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TUTORIAL OUTLINE 

1. Introduction to Advanced MPI Usage 

2. MPI Derived Datatypes 

3. Nonblocking Collective Communication 

4. Topology Mapping and Neighborhood 
Collective Communication 

5. One-Sided Communication 

6. MPI and Hybrid Programming Primer 

 MPI and Libraries (if time) 
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USED TECHNIQUES 

 Benjamin Franklin "Tell me, I forget, show me, I 
remember, involve me, I understand.“ 

 Tell: I will explain the abstract concepts and 
interfaces/APIs to use them 

 Show: I will demonstrate one or two examples for 
using the concepts 

 Involve: You will transform a simple MPI code into 
different semantically equivalent optimized ones 

 Please interrupt me with any question at any point! 
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SECTION I - INTRODUCTION 
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INTRODUCTION 
 Programming model Overview 

 Different systems: UMA, ccNUMA, nccNUMA, 
RDMA, DM 

Torsten Hoefler 
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INTRODUCTION 

 Different programming models: UMA, PGAS, 
DM 

 
 

 
 

 

 The question is all about memory consistency 

 

Torsten Hoefler 

TBB, CILK, OpenMP, MPI-3 SM UPC, CAF, MPI-2 OS MPI-1, PVM 
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PROGRAMMING MODELS 

 Provide abstract machine models (contract) 

 Shared mem 

 PGAS 

 Distributed mem 

 All models can be mapped to any architecture, 
more or less efficient (execution model) 

 MPI is not a programming model 

 And has never been one! 

Torsten Hoefler 
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MPI GOVERNING PRINCIPLES 

 (Performance) Portability 
 Declarative vs. imperative 

 Abstraction 

 Composability (Libraries) 
 Isolation (no interference) 

 Opaque object attributes 

 Transparent Tool Support 
 PMPI, MPI-T 

 Inspect performance and correctness 
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MAIN MPI CONCEPTS 
 Communication Concepts: 

 Point-to-point Communication 

 Collective Communication 

 One Sided Communication 

 (Collective) I/O Operations 

 Declarative Concepts: 

 Groups and Communicators 

 Derived Datatypes 

 Process Topologies 

 Process Management 

 Malleability, ensemble applications 

 Tool support 

 Linking and runtime 
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MPI HISTORY 

 An open standard library interface for message passing, 
ratified by the MPI Forum 

 Versions: 1.0 (’94), 1.1 (’95), 1.2 (’97), 1.3 (’08) 
 Basic Message Passing Concepts 

 2.0 (’97), 2.1 (’08) 
 Added One Sided and I/O concepts 

 2.2 (’09) 
 Merging and smaller fixes 

 3.0 (probably ’12)   
 Several additions to react to new challenges 
 

Torsten Hoefler 
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WHAT MPI IS NOT 

 No explicit support for active messages  
 Can be emulated at the library level 

 Not a programming language 
 But it’s close, semantics of library calls are clearly specified 
 MPI-aware compilers under development 

 It’s not magic 
 Manual data decomposition (cf. libraries, e.g., ParMETIS) 

 Some MPI mechanisms (Process Topologies, Neighbor Colls.) 

 Manual load-balancing (see libraries, e.g., ADLB) 

 It’s neither complicated nor bloated 
 Six functions are sufficient for any program 
 250+ additional functions that offer abstraction, performance 

portability and convenience for experts 
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WHAT IS THIS MPI FORUM? 

 An open Forum to discuss MPI 
 You can join! No membership fee, no perks either 

 Since 2008 meetings every two months for three 
days (switching to four months and four days) 
 5x in the US, once in Europe (with EuroMPI) 

 Votes by organization, eligible after attending two 
of the three last meetings, often unanimously 

 Everything is voted twice in two distinct meetings 
 Tickets as well as chapters 

Torsten Hoefler 
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HOW DOES THE MPI-3.0 PROCESS WORK 

 Organization and Mantras: 
 Chapter chairs (convener) and (sub)committees 
 Avoid the “Designed by a Committee” phenomenon  
 standardize common practice 

 99.5% backwards compatible 

 Adding new things: 
 Review and discuss early proposals in chapter 
 Bring proposals to the forum (discussion) 
 Plenary formal reading (usually word by word) 
 Two votes on each ticket (distinct meetings) 
 Final vote on each chapter (finalizing MPI-3.0) 

Torsten Hoefler 
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RECOMMENDED DEVELOPMENT WORKFLOW 

1. Identify a scalable algorithm 
 Analyze for memory and runtime 

2. Is there a library that can help me? 
 Computational libraries 

 PPM, PBGL, PETSc, PMTL, ScaLAPACK 

 Communication libraries 
 AM++, LibNBC 

 Programming Model Libraries 
 ADLB, AP 

 Utility Libraries 
 HDF5, Boost.MPI 

3. Plan for modularity 
 Writing (parallel) libraries has numerous benefits 

Torsten Hoefler 
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THINGS TO KEEP IN MIND 

 MPI is an open standardization effort 

 Talk to us or join the forum 

 There will be a public comment period 

 The MPI standard  

 Is free for everybody 

 Is not intended for end-users (no replacement for 
books and tutorials) 

 Is the last instance in MPI questions 

Torsten Hoefler 
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PERFORMANCE MODELING 

Nils Bohr: “Prediction is very difficult, especially 
about the future.” 

 Predictive models are never perfect 

 They can help to drive action though 
 Back of the envelope calculations are valuable! 

 This tutorial gives a rough idea about 
performance bounds of MPI functions.  
 Actual performance will vary across 

implementations and architectures 

Torsten Hoefler 
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SECTION II – DERIVED DATATYPES 
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DERIVED DATATYPES 

Abelson & Sussman: “Programs must be written for 
people to read, and only incidentally for machines 

to execute.” 

 Derived Datatypes exist since MPI-1.0 
 Some extensions in MPI-2.x and MPI-3.0 

 Why do I talk about this really old feature? 
 It is a very advanced and elegant declarative concept 

 It enables many elegant optimizations  (zero copy) 

 It falsely has a bad reputation (which it earned in early 
days) 
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QUICK MPI DATATYPE INTRODUCTION 

 Datatypes allow to (de)serialize arbitrary data 
layouts into a message stream 
 Networks provide serial channels 

 Same for block devices and I/O 

 Several constructors allow arbitrary layouts 
 Recursive specification possible 

 Declarative specification of data-layout 
 “what” and not “how”, leaves optimization to 

implementation (many unexplored possibilities!) 

 Choosing the right constructors is not always simple 
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DERIVED DATATYPE TERMINOLOGY 

 Type Size 

 Size of DDT signature (total occupied bytes) 

 Important for matching (signatures must match) 

 Lower Bound 

 Where does the DDT start 

 Allows to specify “holes” at the beginning 

 Extent 

 Complete size of the DDT 

 Allows to interleave DDT, relatively “dangerous” 
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DERIVED DATATYPE EXAMPLE 

 

 

 

 

 

 

 Explain Lower Bound, Size, Extent 
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WHAT IS ZERO COPY? 

 Somewhat weak terminology 

 MPI forces “remote” copy , assumed baseline 

 But: 

 MPI implementations copy internally 

 E.g., networking stack (TCP), packing DDTs 

 Zero-copy is possible (RDMA, I/O Vectors, SHMEM) 

 MPI applications copy too often 

 E.g., manual pack, unpack or data rearrangement 

 DDT can do both! 
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PURPOSE OF THIS SECTION 

 Demonstrate utility of DDT in practice 

 Early implementations were bad  folklore 

 Some are still bad  chicken egg problem 

 Show creative use of DDTs 

 Encode local transpose for FFT 

 Enable you to create more! 

