Asynchronous Abstract Machines

Anti-noise System Software for Many-core Processors

June 25, 2019

Sebastian Maier, Timo HOnig, Peter Wagemann,
Wolfgang Schroder-Preikschat

System Software Group
Friedrich-Alexander-Universitat Erlangen-Niirnberg

FRIEDRICH-ALEXANDER
o UNIVERSITAT _
Chairin Distributed Systems ERLANGEN-NURNBERG
and Operating Systems

Supported by German Research Council (DFG): CRC/TRR 89 (InvasIC, Project C1); SCR 603/8-2 (LAOS)

Motivation

eeeee

o NI
J
o I

© [
o |||

ol

m cores are shared between heterogeneous workload
« different applications and their threads
= application, library and OS code
~ interference, scheduling overhead
~ decreased performance

m |s there a better way to operate many-core systems?

Motivation

AAM

m Asynchronous Abstract Machines (AAMs) as a new
system design approach for reduced noise
m address shortcomings of existing systems:

1. heavy-weight threads and system calls
2. missing 0S-level support for teams
3. static allocation of resources

1. Heavy-weight Threads and System Calls

Transitions Costs between Workloads

= direct costs Indirect Costs I
~+ time required for actual transition

(e.g., mode switch or context switch) Direct Costs §
m indirect costs
~+ executing other workload causes interference

— instruction/data caches
— Translation Lookaside Buffer (TLB)
— branch prediction units

~ decreased instructions-per-cycle (IPC) performance

Indirect Costs of System Calls

~ significant impact on the user-space performance
of the CPU for several thousand cycles ?

L Soares, M. Stumm; "Flexible system call scheduling with exception-less system calls” 3

1. Heavy-weight Threads and System Calls

Kernel-level Scheduling

® requires expensive mode change
m threads have large memory footprint
~+ unsuited for micro-parallelism

User-level Scheduling

m reduced scheduling overhead
m prone to blocking anomaly (w/o native OS support)

1. user-level task issues a system call
2. OS blocks the execution context (thread) in the kernel
3. thread becomes unavailable for user-level scheduler

~» unsuited for system-intensive workload

2. Missing 0S-level Support for Teams *

m thread pools: common technique to parallelize tasks and

reduce scheduling overhead
m shortcomings

= 0S has no notion of thread pools and work queues

— is unaware that these threads form a team
and execute similar tasks

— lacks information: amount of tasks (load)
~+ subpar scheduling

= optimal number of threads ?

~ available resources, future workload, overall system load

\3xd

< ?\X ;Q\B o)

o] | |

Q.

o ||

D.R. Cheriton; "The V kernel: A Software Base for Distributed Systems” 5

3. Static Allocation of Resources

m static allocation of resources
= offloading system functionality to dedicated cores
(e.g., to reduce noise)
= allocation of a fixed number of threads
(e.g., in a thread pool)
m changing workload causes imbalance
= poor resource utilization
= performance bottlenecks

C,
Q,
g2
o
=
Q,

© INE

o | ||
11

oll 11

Goals of the AAM Approach

m operate cores more efficiently
= avoid transitions between heterogeneous workloads

— partition workload into groups of homogeneous tasks
— dedicate cores to these groups

= speedup transitions between homogeneous workloads

- lightweight tasks
— user-level scheduling

m address problems within user and kernel space

I
o ||
© NI

9

<,

©] ||
o

(C
|2

O NN
o] | ||

,.
Y

(/?\5 N)

)
C G

Concept

System Overview

m Asynchronous Abstract Machine (AAM)
= dedicated to a specific group of tasks (shared code/data)
= lightweight task scheduler
= asynchronous task-based interface

m entire system is composed of AAMs (~ Applications, OS)
m Machine Manager: dynamic allocation of cores to AAMs

Application 1 Application 2

©0©0OO ©©
©

System Machine ‘

13

Machine Manager ‘

Operating System @) Active/Idle Core

Components of an AAM

= AAMs may use their own task scheduler and allocator
m AAM Framework offers default implementations

