 hash->table[newpos].next = newelem;

 }

 hash->last[pos]=newelem;

 hash->table[newelem].value = elem; // fill allocated element

 }

}

87

spcl.inf.ethz.ch

@spcl_eth

DHT Example – In MPI-3.0

int insert(t_hash *hash, int elem) {

 int pos = hashfunc(elem);

 if(hash->table[pos].value == -1) { // direct value in table

 hash->table[pos].value = elem;

 } else { // put on heap

 int newelem=hash->nextfree++; // next free element

 if(hash->table[pos].next == -1) { // first heap element

 // link new elem from table

 hash->table[pos].next = newelem;

 } else { // direct pointer to end of collision list

 int newpos=hash->last[pos];

 hash->table[newpos].next = newelem;

 }

 hash->last[pos]=newelem;

 hash->table[newelem].value = elem; // fill allocated element

 }

}

Which function would

you choose?

88

spcl.inf.ethz.ch

@spcl_eth

Section IV - Topology Mapping

and Neighborhood Collectives

89

spcl.inf.ethz.ch

@spcl_eth

 Topology mapping basics

 Allocation mapping vs. rank reordering

 Ad-hoc solutions vs. portability

 MPI topologies

 Cartesian

 Distributed graph

 Collectives on topologies – neighborhood colls

 Use-cases

Topology Mapping and Neighborhood Collectives

90

spcl.inf.ethz.ch

@spcl_eth

 First type: Allocation mapping

 Up-front specification of communication pattern

 Batch system picks good set of nodes for given topology

 Properties:

 Not supported by current batch systems

 Either predefined allocation (BG/P), random allocation, or “global

bandwidth maximation”

 Also problematic to specify communication pattern upfront, not always

possible (or static)

Topology Mapping Basics

91

spcl.inf.ethz.ch

@spcl_eth

 Rank reordering

 Change numbering in a given allocation to reduce congestion or dilation

 Sometimes automatic (early IBM SP machines)

 Properties

 Always possible, but effect may be limited (e.g., in a bad allocation)

 Portable way: MPI process topologies

Network topology is not exposed

 Manual data shuffling after remapping step

Topology Mapping Basics

92

spcl.inf.ethz.ch

@spcl_eth

On-Node Reordering

Naïve Mapping Optimized Mapping

Topomap

 Gottschling, TH: Productive Parallel Linear Algebra Programming with Unstructured Topology Adaption, CCGrid’11 93

spcl.inf.ethz.ch

@spcl_eth

 Convenience functions (in MPI-1)

 Create a graph and query it, nothing else

 Useful especially for Cartesian topologies

Query neighbors in n-dimensional space

 Graph topology: each rank specifies full graph

 Scalable Graph topology (MPI-2.2)

 Graph topology: each rank specifies its neighbors or arbitrary subset of the

graph

 Neighborhood collectives (MPI-3.0)

 Adding communication functions defined on graph topologies

(neighborhood of distance one)

MPI Topology Intro

94

spcl.inf.ethz.ch

@spcl_eth

 Specify ndims-dimensional topology

 Optionally periodic in each dimension (Torus)

 Some processes may return MPI_COMM_NULL

 Product sum of dims must be <= P

 Reorder argument allows for topology mapping

 Each calling process may have a new rank in the created communicator

 Data has to be remapped manually

MPI_Cart_create

MPI_Cart_create(MPI_Comm comm_old, int ndims, const int *dims, const

int *periods, int reorder, MPI_Comm *comm_cart)

95

spcl.inf.ethz.ch

@spcl_eth

 Creates logical 3-d Torus of size 5x5x5

 But we‟re starting MPI processes with a one-dimensional

argument (-p X)

 User has to determine size of each dimension

 Often as “square” as possible, MPI can help!