 Gather input on realistic benchmark cases 

 Guide optimization of DDT implementations 

 

 Torsten Hoefler 

Section II: Derived Datatypes 

Slide 23 of 162 



A NEW WAY OF BENCHMARKING 
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MOTIVATION 
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2D JACOBI EXAMPLE 

 Many 2d electrostatic problems can be 
reduced to solving Poisson’s or Laplace’s 
equation 

 Solution by finite difference methods 

 pnew(i,j) = (p(i-1,j)+p(i+1,j)+p(i,j-1)+p(i,j+1))/4 

 natural 2d domain decomposition 

 State of the Art: 

 Compute, communicate 

 Maybe overlap inner computation 
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SIMPLIFIED SERIAL CODE 

 

Torsten Hoefler 

for(int iter=0; iter<niters; ++iter) { 
    for(int i=1; i<n+1; ++i) { 
        for(int j=1; j<n+1; ++j) { 
            anew[ind(i,j)] = apply(stencil); // actual computation 
            heat += anew[ind(i,j)]; // total heat in system 
        } 
    } 
    for(int i=0; i<nsources; ++i) { 
        anew[ind(sources[i][0],sources[i][1])] += energy; // heat source 
    } 
    tmp=anew; anew=aold; aold=tmp; // swap arrays 
} 

Section II: Derived Datatypes 
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SIMPLE 2D PARALLELIZATION 

 Why 2D parallelization? 
 Minimizes surface-to-volume ratio 

 Specify decomposition on command line (px, py) 

 Compute process neighbors manually 

 Add halo zones (depth 1 in each direction) 

 Same  loop with changed iteration domain 

 Pack halo, communicate, unpack halo 

 Global reduction to determine total heat 

Torsten Hoefler 
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SOURCE CODE EXAMPLE 

 Browse through code (stencil_mpi.cpp) 

 Show how to run and debug (visualize) it  

Torsten Hoefler 
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DATATYPES FOR THE STENCIL 
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MPI’S INTRINSIC DATATYPES 

 Why intrinsic types? 
 Heterogeneity, nice to send a Boolean from C to 

Fortran 
 Conversion rules are complex, not discussed here  
 Length matches to language types  
 Avoid sizeof(int) mess 

 Users should generally use intrinsic types as basic 
types for communication and type construction! 
 MPI_BYTE should be avoided at all cost 

 MPI-2.2 adds some missing C types 
 E.g., unsigned long long  

Torsten Hoefler 
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MPI_TYPE_CONTIGUOUS 

 
 

 Contiguous array of oldtype 

 Should not be used as last type (can be 
replaced by count) 

 

Torsten Hoefler 

MPI_Type_contiguous(int count, MPI_Datatype 

oldtype, MPI_Datatype *newtype) 

Section II: Derived Datatypes 
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MPI_TYPE_VECTOR 

 
 

 Specify strided blocks of data of oldtype 

 Very useful for Cartesian arrays 

Torsten Hoefler 

MPI_Type_vector(int count, int blocklength, int stride, 

MPI_Datatype oldtype, MPI_Datatype *newtype) 

Section II: Derived Datatypes 
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MPI_TYPE_CREATE_HVECTOR 

 

 

 Create non-unit strided vectors 

 Useful for composition, e.g., vector of structs 

Torsten Hoefler 

MPI_Type_create_hvector(int count, int blocklength, MPI_Aint 

stride, MPI_Datatype oldtype, MPI_Datatype *newtype) 

Section II: Derived Datatypes 
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MPI_TYPE_INDEXED 

 

 

 Pulling irregular subsets of data from a single 
array (cf. vector collectives) 
 dynamic codes with index lists, expensive though! 

 

 

 blen={1,1,2,1,2,1} 

 displs={0,3,5,9,13,17} 

Torsten Hoefler 

MPI_Type_indexed(int count, int *array_of_blocklengths, 

int *array_of_displacements, MPI_Datatype oldtype, 

MPI_Datatype *newtype) 

Section II: Derived Datatypes 
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MPI_TYPE_CREATE_HINDEXED 

 

 

 Indexed with non-unit displacements, e.g., 
pulling types out of different arrays 

Torsten Hoefler 

MPI_Type_create_hindexed(int count, int *arr_of_blocklengths, 

MPI_Aint *arr_of_displacements, MPI_Datatype oldtype, 

MPI_Datatype *newtype) 

Section II: Derived Datatypes 
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MPI_TYPE_CREATE_INDEXED_BLOCK 

 

 

 Like Create_indexed but blocklength is the 
same 

 

 

 blen=2 

 displs={0,5,9,13,18} 
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MPI_Type_create_indexed_block(int count, int blocklength, 

int *array_of_displacements, MPI_Datatype oldtype, 

MPI_Datatype *newtype) 

Section II: Derived Datatypes 
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MPI_TYPE_CREATE_STRUCT 

 

 

 Most general constructor (cf. Alltoallw), allows 
different types and arbitrary arrays 

Torsten Hoefler 

MPI_Type_create_struct(int count, int array_of_blocklengths[], 

MPI_Aint array_of_displacements[], MPI_Datatype 

array_of_types[], MPI_Datatype *newtype) 

Section II: Derived Datatypes 
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MPI_TYPE_CREATE_SUBARRAY 

 

 

 Specify subarray of n-dimensional array (sizes) 
by start (starts) and size (subsize) 

Torsten Hoefler 

MPI_Type_create_subarray(int ndims, int array_of_sizes[], 

int array_of_subsizes[], int array_of_starts[], int order, 

MPI_Datatype oldtype, MPI_Datatype *newtype) 

Section II: Derived Datatypes 

Slide 39 of 162 



MPI_TYPE_CREATE_DARRAY 

 
 

 

 Create distributed array, supports block, cyclic 
and no distribution for each dimension 

 Very useful for I/O 

Torsten Hoefler 

MPI_Type_create_darray(int size, int rank, int ndims, 

int array_of_gsizes[], int array_of_distribs[], int 

array_of_dargs[], int array_of_psizes[], int order, 

MPI_Datatype oldtype, MPI_Datatype *newtype) 

Section II: Derived Datatypes 

Slide 40 of 162 



MPI_BOTTOM AND MPI_GET_ADDRESS 

 MPI_BOTTOM is the absolute zero address 
 Portability (e.g., may be non-zero in globally 

shared memory) 

 MPI_Get_address 
 Returns  address relative to MPI_BOTTOM 

 Portability (do not use “&” operator in C!) 

 Very important to  
 build struct datatypes 

 If data spans multiple arrays 

 

Torsten Hoefler 
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RECAP: SIZE, EXTENT, AND BOUNDS 

 MPI_Type_size returns size of datatype 

 MPI_Type_get_extent returns lower bound 
and extent 

Torsten Hoefler 
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COMMIT, FREE, AND DUP 

 Types must be comitted before use 
 Only the ones that are used! 

 MPI_Type_commit may perform heavy optimizations 
(and will hopefully) 

 MPI_Type_free 
 Free MPI resources of datatypes 

 Does not affect types built from it 

 MPI_Type_dup 
 Duplicated a type 

 Library abstraction (composability) 

Torsten Hoefler 
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OTHER DDT FUNCTIONS 

 Pack/Unpack 

 Mainly for compatibility to legacy libraries 

 You should not be doing this yourself 

 Get_envelope/contents 

 Only for expert library developers 

 Libraries like MPITypes1 make this easier 

 MPI_Create_resized 

 Change extent and size (dangerous but useful) 

Torsten Hoefler 

1: http://www.mcs.anl.gov/mpitypes/ 
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DATATYPE SELECTION TREE 

 Simple and effective performance model: 

 More parameters == slower 

 contig < vector < index_block < index < struct 

 Some (most) MPIs are inconsistent  

 But this rule is portable 

 Advice to users: 

 Try datatype “compression” bottom-up 

Torsten Hoefler 

Section II: Derived Datatypes 

W. Gropp et al.:Performance Expectations and Guidelines for MPI Derived Datatypes 
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DATATYPES AND COLLECTIVES 
 Alltoall, Scatter, Gather and friends expect 

data in rank order 

 1st rank: offset 0 

 2nd rank: offset <extent> 

 ith rank: offset: i*<extent> 

 Makes tricks necessary if types are 
overlapping  use extent (create_resized) 

Torsten Hoefler 
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A COMPLEX EXAMPLE - FFT 

Torsten Hoefler 

Section II: Derived Datatypes 

Hoefler, Gottlieb: Parallel Zero-Copy Algorithms for Fast Fourier Transform and Conjugate Gradient using MPI 
Datatypes 
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A COMPLEX EXAMPLE - FFT 

 

Torsten Hoefler 
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2D-FFT OPTIMIZATION POSSIBILITIES 

1. Use DDT for pack/unpack (obvious)  

 Eliminate 4 of 8 steps 

    Introduce local transpose 

 

2. Use DDT for local transpose  

 After unpack 

 Non-intuitive way of using DDTs 

 Eliminate local transpose 

 

 

Torsten Hoefler 
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THE SEND DATATYPE 
1. Type_struct for complex numbers 

2. Type_contiguous for blocks 

3. Type_vector for stride 
 Need to change extent to allow overlap (create_resized) 

 

 
 

 

 

 

 Three hierarchy-layers  

Torsten Hoefler 
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Hoefler, Gottlieb: Parallel Zero-Copy Algorithms for Fast Fourier Transform and Conjugate Gradient using MPI 
Datatypes 

Slide 50 of 162 



THE RECEIVE DATATYPE 
 Type_struct (complex) 

 Type_vector (no contiguous, local transpose) 
 Needs to change extent (create_resized) 

 

Torsten Hoefler 
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Hoefler, Gottlieb: Parallel Zero-Copy Algorithms for Fast Fourier Transform and Conjugate Gradient using MPI 
Datatypes 
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EXPERIMENTAL EVALUATION 
 Odin @ IU 

 128 compute nodes, 2x2 Opteron 1354 2.1 GHz 

 SDR InfiniBand (OFED 1.3.1).  

