
ADVANCED MPI 2.2 AND 3.0 TUTORIAL

Torsten Hoefler
University of Illinois at Urbana-Champaign

and ETH Zürich

Hosted by: CSCS, Lugano, Switzerland

TUTORIAL OUTLINE

1. Introduction to Advanced MPI Usage

2. MPI Derived Datatypes

3. Nonblocking Collective Communication

4. Topology Mapping and Neighborhood
Collective Communication

5. One-Sided Communication

6. MPI and Hybrid Programming Primer

 MPI and Libraries (if time)

Torsten Hoefler Slide 2 of 162

USED TECHNIQUES

 Benjamin Franklin "Tell me, I forget, show me, I
remember, involve me, I understand.“

 Tell: I will explain the abstract concepts and
interfaces/APIs to use them

 Show: I will demonstrate one or two examples for
using the concepts

 Involve: You will transform a simple MPI code into
different semantically equivalent optimized ones

 Please interrupt me with any question at any point!

Torsten Hoefler Slide 3 of 162

SECTION I - INTRODUCTION

Torsten Hoefler Slide 4 of 162

INTRODUCTION
 Programming model Overview

 Different systems: UMA, ccNUMA, nccNUMA,
RDMA, DM

Torsten Hoefler

Section I: Introduction

Slide 5 of 162

INTRODUCTION

 Different programming models: UMA, PGAS,
DM

 The question is all about memory consistency

Torsten Hoefler

TBB, CILK, OpenMP, MPI-3 SM UPC, CAF, MPI-2 OS MPI-1, PVM

Section I: Introduction

Slide 6 of 162

PROGRAMMING MODELS

 Provide abstract machine models (contract)

 Shared mem

 PGAS

 Distributed mem

 All models can be mapped to any architecture,
more or less efficient (execution model)

 MPI is not a programming model

 And has never been one!

Torsten Hoefler

Section I: Introduction

Slide 7 of 162

MPI GOVERNING PRINCIPLES

 (Performance) Portability
 Declarative vs. imperative

 Abstraction

 Composability (Libraries)
 Isolation (no interference)

 Opaque object attributes

 Transparent Tool Support
 PMPI, MPI-T

 Inspect performance and correctness

Torsten Hoefler

Section I: Introduction

Slide 8 of 162

MAIN MPI CONCEPTS
 Communication Concepts:

 Point-to-point Communication

 Collective Communication

 One Sided Communication

 (Collective) I/O Operations

 Declarative Concepts:

 Groups and Communicators

 Derived Datatypes

 Process Topologies

 Process Management

 Malleability, ensemble applications

 Tool support

 Linking and runtime

Torsten Hoefler

Section I: Introduction

Slide 9 of 162

MPI HISTORY

 An open standard library interface for message passing,
ratified by the MPI Forum

 Versions: 1.0 (’94), 1.1 (’95), 1.2 (’97), 1.3 (’08)
 Basic Message Passing Concepts

 2.0 (’97), 2.1 (’08)
 Added One Sided and I/O concepts

 2.2 (’09)
 Merging and smaller fixes

 3.0 (probably ’12)
 Several additions to react to new challenges

Torsten Hoefler

Section I: Introduction

Slide 10 of 162

WHAT MPI IS NOT

 No explicit support for active messages
 Can be emulated at the library level

 Not a programming language
 But it’s close, semantics of library calls are clearly specified
 MPI-aware compilers under development

 It’s not magic
 Manual data decomposition (cf. libraries, e.g., ParMETIS)

 Some MPI mechanisms (Process Topologies, Neighbor Colls.)

 Manual load-balancing (see libraries, e.g., ADLB)

 It’s neither complicated nor bloated
 Six functions are sufficient for any program
 250+ additional functions that offer abstraction, performance

portability and convenience for experts

Torsten Hoefler

Section I: Introduction

Slide 11 of 162

WHAT IS THIS MPI FORUM?

 An open Forum to discuss MPI
 You can join! No membership fee, no perks either

 Since 2008 meetings every two months for three
days (switching to four months and four days)
 5x in the US, once in Europe (with EuroMPI)

 Votes by organization, eligible after attending two
of the three last meetings, often unanimously

 Everything is voted twice in two distinct meetings
 Tickets as well as chapters

Torsten Hoefler

Section I: Introduction

Slide 12 of 162

HOW DOES THE MPI-3.0 PROCESS WORK

 Organization and Mantras:
 Chapter chairs (convener) and (sub)committees
 Avoid the “Designed by a Committee” phenomenon
 standardize common practice

 99.5% backwards compatible

 Adding new things:
 Review and discuss early proposals in chapter
 Bring proposals to the forum (discussion)
 Plenary formal reading (usually word by word)
 Two votes on each ticket (distinct meetings)
 Final vote on each chapter (finalizing MPI-3.0)

Torsten Hoefler

Section I: Introduction

Slide 13 of 162

RECOMMENDED DEVELOPMENT WORKFLOW

1. Identify a scalable algorithm
 Analyze for memory and runtime

2. Is there a library that can help me?
 Computational libraries

 PPM, PBGL, PETSc, PMTL, ScaLAPACK

 Communication libraries
 AM++, LibNBC

 Programming Model Libraries
 ADLB, AP

 Utility Libraries
 HDF5, Boost.MPI

3. Plan for modularity
 Writing (parallel) libraries has numerous benefits

Torsten Hoefler

Section I: Introduction

Slide 14 of 162

THINGS TO KEEP IN MIND

 MPI is an open standardization effort

 Talk to us or join the forum

 There will be a public comment period

 The MPI standard

 Is free for everybody

 Is not intended for end-users (no replacement for
books and tutorials)

 Is the last instance in MPI questions

Torsten Hoefler

Section I: Introduction

Slide 15 of 162

PERFORMANCE MODELING

Nils Bohr: “Prediction is very difficult, especially
about the future.”

 Predictive models are never perfect

 They can help to drive action though
 Back of the envelope calculations are valuable!

 This tutorial gives a rough idea about
performance bounds of MPI functions.
 Actual performance will vary across

implementations and architectures

Torsten Hoefler

Section I: Introduction

Slide 16 of 162

 T. Hoefler et al.: Performance Modeling for Systematic Performance Tuning

SECTION II – DERIVED DATATYPES

Torsten Hoefler Slide 17 of 162

DERIVED DATATYPES

Abelson & Sussman: “Programs must be written for
people to read, and only incidentally for machines

to execute.”

 Derived Datatypes exist since MPI-1.0
 Some extensions in MPI-2.x and MPI-3.0

 Why do I talk about this really old feature?
 It is a very advanced and elegant declarative concept

 It enables many elegant optimizations (zero copy)

 It falsely has a bad reputation (which it earned in early
days)

Torsten Hoefler

Section II: Derived Datatypes

Slide 18 of 162

QUICK MPI DATATYPE INTRODUCTION

 Datatypes allow to (de)serialize arbitrary data
layouts into a message stream
 Networks provide serial channels

 Same for block devices and I/O

 Several constructors allow arbitrary layouts
 Recursive specification possible

 Declarative specification of data-layout
 “what” and not “how”, leaves optimization to

implementation (many unexplored possibilities!)

 Choosing the right constructors is not always simple

Torsten Hoefler

Section II: Derived Datatypes

Slide 19 of 162

DERIVED DATATYPE TERMINOLOGY

 Type Size

 Size of DDT signature (total occupied bytes)

 Important for matching (signatures must match)

 Lower Bound

 Where does the DDT start

 Allows to specify “holes” at the beginning

 Extent

 Complete size of the DDT

 Allows to interleave DDT, relatively “dangerous”

Torsten Hoefler

Section II: Derived Datatypes

Slide 20 of 162

DERIVED DATATYPE EXAMPLE

 Explain Lower Bound, Size, Extent

Torsten Hoefler

Section II: Derived Datatypes

Slide 21 of 162

WHAT IS ZERO COPY?

 Somewhat weak terminology

 MPI forces “remote” copy , assumed baseline

 But:

 MPI implementations copy internally

 E.g., networking stack (TCP), packing DDTs

 Zero-copy is possible (RDMA, I/O Vectors, SHMEM)

 MPI applications copy too often

 E.g., manual pack, unpack or data rearrangement

 DDT can do both!

Torsten Hoefler

Section II: Derived Datatypes

Slide 22 of 162

PURPOSE OF THIS SECTION

 Demonstrate utility of DDT in practice

 Early implementations were bad  folklore

 Some are still bad  chicken egg problem

 Show creative use of DDTs

 Encode local transpose for FFT

 Enable you to create more!