MPI_Cart_create Example

int dims[3] = {5,5,5};

int periods[3] = {1,1,1};

MPI_Comm topocomm;

MPI_Cart_create(comm, 3, dims, periods, 0, &topocomm);

96

spcl.inf.ethz.ch

@spcl_eth

 Create dims array for Cart_create with nnodes and ndims

 Dimensions are as close as possible (well, in theory)

 Non-zero entries in dims will not be changed

 nnodes must be multiple of all non-zeroes

MPI_Dims_create

MPI_Dims_create(int nnodes, int ndims, int *dims)

97

spcl.inf.ethz.ch

@spcl_eth

 Makes life a little bit easier

 Some problems may be better with a non-square layout though

MPI_Dims_create Example

int p;

MPI_Comm_size(MPI_COMM_WORLD, &p);

MPI_Dims_create(p, 3, dims);

int periods[3] = {1,1,1};

MPI_Comm topocomm;

MPI_Cart_create(comm, 3, dims, periods, 0, &topocomm);

98

spcl.inf.ethz.ch

@spcl_eth

 Library support and convenience!

 MPI_Cartdim_get()

 Gets dimensions of a Cartesian communicator

 MPI_Cart_get()

 Gets size of dimensions

 MPI_Cart_rank()

 Translate coordinates to rank

 MPI_Cart_coords()

 Translate rank to coordinates

Cartesian Query Functions

99

spcl.inf.ethz.ch

@spcl_eth

 Shift in one dimension

 Dimensions are numbered from 0 to ndims-1

 Displacement indicates neighbor distance (-1, 1, …)

 May return MPI_PROC_NULL

 Very convenient, all you need for nearest neighbor

communication

 No “over the edge” though

Cartesian Communication Helpers

MPI_Cart_shift(MPI_Comm comm, int direction, int disp,

int *rank_source, int *rank_dest)

100

spcl.inf.ethz.ch

@spcl_eth

 stencil_mpi_ddt_overlap_carttopo.cpp

 Adds calculation of neighbors with topology

101

Code Example

bx

by

spcl.inf.ethz.ch

@spcl_eth

 Don‟t use!

 !!!!

 nnodes is the total number of nodes

 index i stores the total number of neighbors for the first i nodes

(sum)

 Acts as offset into edges array

 edges stores the edge list for all processes

 Edge list for process j starts at index[j] in edges

 Process j has index[j+1]-index[j] edges

MPI_Graph_create

MPI_Graph_create(MPI_Comm comm_old, int nnodes, const int *index,

const int *edges, int reorder, MPI_Comm *comm_graph)

102

spcl.inf.ethz.ch

@spcl_eth

 Don‟t use!!!!!

 nnodes is the total number of nodes

 index i stores the total number of neighbors for the first i nodes

(sum)

 Acts as offset into edges array

 edges stores the edge list for all processes

 Edge list for process j starts at index[j] in edges

 Process j has index[j+1]-index[j] edges

MPI_Graph_create

MPI_Graph_create(MPI_Comm comm_old, int nnodes, const int *index,

const int *edges, int reorder, MPI_Comm *comm_graph)

103

spcl.inf.ethz.ch

@spcl_eth

 MPI_Graph_create is discouraged

 Not scalable

 Not deprecated yet but hopefully soon

 New distributed interface:

 Scalable, allows distributed graph specification

Either local neighbors or any edge in the graph

 Specify edge weights

Meaning undefined but optimization opportunity for vendors!

 Info arguments

Communicate assertions of semantics to the MPI library

E.g., semantics of edge weights

Distributed graph constructor

Hoefler et al.: The Scalable Process Topology Interface of MPI 2.2, CCPE’10 104

spcl.inf.ethz.ch

@spcl_eth

 indegree, sources, ~weights – source proc. Spec.

 outdegree, destinations, ~weights – dest. proc. spec.

 info, reorder, comm_dist_graph – as usual

 directed graph

 Each edge is specified twice, once as out-edge (at the source)

and once as in-edge (at the dest)

MPI_Dist_graph_create_adjacent

MPI_Dist_graph_create_adjacent(MPI_Comm comm_old, int indegree,

const int sources[], const int sourceweights[], int outdegree, const int

destinations[], const int destweights[], MPI_Info info,int reorder, MPI_Comm

*comm_dist_graph)

105 Hoefler et al.: The Scalable Process Topology Interface of MPI 2.2, CCPE’10

spcl.inf.ethz.ch

@spcl_eth

 Process 0:

 Indegree: 0

 Outdegree: 2

 Dests: {3,1}

 Process 1:

 Indegree: 3

 Outdegree: 2

 Sources: {4,0,2}

 Dests: {3,4}

 …

106

MPI_Dist_graph_create_adjacent

Hoefler et al.: The Scalable Process Topology Interface of MPI 2.2, CCPE’10

spcl.inf.ethz.ch

@spcl_eth

n – number of source nodes

 sources – n source nodes

 degrees – number of edges for each source

 destinations, weights – dest. processor specification

 info, reorder – as usual

 More flexible and convenient

 Requires global communication

 Slightly more expensive than adjacent specification

107

MPI_Dist_graph_create

MPI_Dist_graph_create(MPI_Comm comm_old, int n,

 const int sources[], const int degrees[],

 const int destinations[], const int weights[], MPI_Info info,

 int reorder, MPI_Comm *comm_dist_graph)

Hoefler et al.: The Scalable Process Topology Interface of MPI 2.2, CCPE’10

spcl.inf.ethz.ch

@spcl_eth

 Process 0:

 N: 2

 Sources: {0,1}

 Degrees: {2,1} *

 Dests: {3,1,4}

 Process 1:

 N: 2

 Sources: {2,3}

 Degrees: {1,1}

 Dests: {1,2}

 …

108

MPI_Dist_graph_create

* Note that in this example, process 0 specifies only one of the two outgoing

edges of process 1; the second outgoing edge needs to be specified by

another process

Hoefler et al.: The Scalable Process Topology Interface of MPI 2.2, CCPE’10

spcl.inf.ethz.ch

@spcl_eth

 Query the number of neighbors of calling process

 Returns indegree and outdegree!

 Also info if weighted

109

Distributed Graph Neighbor Queries

MPI_Dist_graph_neighbors_count(MPI_Comm comm,

 int *indegree,int *outdegree, int *weighted)

MPI_Dist_graph_neighbors(MPI_Comm comm, int maxindegree,

 int sources[], int sourceweights[], int maxoutdegree,

 int destinations[],int destweights[])

 Query the neighbor list of calling process

 Optionally return weights

Hoefler et al.: The Scalable Process Topology Interface of MPI 2.2, CCPE’10

spcl.inf.ethz.ch

@spcl_eth

 Status is either:

 MPI_GRAPH (ugs)

 MPI_CART

 MPI_DIST_GRAPH

 MPI_UNDEFINED (no topology)

 Enables to write libraries on top of MPI topologies!

110

Further Graph Queries

MPI_Topo_test(MPI_Comm comm, int *status)

Hoefler et al.: The Scalable Process Topology Interface of MPI 2.2, CCPE’10

spcl.inf.ethz.ch

@spcl_eth

 Topologies implement no communication!

 Just helper functions

 Collective communications only cover some patterns

 E.g., no stencil pattern

 Several requests for “build your own collective” functionality in

MPI

 Neighborhood collectives are a simplified version

 Cf. Datatypes for communication patterns!

111

Neighborhood Collectives

spcl.inf.ethz.ch

@spcl_eth

 Communicate with direct neighbors in Cartesian topology

 Corresponds to cart_shift with disp=1

 Collective (all processes in comm must call it, including processes without

neighbors)

 Buffers are laid out as neighbor sequence:

Defined by order of dimensions, first negative, then positive

2*ndims sources and destinations

Processes at borders (MPI_PROC_NULL) leave holes in buffers (will not

be updated or communicated)!

112

Cartesian Neighborhood Collectives

TH and J. L. Traeff: Sparse Collective Operations for MPI, HIPS’09

spcl.inf.ethz.ch

@spcl_eth

 Buffer ordering example:

113

Cartesian Neighborhood Collectives

TH and J. L. Traeff: Sparse Collective Operations for MPI, HIPS’09

spcl.inf.ethz.ch

@spcl_eth

 Collective Communication along arbitrary neighborhoods

 Order is determined by order of neighbors as returned by

(dist_)graph_neighbors.

 Distributed graph is directed, may have different numbers of send/recv

neighbors

 Can express dense collective operations

 Any persistent communication pattern!