 Open MPI 1.4.1 (openib BTL), g++ 4.1.2  

 Jaguar @ ORNL 

 150152 compute nodes, 2.1 GHz Opteron 

 Torus network (SeaStar).  

 CNL 2.1, Cray Message Passing Toolkit 3 

 All compiled with “-O3 –mtune=opteron” 

Torsten Hoefler 
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STRONG SCALING - ODIN (80002) 

 

 

 

 

 

 
 4 runs, report smallest time, <4% deviation 

Torsten Hoefler 

Reproducible 
peak at P=192 

Scaling stops  
w/o datatypes 

Section II: Derived Datatypes 
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STRONG SCALING – JAGUAR (20K2) 

 

Torsten Hoefler 

Scaling stops  
w/o datatypes 

DDT increase 
   scalability 
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DATATYPE CONCLUSIONS 

 MPI Datatypes allow zero-copy 
 Up to a factor of 3.8 or 18% speedup! 

 Requires some implementation effort 

 Declarative nature makes debugging hard 
 Simple tricks like index numbers help! 

 Some MPI DDT implementations are slow 
 Some nearly surreal (IBM)   

 Complain to your vendor if performance is not consistent! 
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Section II: Derived Datatypes 

Slide 55 of 162 



SECTION III - NONBLOCKING AND 
COLLECTIVE COMMUNICATION 
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NONBLOCKING AND COLLECTIVE COMMUNICATION 

 Nonblocking communication 
 Deadlock avoidance 
 Overlapping communication/computation 

 Collective communication 
 Collection of pre-defined optimized routines 

 Nonblocking collective communication 
 Combines both advantages 
 System noise/imbalance resiliency 
 Semantic advantages 
 Examples 

Torsten Hoefler 
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NONBLOCKING COMMUNICATION 

 Semantics are simple: 

 Function returns no matter what 

 No progress guarantee! 

 E.g., MPI_Isend(<send-args>, MPI_Request *req); 

 Nonblocking tests: 

 Test, Testany, Testall, Testsome 

 Blocking wait: 

 Wait, Waitany, Waitall, Waitsome 

Torsten Hoefler 
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NONBLOCKING COMMUNICATION 

 Blocking vs. nonblocking communication 

 Mostly equivalent, nonblocking has constant 
request management overhead 

 Nonblocking may have other non-trivial overheads 

 Request queue length 

 Linear impact on  
performance 

 E.g., BG/P: 100ns/req 

 Tune unexpected  Q length! 

Torsten Hoefler 
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NONBLOCKING COMMUNICATION 

 An (important) implementation detail 

 Eager vs. Rendezvous 

 Most/All MPIs switch protocols 

 Small messages are copied to internal remote buffers 

 And then copied to user buffer 

 Frees sender immediately (cf. bsend) 

 Large messages wait until receiver is ready 

 Blocks sender until receiver arrived 

 Tune eager limits! 

 

Torsten Hoefler 
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SOFTWARE PIPELINING - MOTIVATION 

 Overlapping comp/comm 

  pipelining  

Torsten Hoefler 

if(r == 0) { 

  for(int i=0; i<size; ++i) { 

    arr[i] = compute(arr, size); 

  } 

  MPI_Send(arr, size, MPI_DOUBLE, 1, 99, comm); 

} else { 

  MPI_Recv(arr, size, MPI_DOUBLE, 0, 99, comm, &stat); 

} 

Section III: Nonblocking & Collectives 
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SOFTWARE PIPELINING - MOTIVATION 

 Overlapping comp/comm 

  pipelining  

Torsten Hoefler 

if(r == 0) { 

  MPI_Request req=MPI_REQUEST_NULL; 

  for(int b=0; b<nblocks; ++b) { 

    if(b) { 

      if(req != MPI_REQUEST_NULL) MPI_Wait(&req, &stat); 

      MPI_Isend(&arr[(b-1)*bs], bs, MPI_DOUBLE, 1, 99, comm, &req); 

    } 

    for(int i=b*bs; i<(b+1)*bs; ++i) arr[i] = compute(arr, size); 

  } 

  MPI_Send(&arr[(nblocks-1)*bs], bs, MPI_DOUBLE, 1, 99, comm);  

} else { 

  for(int b=0; b<nblocks; ++b)  

     MPI_Recv(&arr[b*bs], bs, MPI_DOUBLE, 0, 99, comm, &stat); 

} 

Section III: Nonblocking & Collectives 
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A SIMPLE PIPELINE MODEL 

 No pipeline: 

 T = Tcomp(s) + Tcomm(s) + Tstartc(s) 

 Pipeline: 

 T = nblocks * [max(Tcomp(bs) , Tcomm(bs)) + Tstartc(bs)] 
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STENCIL EXAMPLE - OVERLAP 

 Necessary code transformation – picture 

 

 

 

 Steps: 
 Start halo communication 

 Compute inner zone 

 Wait for halo communication 

 Compute outer zone 

 Swap arrays 

Torsten Hoefler 

Section III: Nonblocking & Collectives 

wait 
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COLLECTIVE COMMUNICATION 

 Three types:  
 Synchronization (Barrier) 

 Data Movement (Scatter, Gather, Alltoall, Allgather) 

 Reductions (Reduce, Allreduce, (Ex)Scan, Red_scat) 

 Common semantics:  
 no tags (communicators can serve as such) 

 Blocking semantics (return when complete) 

 Not necessarily synchronizing (only barrier and all*) 

 Overview of functions and performance models 

Torsten Hoefler 

Section III: Nonblocking & Collectives 
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COLLECTIVE COMMUNICATION 

 Barrier –  

 Often α+β log2P 

 

 Scatter, Gather –  

 Often αP+βPs 

 

 Alltoall, Allgather -  

 Often αP+βPs 

 

 Torsten Hoefler 

Section III: Nonblocking & Collectives 
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COLLECTIVE COMMUNICATION 

 Reduce –  

 Often αlog2P+βm+γm 

 

 Allreduce –  

 Often αlog2P+βm+γm 

 

 (Ex)scan –  

 Often αP+βm+γm 

 

Torsten Hoefler 

Section III: Nonblocking & Collectives 
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NONBLOCKING COLLECTIVE COMMUNICATION 

 Nonblocking variants of all collectives 
 MPI_Ibcast(<bcast args>, MPI_Request *req); 

 Semantics: 
 Function returns no matter what 
 No guaranteed progress (quality of implementation) 
 Usual completion calls (wait, test) + mixing 
 Out-of order completion 

 Restrictions: 
 No tags, in-order matching 
 Send and vector buffers may not be touched  during operation 
 MPI_Cancel not supported 
 No matching with blocking collectives 

 

Torsten Hoefler 

Section III: Nonblocking & Collectives 

Hoefler et al.: Implementation and Performance Analysis of Non-Blocking Collective Operations for MPI 
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NONBLOCKING COLLECTIVE COMMUNICATION 

 Semantic advantages: 

 Enable asynchronous progression (and manual) 

 Software pipelinling 

 Decouple data transfer and synchronization 

 Noise resiliency! 

 Allow overlapping communicators 

 See also neighborhood collectives 

 Multiple outstanding operations at any time 

 Enables pipelining window 

 

Torsten Hoefler 

Section III: Nonblocking & Collectives 

Hoefler et al.: Implementation and Performance Analysis of Non-Blocking Collective Operations for MPI 
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NONBLOCKING COLLECTIVES OVERLAP 

 Software pipelining, similar to point-to-point 

 More complex parameters  

 Progression issues 

 Not scale-invariant 

 

Torsten Hoefler 

Section III: Nonblocking & Collectives 

Hoefler: Leveraging Non-blocking Collective Communication in High-performance Applications 
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NONBLOCKING COLLECTIVES OVERLAP 

 Complex progression 

 MPI’s global progress rule! 

 Higher CPU overhead (offloading?) 

 Differences in asymptotic behavior 

 Collective time often  

 Computation  

 Performance modeling  

 One term often dominates and complicates overlap 

Torsten Hoefler 

Section III: Nonblocking & Collectives 

Hoefler: Leveraging Non-blocking Collective Communication in High-performance Applications 
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SYSTEM NOISE – INTRODUCTION 

 CPUs are time-shared 

 Deamons, interrupts, etc. steal cycles 

 No problem for single-core performance  
 Maximum seen: 0.26%, average: 0.05% overhead 

 “Resonance” at large scale (Petrini et al ’03) 

 Numerous studies 

 Theoretical (Agarwal’05, Tsafrir’05, Seelam’10) 

 Injection (Beckman’06, Ferreira’08) 

 Simulation (Sottile’04) 

 

 
Torsten Hoefler 

Section III: Nonblocking & Collectives 

Hoefler et al.: Characterizing the Influence of System Noise on Large-Scale Applications by Simulation 
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MEASUREMENT RESULTS – CRAY XE 

 

 

 

 

 

 
 

 Resolution: 32.9 ns, noise overhead: 0.02% 

Torsten Hoefler 

Section III: Nonblocking & Collectives 

Hoefler et al.: Characterizing the Influence of System Noise on Large-Scale Applications by Simulation 
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A NOISY EXAMPLE – DISSEMINATION 

 

 

 

 
 

 
 

 Process 4 is delayed 
 Noise propagates “wildly” (of course deterministic) 

Torsten Hoefler 

Section III: Nonblocking & Collectives 

Hoefler et al.: Characterizing the Influence of System Noise on Large-Scale Applications by Simulation 
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SINGLE BYTE DISSEMINATION ON JAGUAR 

Torsten Hoefler 

no impact! 

some outliers 

deterministic 
slowdown  

(noise bottleneck) 

Section III: Nonblocking & Collectives 

Hoefler et al.: Characterizing the Influence of System Noise on Large-Scale Applications by Simulation 
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NONBLOCKING COLLECTIVES VS. NOISE 

Torsten Hoefler 

Section III: Nonblocking & Collectives 

No Noise, blocking 

Noise, blocking 

Noise, nonblocking 

Hoefler et al.: Characterizing the Influence of System Noise on Large-Scale Applications by Simulation 

Slide 76 of 162 



 A NON-BLOCKING BARRIER? 

