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Abstract

Relaxed synchronization offers the potential of maintaining application scalability by allowing many
processes to make independent progress when some processes suffer delays. Yet, the benefits of this ap-
proach in important parallel workloads have not been investigated in detail. In this paper, we use a val-
idated simulation approach to explore the noise mitigation effects of idealized nonblocking collectives in
workloads where these collectives are a major contributor to total execution time. Although nonblocking
collectives are unlikely to provide significant noise mitigation to applications in the low-OS-noise environ-
ments expected in next-generation HPC systems, we show that they can potentially improve application
runtime with respect to other noise types.

1 Introduction

Nonblocking collective operations [15,19], newly introduced in MPI-3.0 [12,24], allow application program-

mers to overlap collective communication with the application’s computation. At scale, blocking collective

operations can significantly degrade application performance because, in most cases, each application pro-

cess must participate in the collective before any process can make further progress. As a result, a laggard

process can slow the progress of all of its peers and consequently the entire application. Nonblocking collec-

tives have the potential to alleviate the impact of process variability by allowing a process to make progress

even if its peers are late entering a collective.

Delayed participation in a collective operation can be caused by several phenomena, including load

imbalance, fault tolerance activities, and operating system noise. While noise exists on most computing

platforms, it has a disproportionate effect in HPC systems because the applications that run on these sys-

tems tend to be highly synchronized. For many important HPC applications, operating system noise has

been shown to have serious consequences for overall application performance [8].

∗Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a
wholly-owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-94AL85000.
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The effects of operating system (OS) noise on high-performance computing (HPC) applications have

been examined for insights into designing scalable hardware, system software, and applications [1, 25].

Recently, system designers have invested time and effort to reduce or eliminate sources of noise in the OS.

These efforts have significantly reduced the noise introduced by system software on HPC systems; there

now exist operating systems that are essentially noiseless (e.g., IBM’s CNK) [16, 30]. As a result, the need

for nonblocking collectives to address the performance impact of OS noise appears to be waning1.

Although the impact of OS noise may no longer be a significant issue, there are many potential sources of

noise in future extreme-scale systems. For example, fault tolerance is projected to be a significant challenge

on future systems. The dominant approach to fault tolerance is checkpoint/restart. Because checkpointing

activities deprive the application of CPU cycles, they can be modeled as OS noise [23]. Other trends in

extreme-scale system design (e.g., adaptive runtimes, in situ analytics) also have the potential to introduce

noise-like events that impact application performance. As a result, even if OS noise is itself no longer an

issue, emerging sources of noise mean that nonblocking collectives may still yield a performance benefit on

next-generation extreme-scale systems.

In this paper, we investigate the performance benefit of nonblocking collective operations on application

performance at scale, in different noise environments. We begin with a simple analytical model of applica-

tion performance to identify upper bounds on application speedup. We use simulation to further examine

the impact of nonblocking collectives. We focus on a simulated MPI Iallreduce() (i.e., the nonblocking vari-

ant of MPI Allreduce()) because, as we will show, it is the dominant communication operation in many

important parallel workloads. To examine the potential upside of MPI Iallreduce(), we use a validated

simulator to compare the standard MPI Allreduce() with an idealized cost-free MPI Iallreduce(). We also

use a set of microbenchmarks to examine the different potentials for application speedup of dissemination

vs. binomial-tree collective algorithms. Specifically, we show that:

• in low-noise environments that are typical of current and expected future systems, MPI Iallreduce()

is unlikely to provide significant noise mitigation benefits without algorithmic changes;

• for other sources of noise such as resilience protocol overheads, MPI Iallreduce() may have a signifi-

cant beneficial effect on application performance; and

• the expected noise mitigation effect from nonblocking collectives can vary significantly according

to their underlying implementation algorithms and the interprocess dependencies those algorithms

create.
1Other uses for nonblocking collectives include overlapping computation and communication as well as complex synchro-

nization protocols [18].