114

Graph Neighborhood Collectives

TH and J. L. Traeff: Sparse Collective Operations for MPI, HIPS’09

spcl.inf.ethz.ch

@spcl_eth

 Sends the same message to all neighbors

 Receives indegree distinct messages

 Similar to MPI_Gather

 The all prefix expresses that each process is a “root” of his neighborhood

 Vector version for full flexibility

115

MPI_Neighbor_allgather

MPI_Neighbor_allgather(const void* sendbuf, int sendcount,

 MPI_Datatype sendtype, void* recvbuf, int recvcount,

 MPI_Datatype recvtype, MPI_Comm comm)

spcl.inf.ethz.ch

@spcl_eth

 \\

 Sends outdegree distinct messages

 Received indegree distinct messages

 Similar to MPI_Alltoall

 Neighborhood specifies full communication relationship

 Vector and w versions for full flexibility

116

MPI_Neighbor_alltoall

MPI_Neighbor_alltoall(const void* sendbuf, int sendcount,

 MPI_Datatype sendtype, void* recvbuf, int recvcount,

 MPI_Datatype recvtype, MPI_Comm comm)

spcl.inf.ethz.ch

@spcl_eth

 Very similar to nonblocking collectives

 Collective invocation

 Matching in-order (no tags)

 No wild tricks with neighborhoods! In order matching per communicator!

117

Nonblocking Neighborhood Collectives

MPI_Ineighbor_allgather(…, MPI_Request *req); MPI_Ineighbor_alltoall(…,

MPI_Request *req);

spcl.inf.ethz.ch

@spcl_eth

118

Walkthrough of 2D Stencil Code with

Neighborhood Collectives

 stencil_mpi_carttopo_neighcolls.cpp

spcl.inf.ethz.ch

@spcl_eth

 Was originally proposed (see original paper)

 High optimization opportunities

 Interesting tradeoffs!

 Research topic

 Not standardized due to missing use-cases

 My team is working on an implementation

 Offering the obvious interface

119

Why is Neighborhood Reduce Missing?

MPI_Ineighbor_allreducev(…);

TH and J. L. Traeff: Sparse Collective Operations for MPI, HIPS’09

spcl.inf.ethz.ch

@spcl_eth

 Topology functions allow to specify application communication

patterns/topology

 Convenience functions (e.g., Cartesian)

 Storing neighborhood relations (Graph)

 Enables topology mapping (reorder=1)

 Not widely implemented yet

 May requires manual data re-distribution (according to new rank order)

 MPI does not expose information about the network topology

(would be very complex)

120

Topology Summary

spcl.inf.ethz.ch

@spcl_eth

 Neighborhood collectives add communication functions to

process topologies

 Collective optimization potential!

 Allgather

 One item to all neighbors

 Alltoall

 Personalized item to each neighbor

 High optimization potential (similar to collective operations)

 Interface encourages use of topology mapping!

121

Neighborhood Collectives Summary

spcl.inf.ethz.ch

@spcl_eth

 Process topologies enable:

 High-abstraction to specify communication pattern

 Has to be relatively static (temporal locality)

Creation is expensive (collective)

 Offers basic communication functions

 Library can optimize:

 Communication schedule for neighborhood colls

 Topology mapping

122

Section Summary

spcl.inf.ethz.ch

@spcl_eth

Section V - Hybrid Programming Primer

123

spcl.inf.ethz.ch

@spcl_eth

 No complete view, discussions not finished

 Considered very important!

 Modes: shared everything (threaded MPI) vs. shared something

(SHM windows)

 And everything in between!

 How to deal with multicore and accelerators?

 OpenMP, Cuda, UPC/CAF, OpenACC?

 Very specific to actual environment, no general statements possible (no

standardization)

 MPI is generally compatibly, minor pitfalls

Hybrid Programming Primer

124

spcl.inf.ethz.ch

@spcl_eth

 Four thread levels in MPI-2.2

 Single – only one thread exists

 Funneled – only master thread calls MPI

 Serialized – no concurrent calls to MPI

 Multiple – concurrent calls to MPI

 But how do I call this function – oh well

 To add more confusion: MPI processes may be OS threads!