 What can that be good for? Well, quite a bit! 
 Semantics: 
 MPI_Ibarrier() – calling process entered the barrier, no 

synchronization happens 
 Synchronization may happen asynchronously 
 MPI_Test/Wait() – synchronization happens if 

necessary 

 Uses:  
 Overlap barrier latency (small benefit) 
 Use the split semantics! Processes notify non-

collectively but synchronize collectively! 

Torsten Hoefler 

Section III: Nonblocking & Collectives 
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A SEMANTICS EXAMPLE: DSDE 

 Dynamic Sparse Data Exchange 

 Dynamic: comm. pattern varies across iterations 

 Sparse: number of neighbors is limited (              ) 

 Data exchange: only senders know neighbors 

Torsten Hoefler 

Section III: Nonblocking & Collectives 

T. Hoefler et al.:Scalable Communication Protocols for Dynamic Sparse Data Exchange 
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DYNAMIC SPARSE DATA EXCHANGE (DSDE) 

 Main Problem: metadata 
 Determine who wants to send how much data to me  

(I must post receive and reserve memory) 
OR: 
 Use MPI semantics: 
 Unknown sender  

 MPI_ANY_SOURCE 

 Unknown message size 
 MPI_PROBE 

 Reduces problem to counting 
the number of neighbors  
 Allow faster implementation! 

 

Torsten Hoefler 

Section III: Nonblocking & Collectives 

T. Hoefler et al.:Scalable Communication Protocols for Dynamic Sparse Data Exchange 
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USING ALLTOALL (PEX)  
 Bases on Personalized Exchange (        ) 
 Processes exchange 

metadata (sizes)  
about neighborhoods  
with all-to-all 

 Processes post  
receives afterwards 

 Most intuitive but  
least performance  
andscalability! 

 

Torsten Hoefler 

Section III: Nonblocking & Collectives 

T. Hoefler et al.:Scalable Communication Protocols for Dynamic Sparse Data Exchange 
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REDUCE_SCATTER (PCX) 
 Bases on Personalized Census (        ) 
 Processes exchange 

metadata (counts) about  
neighborhoods with 
reduce_scatter 

 Receivers checks with 
wildcard MPI_IPROBE 
and receives messages 
 

 Better than PEX but 
non-deterministic! 
 
 

Torsten Hoefler 

Section III: Nonblocking & Collectives 

T. Hoefler et al.:Scalable Communication Protocols for Dynamic Sparse Data Exchange 
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MPI_IBARRIER (NBX) 
 Complexity - census (barrier): 
 Combines metadata with actual transmission 
 Point-to-point 

synchronization 
 Continue receiving 

until barrier completes 
 Processes start coll. 

synch. (barrier) when 
p2p phase ended 
 barrier = distributed  

marker! 

 Better than PEX, 
PCX, RSX! 
 

Torsten Hoefler 

Section III: Nonblocking & Collectives 

T. Hoefler et al.:Scalable Communication Protocols for Dynamic Sparse Data Exchange 
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PARALLEL BREADTH FIRST SEARCH 
 On a clustered Erdős-Rényi graph, weak scaling 
 6.75 million edges per node (filled 1 GiB) 

 

 
 
 
 
 
 
 
 
 

 

 HW barrier support is significant at large scale! 

Torsten Hoefler 

BlueGene/P – with HW barrier! Myrinet 2000 with LibNBC 

Section III: Nonblocking & Collectives 

T. Hoefler et al.:Scalable Communication Protocols for Dynamic Sparse Data Exchange 
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A COMPLEX EXAMPLE: FFT 

 

Torsten Hoefler 

for(int x=0; x<n/p; ++x) 1d_fft(/* x-th stencil */); 

 

// pack data for alltoall 

MPI_Alltoall(&in, n/p*n/p, cplx_t, &out, n/p*n/p, cplx_t, comm); 

// unpack data from alltoall and transpose 

 

for(int y=0; y<n/p; ++y) 1d_fft(/* y-th stencil */); 

 

// pack data for alltoall 

MPI_Alltoall(&in, n/p*n/p, cplx_t, &out, n/p*n/p, cplx_t, comm); 

// unpack data from alltoall and transpose 

Section III: Nonblocking & Collectives 

Hoefler: Leveraging Non-blocking Collective Communication in High-performance Applications 
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FFT SOFTWARE PIPELINING 

 

Torsten Hoefler 

NBC_Request req[nb]; 

for(int b=0; b<nb; ++b) { // loop over blocks 

  for(int x=b*n/p/nb; x<(b+1)n/p/nb; ++x) 1d_fft(/* x-th stencil*/); 

 

  // pack b-th block of data for alltoall 

  NBC_Ialltoall(&in, n/p*n/p/bs, cplx_t, &out, n/p*n/p, cplx_t, comm, &req[b]); 

} 

NBC_Waitall(nb, req, MPI_STATUSES_IGNORE); 

 

// modified unpack data from alltoall and transpose 

for(int y=0; y<n/p; ++y) 1d_fft(/* y-th stencil */); 

// pack data for alltoall 

MPI_Alltoall(&in, n/p*n/p, cplx_t, &out, n/p*n/p, cplx_t, comm); 

// unpack data from alltoall and transpose 

Section III: Nonblocking & Collectives 

Hoefler: Leveraging Non-blocking Collective Communication in High-performance Applications 
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A COMPLEX EXAMPLE: FFT 

 Main parameter: nb vs. n  blocksize 

 Strike balance between k-1st alltoall and kth 
FFT stencil block 

 Costs per iteration: 

 Alltoall (bandwidth) costs: Ta2a ≈ n2/p/nb * β 

 FFT costs: Tfft ≈ n/p/nb * T1DFFT(n) 

 Adjust blocksize parameters to actual machine 

 Either with model or simple sweep 

Torsten Hoefler 

Section III: Nonblocking & Collectives 

Hoefler: Leveraging Non-blocking Collective Communication in High-performance Applications 
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NONBLOCKING AND COLLECTIVE SUMMARY 

 Nonblocking comm does two things: 

 Overlap and relax synchronization 

 Collective does one thing 

 Specialized pre-optimized routines  

 Performance portability 

 Hopefully transparent performance 

 They can be composed 

 E.g., software pipelining 

Torsten Hoefler 

Section III: Nonblocking & Collectives 
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SECTION IV - TOPOLOGY MAPPING AND 
NEIGHBORHOOD COLLECTIVES 

Torsten Hoefler Slide 88 of 162 



TOPOLOGY MAPPING AND NEIGHBORHOOD 
COLLECTIVES 

 Topology mapping basics 

 Allocation mapping vs. rank reordering 

 Ad-hoc solutions vs. portability 

 MPI topologies 

 Cartesian 

 Distributed graph 

 Collectives on topologies – neighborhood colls 

 Use-cases 

Torsten Hoefler 

Section IV: Topology 
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TOPOLOGY MAPPING BASICS 

 First type: Allocation mapping 
 Up-front specification of communication pattern 

 Batch system picks good set of nodes for given 
topology 

 Properties: 
 Not supported by current batch systems 

 Either predefined allocation (BG/P), random 
allocation, or “global bandwidth maximation” 

 Also problematic to specify communication pattern 
upfront, not always possible (or static) 

Torsten Hoefler 

Section IV: Topology 
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TOPOLOGY MAPPING BASICS 

 Rank reordering  
 Change numbering in a given allocation to reduce 

congestion or dilation 

 Sometimes automatic (early IBM SP machines) 

 Properties 
 Always possible, but effect may be limited (e.g., in a 

bad allocation) 

 Portable way: MPI process topologies 
 Network topology is not exposed 

 Manual data shuffling after remapping step 

Torsten Hoefler 

Section IV: Topology 
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ON-NODE REORDERING 

 

 