2



w1 c1 n1 δ w2 c2 n2 wk−1 δ ck−1 nk−1 wk

Figure 1: A simple, hypothetical example of a trace of the execution of a single application process with
blocking collectives. We model the execution trace as a sequence of interleaved periods of communication (ci)
plus noise propagation (ni), work (wi) and checkpoints (δ). Communication intervals consist of blocking
communication operations, including delays introduced by remote checkpointing noise. Work intervals consist
of non-blocking point-to-point communication and periods of computation. A checkpoint may occur at any
point in a work interval, but we model checkpoints as an extension of the duration of the checkpoint-free
work interval. As a result, identifying the precise moment at which a checkpoint occurs is unnecessary.

2 Experimental Approach

In this paper, we use an analytic model and a validated simulator to explore the potential benefits of non-

blocking collectives in the presence of different noise profiles. Our analytic model allows us to identify

upper bounds on the speedup of an application if nonblocking collective operations are allowed only to

overlap with computation (i.e., a nonblocking collective cannot overlap with any other communication

operation). For bulk synchronous parallel (BSP) applications, this is roughly equivalent to allowing collec-

tives to overlap with a single application iteration. Simulation allows us to explore models of communi-

cation/computation overlap that are difficult to capture with an analytic model. In particular, simulation

allows us to examine the performance impact of allowing nonblocking collectives to overlap with each other

and with blocking point-to-point collective operations. Moreover, simulation allows us to more accurately

account for noise effects and their impact on the performance of collective operations.

2.1 Modeling nonblocking collectives

One of the principal benefits of nonblocking collectives is that they allow applications to overlap compu-

tation and collective communication. As a result, they can help mitigate the impact of noise by allowing

application processes to continue to advance, even if one or more communication partners are delayed by

noise. For the purposes of this section, we focus on noise introduced by checkpointing activities. However,

our results can be easily extended to other sources of noise. To determine the potential benefits of allowing

computation and collective communication to overlap, we begin with a simple model of application exe-

cution. As shown in Figure 1, we model the execution trace of each application process as an interleaved

sequence of blocking communication operations and computation; the application’s time-to-solution is the

maximum of the execution times of its constituent processes.

We refer to periods of computation (including checkpointing) and nonblocking point-to-point opera-

tions (e.g., MPI Isend(), MPI Irecv()) as work intervals (wi). We model periods when the application is com-

puting checkpoints as the expansion of individual work intervals. For this simple model, we need not
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distinguish between the checkpoints that are taken collectively (i.e., coordinated checkpointing) or inde-

pendently (i.e., uncoordinated checkpointing). Collective operations and blocking point-to-point opera-

tions comprise communication intervals (ci). In the presence of noise, communication events may require

additional time to complete because one or more of the participants has been delayed by noise events. We

capture these additional communication costs as noise effects (ni). This simple execution model allows us to

express an application’s time-to-solution as:

Ts = Wk +

k−1∑
i=1

(ci + ni +Wi) (1)

where:

k = number of communication and work intervals that comprise the application’s execution

ci = duration of the ith communication interval

ni = duration of the noise effects associated with the ith communication interval

Wi = wi + d(i) (duration of the ith work interval)

wi = duration of computation in the ith work interval

d(i) =


δ if a checkpoint occurs during wi

0 otherwise

We note that by changing the definition of d(i), this model can be applied to other sources of noise. In

this instance, the benefit of nonblocking collectives depends on the extent to which collective communi-

cation (including noise effects) can overlap work intervals. Conceptually, the simplest way to model this

overlap is to allow each collective operation only to overlap with the work interval that immediately pre-

cedes it. The idea is that nonblocking collectives will allow the application to initiate the collective at an

earlier point in the execution than when blocking collectives are used.2

In this model, we do not allow nonblocking collectives to overlap with each other or with blocking

point-to-point operations. We assume that: (i) allowing work and communication to overlap does not alter

the time required to complete any communication operation (i.e., the duration of noise effects is dependent

only on the associated communication interval); (ii) with nonblocking collectives, checkpoints occur in the

same work interval as for blocking collectives (i.e., the checkpoint interval is determined by the amount of

work completed); and (iii) the target application can tolerate complete overlap of work and communication