{ Task-based Interface }

Machine-specific
Implementation

Task Memory IMC
Scheduler Allocator IMS
AAM Framework

IMC Inter-machine communication

IMS Inter-machine signaling

Interaction of System Components

Core 1 Core 2

Machine A |+ Result Queue |+————
(Client) [Task queue ——

A 4
Machine B
(Server)

t 1l

‘ Machine Manager ‘

m Machine Manager
= machine scheduling
= inter-machine signaling
m Machine Interfaces
= queues in shared memory
= direct communication between machines

10

Inter-machine Communication (IMC)

Core 1 Core 2

Machine A |+ Result Queue |+————
(Client) | —»[Task aueue |

Machine B
(Server)

‘ Machine Manager ‘

m AAMs offer predefined tasks to client machines
~+ scheduled asynchronously on server machines

m direct IMC does not involve the OS kernel
(in the common case)

11

Inter-machine Signaling (IMS)

Core 1 Core 2

Machine A |« Result Queue |
(Client) |+ [Task aueue |

Machine B
(Server)

]

‘ Machine Manager ‘

m Inter-machine signals (delivered by Machine Manager)
= wake sleeping machines
= register new interfaces
m involves traditional system calls
= short and run-to-completion
~+ minimal indirect costs

12

Machine Scheduling

Core 1 Core 2

Machine A |« Result Queue |
(Client) |+ [Task aueue |

Machine B
(Server)

t 11

‘ Machine Manager ‘

m Machine scheduling allocates cores to AAMs
= maximize utilization
= minimize interference
m Machine Manager is aware of all machines
= machine load
= recent core utilization

= prior core allocations s

Scheduling Tasks within AAMs

m optimized for a huge number of short-lived tasks
= task identifier, parameters, future
= run-to-completion
= lazy context allocation
~+ small memory footprint
m Machine-local scheduler
~+ scheduling does not involve OS kernel
~+ switching between tasks is inexpensive

Ready Queue

Blocked Ae 0 200502
@\‘\ < O ﬁ
N
o

Context Allocator

14

Implementation and Evaluation

Specifying AAMs at Design-time

Considerations

m duration and cache behavior of operations

m shared data or functionality between operations
m distinct computation stages or system boundaries
m required privileges and isolation requirements

Specification and Reusability

m interface is defined in an IDL file
~+ C-compatible format
~+ automatic code generation

m self-contained with well-defined interface
~+ AAMs are reusable (like libraries)

15

Interface of an AAM: Machine Calls

Asynchronous Interface
~ returns immediately with a future; allows for latency hiding and batching

char buffer[MAX_LEN];
auto *rt = System::readAsync(fd, buffer, MAX_LEN);

// do other stuff ...

o U r W N R

ssize_t result = rt->force();

Synchronous Interface
~ calling task waits for completion; another task is scheduled

1 char buffer[MAX_LEN];
> ssize_t result = System::read(fd, buffer, MAX_LEN);

Event-based Interface
~+ schedules a specified task on completion (work in progress)

16

Current State of the Prototype

Target Architectures

m native OS for x86-64
~ benchmarking

> I

m Linux 64-bit application Linux
~+ development and debugging r

g

Components

m AAM Framework
= lightweight task scheduler
= memory allocator
= inter-machine communication

m Machine Manager

= machine scheduler

= inter-machine signaling
17

Current State of the Prototype

Reusable Machines

m library machines (user level)
= SQLite
= AES encryption
= ZLIB/LZO compression
m system machines (kernel level)

= TCP/IP stack
= file system

Tools and Profiling Support
m 1Gen code generator

m sView scheduling analyzer

m CPU performance counters

m per-machine metrics (IPC, ...)