 Gather input on realistic benchmark cases

 Guide optimization of DDT implementations

 Torsten Hoefler

Section II: Derived Datatypes

Slide 23 of 162

A NEW WAY OF BENCHMARKING

Torsten Hoefler

Section II: Derived Datatypes

Schneider, Gerstenberger, Hoefler: Micro-Applications for Communication Data Access Patterns

Slide 24 of 162

MOTIVATION

Torsten Hoefler

Section II: Derived Datatypes

Schneider, Gerstenberger, Hoefler: Micro-Applications for Communication Data Access Patterns

Slide 25 of 162

2D JACOBI EXAMPLE

 Many 2d electrostatic problems can be
reduced to solving Poisson’s or Laplace’s
equation

 Solution by finite difference methods

 pnew(i,j) = (p(i-1,j)+p(i+1,j)+p(i,j-1)+p(i,j+1))/4

 natural 2d domain decomposition

 State of the Art:

 Compute, communicate

 Maybe overlap inner computation

Torsten Hoefler

Section II: Derived Datatypes

Slide 26 of 162

SIMPLIFIED SERIAL CODE

Torsten Hoefler

for(int iter=0; iter<niters; ++iter) {
 for(int i=1; i<n+1; ++i) {
 for(int j=1; j<n+1; ++j) {
 anew[ind(i,j)] = apply(stencil); // actual computation
 heat += anew[ind(i,j)]; // total heat in system
 }
 }
 for(int i=0; i<nsources; ++i) {
 anew[ind(sources[i][0],sources[i][1])] += energy; // heat source
 }
 tmp=anew; anew=aold; aold=tmp; // swap arrays
}

Section II: Derived Datatypes

Slide 27 of 162

SIMPLE 2D PARALLELIZATION

 Why 2D parallelization?
 Minimizes surface-to-volume ratio

 Specify decomposition on command line (px, py)

 Compute process neighbors manually

 Add halo zones (depth 1 in each direction)

 Same loop with changed iteration domain

 Pack halo, communicate, unpack halo

 Global reduction to determine total heat

Torsten Hoefler

Section II: Derived Datatypes

Slide 28 of 162

SOURCE CODE EXAMPLE

 Browse through code (stencil_mpi.cpp)

 Show how to run and debug (visualize) it

Torsten Hoefler

Section II: Derived Datatypes

Slide 29 of 162

DATATYPES FOR THE STENCIL

Torsten Hoefler

Section II: Derived Datatypes

Slide 30 of 162

MPI’S INTRINSIC DATATYPES

 Why intrinsic types?
 Heterogeneity, nice to send a Boolean from C to

Fortran
 Conversion rules are complex, not discussed here
 Length matches to language types
 Avoid sizeof(int) mess

 Users should generally use intrinsic types as basic
types for communication and type construction!
 MPI_BYTE should be avoided at all cost

 MPI-2.2 adds some missing C types
 E.g., unsigned long long

Torsten Hoefler

Section II: Derived Datatypes

Slide 31 of 162

MPI_TYPE_CONTIGUOUS

 Contiguous array of oldtype

 Should not be used as last type (can be
replaced by count)

Torsten Hoefler

MPI_Type_contiguous(int count, MPI_Datatype

oldtype, MPI_Datatype *newtype)

Section II: Derived Datatypes

Slide 32 of 162

MPI_TYPE_VECTOR

 Specify strided blocks of data of oldtype

 Very useful for Cartesian arrays

Torsten Hoefler

MPI_Type_vector(int count, int blocklength, int stride,

MPI_Datatype oldtype, MPI_Datatype *newtype)

Section II: Derived Datatypes

Slide 33 of 162

MPI_TYPE_CREATE_HVECTOR

 Create non-unit strided vectors

 Useful for composition, e.g., vector of structs

Torsten Hoefler

MPI_Type_create_hvector(int count, int blocklength, MPI_Aint

stride, MPI_Datatype oldtype, MPI_Datatype *newtype)

Section II: Derived Datatypes

Slide 34 of 162

MPI_TYPE_INDEXED

 Pulling irregular subsets of data from a single
array (cf. vector collectives)
 dynamic codes with index lists, expensive though!

 blen={1,1,2,1,2,1}

 displs={0,3,5,9,13,17}

Torsten Hoefler

MPI_Type_indexed(int count, int *array_of_blocklengths,

int *array_of_displacements, MPI_Datatype oldtype,

MPI_Datatype *newtype)

Section II: Derived Datatypes

Slide 35 of 162

MPI_TYPE_CREATE_HINDEXED

 Indexed with non-unit displacements, e.g.,
pulling types out of different arrays

Torsten Hoefler

MPI_Type_create_hindexed(int count, int *arr_of_blocklengths,

MPI_Aint *arr_of_displacements, MPI_Datatype oldtype,

MPI_Datatype *newtype)

Section II: Derived Datatypes

Slide 36 of 162

MPI_TYPE_CREATE_INDEXED_BLOCK

 Like Create_indexed but blocklength is the
same

 blen=2

 displs={0,5,9,13,18}

Torsten Hoefler

MPI_Type_create_indexed_block(int count, int blocklength,

int *array_of_displacements, MPI_Datatype oldtype,

MPI_Datatype *newtype)

Section II: Derived Datatypes

Slide 37 of 162

MPI_TYPE_CREATE_STRUCT

 Most general constructor (cf. Alltoallw), allows
different types and arbitrary arrays

Torsten Hoefler

MPI_Type_create_struct(int count, int array_of_blocklengths[],

MPI_Aint array_of_displacements[], MPI_Datatype

array_of_types[], MPI_Datatype *newtype)

Section II: Derived Datatypes

Slide 38 of 162

MPI_TYPE_CREATE_SUBARRAY

 Specify subarray of n-dimensional array (sizes)
by start (starts) and size (subsize)

Torsten Hoefler

MPI_Type_create_subarray(int ndims, int array_of_sizes[],

int array_of_subsizes[], int array_of_starts[], int order,

MPI_Datatype oldtype, MPI_Datatype *newtype)

Section II: Derived Datatypes

Slide 39 of 162

MPI_TYPE_CREATE_DARRAY

 Create distributed array, supports block, cyclic
and no distribution for each dimension

 Very useful for I/O

Torsten Hoefler

MPI_Type_create_darray(int size, int rank, int ndims,

int array_of_gsizes[], int array_of_distribs[], int

array_of_dargs[], int array_of_psizes[], int order,

MPI_Datatype oldtype, MPI_Datatype *newtype)

Section II: Derived Datatypes

Slide 40 of 162

MPI_BOTTOM AND MPI_GET_ADDRESS

 MPI_BOTTOM is the absolute zero address
 Portability (e.g., may be non-zero in globally

shared memory)

 MPI_Get_address
 Returns address relative to MPI_BOTTOM

 Portability (do not use “&” operator in C!)

 Very important to
 build struct datatypes

 If data spans multiple arrays

Torsten Hoefler

Section II: Derived Datatypes

Slide 41 of 162

RECAP: SIZE, EXTENT, AND BOUNDS

 MPI_Type_size returns size of datatype

 MPI_Type_get_extent returns lower bound
and extent

Torsten Hoefler

Section II: Derived Datatypes

Slide 42 of 162

COMMIT, FREE, AND DUP

 Types must be comitted before use
 Only the ones that are used!

 MPI_Type_commit may perform heavy optimizations
(and will hopefully)

 MPI_Type_free
 Free MPI resources of datatypes

 Does not affect types built from it

 MPI_Type_dup
 Duplicated a type

 Library abstraction (composability)

Torsten Hoefler

Section II: Derived Datatypes

Slide 43 of 162

OTHER DDT FUNCTIONS

 Pack/Unpack

 Mainly for compatibility to legacy libraries

 You should not be doing this yourself

 Get_envelope/contents

 Only for expert library developers

 Libraries like MPITypes1 make this easier

 MPI_Create_resized

 Change extent and size (dangerous but useful)

Torsten Hoefler

1: http://www.mcs.anl.gov/mpitypes/

Section II: Derived Datatypes

Slide 44 of 162

DATATYPE SELECTION TREE

 Simple and effective performance model:

 More parameters == slower

 contig < vector < index_block < index < struct

 Some (most) MPIs are inconsistent

 But this rule is portable

 Advice to users:

 Try datatype “compression” bottom-up

Torsten Hoefler

Section II: Derived Datatypes

W. Gropp et al.:Performance Expectations and Guidelines for MPI Derived Datatypes

Slide 45 of 162

DATATYPES AND COLLECTIVES
 Alltoall, Scatter, Gather and friends expect

data in rank order

 1st rank: offset 0

 2nd rank: offset <extent>

 ith rank: offset: i*<extent>

 Makes tricks necessary if types are
overlapping  use extent (create_resized)

Torsten Hoefler

Section II: Derived Datatypes

Slide 46 of 162

A COMPLEX EXAMPLE - FFT

Torsten Hoefler

Section II: Derived Datatypes

Hoefler, Gottlieb: Parallel Zero-Copy Algorithms for Fast Fourier Transform and Conjugate Gradient using MPI
Datatypes

Slide 47 of 162

A COMPLEX EXAMPLE - FFT

Torsten Hoefler

Section II: Derived Datatypes

Hoefler, Gottlieb: Parallel Zero-Copy Algorithms for Fast Fourier Transform and Conjugate Gradient using MPI
Datatypes