2Alternatively, we could model the communication/computation overlap by allowing nonblocking collectives to overlap only
with the succeeding computation interval. The result obtained in this section would be the same.
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intervals. Given this model of communication/computation overlap, we can then express the application’s

time-to-solution as:

T̂s = Wk +

k−1∑
i=1

ci=collective

max(ci + ni,Wi) +

k−1∑
i=1

ci=p2p

(ci + ni +Wi)

= Wk +

k−1∑
i=1

ci=collective
(ci+ni)≥Wi

(ci + ni) +

k−1∑
i=1

ci=collective
(ci+ni)<Wi

Wi +

k−1∑
i=1

ci=p2p

(ci + ni +Wi) (2)

2.2 Simulation environment

Our simulation approach is based on capturing and examining the communication structure of applica-

tions. This structure reflects synchronization of applications and exposes dependencies through the es-

tablishment of happens-before relations [22]. This is especially useful for the examination of asynchronous

operations because of the possible formation of transitive dependencies between processes which do not

communicate directly. For MPI programs, static analysis of communication structure is complicated by the

difficulty of both offline message matching [3] and modeling interactions analytically. We use instead a

discrete-event simulator and model application communication as events.

Our simulator framework comprises LogGOPSim [17] and the tool chain developed by Levy et al. [23].

LogGOPSim uses the LogGOPS model, an extension of the well-known LogP model [4], to simulate applica-

tion traces that contain all exchanged messages and group operations. In this way, LogGOPSim reproduces

all happens-before dependencies and the transitive closures of all delay chains of the application execution.

It can also extrapolate traces from small application runs with p processes to application runs with k · p

processes. The extrapolation produces exact communication patterns for all collective communications and

approximates point-to-point communications. Noise injection into simulations is done by constructing a

time-indexed list of detours and their durations; this list is given as input to the simulator which introduces

the described delays into the execution of the simulated application.

LogGOPSim and its trace extrapolation features have been validated [16,17]. The complete tool chain has

been validated against experiments and established models [23].

2.3 HPC Workload Descriptions

We present results from the simulation and analysis of a set of workloads. These workloads represent

scientific applications that are currently in use and computational kernels thought to be important for future

extreme-scale computational science. They include:
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• CTH, a multi-material, large deformation, strong shock wave, solid mechanics code [6],

• HPCCG, a conjugate gradient benchmark code that is part of the Mantevo [14] suite of mini-apps,

• LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) [26], a classical molecular

dynamics code developed at Sandia National Laboratories,

• LULESH, the Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics proxy applica-

tion [7, 21], used by the Extreme Materials at Extreme Scale co-design center at Los Alamos National

Laboratory [7],

• miniFE, the Mantevo [14] finite element mini-application which implements kernels representative of

the implicit finite-element suite of mini-apps,

• AMG, an algebraic multigrid solver for linear systems arising from problems on unstructured grids

[13].

Taken as a whole, these applications: are typically run (or are projected to be run) at extreme-scale, run

for long periods of time, and represent a diverse mix of computational techniques and methods.
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Figure 2: Percentage of communication time spent in each MPI function for CTH, HPCCG, LAMMPS,
LULESH, MiniFE, and AMG.

2.4 Choosing collectives to examine

Previous investigations [8] have identified MPI Allreduce() and other collectives as operations that are par-

ticularly sensitive to OS noise. Exploratory implementations of nonblocking collectives [15] have been

6



developed to address these and other issues. To support our inquiry into the effect of noise on nonblocking

collective operations, we break down the composition of MPI operations for our set of applications.

Figure 2 shows the percentage of communication time spent in various MPI functions for each of the

applications we consider. These results were collected using the mpiP profiling library [29]. MPI Allreduce()

is by far the dominant collective operation across this application set. The communication time of LULESH

and MiniFE is dominated by MPI Allreduce() for process counts up to 1024. Similarly, HPCCG spends more

than 80% of its communication time in MPI Allreduce() at almost all the tested process counts. In contrast,

CTH spends less than 30% of its time in MPI Allreduce() (although the fraction increases significantly as

the size of the application increases), and LAMMPS spends comparatively little time there. MPI Allgather()

is the only other collective to contribute a non-trivial proportion of communication time, and that only in

AMG2013. These results suggest that a nonblocking MPI Allreduce() implementation might prove benefi-

cial for at least HPCCG, LULESH, and MiniFE, and that MPI Allgather() may also be of interest.