Threads in MPI-2.2

125

spcl.inf.ethz.ch

@spcl_eth

 MPI_Probe to receive messages of unknown size

 MPI_Probe(…, status)

 size = get_count(status)*size_of(datatype)

 buffer = malloc(size)

 MPI_Recv(buffer, …)

 MPI_Probe peeks in matching queue

 Does not change it → stateful object

Matched Probe

126

spcl.inf.ethz.ch

@spcl_eth

 Two threads, A and B perform probe, malloc, receive sequence

 AP → AM → AR → BP → BM → BR

 Possible ordering

 AP → BP → BM → BR → AM → AR

 Wrong matching!

 Thread A’s message was “stolen” by B

 Access to queue needs mutual exclusion

Matched Probe

127

spcl.inf.ethz.ch

@spcl_eth

MPI_Mprobe to the Rescue

• Avoid state in the library

– Return handle, remove message from queue

MPI_Message msg; MPI_Status status;

/* Match a message */

MPI_Mprobe(MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD,

 &msg, &status);

/* Allocate memory to receive the message */

int count; MPI_get_count(&status, MPI_BYTE, &count);

char* buffer = malloc(count);

/* Receive this message. */

MPI_Mrecv(buffer, count, MPI_BYTE, &msg, MPI_STATUS_IGNORE);

128

spcl.inf.ethz.ch

@spcl_eth

 Reduce memory footprint

 E.g., share static lookup tables

 Avoid re-computing (e.g., NWCHEM)

 More structured programming than MPI+X

 Share what needs to be shared!

 Not everything open to races like OpenMP

 Speedups (very tricky!)

 Reduce communication (matching, copy) overheads

 False sharing is an issue!

Shared Memory Use-Cases

129

spcl.inf.ethz.ch

@spcl_eth

 Allocates shared memory segment in win

 Collective, fully RMA capable

 All processes in comm must be in shared memory!

 Returns pointer to start of own part

 Two allocation modes:

 Contiguous (default): process i’s memory starts where process i-1’s

memory ends

 Non Contiguous (info key alloc_shared_noncontig)

possible ccNUMA optimizations

Shared Memory Windows

MPI_Win_allocate_shared(MPI_Aint size, MPI_Info info, MPI_Comm

comm, void *baseptr, MPI_Win *win)

130

spcl.inf.ethz.ch

@spcl_eth

 Returns disjoint comms based on split type

 Collective

 Types (only one so far):

 MPI_COMM_TYPE_SHARED – split into largest subcommunicators with

shared memory access

 Key mandates process ordering

 Cf. comm_split

Shared Memory Comm Creation

MPI_Comm_split_type(MPI_Comm comm, int split_type, int key, MPI_Info

info, MPI_Comm *newcomm)

131

spcl.inf.ethz.ch

@spcl_eth

 User can compute remote addresses in contig case but needs all

sizes

 Not possible in noncontig case!

 Processes cannot communicate base address, may be different at

different processes!

 Base address query function!

 MPI_PROC_NULL as rank returns lowest offset

SHM Windows Address Query

MPI_Win_shared_query(MPI_Win win, int rank, MPI_Aint *size, void

*baseptr)

132

spcl.inf.ethz.ch

@spcl_eth

 Noncollective communicator creation

 Allows to create communicators without involving all processes in the

parent communicator

 Very useful for some applications (dynamic sub-grouping) or fault tolerance

(dead processes)

 Nonblocking communicator duplication

 MPI_Comm_idup(…, req) – like it sounds

 Similar semantics to nonblocking collectives

 Enables the implementation of nonblocking libraries

New Communicator Creation Functions

J. Dinan et al.: Noncollective Communicator Creation in MPI, EuroMPI’11

T. Hoefler: Writing Parallel Libraries with MPI - Common Practice, Issues, and Extensions, Keynote, IMUDI’11 133

spcl.inf.ethz.ch

@spcl_eth

Section VI – Derived Datatypes

134

spcl.inf.ethz.ch

@spcl_eth

Abelson & Sussman: “Programs must be written for people to read,

and only incidentally for machines to execute.”

 Derived Datatypes exist since MPI-1.0

 Some extensions in MPI-2.x and MPI-3.0

 Why do I talk about this really old feature?