 

Torsten Hoefler 

Section IV: Topology 

Naïve Mapping Optimized Mapping 

Topomap 

 Gottschling and Hoefler: Productive Parallel Linear Algebra Programming with Unstructured Topology  
 Adaption 
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OFF-NODE (NETWORK) REORDERING 

Torsten Hoefler 

Section IV: Topology 

Application Topology Network Topology 

Naïve Mapping Optimal Mapping 

Topomap 
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MPI TOPOLOGY INTRO 

 Convenience functions (in MPI-1) 
 Create a graph and query it, nothing else 
 Useful especially for Cartesian topologies 
 Query neighbors in n-dimensional space 

 Graph topology: each rank specifies full graph  

 Scalable Graph topology (MPI-2.2) 
 Graph topology: each rank specifies its neighbors or 

arbitrary subset of the graph 

 Neighborhood collectives (MPI-3.0) 
 Adding communication functions defined on graph 

topologies (neighborhood of distance one) 

Torsten Hoefler 

Section IV: Topology 
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MPI_CART_CREATE 

 

 

 Specify ndims-dimensional topology 
 Optionally periodic in each dimension (Torus) 

 Some processes may return MPI_COMM_NULL 
 Product sum of dims must be <= P 

 Reorder argument allows for topology mapping 
 Each calling process may have a new rank in the created 

communicator 

 Data has to be remapped manually 

 

Torsten Hoefler 

MPI_Cart_create(MPI_Comm comm_old, int ndims, const int 

*dims, const int *periods, int reorder, MPI_Comm *comm_cart) 

Section IV: Topology 
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MPI_CART_CREATE EXAMPLE 

 
 

 

 Creates logical 3-d Torus of size 5x5x5 

 But we’re starting MPI processes with a one-
dimensional argument (-p X) 

 User has to determine size of each dimension 

 Often as “square” as possible, MPI can help! 

Torsten Hoefler 

int dims[3] = {5,5,5}; 

int periods[3] = {1,1,1}; 

MPI_Comm topocomm; 

MPI_Cart_create(comm, 3, dims, periods, 0, &topocomm); 

Section IV: Topology 
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MPI_DIMS_CREATE 

 

 Create dims array for Cart_create with nnodes 
and ndims 

 Dimensions are as close as possible (well, in 
theory) 

 Non-zero entries in dims will not be changed 

 nnodes must be multiple of all non-zeroes 

 

Torsten Hoefler 

MPI_Dims_create(int nnodes, int ndims, int *dims) 

Section IV: Topology 
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MPI_DIMS_CREATE EXAMPLE 

 

 

 

 

 

 Makes life a little bit easier 

 Some problems may be better with a non-square 
layout though 

Torsten Hoefler 

int p; 

MPI_Comm_size(MPI_COMM_WORLD, &p); 

MPI_Dims_create(p, 3, dims); 

 

int periods[3] = {1,1,1}; 

MPI_Comm topocomm; 

MPI_Cart_create(comm, 3, dims, periods, 0, &topocomm); 

Section IV: Topology 
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CARTESIAN QUERY FUNCTIONS 

 Library support and convenience! 

 MPI_Cartdim_get() 
 Gets dimensions of a Cartesian communicator 

 MPI_Cart_get() 
 Gets size of dimensions 

 MPI_Cart_rank() 
 Translate coordinates to rank 

 MPI_Cart_coords() 
 Translate rank to coordinates 

Torsten Hoefler 

Section IV: Topology 
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CARTESIAN COMMUNICATION HELPERS 

 

 

 Shift in one dimension 
 Dimensions are numbered from 0 to ndims-1 

 Displacement indicates neighbor distance (-1, 1, …) 

 May return MPI_PROC_NULL 

 Very convenient, all you need for nearest 
neighbor communication 
 No “over the edge” though 

Torsten Hoefler 

MPI_Cart_shift(MPI_Comm comm, int direction, int disp, 

int *rank_source, int *rank_dest) 

Section IV: Topology 
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MPI_GRAPH_CREATE 

 Don’t use!!!!! 

 

 nnodes is the total number of nodes 

 index i stores the total number of neighbors 
for the first i nodes (sum) 
 Acts as offset into edges array 

 edges stores the edge list for all processes 
 Edge list for process j starts at index[j] in edges 

 Process j has index[j+1]-index[j] edges 

Torsten Hoefler 

MPI_Graph_create(MPI_Comm comm_old, int nnodes, const 

int *index, const int *edges, int reorder, MPI_Comm 

*comm_graph) 

Section IV: Topology 
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MPI_GRAPH_CREATE 

 Don’t use!!!!! 

 

 nnodes is the total number of nodes 

 index i stores the total number of neighbors 
for the first i nodes (sum) 
 Acts as offset into edges array 

 edges stores the edge list for all processes 
 Edge list for process j starts at index[j] in edges 

 Process j has index[j+1]-index[j] edges 

Torsten Hoefler 

MPI_Graph_create(MPI_Comm comm_old, int nnodes, const 

int *index, const int *edges, int reorder, MPI_Comm 

*comm_graph) 

Section IV: Topology 
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DISTRIBUTED GRAPH CONSTRUCTOR 

 MPI_Graph_create is discouraged 
 Not scalable 
 Not deprecated yet but hopefully soon 

 New distributed interface: 
 Scalable, allows distributed graph specification 
 Either local neighbors or any edge in the graph 

 Specify edge weights 
 Meaning undefined but optimization opportunity for 

vendors! 

 Info arguments 
 Communicate assertions of semantics to the MPI library 
 E.g., semantics of edge weights 

Torsten Hoefler 

Section IV: Topology 

Hoefler et al.: The Scalable Process Topology Interface of MPI 2.2 
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MPI_DIST_GRAPH_CREATE_ADJACENT 

 
 

 

 indegree, sources, ~weights – source proc. Spec. 

 outdegree, destinations, ~weights – dest. proc. spec. 

 info, reorder, comm_dist_graph – as usual 

 directed graph 

 Each edge is specified twice, once as out-edge (at the 
source) and once as in-edge (at the dest) 

Torsten Hoefler 

MPI_Dist_graph_create_adjacent(MPI_Comm comm_old, int 

indegree, const int sources[], const int sourceweights[], int 

outdegree, const int destinations[], const int destweights[], 

MPI_Info info,int reorder, MPI_Comm *comm_dist_graph) 

Section IV: Topology 

Hoefler et al.: The Scalable Process Topology Interface of MPI 2.2 
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MPI_DIST_GRAPH_CREATE_ADJACENT 

 Process 0: 
 Indegree: 0 
 Outdegree: 1 
 Dests: {3,1} 

 Process 1: 
 Indegree: 3 
 Outdegree: 2 
 Sources: {4,0,2} 
 Dests: {3,4} 

 … 
 

Torsten Hoefler 

Section IV: Topology 

Hoefler et al.: The Scalable Process Topology Interface of MPI 2.2 

Slide 105 of 162 



MPI_DIST_GRAPH_CREATE 

 
 

 

 n – number of source nodes 
 sources – n source nodes  
 degrees – number of edges for each source 
 destinations, weights – dest. processor specification 
 info, reorder – as usual 
 More flexible and convenient  
 Requires global communication 
 Slightly more expensive than adjacent specification 

Torsten Hoefler 

MPI_Dist_graph_create(MPI_Comm comm_old, int n, const int 

sources[], const int degrees[], const int destinations[], const 

int weights[], MPI_Info info, int reorder, MPI_Comm 

*comm_dist_graph) 

Section IV: Topology 

Hoefler et al.: The Scalable Process Topology Interface of MPI 2.2 
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MPI_DIST_GRAPH_CREATE 

 Process 0: 
 N: 2 
 Sources: {0,1} 
 Degrees: {2,1} 
 Dests:  {3,1,4} 

 Process 1: 
 N: 2 
 Sources: {2,3} 
 Degrees: {1,1} 
 Dests: {1,2} 

 … 
 
 

Torsten Hoefler 

Section IV: Topology 

Hoefler et al.: The Scalable Process Topology Interface of MPI 2.2 
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DISTRIBUTED GRAPH NEIGHBOR QUERIES 

 MPI_Dist_graph_neighbors_count() 

 Query the number of neighbors of calling process 

 Returns indegree and outdegree! 

 Also info if weighted 

 MPI_Dist_graph_neighbors() 

 

 Query the neighbor list of calling process 

 Optionally return weights 

Torsten Hoefler 

MPI_Dist_graph_neighbors_count(MPI_Comm comm, int 

*indegree,int *outdegree, int *weighted) 

MPI_Dist_graph_neighbors(MPI_Comm comm, int 

maxindegree, int sources[], int sourceweights[], int 

maxoutdegree, int destinations[],int destweights[]) 

Section IV: Topology 

Hoefler et al.: The Scalable Process Topology Interface of MPI 2.2 
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FURTHER GRAPH QUERIES 

 

 Status is either: 

 MPI_GRAPH (ugs) 

 MPI_CART 

 MPI_DIST_GRAPH 

 MPI_UNDEFINED (no topology) 

 Enables to write libraries on top of MPI 
topologies! 