Slide 48 of 162

2D-FFT OPTIMIZATION POSSIBILITIES

1. Use DDT for pack/unpack (obvious)

 Eliminate 4 of 8 steps

 Introduce local transpose

2. Use DDT for local transpose

 After unpack

 Non-intuitive way of using DDTs

 Eliminate local transpose

Torsten Hoefler

Section II: Derived Datatypes

Hoefler, Gottlieb: Parallel Zero-Copy Algorithms for Fast Fourier Transform and Conjugate Gradient using MPI
Datatypes

Slide 49 of 162

THE SEND DATATYPE
1. Type_struct for complex numbers

2. Type_contiguous for blocks

3. Type_vector for stride
 Need to change extent to allow overlap (create_resized)

 Three hierarchy-layers

Torsten Hoefler

Section II: Derived Datatypes

Hoefler, Gottlieb: Parallel Zero-Copy Algorithms for Fast Fourier Transform and Conjugate Gradient using MPI
Datatypes

Slide 50 of 162

THE RECEIVE DATATYPE
 Type_struct (complex)

 Type_vector (no contiguous, local transpose)
 Needs to change extent (create_resized)

Torsten Hoefler

Section II: Derived Datatypes

Hoefler, Gottlieb: Parallel Zero-Copy Algorithms for Fast Fourier Transform and Conjugate Gradient using MPI
Datatypes

Slide 51 of 162

EXPERIMENTAL EVALUATION
 Odin @ IU

 128 compute nodes, 2x2 Opteron 1354 2.1 GHz

 SDR InfiniBand (OFED 1.3.1).

 Open MPI 1.4.1 (openib BTL), g++ 4.1.2

 Jaguar @ ORNL

 150152 compute nodes, 2.1 GHz Opteron

 Torus network (SeaStar).

 CNL 2.1, Cray Message Passing Toolkit 3

 All compiled with “-O3 –mtune=opteron”

Torsten Hoefler

Section II: Derived Datatypes

Hoefler, Gottlieb: Parallel Zero-Copy Algorithms for Fast Fourier Transform and Conjugate Gradient using MPI
Datatypes

Slide 52 of 162

STRONG SCALING - ODIN (80002)

 4 runs, report smallest time, <4% deviation

Torsten Hoefler

Reproducible
peak at P=192

Scaling stops
w/o datatypes

Section II: Derived Datatypes

Hoefler, Gottlieb: Parallel Zero-Copy Algorithms for Fast Fourier Transform and Conjugate Gradient using MPI
Datatypes

Slide 53 of 162

STRONG SCALING – JAGUAR (20K2)

Torsten Hoefler

Scaling stops
w/o datatypes

DDT increase
 scalability

Section II: Derived Datatypes

Hoefler, Gottlieb: Parallel Zero-Copy Algorithms for Fast Fourier Transform and Conjugate Gradient using MPI
Datatypes

Slide 54 of 162

DATATYPE CONCLUSIONS

 MPI Datatypes allow zero-copy
 Up to a factor of 3.8 or 18% speedup!

 Requires some implementation effort

 Declarative nature makes debugging hard
 Simple tricks like index numbers help!

 Some MPI DDT implementations are slow
 Some nearly surreal (IBM) 

 Complain to your vendor if performance is not consistent!

Torsten Hoefler

Section II: Derived Datatypes

Slide 55 of 162

SECTION III - NONBLOCKING AND
COLLECTIVE COMMUNICATION

Torsten Hoefler Slide 56 of 162

NONBLOCKING AND COLLECTIVE COMMUNICATION

 Nonblocking communication
 Deadlock avoidance
 Overlapping communication/computation

 Collective communication
 Collection of pre-defined optimized routines

 Nonblocking collective communication
 Combines both advantages
 System noise/imbalance resiliency
 Semantic advantages
 Examples

Torsten Hoefler

Section III: Nonblocking & Collectives

Slide 57 of 162

NONBLOCKING COMMUNICATION

 Semantics are simple:

 Function returns no matter what

 No progress guarantee!

 E.g., MPI_Isend(<send-args>, MPI_Request *req);

 Nonblocking tests:

 Test, Testany, Testall, Testsome

 Blocking wait:

 Wait, Waitany, Waitall, Waitsome

Torsten Hoefler

Section III: Nonblocking & Collectives

Slide 58 of 162

NONBLOCKING COMMUNICATION

 Blocking vs. nonblocking communication

 Mostly equivalent, nonblocking has constant
request management overhead

 Nonblocking may have other non-trivial overheads

 Request queue length

 Linear impact on
performance

 E.g., BG/P: 100ns/req

 Tune unexpected Q length!

Torsten Hoefler

Section III: Nonblocking & Collectives

Slide 59 of 162

NONBLOCKING COMMUNICATION

 An (important) implementation detail

 Eager vs. Rendezvous

 Most/All MPIs switch protocols

 Small messages are copied to internal remote buffers

 And then copied to user buffer

 Frees sender immediately (cf. bsend)

 Large messages wait until receiver is ready

 Blocks sender until receiver arrived

 Tune eager limits!

Torsten Hoefler

Section III: Nonblocking & Collectives

Slide 60 of 162

SOFTWARE PIPELINING - MOTIVATION

 Overlapping comp/comm

  pipelining

Torsten Hoefler

if(r == 0) {

 for(int i=0; i<size; ++i) {

 arr[i] = compute(arr, size);

 }

 MPI_Send(arr, size, MPI_DOUBLE, 1, 99, comm);

} else {

 MPI_Recv(arr, size, MPI_DOUBLE, 0, 99, comm, &stat);

}

Section III: Nonblocking & Collectives

Slide 61 of 162

SOFTWARE PIPELINING - MOTIVATION

 Overlapping comp/comm

  pipelining

Torsten Hoefler

if(r == 0) {

 MPI_Request req=MPI_REQUEST_NULL;

 for(int b=0; b<nblocks; ++b) {

 if(b) {

 if(req != MPI_REQUEST_NULL) MPI_Wait(&req, &stat);

 MPI_Isend(&arr[(b-1)*bs], bs, MPI_DOUBLE, 1, 99, comm, &req);

 }

 for(int i=b*bs; i<(b+1)*bs; ++i) arr[i] = compute(arr, size);

 }

 MPI_Send(&arr[(nblocks-1)*bs], bs, MPI_DOUBLE, 1, 99, comm);

} else {

 for(int b=0; b<nblocks; ++b)

 MPI_Recv(&arr[b*bs], bs, MPI_DOUBLE, 0, 99, comm, &stat);

}

Section III: Nonblocking & Collectives

Slide 62 of 162

A SIMPLE PIPELINE MODEL

 No pipeline:

 T = Tcomp(s) + Tcomm(s) + Tstartc(s)

 Pipeline:

 T = nblocks * [max(Tcomp(bs) , Tcomm(bs)) + Tstartc(bs)]

Torsten Hoefler

Section III: Nonblocking & Collectives

Slide 63 of 162

STENCIL EXAMPLE - OVERLAP

 Necessary code transformation – picture

 Steps:
 Start halo communication

 Compute inner zone

 Wait for halo communication

 Compute outer zone

 Swap arrays

Torsten Hoefler

Section III: Nonblocking & Collectives

wait

Slide 64 of 162

COLLECTIVE COMMUNICATION

 Three types:
 Synchronization (Barrier)

 Data Movement (Scatter, Gather, Alltoall, Allgather)

 Reductions (Reduce, Allreduce, (Ex)Scan, Red_scat)

 Common semantics:
 no tags (communicators can serve as such)

 Blocking semantics (return when complete)

 Not necessarily synchronizing (only barrier and all*)

 Overview of functions and performance models

Torsten Hoefler

Section III: Nonblocking & Collectives

Slide 65 of 162

COLLECTIVE COMMUNICATION

 Barrier –

 Often α+β log2P

 Scatter, Gather –

 Often αP+βPs

 Alltoall, Allgather -

 Often αP+βPs

 Torsten Hoefler

Section III: Nonblocking & Collectives

Slide 66 of 162

COLLECTIVE COMMUNICATION

 Reduce –

 Often αlog2P+βm+γm

 Allreduce –

 Often αlog2P+βm+γm

 (Ex)scan –

 Often αP+βm+γm

Torsten Hoefler

Section III: Nonblocking & Collectives

Slide 67 of 162

NONBLOCKING COLLECTIVE COMMUNICATION

 Nonblocking variants of all collectives
 MPI_Ibcast(<bcast args>, MPI_Request *req);

 Semantics:
 Function returns no matter what
 No guaranteed progress (quality of implementation)
 Usual completion calls (wait, test) + mixing
 Out-of order completion

 Restrictions:
 No tags, in-order matching
 Send and vector buffers may not be touched during operation
 MPI_Cancel not supported
 No matching with blocking collectives

Torsten Hoefler

Section III: Nonblocking & Collectives

Hoefler et al.: Implementation and Performance Analysis of Non-Blocking Collective Operations for MPI

Slide 68 of 162

NONBLOCKING COLLECTIVE COMMUNICATION

 Semantic advantages:

 Enable asynchronous progression (and manual)

 Software pipelinling

 Decouple data transfer and synchronization

 Noise resiliency!