The communication patterns of our set of workloads are largely dominated by MPI Allreduce(). While

this usage is representative of many current scientific applications, some future representative set of appli-

cations may use other collectives most often. We constructed a set of microbenchmarks to exercise our sim-

ulated nonblocking approach for other collective operations. To obtain different perspectives, we chose two

collectives typically implemented using a dissemination algorithm (MPI Allreduce() and MPI Allgather())

and two typically implemented using a binomial tree algorithm (MPI Scatter() and MPI Gather()) [28] (as-

suming that these implementation algorithms will not change when MPI libraries with nonblocking collec-

tives are available). We present evaluations of simulations of these microbenchmarks along with simula-

tions of our workload set in Sections 3 and 4.

2.5 Simulating nonblocking collectives

By default, our simulator generates patterns of blocking communications to simulate collective operations.

For example, when an MPI Allreduce() is encountered in an application trace, the simulator generates SEND

and RECV events using a dissemination algorithm similar to that used by MPICH and Open MPI. We added

to the simulator the ability to select different algorithms for implementing the MPI Allreduce() operation.

For this work, we emulate an optimal nonblocking implementation, but do so in a manner that does not

require modification of the application. This operation works as follows: the nonblocking allreduce im-

plementation assumes the the application was able to start the operation early enough and has sufficient

overlapping progress such that when the MPI Allreduce() operation is reached by a node, it completes im-

mediately and incurs no further overhead. Simulated nonblocking versions of other collectives are similarly
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generated.

This approach assumes it is actually possible to re-factor the application in a manner that the non-

blocking collectives can be fully utilized (cf. [10]). For some application workloads, this re-factoring may

not be possible due to algorithmic details. Therefore, our strategy for nonblocking allreduce provides an

optimistic upper bound on the performance speedups that can be realized, but this upper bound is not

necessarily tight. In addition to nonblocking collectives, this work may also be useful in studying systems

where collectives are supported by targeted optimizations or specialized networking and hardware, for

example.

3 Low-noise environments

Nonblocking collective operations allow the application to overlap collective communication with compu-

tation. As a result, they have the potential to mitigate the performance impact of system noise [8] by allow-

ing the application to absorb noise events. However, it is not clear how much noise absorption nonblocking

collectives enable or how much their noise absorption impacts application performance. Therefore, we

investigate the performance impact of nonblocking collectives using system noise patterns collected on

current systems and a synthetic noise pattern we believe to be representative of future extreme-scale sys-

tems.

3.1 Characterizing system noise

We measure the noise environment on current HPC systems and consider how it might differ on future

systems. Figure 3 shows the idle system noise patterns collected on three systems using the selfish [16]

system noise measurement microbenchmark: Volta, a Cray XC30; Muzia, a Cray XE6; and RedSky, a Sun-

Blade x6275 capacity system with Infiniband. Both Cray systems run the Cray Linux Environment (CLE),

Cray’s optimized Linux kernel, and RedSky uses CentOS-based software on the compute nodes.

From the figure, we see that Muzia has the lowest system noise signature, RedSky has a slightly larger

degree of noise, and Volta has the largest volume of the three. Most importantly, we see from this figure

that all of these systems have comparatively low noise signatures, with all noise event durations less than

35 microseconds. Note that, while CLE has been tuned to reduce its noise impact on applications, neither

CentOS or CLE approaches the extremely low level of noise interference present in lightweight kernels such

as those in the Catamount family [27] or IBM’s CNK [11]. We focus on more heavyweight kernels as we

expect that the majority of future applications will execute in those environments3.
3 [27] and [11] discuss tradeoffs between development effort and performance benefit posed by the use of lightweight kernels
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(c) RedSky

Figure 3: Noise profiles for three Sandia cluster systems collected using the selfish detour collection tool.
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(b) OS bound to One Core
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(c) OS bound to Four Cores

Figure 4: Impact of Cray’s OS core specialization on the Volta cluster.