 It is a very advanced and elegant declarative concept

 It enables many elegant optimizations (zero copy)

 It falsely has a bad reputation (which it earned in early days)

Derived Datatypes

135

spcl.inf.ethz.ch

@spcl_eth

 Datatypes allow to (de)serialize arbitrary data layouts into a

message stream

 Networks provide serial channels

 Same for block devices and I/O

 Several constructors allow arbitrary layouts

 Recursive specification possible

 Declarative specification of data-layout

“what” and not “how”, leaves optimization to implementation (many

unexplored possibilities!)

 Choosing the right constructors is not always simple

Quick MPI Datatype Introduction

136

spcl.inf.ethz.ch

@spcl_eth

 Type Size
 Size of DDT signature (total occupied bytes)

 Important for matching (signatures must match)

 Lower Bound
 Where does the DDT start

 Allows to specify “holes” at the beginning

 Extent
 Complete size of the DDT

 Allows to interleave DDT, relatively “dangerous”

Derived Datatype Terminology

137

spcl.inf.ethz.ch

@spcl_eth

 Explain Lower Bound, Size, Extent

Derived Datatype Example

138

spcl.inf.ethz.ch

@spcl_eth

 Somewhat weak terminology

 MPI forces “remote” copy , assumed baseline

 But:
 MPI implementations copy internally

E.g., networking stack (TCP), packing DDTs

Zero-copy is possible (RDMA, I/O Vectors, SHMEM)

 MPI applications copy too often

E.g., manual pack, unpack or data rearrangement

DDT can do both!

What is Zero Copy?

139

spcl.inf.ethz.ch

@spcl_eth

 Demonstrate utility of DDT in practice

 Early implementations were bad folklore

 Some are still bad chicken egg problem

 Show creative use of DDTs

 Encode local transpose for FFT

 Enable you to create more!

 Gather input on realistic benchmark cases

 Guide optimization of DDT implementations

Purpose of this Section

140

spcl.inf.ethz.ch

@spcl_eth

A new Way of Benchmarking

Schneider, Gerstenberger, TH: Micro-Applications for Communication Data Access Patterns, EuroMPI’13 141

spcl.inf.ethz.ch

@spcl_eth

Motivation

142 Schneider, Gerstenberger, TH: Micro-Applications for Communication Data Access Patterns, EuroMPI’13

spcl.inf.ethz.ch

@spcl_eth

 stencil_mpi_ddt.cpp

Datatypes for the Stencil

143

spcl.inf.ethz.ch

@spcl_eth

 Why intrinsic types?

 Heterogeneity, nice to send a Boolean from C to Fortran

 Conversion rules are complex, not discussed here

 Length matches to language types

Avoid sizeof(int) mess

 Users should generally use intrinsic types as basic types for

communication and type construction!

 MPI_BYTE should be avoided at all cost

 MPI-2.2 adds some missing C types

 E.g., unsigned long long

MPI‟s Intrinsic Datatypes

144

spcl.inf.ethz.ch

@spcl_eth

 Contiguous array of oldtype

 Should not be used as last type (can be replaced by count)

MPI_Type_contiguous

MPI_Type_contiguous(int count, MPI_Datatype

oldtype, MPI_Datatype *newtype)

145

spcl.inf.ethz.ch

@spcl_eth

 Specify strided blocks of data of oldtype

 Very useful for Cartesian arrays

MPI_Type_vector

MPI_Type_vector(int count, int blocklength, int stride, MPI_Datatype

oldtype, MPI_Datatype *newtype)

146

spcl.inf.ethz.ch

@spcl_eth

 Create non-unit strided vectors

 Useful for composition, e.g., vector of structs

MPI_Type_create_hvector

MPI_Type_create_hvector(int count, int blocklength, MPI_Aint stride, MPI_Datatype

oldtype, MPI_Datatype *newtype)

147

spcl.inf.ethz.ch

@spcl_eth

 Pulling irregular subsets of data from a single array (cf. vector

collectives)

 dynamic codes with index lists, expensive though!

 blen={1,1,2,1,2,1}

 displs={0,3,5,9,13,17}

MPI_Type_indexed

MPI_Type_indexed(int count, int *array_of_blocklengths,

int *array_of_displacements, MPI_Datatype oldtype,

MPI_Datatype *newtype)