 Allow overlapping communicators

 See also neighborhood collectives

 Multiple outstanding operations at any time

 Enables pipelining window

Torsten Hoefler

Section III: Nonblocking & Collectives

Hoefler et al.: Implementation and Performance Analysis of Non-Blocking Collective Operations for MPI

Slide 69 of 162

NONBLOCKING COLLECTIVES OVERLAP

 Software pipelining, similar to point-to-point

 More complex parameters

 Progression issues

 Not scale-invariant

Torsten Hoefler

Section III: Nonblocking & Collectives

Hoefler: Leveraging Non-blocking Collective Communication in High-performance Applications

Slide 70 of 162

NONBLOCKING COLLECTIVES OVERLAP

 Complex progression

 MPI’s global progress rule!

 Higher CPU overhead (offloading?)

 Differences in asymptotic behavior

 Collective time often

 Computation

 Performance modeling 

 One term often dominates and complicates overlap

Torsten Hoefler

Section III: Nonblocking & Collectives

Hoefler: Leveraging Non-blocking Collective Communication in High-performance Applications

Slide 71 of 162

SYSTEM NOISE – INTRODUCTION

 CPUs are time-shared

 Deamons, interrupts, etc. steal cycles

 No problem for single-core performance
 Maximum seen: 0.26%, average: 0.05% overhead

 “Resonance” at large scale (Petrini et al ’03)

 Numerous studies

 Theoretical (Agarwal’05, Tsafrir’05, Seelam’10)

 Injection (Beckman’06, Ferreira’08)

 Simulation (Sottile’04)

Torsten Hoefler

Section III: Nonblocking & Collectives

Hoefler et al.: Characterizing the Influence of System Noise on Large-Scale Applications by Simulation

Slide 72 of 162

MEASUREMENT RESULTS – CRAY XE

 Resolution: 32.9 ns, noise overhead: 0.02%

Torsten Hoefler

Section III: Nonblocking & Collectives

Hoefler et al.: Characterizing the Influence of System Noise on Large-Scale Applications by Simulation

Slide 73 of 162

A NOISY EXAMPLE – DISSEMINATION

 Process 4 is delayed
 Noise propagates “wildly” (of course deterministic)

Torsten Hoefler

Section III: Nonblocking & Collectives

Hoefler et al.: Characterizing the Influence of System Noise on Large-Scale Applications by Simulation

Slide 74 of 162

SINGLE BYTE DISSEMINATION ON JAGUAR

Torsten Hoefler

no impact!

some outliers

deterministic
slowdown

(noise bottleneck)

Section III: Nonblocking & Collectives

Hoefler et al.: Characterizing the Influence of System Noise on Large-Scale Applications by Simulation

Slide 75 of 162

NONBLOCKING COLLECTIVES VS. NOISE

Torsten Hoefler

Section III: Nonblocking & Collectives

No Noise, blocking

Noise, blocking

Noise, nonblocking

Hoefler et al.: Characterizing the Influence of System Noise on Large-Scale Applications by Simulation

Slide 76 of 162

 A NON-BLOCKING BARRIER?

 What can that be good for? Well, quite a bit!
 Semantics:
 MPI_Ibarrier() – calling process entered the barrier, no

synchronization happens
 Synchronization may happen asynchronously
 MPI_Test/Wait() – synchronization happens if

necessary

 Uses:
 Overlap barrier latency (small benefit)
 Use the split semantics! Processes notify non-

collectively but synchronize collectively!

Torsten Hoefler

Section III: Nonblocking & Collectives

Slide 77 of 162

A SEMANTICS EXAMPLE: DSDE

 Dynamic Sparse Data Exchange

 Dynamic: comm. pattern varies across iterations

 Sparse: number of neighbors is limited ()

 Data exchange: only senders know neighbors

Torsten Hoefler

Section III: Nonblocking & Collectives

T. Hoefler et al.:Scalable Communication Protocols for Dynamic Sparse Data Exchange

Slide 78 of 162

DYNAMIC SPARSE DATA EXCHANGE (DSDE)

 Main Problem: metadata
 Determine who wants to send how much data to me

(I must post receive and reserve memory)
OR:
 Use MPI semantics:
 Unknown sender

 MPI_ANY_SOURCE

 Unknown message size
 MPI_PROBE

 Reduces problem to counting
the number of neighbors
 Allow faster implementation!

Torsten Hoefler

Section III: Nonblocking & Collectives

T. Hoefler et al.:Scalable Communication Protocols for Dynamic Sparse Data Exchange

Slide 79 of 162

USING ALLTOALL (PEX)
 Bases on Personalized Exchange ()
 Processes exchange

metadata (sizes)
about neighborhoods
with all-to-all

 Processes post
receives afterwards

 Most intuitive but
least performance
andscalability!

Torsten Hoefler

Section III: Nonblocking & Collectives

T. Hoefler et al.:Scalable Communication Protocols for Dynamic Sparse Data Exchange

Slide 80 of 162

REDUCE_SCATTER (PCX)
 Bases on Personalized Census ()
 Processes exchange

metadata (counts) about
neighborhoods with
reduce_scatter

 Receivers checks with
wildcard MPI_IPROBE
and receives messages

 Better than PEX but
non-deterministic!

Torsten Hoefler

Section III: Nonblocking & Collectives

T. Hoefler et al.:Scalable Communication Protocols for Dynamic Sparse Data Exchange

Slide 81 of 162

MPI_IBARRIER (NBX)
 Complexity - census (barrier):
 Combines metadata with actual transmission
 Point-to-point

synchronization
 Continue receiving

until barrier completes
 Processes start coll.

synch. (barrier) when
p2p phase ended
 barrier = distributed

marker!

 Better than PEX,
PCX, RSX!

Torsten Hoefler

Section III: Nonblocking & Collectives

T. Hoefler et al.:Scalable Communication Protocols for Dynamic Sparse Data Exchange

Slide 82 of 162

PARALLEL BREADTH FIRST SEARCH
 On a clustered Erdős-Rényi graph, weak scaling
 6.75 million edges per node (filled 1 GiB)

 HW barrier support is significant at large scale!

Torsten Hoefler

BlueGene/P – with HW barrier! Myrinet 2000 with LibNBC

Section III: Nonblocking & Collectives

T. Hoefler et al.:Scalable Communication Protocols for Dynamic Sparse Data Exchange

Slide 83 of 162

A COMPLEX EXAMPLE: FFT

Torsten Hoefler

for(int x=0; x<n/p; ++x) 1d_fft(/* x-th stencil */);

// pack data for alltoall

MPI_Alltoall(&in, n/p*n/p, cplx_t, &out, n/p*n/p, cplx_t, comm);

// unpack data from alltoall and transpose

for(int y=0; y<n/p; ++y) 1d_fft(/* y-th stencil */);

// pack data for alltoall

MPI_Alltoall(&in, n/p*n/p, cplx_t, &out, n/p*n/p, cplx_t, comm);

// unpack data from alltoall and transpose

Section III: Nonblocking & Collectives

Hoefler: Leveraging Non-blocking Collective Communication in High-performance Applications

Slide 84 of 162

FFT SOFTWARE PIPELINING

Torsten Hoefler

NBC_Request req[nb];

for(int b=0; b<nb; ++b) { // loop over blocks

 for(int x=b*n/p/nb; x<(b+1)n/p/nb; ++x) 1d_fft(/* x-th stencil*/);

 // pack b-th block of data for alltoall

 NBC_Ialltoall(&in, n/p*n/p/bs, cplx_t, &out, n/p*n/p, cplx_t, comm, &req[b]);

}

NBC_Waitall(nb, req, MPI_STATUSES_IGNORE);

// modified unpack data from alltoall and transpose

for(int y=0; y<n/p; ++y) 1d_fft(/* y-th stencil */);

// pack data for alltoall

MPI_Alltoall(&in, n/p*n/p, cplx_t, &out, n/p*n/p, cplx_t, comm);

// unpack data from alltoall and transpose

Section III: Nonblocking & Collectives

Hoefler: Leveraging Non-blocking Collective Communication in High-performance Applications

Slide 85 of 162

A COMPLEX EXAMPLE: FFT

 Main parameter: nb vs. n  blocksize

 Strike balance between k-1st alltoall and kth
FFT stencil block

 Costs per iteration:

 Alltoall (bandwidth) costs: Ta2a ≈ n2/p/nb * β

 FFT costs: Tfft ≈ n/p/nb * T1DFFT(n)

 Adjust blocksize parameters to actual machine

 Either with model or simple sweep

Torsten Hoefler

Section III: Nonblocking & Collectives

Hoefler: Leveraging Non-blocking Collective Communication in High-performance Applications

Slide 86 of 162

NONBLOCKING AND COLLECTIVE SUMMARY

 Nonblocking comm does two things:

 Overlap and relax synchronization

 Collective does one thing

 Specialized pre-optimized routines

 Performance portability

 Hopefully transparent performance

 They can be composed

 E.g., software pipelining

Torsten Hoefler

Section III: Nonblocking & Collectives

Slide 87 of 162

SECTION IV - TOPOLOGY MAPPING AND
NEIGHBORHOOD COLLECTIVES

Torsten Hoefler Slide 88 of 162

TOPOLOGY MAPPING AND NEIGHBORHOOD
COLLECTIVES

 Topology mapping basics

 Allocation mapping vs. rank reordering

 Ad-hoc solutions vs. portability

 MPI topologies

 Cartesian

 Distributed graph

 Collectives on topologies – neighborhood colls

 Use-cases

Torsten Hoefler

Section IV: Topology

Slide 89 of 162

TOPOLOGY MAPPING BASICS

 First type: Allocation mapping
 Up-front specification of communication pattern

 Batch system picks good set of nodes for given
topology

 Properties:
 Not supported by current batch systems

 Either predefined allocation (BG/P), random
allocation, or “global bandwidth maximation”

 Also problematic to specify communication pattern
upfront, not always possible (or static)

Torsten Hoefler

Section IV: Topology

Slide 90 of 162

TOPOLOGY MAPPING BASICS

 Rank reordering
 Change numbering in a given allocation to reduce

congestion or dilation

 Sometimes automatic (early IBM SP machines)

 Properties
 Always possible, but effect may be limited (e.g., in a

bad allocation)

 Portable way: MPI process topologies
 Network topology is not exposed

 Manual data shuffling after remapping step

Torsten Hoefler

Section IV: Topology

Slide 91 of 162

ON-NODE REORDERING

Torsten Hoefler

Section IV: Topology

Naïve Mapping Optimized Mapping

Topomap

 Gottschling and Hoefler: Productive Parallel Linear Algebra Programming with Unstructured Topology
 Adaption

Slide 92 of 162

OFF-NODE (NETWORK) REORDERING

Torsten Hoefler

Section IV: Topology

Application Topology Network Topology

Naïve Mapping Optimal Mapping

Topomap

Slide 93 of 162

MPI TOPOLOGY INTRO

 Convenience functions (in MPI-1)
 Create a graph and query it, nothing else
 Useful especially for Cartesian topologies
 Query neighbors in n-dimensional space

 Graph topology: each rank specifies full graph 

 Scalable Graph topology (MPI-2.2)
 Graph topology: each rank specifies its neighbors or

arbitrary subset of the graph

 Neighborhood collectives (MPI-3.0)
 Adding communication functions defined on graph

topologies (neighborhood of distance one)

Torsten Hoefler

Section IV: Topology

Slide 94 of 162

MPI_CART_CREATE

 Specify ndims-dimensional topology
 Optionally periodic in each dimension (Torus)

 Some processes may return MPI_COMM_NULL
 Product sum of dims must be <= P

 Reorder argument allows for topology mapping
 Each calling process may have a new rank in the created

communicator

 Data has to be remapped manually

Torsten Hoefler

MPI_Cart_create(MPI_Comm comm_old, int ndims, const int

*dims, const int *periods, int reorder, MPI_Comm *comm_cart)

Section IV: Topology

Slide 95 of 162

MPI_CART_CREATE EXAMPLE

 Creates logical 3-d Torus of size 5x5x5

 But we’re starting MPI processes with a one-
dimensional argument (-p X)

 User has to determine size of each dimension

 Often as “square” as possible, MPI can help!

Torsten Hoefler

int dims[3] = {5,5,5};

int periods[3] = {1,1,1};

MPI_Comm topocomm;

MPI_Cart_create(comm, 3, dims, periods, 0, &topocomm);

Section IV: Topology

Slide 96 of 162

MPI_DIMS_CREATE

 Create dims array for Cart_create with nnodes
and ndims

 Dimensions are as close as possible (well, in
theory)

 Non-zero entries in dims will not be changed

 nnodes must be multiple of all non-zeroes

Torsten Hoefler

MPI_Dims_create(int nnodes, int ndims, int *dims)

Section IV: Topology

Slide 97 of 162

MPI_DIMS_CREATE EXAMPLE

 Makes life a little bit easier

 Some problems may be better with a non-square
layout though

Torsten Hoefler

int p;

MPI_Comm_size(MPI_COMM_WORLD, &p);

MPI_Dims_create(p, 3, dims);

int periods[3] = {1,1,1};

MPI_Comm topocomm;

MPI_Cart_create(comm, 3, dims, periods, 0, &topocomm);

Section IV: Topology

Slide 98 of 162

CARTESIAN QUERY FUNCTIONS

 Library support and convenience!

 MPI_Cartdim_get()
 Gets dimensions of a Cartesian communicator

 MPI_Cart_get()
 Gets size of dimensions

 MPI_Cart_rank()
 Translate coordinates to rank

 MPI_Cart_coords()
 Translate rank to coordinates

Torsten Hoefler

Section IV: Topology

Slide 99 of 162

CARTESIAN COMMUNICATION HELPERS

 Shift in one dimension
 Dimensions are numbered from 0 to ndims-1

 Displacement indicates neighbor distance (-1, 1, …)

 May return MPI_PROC_NULL

 Very convenient, all you need for nearest
neighbor communication
 No “over the edge” though

Torsten Hoefler

MPI_Cart_shift(MPI_Comm comm, int direction, int disp,

int *rank_source, int *rank_dest)

Section IV: Topology

Slide 100 of 162

MPI_GRAPH_CREATE

 Don’t use!!!!!

 nnodes is the total number of nodes

 index i stores the total number of neighbors
for the first i nodes (sum)
 Acts as offset into edges array

 edges stores the edge list for all processes
 Edge list for process j starts at index[j] in edges

 Process j has index[j+1]-index[j] edges

Torsten Hoefler

MPI_Graph_create(MPI_Comm comm_old, int nnodes, const

int *index, const int *edges, int reorder, MPI_Comm

*comm_graph)

Section IV: Topology

Slide 101 of 162

MPI_GRAPH_CREATE

 Don’t use!!!!!

 nnodes is the total number of nodes

 index i stores the total number of neighbors
for the first i nodes (sum)
 Acts as offset into edges array

 edges stores the edge list for all processes
 Edge list for process j starts at index[j] in edges

 Process j has index[j+1]-index[j] edges

Torsten Hoefler

MPI_Graph_create(MPI_Comm comm_old, int nnodes, const

int *index, const int *edges, int reorder, MPI_Comm

*comm_graph)

Section IV: Topology

Slide 102 of 162

DISTRIBUTED GRAPH CONSTRUCTOR

 MPI_Graph_create is discouraged
 Not scalable
 Not deprecated yet but hopefully soon

 New distributed interface:
 Scalable, allows distributed graph specification
 Either local neighbors or any edge in the graph

 Specify edge weights
 Meaning undefined but optimization opportunity for

vendors!

 Info arguments
 Communicate assertions of semantics to the MPI library
 E.g., semantics of edge weights

Torsten Hoefler

Section IV: Topology

Hoefler et al.: The Scalable Process Topology Interface of MPI 2.2

Slide 103 of 162

MPI_DIST_GRAPH_CREATE_ADJACENT

 indegree, sources, ~weights – source proc. Spec.

 outdegree, destinations, ~weights – dest. proc. spec.

 info, reorder, comm_dist_graph – as usual

 directed graph

 Each edge is specified twice, once as out-edge (at the
source) and once as in-edge (at the dest)

Torsten Hoefler

MPI_Dist_graph_create_adjacent(MPI_Comm comm_old, int

indegree, const int sources[], const int sourceweights[], int

outdegree, const int destinations[], const int destweights[],

MPI_Info info,int reorder, MPI_Comm *comm_dist_graph)

Section IV: Topology

Hoefler et al.: The Scalable Process Topology Interface of MPI 2.2

Slide 104 of 162

MPI_DIST_GRAPH_CREATE_ADJACENT

 Process 0:
 Indegree: 0
 Outdegree: 1
 Dests: {3,1}

 Process 1:
 Indegree: 3
 Outdegree: 2
 Sources: {4,0,2}
 Dests: {3,4}

 …

Torsten Hoefler

Section IV: Topology

Hoefler et al.: The Scalable Process Topology Interface of MPI 2.2

Slide 105 of 162

MPI_DIST_GRAPH_CREATE

 n – number of source nodes
 sources – n source nodes
 degrees – number of edges for each source
 destinations, weights – dest. processor specification
 info, reorder – as usual
 More flexible and convenient
 Requires global communication
 Slightly more expensive than adjacent specification

Torsten Hoefler

MPI_Dist_graph_create(MPI_Comm comm_old, int n, const int

sources[], const int degrees[], const int destinations[], const

int weights[], MPI_Info info, int reorder, MPI_Comm

*comm_dist_graph)

Section IV: Topology

Hoefler et al.: The Scalable Process Topology Interface of MPI 2.2

Slide 106 of 162

MPI_DIST_GRAPH_CREATE

 Process 0:
 N: 2
 Sources: {0,1}
 Degrees: {2,1}
 Dests: {3,1,4}

 Process 1:
 N: 2
 Sources: {2,3}
 Degrees: {1,1}
 Dests: {1,2}

 …

Torsten Hoefler

Section IV: Topology

Hoefler et al.: The Scalable Process Topology Interface of MPI 2.2

Slide 107 of 162

DISTRIBUTED GRAPH NEIGHBOR QUERIES

 MPI_Dist_graph_neighbors_count()

 Query the number of neighbors of calling process

 Returns indegree and outdegree!