Torsten Hoefler 

MPI_Topo_test(MPI_Comm comm, int *status) 

Section IV: Topology 
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NEIGHBORHOOD COLLECTIVES  

 Topologies implement no communication! 
 Just helper functions 

 Collective communications only cover some 
patterns 
 E.g., no stencil pattern 

 Several requests for “build your own collective” 
functionality in MPI  
 Neighborhood collectives are a simplified version 

 Cf. Datatypes for communication patterns! 

 

Torsten Hoefler 

Section IV: Topology 
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CARTESIAN NEIGHBORHOOD COLLECTIVES 

 Communicate with direct neighbors in Cartesian 
topology 

 Corresponds to cart_shift with disp=1 

 Collective (all processes in comm must call it, 
including processes without neighbors) 

 Buffers are laid out as neighbor sequence: 

 Defined by order of dimensions, first negative, then positive 

 2*ndims sources and destinations 

 Processes at borders  (MPI_PROC_NULL) leave holes in 
buffers (will not be updated or communicated)! 

 

 
Torsten Hoefler 

Section IV: Topology 

T. Hoefler and J. L. Traeff: Sparse Collective Operations for MPI 
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CARTESIAN NEIGHBORHOOD COLLECTIVES 

 Buffer ordering example: 

 

 

Torsten Hoefler 

Section IV: Topology 

T. Hoefler and J. L. Traeff: Sparse Collective Operations for MPI 
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GRAPH NEIGHBORHOOD COLLECTIVES 

 Collective Communication along arbitrary 
neighborhoods 

 Order is determined by order of neighbors as 
returned by (dist_)graph_neighbors. 

 Distributed graph is directed, may have different 
numbers of send/recv neighbors 

 Can express dense collective operations  

 Any persistent communication pattern! 

Torsten Hoefler 

Section IV: Topology 

T. Hoefler and J. L. Traeff: Sparse Collective Operations for MPI 
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MPI_NEIGHBOR_ALLGATHER 

 

 

 Sends the same message to all neighbors 

 Receives indegree distinct messages 

 Similar to MPI_Gather 

 The all prefix expresses that each process is a 
“root” of his neighborhood 

 Vector and w versions for full flexibility 

Torsten Hoefler 

MPI_Neighbor_allgather(const void* sendbuf, int sendcount, 

MPI_Datatype sendtype, void* recvbuf, int recvcount, 

MPI_Datatype recvtype, MPI_Comm comm) 

Section IV: Topology 

Slide 114 of 162 



MPI_NEIGHBOR_ALLTOALL 

 

 

 Sends outdegree distinct messages 

 Received indegree distinct messages 

 Similar to MPI_Alltoall 

 Neighborhood specifies full communication 
relationship 

 Vector and w versions for full flexibility 

Torsten Hoefler 

MPI_Neighbor_alltoall(const void* sendbuf, int sendcount, 

MPI_Datatype sendtype, void* recvbuf, int recvcount, 

MPI_Datatype recvtype, MPI_Comm comm) 

Section IV: Topology 
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NONBLOCKING NEIGHBORHOOD COLLECTIVES 

 
 

 Very similar to nonblocking collectives 

 Collective invocation 

 Matching in-order (no tags) 

 No wild tricks with neighborhoods! In order 
matching per communicator! 

 

Torsten Hoefler 

MPI_Ineighbor_allgather(…, MPI_Request *req); 

MPI_Ineighbor_alltoall(…, MPI_Request *req); 

Section IV: Topology 
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WHY IS NEIGHBORHOOD REDUCE MISSING? 

 

 Was originally proposed (see original paper) 

 High optimization opportunities 

 Interesting tradeoffs! 

 Research topic 

 Not standardized due to missing use-cases 

 My team is working on an implementation 

 Offering the obvious interface 

Torsten Hoefler 

MPI_Ineighbor_allreducev(…);  

Section IV: Topology 

T. Hoefler and J. L. Traeff: Sparse Collective Operations for MPI 
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STENCIL EXAMPLE 

 Two options: use DDTs or not 

 Without DDTs: 

 Change packing loops to pack into one buffer 

 Use alltoallv along Cartesian topology 

 Using DDTs: 

 Use alltoallw with correct offsets and types 

 Even more power to MPI 

 Complex DDT optimizations possible 

Torsten Hoefler 

Section IV: Topology 
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TOPOLOGY SUMMARY 

 Topology functions allow to specify application 
communication patterns/topology 
 Convenience functions (e.g., Cartesian) 

 Storing neighborhood relations (Graph) 

 Enables topology mapping (reorder=1) 
 Not widely implemented yet 

 May requires manual data re-distribution (according 
to new rank order) 

 MPI does not expose information about the 
network topology (would be very complex) 

 

Torsten Hoefler 

Section IV: Topology 
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NEIGHBORHOOD COLLECTIVES SUMMARY 

 Neighborhood collectives add communication 
functions to process topologies 
 Collective optimization potential! 

 Allgather 
 One item to all neighbors 

 Alltoall 
 Personalized item to each neighbor 

 High optimization potential (similar to collective 
operations) 
 Interface encourages use of topology mapping! 

Torsten Hoefler 

Section IV: Topology 
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SECTION SUMMARY 

 Process topologies enable: 
 High-abstraction to specify communication 

pattern 

 Has to be relatively static (temporal locality) 
 Creation is expensive (collective) 

 Offers basic communication functions 

 Library can optimize: 
 Communication schedule for neighborhood colls 

 Topology mapping 

Torsten Hoefler 

Section IV: Topology 
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SECTION V - ONE SIDED 
COMMUNICATION 
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ONE SIDED COMMUNICATION 

 Terminology 

 Memory exposure 

 Communication 

 Accumulation 
 Ordering, atomics 

 Synchronization 

 Shared memory windows 

 Memory models & semantics  

 

Torsten Hoefler 

Section V: One Sided Communication 
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ONE SIDED COMMUNICATION – THE SHOCK 

 It’s weird, really! 
 It grew – MPI-3.0 is backwards compatible! 

 Think PGAS (with a library interface) 
 Remote memory access (put, get, accumulates) 

 Forget locks  
 Win_lock_all is not a lock, opens an epoch 

 Think TM 
 That’s really what “lock” means (lock/unlock is like an 

atomic region, does not necessarily “lock” anything) 

 Decouple transfers from synchronization 
 Separate transfer and synch functions 

 

Torsten Hoefler 

Section V: One Sided Communication 
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ONE SIDED COMMUNICATION – TERMS 
 Origin process: Process with the source buffer, initiates the 

operation 

 Target process: Process with the destination buffer, does not 
explicitly call communication functions 

 Epoch: Virtual time where operations are in flight. Data is 
consistent after new epoch is started. 

 Access epoch: rank acts as origin for RMA calls 

 Exposure epoch: rank acts as target for RMA calls 

 Ordering: only for accumulate operations: order of messages 
between two processes (default: in order, can be relaxed) 

 Assert: assertions about how One Sided functions are used, “fast” 
optimization hints, cf. Info objects (slower) 

Torsten Hoefler 

Section V: One Sided Communication 
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ONE SIDED OVERVIEW 

 Creation 
 Expose memory collectively - Win_create 
 Allocate exposed memory – Win_allocate 
 Dynamic memory exposure – Win_create_dynamic 

 Communication 
 Data movement (put, get, rput, rget) 
 Accumulate (acc, racc, get_acc, rget_acc, fetch&op, cas) 

 Synchronization 
 Active - Collective (fence); Group (PSCW) 
 Passive - P2P (lock/unlock); One epoch (lock _all) 

 
  

Torsten Hoefler 

Section V: One Sided Communication 
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MEMORY EXPOSURE 

 
 Exposes consecutive memory (base, size) 
 Collective call 
 Info args: 
 no_locks – user asserts to not lock win 

 accumulate_ordering – comma-separated rar, war, raw, waw 

 accumulate_ops – same_op or same_op_no_op (default) – 
assert used ops for related accumulates  

Torsten Hoefler 

MPI_Win_create(void *base, MPI_Aint size, int disp_unit, 

MPI_Info info, MPI_Comm comm, MPI_Win *win) 

MPI_Win_free(MPI_Win *win) 

Section V: One Sided Communication 
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MEMORY EXPOSURE 

 

 Similar to win_create but allocates memory 
 Should be used whenever possible! 