148

spcl.inf.ethz.ch

@spcl_eth

 Indexed with non-unit displacements, e.g., pulling types out of

different arrays

MPI_Type_create_hindexed

MPI_Type_create_hindexed(int count, int *arr_of_blocklengths, MPI_Aint

*arr_of_displacements, MPI_Datatype oldtype, MPI_Datatype *newtype)

149

spcl.inf.ethz.ch

@spcl_eth

 Like Create_indexed but blocklength is the same

 blen=2

 displs={0,5,9,13,18}

MPI_Type_create_indexed_block

MPI_Type_create_indexed_block(int count, int blocklength,

int *array_of_displacements, MPI_Datatype oldtype,

MPI_Datatype *newtype)

150

spcl.inf.ethz.ch

@spcl_eth

 Most general constructor (cf. Alltoallw), allows different types

and arbitrary arrays

MPI_Type_create_struct

MPI_Type_create_struct(int count, int array_of_blocklengths[],

MPI_Aint array_of_displacements[], MPI_Datatype array_of_types[],

MPI_Datatype *newtype)

151

spcl.inf.ethz.ch

@spcl_eth

 Specify subarray of n-dimensional array (sizes) by start (starts)

and size (subsize)

MPI_Type_create_subarray

MPI_Type_create_subarray(int ndims, int array_of_sizes[],

int array_of_subsizes[], int array_of_starts[], int order,

MPI_Datatype oldtype, MPI_Datatype *newtype)

152

spcl.inf.ethz.ch

@spcl_eth

 Create distributed array, supports block, cyclic and no

distribution for each dimension

 Very useful for I/O

MPI_Type_create_darray

MPI_Type_create_darray(int size, int rank, int ndims,

int array_of_gsizes[], int array_of_distribs[], int

array_of_dargs[], int array_of_psizes[], int order,

MPI_Datatype oldtype, MPI_Datatype *newtype)

153

spcl.inf.ethz.ch

@spcl_eth

 MPI_BOTTOM is the absolute zero address

 Portability (e.g., may be non-zero in globally shared memory)

 MPI_Get_address

 Returns address relative to MPI_BOTTOM

 Portability (do not use “&” operator in C!)

 Very important to

 build struct datatypes

 If data spans multiple arrays

MPI_BOTTOM and MPI_Get_address

154

spcl.inf.ethz.ch

@spcl_eth

 MPI_Type_size returns size of datatype

 MPI_Type_get_extent returns lower bound and extent

Recap: Size, Extent, and Bounds

155

spcl.inf.ethz.ch

@spcl_eth

 Types must be comitted before use

 Only the ones that are used!

 MPI_Type_commit may perform heavy optimizations (and will hopefully)

 MPI_Type_free

 Free MPI resources of datatypes

 Does not affect types built from it

 MPI_Type_dup

 Duplicated a type

 Library abstraction (composability)

Commit, Free, and Dup

156

spcl.inf.ethz.ch

@spcl_eth

 Pack/Unpack

 Mainly for compatibility to legacy libraries

 You should not be doing this yourself

 Get_envelope/contents

 Only for expert library developers

 Libraries like MPITypes1 make this easier

 MPI_Create_resized

 Change extent and size (dangerous but useful)

Other DDT Functions

1: http://www.mcs.anl.gov/mpitypes/ 157

spcl.inf.ethz.ch

@spcl_eth

 Simple and effective performance model:

 More parameters == slower

 contig < vector < index_block < index < struct

 Some (most) MPIs are inconsistent

 But this rule is portable

 Advice to users:

 Try datatype “compression” bottom-up

Datatype Selection Tree

W. Gropp et al.:Performance Expectations and Guidelines for MPI Derived Datatypes, EuroMPI’12 158

spcl.inf.ethz.ch

@spcl_eth

 Alltoall, Scatter, Gather and friends expect data in rank order

 1st rank: offset 0

 2nd rank: offset <extent>

 ith rank: offset: i*<extent>

 Makes tricks necessary if types are overlapping use extent

(create_resized)