As previous work has shown that system noise events can significantly impact HPC performance [8,16],

great effort has been made to lower the duration of noise events. For example, Cray introduced OS core

specialization in the CLE which allows the user to bind CPU cores to OS and system software tasks, thereby

reducing the system noise on the application cores. Figure 4 shows the impact of this core specialization

functionality on selfish noise traces collected on Volta, with 0, 1, and four cores dedicated to system soft-

ware tasks, respectively. Core specialization can greatly “smooth” unpredictable spikes in noise duration,

which is of great benefit to applications even if system noise is not notably reduced in general.

3.2 Modeling nonblocking collectives in a low-noise environment

In low-noise environments, we expect noise effects (ni) to be small. If we assume that ci � ni for all i, we

can rewrite the time-to-solution with blocking collectives (Equation 1) as:

Ts ≈Wk +

k−1∑
i=1

(ci +Wi)

Similarly, we can rewrite the time-to-solution with non-blocking collectives (Equation 2) as:

T̂s ≈ Wk +

k−1∑
i=1

ci=collective

max(ci,Wi) +

k−1∑
i=1

ci=p2p

(ci +Wi)

which inform this expectation.
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= Wk +

k−1∑
i=1

ci=collective
ci≥Wi

ci +

k−1∑
i=1

ci=collective
ci<Wi

Wi +

k−1∑
i=1

ci=p2p

(ci +Wi)

We can then express the potential speedup in application execution as:

speedup =
Ts

T̂s

=

Wk +

k−1∑
i=1

(ci +Wi)

Wk +

k−1∑
i=1

ci=collective
ci≥Wi

ci +

k−1∑
i=1

ci=collective
ci<Wi

Wi +

k−1∑
i=1

ci=p2p

(ci +Wi)

=

Wk +

k−1∑
i=1

(ci +Wi)

Wk +

k−1∑
i=1

ci=collective

Wi +

k−1∑
i=1

ci=collective
ci≥Wi

(ci −Wi) +

k−1∑
i=1

ci=p2p

(ci +Wi)

≤
Wk +

k−1∑
i=1

(ci +Wi)

Wk +

k−1∑
i=1

Wi

(3)

If the application’s computation-to-communication ratio is β, then we can rewrite Equation 3 as:

speedup ≤ 1 + β

β
(4)

A similar derivation yields:

speedup ≤
Wk +

k−1∑
i=1

(ci +Wi)

Wk +

k−1∑
i=1

ci

≤ 1 + β (5)

Both Equations 4 and 5 place an upper bound on the achievable speedup. If β ≥ 1 (i.e., the applica-

tion spends more time performing computation than communication) then Equation 4 is a tighter bound.

Conversely, if β < 1 then Equation 5 is a tighter bound. We observe that for applications that spend a
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Application
Computation-to-Communication

Maximum Speedup
Ratio

AMG2006 1.59 1.63
CTH 1.25 1.80
HPCCG 95.15 1.01
LAMMPS 37.46 1.03
LULESH 4.37 1.23
miniFE 10.31 1.10

Table 1: Computation-to-communication ratios and the corresponding upper bounds on application speedup
for each of our workloads running on 1024 nodes

considerable fraction of their communication time in point-to-point operations (see Figure 2) these are not

tight upper bounds.

In Table 1, we consider the implications of these upper bounds given the computation-to-

communication ratios for our set of workloads. These ratios are empirically determined by running each

workload on 1024 nodes. The measurements in this table show that all of these applications spend more

time in computation than communication. However, there is considerable variation across applications

in the total fraction of execution time that is used for computation. For some of the applications (e.g.,

AMG2006 and CTH) the time spent in communication is relatively large. As a result, the benefit of using

nonblocking collectives to overlap communication and computation is potentially significant. At the other

end of the spectrum, the execution time of HPCCG, LAMMPS and miniFE are dominated by computation.