 May consume significantly less resources 

 Similar info arguments plus 
 same_size – if true, user asserts that size is 

identical on all calling processes 

 Win_free will deallocate memory! 
 Be careful  

Torsten Hoefler 

MPI_Win_allocate(MPI_Aint size, int disp_unit, MPI_Info info, 

MPI_Comm comm, void *baseptr, MPI_Win *win) 

Section V: One Sided Communication 
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MEMORY EXPOSURE 

 

 Coll. memory exposure may be cumbersome 
 Especially for irregular applications 

 Win_create_dynamic creates a window with no 
memory attached 

 

 

 Register non-overlapping regions locally 

 Addresses are communicated for remote access! 
 MPI_Aint will be big enough on heterogeneous systems 

Torsten Hoefler 

MPI_Win_create_dynamic(MPI_Info info, MPI_Comm comm, 

MPI_Win *win) 

MPI_Win_attach(MPI_Win win, void *base, MPI_Aint size) 

MPI_Win_detach(MPI_Win win, const void *base) 

Section V: One Sided Communication 
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ONE SIDED COMMUNICATION 

 

 
 

 Two similar communication functions: 
 Put, Get 

 Nonblocking, bulk completion at end of epoch 

 Conflicting accesses are not erroneous 
 But outcome is undefined! 

 One exception: polling on a single byte in the unified 
model (for fast synchronization) 

Torsten Hoefler 

MPI_Put(const void *origin_addr, int origin_count, 

MPI_Datatype origin_datatype, int target_rank, MPI_Aint 

target_disp, int target_count, MPI_Datatype target_datatype, 

MPI_Win win) 

Section V: One Sided Communication 
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ONE SIDED COMMUNICATION 

 

 MPI_Rput, MPI_Rget for request-based 
completion 
 Also non-blocking but return request 

 Expensive for each operation (vs. bulk completion) 

 Only for local buffer consistency 
 Get means complete! 

 Put means buffer can be re-used, nothing known 
about remote completion 

 

Torsten Hoefler 

MPI_Rput(…, MPI_Request *request) 

Section V: One Sided Communication 
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ONE SIDED ACCUMULATION 

 
 
 

 Remote accumulations (only predefined ops) 
 Replace value in target buffer with accumulated 
 MPI_REPLACE to emulate MPI_Put 

 Allows for non-recursive derived datatypes 
 No overlapping entries at target (datatype) 

 Conflicting accesses are allowed! 
 Ordering rules apply 

Torsten Hoefler 

MPI_Accumulate(const void *origin_addr, int origin_count, 

MPI_Datatype origin_datatype, int target_rank, MPI_Aint 

target_disp, int target_count, MPI_Datatype target_datatype, 

MPI_Op op, MPI_Win win) 

Section V: One Sided Communication 
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ONE SIDED ACCUMULATION 

 
 
 

 MPI’s generalized fetch and add  
 12 arguments  
 MPI_REPLACE allows for fetch & set 
 New op: MPI_NO_OP to emulate get 

 Accumulates origin into the target , returns 
content before accumulation in result 
 Atomically of course 

Torsten Hoefler 

MPI_Get_accumulate(const void *origin_addr, int origin_count, 

MPI_Datatype origin_datatype, void *result_addr, int 

result_count, MPI_Datatype result_datatype, int target_rank, 

MPI_Aint target_disp, int target_count, MPI_Datatype 

target_datatype, MPI_Op op, MPI_Win win) 

Section V: One Sided Communication 
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ONE SIDED ACCUMULATION 

 

 

 Get_accumulate may be very slow (needs to 
cover many cases, e.g., large arrays etc.) 
 Common use-case is single element fetch&op 

 Fetch_and_op offers relevant subset of Get_acc 

 Very similar to Get_accumulate 
 Same semantics, just more limited interface 

 No request-based version 

Torsten Hoefler 

MPI_Fetch_and_op(const void *origin_addr, void *result_addr, 

MPI_Datatype datatype, int target_rank, MPI_Aint target_disp, 

MPI_Op op, MPI_Win win) 

Section V: One Sided Communication 
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ONE SIDED ACCUMULATION 

 

 

 CAS for MPI (no CAS2 but can be emulated) 

 Single element, binary compare (!) 

 Compares compare buffer with target and 
replaces value at target with origin if 
compare and target are identical. Original 
target value is returned in result. 

Torsten Hoefler 

MPI_Compare_and_swap(const void *origin_addr, const void 

*compare_addr, void *result_addr, MPI_Datatype datatype, int 

target_rank, MPI_Aint target_disp, MPI_Win win) 

Section V: One Sided Communication 
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ACCUMULATION SEMANTICS 

 Accumulates allow concurrent access! 
 Put/Get does not! They’re not atomic 

 Emulating atomic put/get 
 Put  = MPI_Accumulate(…, op=MPI_REPLACE, …) 

 Get = MPI_Get_accumulate(…, op=MPI_NO_OP, …) 

 Will be slow (thus we left it ugly!) 

 Ordering modes 
 Default ordering allows “no surprises” (cf. UPC) 

 Can (should) be relaxed with info (accumulate_ordering 
= raw, waw, rar, war) during window creation 

Torsten Hoefler 

Section V: One Sided Communication 
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SYNCHRONIZATION MODES 

 Active target mode 

 Target ranks are calling MPI 

 Either BSP-like collective: MPI_Win_fence 

 Or group-wise (cf. neighborhood collectives): PSCW 

 Passive target mode 

 Lock/unlock: no traditional lock, more like TM 
(without rollback) 

 Lockall: locking all processes isn’t really a lock  

Torsten Hoefler 

Section V: One Sided Communication 
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MPI_WIN_FENCE SYNCHRONIZATION 

 

 Collectively synchronizes all RMA calls on win 

 All RMA calls started before fence will complete 
 Ends/starts access and/or exposure epochs 

 Does not guarantee barrier semantics (but often 
synchronizes) 

 Assert allows optimizations, is usually 0 
 MPI_MODE_NOPRECEDE  if no communication 

(neither as origin or destination) is outstanding on win 

Torsten Hoefler 

MPI_Win_fence(int assert, MPI_Win win) 

Section V: One Sided Communication 
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PSCW SYNCHRONIZATION 

 

 

 Specification of access/exposure epochs separately: 

 Post: start exposure epoch to group, nonblocking 

 Start: start access epoch to group, may wait for post 

 Complete: finish prev. access epoch, origin completion 
only (not target) 

 Wait: will wait for complete, completes at (active) target 

 As asynchronous as possible 

Torsten Hoefler 

MPI_Win_post(MPI_Group group, int assert, MPI_Win win) 

MPI_Win_start(MPI_Group group, int assert, MPI_Win win) 

MPI_Win_complete(MPI_Win win) 

MPI_Win_wait(MPI_Win win) 

Section V: One Sided Communication 
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LOCK/UNLOCK SYNCHRONIZATION 

 

 Initiates RMA access epoch to rank 
 No concept of exposure epoch 

 Unlock closes access epoch 
 Operations have completed at origin and target 

 Type:  
 Exclusive: no other process may hold lock to rank 
 More like a real lock, e.g., for local accesses  

 Shared: other processes may hold lock 
 

Torsten Hoefler 

MPI_Win_lock(int lock_type, int rank, int assert, MPI_Win win) 

MPI_Win_unlock(int rank, MPI_Win win) 

Section V: One Sided Communication 
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LOCK_ALL SYNCHRONIZATION 

 

 Starts a shared access epoch from origin to all 
ranks! 

 Not collective! 

 Does not really lock anything 

 Opens a different mode of use, see following 
slides! 

 

Torsten Hoefler 

MPI_Win_lock_all(int assert, MPI_Win win) 

MPI_Win_unlock_all(MPI_Win win) 

Section V: One Sided Communication 
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SYNCHRONIZATION PRIMITIVES (PASSIVE) 

 Flush/Flush_all 

 Completes all outstanding operations at the 
target rank (or all) at origin and target 
 Only in passive target mode 

 

 

 Completes all outstanding operations at the 
target rank (or all) at origin (buffer reuse) 
 Only in passive target mode 

 
Torsten Hoefler 

MPI_Win_flush(int rank, MPI_Win win) 

MPI_Win_flush_all(MPI_Win win) 

MPI_Win_flush_local(int rank, MPI_Win win) 

MPI_Win_flush_local_all(MPI_Win win) 

Section V: One Sided Communication 
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SYNCHRONIZATION PRIMITIVES (PASSIVE) 

 

 Synchronizes private and public window 
copies 

 Same as closing and opening access and exposure 
epochs on the window 

 Does not complete any operations though! 