 Also info if weighted

 MPI_Dist_graph_neighbors()

 Query the neighbor list of calling process

 Optionally return weights

Torsten Hoefler

MPI_Dist_graph_neighbors_count(MPI_Comm comm, int

*indegree,int *outdegree, int *weighted)

MPI_Dist_graph_neighbors(MPI_Comm comm, int

maxindegree, int sources[], int sourceweights[], int

maxoutdegree, int destinations[],int destweights[])

Section IV: Topology

Hoefler et al.: The Scalable Process Topology Interface of MPI 2.2

Slide 108 of 162

FURTHER GRAPH QUERIES

 Status is either:

 MPI_GRAPH (ugs)

 MPI_CART

 MPI_DIST_GRAPH

 MPI_UNDEFINED (no topology)

 Enables to write libraries on top of MPI
topologies!

Torsten Hoefler

MPI_Topo_test(MPI_Comm comm, int *status)

Section IV: Topology

Slide 109 of 162

NEIGHBORHOOD COLLECTIVES

 Topologies implement no communication!
 Just helper functions

 Collective communications only cover some
patterns
 E.g., no stencil pattern

 Several requests for “build your own collective”
functionality in MPI
 Neighborhood collectives are a simplified version

 Cf. Datatypes for communication patterns!

Torsten Hoefler

Section IV: Topology

Slide 110 of 162

CARTESIAN NEIGHBORHOOD COLLECTIVES

 Communicate with direct neighbors in Cartesian
topology

 Corresponds to cart_shift with disp=1

 Collective (all processes in comm must call it,
including processes without neighbors)

 Buffers are laid out as neighbor sequence:

 Defined by order of dimensions, first negative, then positive

 2*ndims sources and destinations

 Processes at borders (MPI_PROC_NULL) leave holes in
buffers (will not be updated or communicated)!

Torsten Hoefler

Section IV: Topology

T. Hoefler and J. L. Traeff: Sparse Collective Operations for MPI

Slide 111 of 162

CARTESIAN NEIGHBORHOOD COLLECTIVES

 Buffer ordering example:

Torsten Hoefler

Section IV: Topology

T. Hoefler and J. L. Traeff: Sparse Collective Operations for MPI

Slide 112 of 162

GRAPH NEIGHBORHOOD COLLECTIVES

 Collective Communication along arbitrary
neighborhoods

 Order is determined by order of neighbors as
returned by (dist_)graph_neighbors.

 Distributed graph is directed, may have different
numbers of send/recv neighbors

 Can express dense collective operations 

 Any persistent communication pattern!

Torsten Hoefler

Section IV: Topology

T. Hoefler and J. L. Traeff: Sparse Collective Operations for MPI

Slide 113 of 162

MPI_NEIGHBOR_ALLGATHER

 Sends the same message to all neighbors

 Receives indegree distinct messages

 Similar to MPI_Gather

 The all prefix expresses that each process is a
“root” of his neighborhood

 Vector and w versions for full flexibility

Torsten Hoefler

MPI_Neighbor_allgather(const void* sendbuf, int sendcount,

MPI_Datatype sendtype, void* recvbuf, int recvcount,

MPI_Datatype recvtype, MPI_Comm comm)

Section IV: Topology

Slide 114 of 162

MPI_NEIGHBOR_ALLTOALL

 Sends outdegree distinct messages

 Received indegree distinct messages

 Similar to MPI_Alltoall

 Neighborhood specifies full communication
relationship

 Vector and w versions for full flexibility

Torsten Hoefler

MPI_Neighbor_alltoall(const void* sendbuf, int sendcount,

MPI_Datatype sendtype, void* recvbuf, int recvcount,

MPI_Datatype recvtype, MPI_Comm comm)

Section IV: Topology

Slide 115 of 162

NONBLOCKING NEIGHBORHOOD COLLECTIVES

 Very similar to nonblocking collectives

 Collective invocation

 Matching in-order (no tags)

 No wild tricks with neighborhoods! In order
matching per communicator!

Torsten Hoefler

MPI_Ineighbor_allgather(…, MPI_Request *req);

MPI_Ineighbor_alltoall(…, MPI_Request *req);

Section IV: Topology

Slide 116 of 162

WHY IS NEIGHBORHOOD REDUCE MISSING?

 Was originally proposed (see original paper)

 High optimization opportunities

 Interesting tradeoffs!

 Research topic

 Not standardized due to missing use-cases

 My team is working on an implementation

 Offering the obvious interface

Torsten Hoefler

MPI_Ineighbor_allreducev(…);

Section IV: Topology

T. Hoefler and J. L. Traeff: Sparse Collective Operations for MPI

Slide 117 of 162

STENCIL EXAMPLE

 Two options: use DDTs or not

 Without DDTs:

 Change packing loops to pack into one buffer

 Use alltoallv along Cartesian topology

 Using DDTs:

 Use alltoallw with correct offsets and types

 Even more power to MPI

 Complex DDT optimizations possible

Torsten Hoefler

Section IV: Topology

Slide 118 of 162

TOPOLOGY SUMMARY

 Topology functions allow to specify application
communication patterns/topology
 Convenience functions (e.g., Cartesian)

 Storing neighborhood relations (Graph)

 Enables topology mapping (reorder=1)
 Not widely implemented yet

 May requires manual data re-distribution (according
to new rank order)

 MPI does not expose information about the
network topology (would be very complex)

Torsten Hoefler

Section IV: Topology

Slide 119 of 162

NEIGHBORHOOD COLLECTIVES SUMMARY

 Neighborhood collectives add communication
functions to process topologies
 Collective optimization potential!

 Allgather
 One item to all neighbors

 Alltoall
 Personalized item to each neighbor

 High optimization potential (similar to collective
operations)
 Interface encourages use of topology mapping!

Torsten Hoefler

Section IV: Topology

Slide 120 of 162

SECTION SUMMARY

 Process topologies enable:
 High-abstraction to specify communication

pattern

 Has to be relatively static (temporal locality)
 Creation is expensive (collective)

 Offers basic communication functions

 Library can optimize:
 Communication schedule for neighborhood colls

 Topology mapping

Torsten Hoefler

Section IV: Topology

Slide 121 of 162

SECTION V - ONE SIDED
COMMUNICATION

Torsten Hoefler Slide 122 of 162

ONE SIDED COMMUNICATION

 Terminology

 Memory exposure

 Communication

 Accumulation
 Ordering, atomics

 Synchronization

 Shared memory windows

 Memory models & semantics 

Torsten Hoefler

Section V: One Sided Communication

Slide 123 of 162

ONE SIDED COMMUNICATION – THE SHOCK

 It’s weird, really!
 It grew – MPI-3.0 is backwards compatible!

 Think PGAS (with a library interface)
 Remote memory access (put, get, accumulates)

 Forget locks 
 Win_lock_all is not a lock, opens an epoch

 Think TM
 That’s really what “lock” means (lock/unlock is like an

atomic region, does not necessarily “lock” anything)

 Decouple transfers from synchronization
 Separate transfer and synch functions

Torsten Hoefler

Section V: One Sided Communication

Slide 124 of 162

ONE SIDED COMMUNICATION – TERMS
 Origin process: Process with the source buffer, initiates the

operation

 Target process: Process with the destination buffer, does not
explicitly call communication functions

 Epoch: Virtual time where operations are in flight. Data is
consistent after new epoch is started.

 Access epoch: rank acts as origin for RMA calls

 Exposure epoch: rank acts as target for RMA calls

 Ordering: only for accumulate operations: order of messages
between two processes (default: in order, can be relaxed)

 Assert: assertions about how One Sided functions are used, “fast”
optimization hints, cf. Info objects (slower)

Torsten Hoefler

Section V: One Sided Communication

Slide 125 of 162

ONE SIDED OVERVIEW

 Creation
 Expose memory collectively - Win_create
 Allocate exposed memory – Win_allocate
 Dynamic memory exposure – Win_create_dynamic

 Communication
 Data movement (put, get, rput, rget)
 Accumulate (acc, racc, get_acc, rget_acc, fetch&op, cas)

 Synchronization
 Active - Collective (fence); Group (PSCW)
 Passive - P2P (lock/unlock); One epoch (lock _all)

Torsten Hoefler

Section V: One Sided Communication

Slide 126 of 162

MEMORY EXPOSURE

 Exposes consecutive memory (base, size)
 Collective call
 Info args:
 no_locks – user asserts to not lock win

 accumulate_ordering – comma-separated rar, war, raw, waw

 accumulate_ops – same_op or same_op_no_op (default) –
assert used ops for related accumulates

Torsten Hoefler

MPI_Win_create(void *base, MPI_Aint size, int disp_unit,

MPI_Info info, MPI_Comm comm, MPI_Win *win)

MPI_Win_free(MPI_Win *win)

Section V: One Sided Communication

Slide 127 of 162

MEMORY EXPOSURE

 Similar to win_create but allocates memory
 Should be used whenever possible!