Datatypes and Collectives

159

spcl.inf.ethz.ch

@spcl_eth

A Complex Example - FFT

TH, Gottlieb: Parallel Zero-Copy Algorithms for Fast Fourier Transform and Conjugate Gradient using MPI Datatypes, EuroMPI’12 160

spcl.inf.ethz.ch

@spcl_eth

A Complex Example - FFT

161 TH, Gottlieb: Parallel Zero-Copy Algorithms for Fast Fourier Transform and Conjugate Gradient using MPI Datatypes, EuroMPI’12

spcl.inf.ethz.ch

@spcl_eth

1. Use DDT for pack/unpack (obvious)

 Eliminate 4 of 8 steps

 Introduce local transpose

2. Use DDT for local transpose

 After unpack

 Non-intuitive way of using DDTs

Eliminate local transpose

2d-FFT Optimization Possibilities

162 TH, Gottlieb: Parallel Zero-Copy Algorithms for Fast Fourier Transform and Conjugate Gradient using MPI Datatypes, EuroMPI’12

spcl.inf.ethz.ch

@spcl_eth

1. Type_struct for complex numbers

2. Type_contiguous for blocks

3. Type_vector for stride

Need to change extent to allow overlap (create_resized)

 Three hierarchy-layers

The Send Datatype

163 TH, Gottlieb: Parallel Zero-Copy Algorithms for Fast Fourier Transform and Conjugate Gradient using MPI Datatypes, EuroMPI’12

spcl.inf.ethz.ch

@spcl_eth

 Type_struct (complex)

 Type_vector (no contiguous, local transpose)

Needs to change extent (create_resized)

The Receive Datatype

164 TH, Gottlieb: Parallel Zero-Copy Algorithms for Fast Fourier Transform and Conjugate Gradient using MPI Datatypes, EuroMPI’12

spcl.inf.ethz.ch

@spcl_eth

 Odin @ IU

 128 compute nodes, 2x2 Opteron 1354 2.1 GHz

 SDR InfiniBand (OFED 1.3.1).

 Open MPI 1.4.1 (openib BTL), g++ 4.1.2

 Jaguar @ ORNL

 150152 compute nodes, 2.1 GHz Opteron

 Torus network (SeaStar).

 CNL 2.1, Cray Message Passing Toolkit 3

 All compiled with “-O3 –mtune=opteron”

Experimental Evaluation

165 TH, Gottlieb: Parallel Zero-Copy Algorithms for Fast Fourier Transform and Conjugate Gradient using MPI Datatypes, EuroMPI’12

spcl.inf.ethz.ch

@spcl_eth

 4 runs, report smallest time, <4% deviation

Strong Scaling - Odin (80002)

Reproducible

peak at P=192

Scaling stops

w/o datatypes

166 TH, Gottlieb: Parallel Zero-Copy Algorithms for Fast Fourier Transform and Conjugate Gradient using MPI Datatypes, EuroMPI’12

spcl.inf.ethz.ch

@spcl_eth

Strong Scaling – Jaguar (20k2)

Scaling stops

w/o datatypes

DDT increase

 scalability

167 TH, Gottlieb: Parallel Zero-Copy Algorithms for Fast Fourier Transform and Conjugate Gradient using MPI Datatypes, EuroMPI’12

spcl.inf.ethz.ch

@spcl_eth

 MPI Datatypes allow zero-copy

 Up to a factor of 3.8 or 18% speedup!

 Requires some implementation effort

 Declarative nature makes debugging hard

 Simple tricks like index numbers help!

 Some MPI DDT implementations are slow

 Some nearly surreal (IBM)

 Complain to your vendor if performance is not

consistent!

Datatype Conclusions

168 TH, Gottlieb: Parallel Zero-Copy Algorithms for Fast Fourier Transform and Conjugate Gradient using MPI Datatypes, EuroMPI’12

spcl.inf.ethz.ch

@spcl_eth

 Thanks for attending!

 Ask any questions you have – anytime

 The book contains all advanced topics

(not datatypes, which are included in

the “Using MPI” book)

 I hope you enjoyed

 All materials (slides, code examples) at:

http://htor.inf.ethz.ch/teaching/mpi_tutorials/speedup15/

169

Tutorial Conclusion