Evaluation

Costs of Typical System Operations

m local task execution

1. create task and add it to the scheduler ~ direct costs
2. block active task (waiting for task completion)

3. execute no-op task

4. continue original task ~ total latency

m Machine Call
~ task execution on different machine and core via IMC

Evaluation Setup

= Intel Xeon CPU E3-1275 v3 @ 3.50 GHz, 32 GiB RAM
= arithmetic mean and standard deviation from 10000 runs
» Linux (used for comparison): kernel version 4.4

19

Evaluation Results

Direct Costs Total Latency
- - 3,000

3,000 i
lnactive

lnidle

2,000 |- 4 F - 2,000

-{ 1,000

1,000 |- 11
N R mE H H 0

o ; ; ;
Task Execution Machine Call Machine Call Task Execution Machine Call Machine Call

(core-local) (Library) (System) (core-local) (Library) (System)

active AAMs actively monitor their interfaces
AAMs allowed to idle immediately (~ IMS)

20

Evaluation Results

Direct Costs Total Latency
3,000 ! 1 ! 3,000 .
thread_create Doactive
P 1 luidle
(6890ns)
2,000 |- 2,000
1,725 | - Context Switch (Process)
1,250 |- - Context Switch (Thread)
1,000 |- 41,000
Y — = = o H H 1 gystem Call (gettid)
: ; ; } } }

Task Execution Machine Call Machine Call Task Execution Machine Call Machine Call
(core-local) (Library) (System) (core-local) (Library) (System)

active AAMs actively monitor their interfaces
AAMs allowed to idle immediately (~ IMS)

costs of typical Linux operations in gray

20

Evaluation Results

Direct Costs Total Latency
3,000 ! 1 ! 3,000 .
thread_create Doactive
P 1 luidle
(6890ns)
2,000 |- 2,000
1,725 | - Context Switch (Process)
1,250 |- - Context Switch (Thread)
1,000 |- 41,000
Y — = = o H H 1 gystem Call (gettid)
: ; ; } } }

Task Execution Machine Call Machine Call Task Execution Machine Call Machine Call
(core-local) (Library) (System) (core-local) (Library) (System)

Local Task Execution

® task creation is fast

= overhead for task scheduling is low

20

Evaluation Results

Direct Costs Total Latency
3,000 ! 1 : 3,000 -
thread_create Doactive
P 1 luidle
(6890 ns)
2,000 |- 2,000
1,725 | - Context Switch (Process)
1,250 |- - Context Switch (Thread)
1,000 |- 41,000
Y — = = o H H 1 gystem Call (gettid)
: ; ; } } }

Task Execution Machine Call Machine Call Task Execution Machine Call Machine Call
(core-local) (Library) (System) (core-local) (Library) (System)

Machine Calls
= CPU becomes available to the caller after a short time

~ latency hiding; schedule other task

= avoiding indirect costs comes with a latency overhead

~ increased latency if IMS is required
~ still low compared to most system calls or thread creation

Future Work and Conclusion

Future Work

more micro and macro benchmarks
~ e.g., HPC and server applications

enhanced machine scheduling strategies

isolation support
hardware support for improved IMC performance

~+ Software-defined Hardware-managed Queues (SHARQ) *
for communication across isolation domains

15. Rheindt, S. Maier, F. Schmaus, T. Wild, W. Schroder-Preikschat, A. Herkersdorf;
"SHARQ: Software-Defined Hardware-Managed Queues for Tile-Based Manycore Architectures”

21

Conclusion

SEEE .« BE
E=EEE PR
DD DD D D

m goals
= avoid costly transitions between heterogeneous workload
= speedup transitions between homogeneous workload
m AAM concept
= partition system into machines with task schedulers
= assign cores to machines exclusively during runtime
m addressed problems
1. heavy-weight threads and system calls
~» machine-local task scheduling; task-based interface
2. missing 0S-level support for teams
~» Machine Manager is aware of all AAMs
3. static allocation of resources

~» Machine Manager allocates cores dynamically
22

	Concept
	Implementation and Evaluation
	Future Work and Conclusion
	Appendix
	Appendix