 May consume significantly less resources

 Similar info arguments plus
 same_size – if true, user asserts that size is

identical on all calling processes

 Win_free will deallocate memory!
 Be careful 

Torsten Hoefler

MPI_Win_allocate(MPI_Aint size, int disp_unit, MPI_Info info,

MPI_Comm comm, void *baseptr, MPI_Win *win)

Section V: One Sided Communication

Slide 128 of 162

MEMORY EXPOSURE

 Coll. memory exposure may be cumbersome
 Especially for irregular applications

 Win_create_dynamic creates a window with no
memory attached

 Register non-overlapping regions locally

 Addresses are communicated for remote access!
 MPI_Aint will be big enough on heterogeneous systems

Torsten Hoefler

MPI_Win_create_dynamic(MPI_Info info, MPI_Comm comm,

MPI_Win *win)

MPI_Win_attach(MPI_Win win, void *base, MPI_Aint size)

MPI_Win_detach(MPI_Win win, const void *base)

Section V: One Sided Communication

Slide 129 of 162

ONE SIDED COMMUNICATION

 Two similar communication functions:
 Put, Get

 Nonblocking, bulk completion at end of epoch

 Conflicting accesses are not erroneous
 But outcome is undefined!

 One exception: polling on a single byte in the unified
model (for fast synchronization)

Torsten Hoefler

MPI_Put(const void *origin_addr, int origin_count,

MPI_Datatype origin_datatype, int target_rank, MPI_Aint

target_disp, int target_count, MPI_Datatype target_datatype,

MPI_Win win)

Section V: One Sided Communication

Slide 130 of 162

ONE SIDED COMMUNICATION

 MPI_Rput, MPI_Rget for request-based
completion
 Also non-blocking but return request

 Expensive for each operation (vs. bulk completion)

 Only for local buffer consistency
 Get means complete!

 Put means buffer can be re-used, nothing known
about remote completion

Torsten Hoefler

MPI_Rput(…, MPI_Request *request)

Section V: One Sided Communication

Slide 131 of 162

ONE SIDED ACCUMULATION

 Remote accumulations (only predefined ops)
 Replace value in target buffer with accumulated
 MPI_REPLACE to emulate MPI_Put

 Allows for non-recursive derived datatypes
 No overlapping entries at target (datatype)

 Conflicting accesses are allowed!
 Ordering rules apply

Torsten Hoefler

MPI_Accumulate(const void *origin_addr, int origin_count,

MPI_Datatype origin_datatype, int target_rank, MPI_Aint

target_disp, int target_count, MPI_Datatype target_datatype,

MPI_Op op, MPI_Win win)

Section V: One Sided Communication

Slide 132 of 162

ONE SIDED ACCUMULATION

 MPI’s generalized fetch and add
 12 arguments 
 MPI_REPLACE allows for fetch & set
 New op: MPI_NO_OP to emulate get

 Accumulates origin into the target , returns
content before accumulation in result
 Atomically of course

Torsten Hoefler

MPI_Get_accumulate(const void *origin_addr, int origin_count,

MPI_Datatype origin_datatype, void *result_addr, int

result_count, MPI_Datatype result_datatype, int target_rank,

MPI_Aint target_disp, int target_count, MPI_Datatype

target_datatype, MPI_Op op, MPI_Win win)

Section V: One Sided Communication

Slide 133 of 162

ONE SIDED ACCUMULATION

 Get_accumulate may be very slow (needs to
cover many cases, e.g., large arrays etc.)
 Common use-case is single element fetch&op

 Fetch_and_op offers relevant subset of Get_acc

 Very similar to Get_accumulate
 Same semantics, just more limited interface

 No request-based version

Torsten Hoefler

MPI_Fetch_and_op(const void *origin_addr, void *result_addr,

MPI_Datatype datatype, int target_rank, MPI_Aint target_disp,

MPI_Op op, MPI_Win win)

Section V: One Sided Communication

Slide 134 of 162

ONE SIDED ACCUMULATION

 CAS for MPI (no CAS2 but can be emulated)

 Single element, binary compare (!)

 Compares compare buffer with target and
replaces value at target with origin if
compare and target are identical. Original
target value is returned in result.

Torsten Hoefler

MPI_Compare_and_swap(const void *origin_addr, const void

*compare_addr, void *result_addr, MPI_Datatype datatype, int

target_rank, MPI_Aint target_disp, MPI_Win win)

Section V: One Sided Communication

Slide 135 of 162

ACCUMULATION SEMANTICS

 Accumulates allow concurrent access!
 Put/Get does not! They’re not atomic

 Emulating atomic put/get
 Put = MPI_Accumulate(…, op=MPI_REPLACE, …)

 Get = MPI_Get_accumulate(…, op=MPI_NO_OP, …)

 Will be slow (thus we left it ugly!)

 Ordering modes
 Default ordering allows “no surprises” (cf. UPC)

 Can (should) be relaxed with info (accumulate_ordering
= raw, waw, rar, war) during window creation

Torsten Hoefler

Section V: One Sided Communication

Slide 136 of 162

SYNCHRONIZATION MODES

 Active target mode

 Target ranks are calling MPI

 Either BSP-like collective: MPI_Win_fence

 Or group-wise (cf. neighborhood collectives): PSCW

 Passive target mode

 Lock/unlock: no traditional lock, more like TM
(without rollback)

 Lockall: locking all processes isn’t really a lock 

Torsten Hoefler

Section V: One Sided Communication

Slide 137 of 162

MPI_WIN_FENCE SYNCHRONIZATION

 Collectively synchronizes all RMA calls on win

 All RMA calls started before fence will complete
 Ends/starts access and/or exposure epochs

 Does not guarantee barrier semantics (but often
synchronizes)

 Assert allows optimizations, is usually 0
 MPI_MODE_NOPRECEDE if no communication

(neither as origin or destination) is outstanding on win

Torsten Hoefler

MPI_Win_fence(int assert, MPI_Win win)

Section V: One Sided Communication

Slide 138 of 162

PSCW SYNCHRONIZATION

 Specification of access/exposure epochs separately:

 Post: start exposure epoch to group, nonblocking

 Start: start access epoch to group, may wait for post

 Complete: finish prev. access epoch, origin completion
only (not target)

 Wait: will wait for complete, completes at (active) target

 As asynchronous as possible

Torsten Hoefler

MPI_Win_post(MPI_Group group, int assert, MPI_Win win)

MPI_Win_start(MPI_Group group, int assert, MPI_Win win)

MPI_Win_complete(MPI_Win win)

MPI_Win_wait(MPI_Win win)

Section V: One Sided Communication

Slide 139 of 162

LOCK/UNLOCK SYNCHRONIZATION

 Initiates RMA access epoch to rank
 No concept of exposure epoch

 Unlock closes access epoch
 Operations have completed at origin and target

 Type:
 Exclusive: no other process may hold lock to rank
 More like a real lock, e.g., for local accesses

 Shared: other processes may hold lock

Torsten Hoefler

MPI_Win_lock(int lock_type, int rank, int assert, MPI_Win win)

MPI_Win_unlock(int rank, MPI_Win win)

Section V: One Sided Communication

Slide 140 of 162

LOCK_ALL SYNCHRONIZATION

 Starts a shared access epoch from origin to all
ranks!

 Not collective!

 Does not really lock anything

 Opens a different mode of use, see following
slides!

Torsten Hoefler

MPI_Win_lock_all(int assert, MPI_Win win)

MPI_Win_unlock_all(MPI_Win win)

Section V: One Sided Communication

Slide 141 of 162

SYNCHRONIZATION PRIMITIVES (PASSIVE)

 Flush/Flush_all

 Completes all outstanding operations at the
target rank (or all) at origin and target
 Only in passive target mode

 Completes all outstanding operations at the
target rank (or all) at origin (buffer reuse)
 Only in passive target mode

Torsten Hoefler

MPI_Win_flush(int rank, MPI_Win win)

MPI_Win_flush_all(MPI_Win win)

MPI_Win_flush_local(int rank, MPI_Win win)

MPI_Win_flush_local_all(MPI_Win win)

Section V: One Sided Communication

Slide 142 of 162

SYNCHRONIZATION PRIMITIVES (PASSIVE)

 Synchronizes private and public window
copies

 Same as closing and opening access and exposure
epochs on the window

 Does not complete any operations though!