 Cf. memory barrier 

 

Torsten Hoefler 

MPI_Win_sync(MPI_Win win) 

Section V: One Sided Communication 
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MEMORY MODELS 

 MPI offers two memory models: 

 Unified: public and private window are identical 

 Separate: public and private window are separate 

 Type is attached as attribute to window 

 MPI_WIN_MODEL 

Torsten Hoefler 

Section V: One Sided Communication 

MPI_UNIFIED MPI_SEPARATE 
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SEPARATE SEMANTICS 

 Very complex, rules-of-thumb at target: 

 

 

 

 

 OVL – overlapping 

 NOVL - non-overlapping 

 X - undefined 

 
Torsten Hoefler 

Load Store Get Put Acc 

Load OVL+NOVL OVL+NOVL OVL+NOVL NOVL NOVL 

Store OVL+NOVL OVL+NOVL NOVL X X 

Get OVL+NOVL NOVL OVL+NOVL NOVL NOVL 

Put NOVL X NOVL NOVL NOVL 

Acc NOVL X NOVL NOVL OVL+NOVL 

Credits: RMA Working Group, MPI Forum 

Section V: One Sided Communication 
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UNIFIED SEMANTICS 

 Very complex, rules-of-thumb at target: 
 
 
 
 
 
 

 OVL – Overlapping operations 
 NOVL – Nonoverlapping operations 
 BOVL – Overlapping operations at a byte granularity 
 X – undefined 

 

Torsten Hoefler 

Load Store Get Put Acc 

Load OVL+NOVL OVL+NOVL OVL+NOVL NOVL+BOVL NOVL+BOVL 

Store OVL+NOVL OVL+NOVL NOVL NOVL NOVL 

Get OVL+NOVL NOVL OVL+NOVL NOVL NOVL 

Put NOVL+BOVL NOVL NOVL NOVL NOVL 

Acc NOVL+BOVL NOVL NOVL NOVL OVL+NOVL 

Credits: RMA Working Group, MPI Forum 

Section V: One Sided Communication 
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DISTRIBUTED HASHTABLE EXAMPLE 

 Use first two bytes as hash 

 Trivial hash function (216 values) 

 Static 216 table size 

 One direct value 

 Conflicts as linked list 

 Static heap 

 Linked list indexes into heap 

 Offset as pointer 

Torsten Hoefler 

Section V: One Sided Communication 
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DISTRIBUTED HASHTABLE EXAMPLE 

 Source Code 

Torsten Hoefler 

Section V: One Sided Communication 

int insert(t_hash *hash, int elem) { 

  int pos = hashfunc(elem); 

  if(hash->table[pos].value == -1) { // direct value in table 

    hash->table[pos].value = elem; 

  } else { // put on heap 

    int newelem=hash->nextfree++; // next free element 

    if(hash->table[pos].next == -1) { // first heap element 

      // link new elem from table 

      hash->table[pos].next = newelem; 

    } else { // direct pointer to end of collision list 

      int newpos=hash->last[pos]; 

      hash->table[newpos].next = newelem; 

    } 

    hash->last[pos]=newelem; 

    hash->table[newelem].value = elem; // fill allocated element 

  } 

} 
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DHT EXAMPLE – IN MPI-3.0 

 

Torsten Hoefler 

Section V: One Sided Communication 

int insert(t_hash *hash, int elem) { 

  int pos = hashfunc(elem); 

  if(hash->table[pos].value == -1) { // direct value in table 

    hash->table[pos].value = elem; 

  } else { // put on heap 

    int newelem=hash->nextfree++; // next free element 

    if(hash->table[pos].next == -1) { // first heap element 

      // link new elem from table 

      hash->table[pos].next = newelem; 

   } else { // direct pointer to end of collision list 

      int newpos=hash->last[pos]; 

      hash->table[newpos].next = newelem; 

    } 

    hash->last[pos]=newelem; 

    hash->table[newelem].value = elem; // fill allocated element 

  } 

} 

Which function would  
you choose? 
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SECTION VI - HYBRID PROGRAMMING 
PRIMER 
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HYBRID PROGRAMMING PRIMER 

 No complete view, discussions not finished 
 Considered very important! 

 Modes: shared everything (threaded MPI) vs. 
shared something (SHM windows) 
 And everything in between! 

 How to deal with multicore and accelerators? 
 OpenMP, Cuda, UPC/CAF, OpenACC? 

 Very specific to actual environment, no general 
statements possible (no standardization) 

 MPI is generally compatibly, minor pitfalls 

Torsten Hoefler 

Section VI: Hybrid Programming 
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THREADS IN MPI-2.2 

 Four thread levels in MPI-2.2 

 Single – only one thread exists 

 Funneled – only master thread calls MPI 

 Serialized – no concurrent calls to MPI 

 Multiple – concurrent calls to MPI 

 But how do I call this function – oh well  

 To add more confusion: MPI processes may be 
OS threads! 

Torsten Hoefler 

Section VI: Hybrid Programming 
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THREADS IN MPI-3.X 

 Make threaded programming explicit 

 Not standardized yet, but imagine 

mpiexec –n 2 –t 2 ./binary 

 Launches two processes with two threads each 

 MPI managed, i.e., threads are MPI processes and 
have shared address space 

 Question: how does it interact with OpenMP 
and PGAS languages (open)? 

 

Torsten Hoefler 

Section VI: Hybrid Programming 
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MATCHED PROBE 

 MPI_Probe to receive messages of unknown 
size 

 MPI_Probe(…, status) 

 size = get_count(status)*size_of(datatype) 

 buffer = malloc(size) 

 MPI_Recv(buffer, …) 

 MPI_Probe peeks in matching queue 

 Does not change it → stateful object 

 

Torsten Hoefler 

Section VI: Hybrid Programming 
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MATCHED PROBE 

 Two threads, A and B perform probe, malloc, 
receive sequence 

 AP → AM → AR → BP → BM → BR  

 Possible ordering 

 AP → BP → BM → BR → AM → AR 

 Wrong matching!  

 Thread A’s message was “stolen” by B 

 Access to queue needs mutual exclusion  

 

Torsten Hoefler 

Section VI: Hybrid Programming 
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MPI_MPROBE TO THE RESCUE 

Torsten Hoefler 

• Avoid state in the library 

– Return handle, remove message from queue 
MPI_Message msg; MPI_Status status; 

/* Match a message */ 

MPI_Mprobe(MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD,  

                       &msg, &status); 

/* Allocate memory to receive the message */ 

int count; MPI_get_count(&status, MPI_BYTE, &count); 

char* buffer = malloc(count); 

/* Receive this message. */ 

MPI_Mrecv(buffer, count, MPI_BYTE, &msg, MPI_STATUS_IGNORE); 

Section VI: Hybrid Programming 
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SHARED MEMORY USE-CASES 

 Reduce memory footprint 
 E.g., share static lookup tables 

 Avoid re-computing (e.g., NWCHEM) 

 More structured programming than MPI+X 
 Share what needs to be shared! 

 Not everything open to races like OpenMP 

 Speedups (very tricky!) 
 Reduce communication (matching, copy) overheads 

 False sharing is an issue! 
   

Torsten Hoefler 

Section VI: Hybrid Programming 
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SHARED MEMORY WINDOWS 

 

 Allocates shared memory segment in win 
 Collective, fully RMA capable 

 All processes in comm must be in shared memory! 

 Returns pointer to start of own part 

 Two allocation modes: 
 Contiguous (default): process i’s memory starts where 

process i-1’s memory ends 

 Non Contiguous (info key alloc_shared_noncontig) 
possible ccNUMA optimizations 

Torsten Hoefler 

MPI_Win_allocate_shared(MPI_Aint size, MPI_Info info, 

MPI_Comm comm, void *baseptr, MPI_Win *win) 

Section VI: Hybrid Programming 
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SHARED MEMORY COMM CREATION 

 

 Returns disjoint comms based on split type 

 Collective 

 Types (only one so far): 

 MPI_COMM_TYPE_SHARED – split into largest 
subcommunicators with shared memory access 

 Key mandates process ordering  

 Cf. comm_split 

 

Torsten Hoefler 

MPI_Comm_split_type(MPI_Comm comm, int split_type, int 

key, MPI_Info info, MPI_Comm *newcomm) 

Section VI: Hybrid Programming 
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SHM WINDOWS ADDRESS QUERY 

 

 User can compute remote addresses in contig 
case but needs all sizes 

 Not possible in noncontig case! 

 Processes cannot communicate base address, may 
be different at different processes! 

 Base address query function! 

 MPI_PROC_NULL as rank returns lowest offset 

Torsten Hoefler 

MPI_Win_shared_query(MPI_Win win, int rank, MPI_Aint 

*size, void *baseptr) 

Section VI: Hybrid Programming 

Slide 160 of 162 



NEW COMMUNICATOR CREATION FUNCTIONS 

 Noncollective communicator creation 
 Allows to create communicators without involving all 

processes in the parent communicator 

 Very useful for some applications (dynamic sub-grouping) 
or fault tolerance (dead processes) 

 Nonblocking communicator duplication 
 MPI_Comm_idup(…, req) – like it sounds 

 Similar semantics to nonblocking collectives 

 Enables the implementation of nonblocking libraries  

Torsten Hoefler 

J. Dinan et al.: Noncollective Communicator Creation in MPI, EuroMPI’11 
T. Hoefler: Writing Parallel Libraries with MPI - Common Practice, Issues, and Extensions, Keynote, IMUDI’11 

Section VI: Hybrid Programming 
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