Non quia difficilia sunt non audemus, sed quia non audemus difficilia sunt
Home -> Publications
edited volumes
  Full CV [pdf]


  Past Events

Publications of Torsten Hoefler
Marcin Copik, Alexandru Calotoiu, Tobias Grosser, Nicolas Wicki, Felix Wolf, Torsten Hoefler:

 Extracting Clean Performance Models from Tainted Programs

(In PPoPP '21: Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, Feb. 2021)

Publisher Reference


Performance models are well-known instruments to understand the scaling behavior of parallel applications. They express how performance changes as key execution parameters, such as the number of processes or the size of the input problem, vary. Besides reasoning about program behavior, such models can also be automatically derived from performance data. This is called empirical performance modeling. While this sounds simple at the first glance, this approach faces several serious interrelated challenges, including expensive performance measurements, inaccuracies inflicted by noisy benchmark data, and overall complex experiment design, starting with the selection of the right parameters. The more parameters one considers, the more experiments are needed and the stronger the impact of noise. In this paper, we show how taint analysis, a technique borrowed from the domain of computer security, can substantially improve the modeling process, lowering its cost, improving model quality, and help validate performance models and experimental setups.


download article:     

Recorded talk (best effort)



  author={Marcin Copik and Alexandru Calotoiu and Tobias Grosser and Nicolas Wicki and Felix Wolf and Torsten Hoefler},
  title={{Extracting Clean Performance Models from Tainted Programs}},
  booktitle={PPoPP '21: Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming},

serving:© Torsten Hoefler