 Cf. memory barrier

Torsten Hoefler

MPI_Win_sync(MPI_Win win)

Section V: One Sided Communication

Slide 143 of 162

MEMORY MODELS

 MPI offers two memory models:

 Unified: public and private window are identical

 Separate: public and private window are separate

 Type is attached as attribute to window

 MPI_WIN_MODEL

Torsten Hoefler

Section V: One Sided Communication

MPI_UNIFIED MPI_SEPARATE

Slide 144 of 162

SEPARATE SEMANTICS

 Very complex, rules-of-thumb at target:

 OVL – overlapping

 NOVL - non-overlapping

 X - undefined

Torsten Hoefler

Load Store Get Put Acc

Load OVL+NOVL OVL+NOVL OVL+NOVL NOVL NOVL

Store OVL+NOVL OVL+NOVL NOVL X X

Get OVL+NOVL NOVL OVL+NOVL NOVL NOVL

Put NOVL X NOVL NOVL NOVL

Acc NOVL X NOVL NOVL OVL+NOVL

Credits: RMA Working Group, MPI Forum

Section V: One Sided Communication

Slide 145 of 162

UNIFIED SEMANTICS

 Very complex, rules-of-thumb at target:

 OVL – Overlapping operations
 NOVL – Nonoverlapping operations
 BOVL – Overlapping operations at a byte granularity
 X – undefined

Torsten Hoefler

Load Store Get Put Acc

Load OVL+NOVL OVL+NOVL OVL+NOVL NOVL+BOVL NOVL+BOVL

Store OVL+NOVL OVL+NOVL NOVL NOVL NOVL

Get OVL+NOVL NOVL OVL+NOVL NOVL NOVL

Put NOVL+BOVL NOVL NOVL NOVL NOVL

Acc NOVL+BOVL NOVL NOVL NOVL OVL+NOVL

Credits: RMA Working Group, MPI Forum

Section V: One Sided Communication

Slide 146 of 162

DISTRIBUTED HASHTABLE EXAMPLE

 Use first two bytes as hash

 Trivial hash function (216 values)

 Static 216 table size

 One direct value

 Conflicts as linked list

 Static heap

 Linked list indexes into heap

 Offset as pointer

Torsten Hoefler

Section V: One Sided Communication

Slide 147 of 162

DISTRIBUTED HASHTABLE EXAMPLE

 Source Code

Torsten Hoefler

Section V: One Sided Communication

int insert(t_hash *hash, int elem) {

 int pos = hashfunc(elem);

 if(hash->table[pos].value == -1) { // direct value in table

 hash->table[pos].value = elem;

 } else { // put on heap

 int newelem=hash->nextfree++; // next free element

 if(hash->table[pos].next == -1) { // first heap element

 // link new elem from table

 hash->table[pos].next = newelem;

 } else { // direct pointer to end of collision list

 int newpos=hash->last[pos];

 hash->table[newpos].next = newelem;

 }

 hash->last[pos]=newelem;

 hash->table[newelem].value = elem; // fill allocated element

 }

}

Slide 148 of 162

DHT EXAMPLE – IN MPI-3.0

Torsten Hoefler

Section V: One Sided Communication

int insert(t_hash *hash, int elem) {

 int pos = hashfunc(elem);

 if(hash->table[pos].value == -1) { // direct value in table

 hash->table[pos].value = elem;

 } else { // put on heap

 int newelem=hash->nextfree++; // next free element

 if(hash->table[pos].next == -1) { // first heap element

 // link new elem from table

 hash->table[pos].next = newelem;

 } else { // direct pointer to end of collision list

 int newpos=hash->last[pos];

 hash->table[newpos].next = newelem;

 }

 hash->last[pos]=newelem;

 hash->table[newelem].value = elem; // fill allocated element

 }

}

Which function would
you choose?

Slide 149 of 162

SECTION VI - HYBRID PROGRAMMING
PRIMER

Torsten Hoefler Slide 150 of 162

HYBRID PROGRAMMING PRIMER

 No complete view, discussions not finished
 Considered very important!

 Modes: shared everything (threaded MPI) vs.
shared something (SHM windows)
 And everything in between!

 How to deal with multicore and accelerators?
 OpenMP, Cuda, UPC/CAF, OpenACC?

 Very specific to actual environment, no general
statements possible (no standardization)

 MPI is generally compatibly, minor pitfalls

Torsten Hoefler

Section VI: Hybrid Programming

Slide 151 of 162

THREADS IN MPI-2.2

 Four thread levels in MPI-2.2

 Single – only one thread exists

 Funneled – only master thread calls MPI

 Serialized – no concurrent calls to MPI

 Multiple – concurrent calls to MPI

 But how do I call this function – oh well 

 To add more confusion: MPI processes may be
OS threads!

Torsten Hoefler

Section VI: Hybrid Programming

Slide 152 of 162

THREADS IN MPI-3.X

 Make threaded programming explicit

 Not standardized yet, but imagine

mpiexec –n 2 –t 2 ./binary

 Launches two processes with two threads each

 MPI managed, i.e., threads are MPI processes and
have shared address space

 Question: how does it interact with OpenMP
and PGAS languages (open)?

Torsten Hoefler

Section VI: Hybrid Programming

Slide 153 of 162

MATCHED PROBE

 MPI_Probe to receive messages of unknown
size

 MPI_Probe(…, status)

 size = get_count(status)*size_of(datatype)

 buffer = malloc(size)

 MPI_Recv(buffer, …)

 MPI_Probe peeks in matching queue

 Does not change it → stateful object

Torsten Hoefler

Section VI: Hybrid Programming

Slide 154 of 162

MATCHED PROBE

 Two threads, A and B perform probe, malloc,
receive sequence

 AP → AM → AR → BP → BM → BR

 Possible ordering

 AP → BP → BM → BR → AM → AR

 Wrong matching!

 Thread A’s message was “stolen” by B

 Access to queue needs mutual exclusion 

Torsten Hoefler

Section VI: Hybrid Programming

Slide 155 of 162

MPI_MPROBE TO THE RESCUE

Torsten Hoefler

• Avoid state in the library

– Return handle, remove message from queue
MPI_Message msg; MPI_Status status;

/* Match a message */

MPI_Mprobe(MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD,

 &msg, &status);

/* Allocate memory to receive the message */

int count; MPI_get_count(&status, MPI_BYTE, &count);

char* buffer = malloc(count);

/* Receive this message. */

MPI_Mrecv(buffer, count, MPI_BYTE, &msg, MPI_STATUS_IGNORE);

Section VI: Hybrid Programming

Slide 156 of 162

SHARED MEMORY USE-CASES

 Reduce memory footprint
 E.g., share static lookup tables

 Avoid re-computing (e.g., NWCHEM)

 More structured programming than MPI+X
 Share what needs to be shared!

 Not everything open to races like OpenMP

 Speedups (very tricky!)
 Reduce communication (matching, copy) overheads

 False sharing is an issue!

Torsten Hoefler

Section VI: Hybrid Programming

Slide 157 of 162

SHARED MEMORY WINDOWS

 Allocates shared memory segment in win
 Collective, fully RMA capable

 All processes in comm must be in shared memory!

 Returns pointer to start of own part

 Two allocation modes:
 Contiguous (default): process i’s memory starts where

process i-1’s memory ends

 Non Contiguous (info key alloc_shared_noncontig)
possible ccNUMA optimizations

Torsten Hoefler

MPI_Win_allocate_shared(MPI_Aint size, MPI_Info info,

MPI_Comm comm, void *baseptr, MPI_Win *win)

Section VI: Hybrid Programming

Slide 158 of 162

SHARED MEMORY COMM CREATION

 Returns disjoint comms based on split type

 Collective

 Types (only one so far):

 MPI_COMM_TYPE_SHARED – split into largest
subcommunicators with shared memory access

 Key mandates process ordering

 Cf. comm_split

Torsten Hoefler

MPI_Comm_split_type(MPI_Comm comm, int split_type, int

key, MPI_Info info, MPI_Comm *newcomm)

Section VI: Hybrid Programming

Slide 159 of 162

SHM WINDOWS ADDRESS QUERY

 User can compute remote addresses in contig
case but needs all sizes

 Not possible in noncontig case!

 Processes cannot communicate base address, may
be different at different processes!

 Base address query function!

 MPI_PROC_NULL as rank returns lowest offset

Torsten Hoefler

MPI_Win_shared_query(MPI_Win win, int rank, MPI_Aint

*size, void *baseptr)

Section VI: Hybrid Programming

Slide 160 of 162

NEW COMMUNICATOR CREATION FUNCTIONS

 Noncollective communicator creation
 Allows to create communicators without involving all

processes in the parent communicator

 Very useful for some applications (dynamic sub-grouping)
or fault tolerance (dead processes)

 Nonblocking communicator duplication
 MPI_Comm_idup(…, req) – like it sounds

 Similar semantics to nonblocking collectives

 Enables the implementation of nonblocking libraries

Torsten Hoefler

J. Dinan et al.: Noncollective Communicator Creation in MPI, EuroMPI’11
T. Hoefler: Writing Parallel Libraries with MPI - Common Practice, Issues, and Extensions, Keynote, IMUDI’11

Section VI: Hybrid Programming

Slide 161 of 162

FINITO

 Acknowledgments:

 Natalia Berezneva

 For all illustrations and layout

 Sadaf Alam and her team

 organization and parts of training materials

 Robert Gerstenberger

 Testing training materials

 The MPI Forum

 Lots of (interesting?) discussions!

Torsten Hoefler Slide 162 of 162