The benefits of using nonblocking collectives for these applications are much more modest.

3.3 Application simulation results

We conducted simulations of our target applications to examine how they would respond in the presence

of different types of noise. We used three different noise traces: system noise, the worst-case idle system

noise signature from Volta as found in Figure 4(a); daemon noise, a synthetic noise trace with detour dura-

tions of 2.5ms at a frequency of 10 Hz, designed to represent the types of detours that would be introduced

by a typical system-level daemon process and similar to one used in previous work [8]; and asynchronous

checkpointing noise, a 1-second duration, 120-second period application interference pattern similar to pro-

cesses taking checkpoints in an uncoordinated checkpoint/restart resilience scheme at extreme scale [23].

In each case, we measured the application speedup of our idealized MPI Iallreduce() implementation when

compared to the use of a normal blocking MPI Allreduce(), both in the presence of noise.

The speedup results are presented in Figure 5. Subfigure 5(a) shows that in the presence of system noise,

MPI Iallreduce() produces almost no application speedup for any of the studied applications. Subfigure

5(b) shows roughly similar results, with only AMG and CTH showing over 10% speedup as process count
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Figure 5: Observed application speedup achieved by switching from standard allreduce to an idealized
nonblocking version in two low-noise environments.
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(b) Synthetic noise (10 Hz, 2.5 ms)

Figure 6: Observed microbenchmark speedup achieved by using idealized nonblocking versions of different
collectives in low-noise environments.

increases. The behavior of AMG in these two noise regimes is largely explained by its unique (among this

set of applications) pattern of collective inter-arrival times [9]. These results indicate that MPI Iallreduce()

will not provide much mitigation effect of system noise to applications, even for heavy allreduce users

(as are HPCCG and MiniFE, for example). While it is dangerous to extrapolate this conclusion to other

potential nonblocking collective implementations, these results suggest that whatever other benefits they

may have for applications, mitigation of system noise is not among them.

3.4 Microbenchmark analysis

The results of our microbenchmark simulations in the low-noise environments appear in Figure 6. In

these experiments, nonblocking versions of dissemination-based collectives improve completion time only

slightly, even as scale increases. In contrast, nonblocking versions of binomial algorithm collectives demon-

strate strongly increasing speedup as the size of the application grows past 16Ki processes. This behav-

ior can be explained by considering the effect of messaging in each algorithm at the larger scales. In the
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binomial-tree algorithms, a root node is responsible for sending all the data required by its entire subtree;

at larger process counts, even with small messages (8 bytes in these experiments), the time required to

send these data amounts becomes noticeable. Our idealized simulation of nonblocking collectives assumes

that this message send time will be completely overlapped by application computation, and therefore will

not contribute to the total runtime of the application. This result also roughly agrees with our application

simulation results, where MPI Iallreduce() does not significantly mitigate either system or daemon noise.

4 Asynchronous checkpointing noise

4.1 Modeling asynchronous checkpointing and nonblocking collectives

Asynchronous checkpointing has the potential to introduce noise events that dramatically increase the

time required to complete a collective operation. By increasing the amount of time that application pro-

cesses spend in communication, noise propagation effectively decreases the application’s native ratio of

computation-to-communication. When the impact of noise propagation is (or may be) significant, we can

express the potential speedup that may be obtained by using non-blocking collectives to overlap commu-

nication and computation as:

speedup =
Ts

T̂s

=

Wk +

k−1∑
i=1

(ci + ni +Wi)

Wk +

k−1∑
i=1

ci=collective
(ci+ni)≥Wi

(ci + ni) +

k−1∑
i=1

ci=collective
(ci+ni)<Wi

Wi +

k−1∑
i=1

ci=p2p

(ci + ni +Wi)

≤

k∑
i=1

Wi +

k−1∑
i=1

(ci + ni)

Wk +

k−1∑
i=1

ci=collective
(ci+ni)≥Wi

(ci + ni) +

k−1∑
i=1

ci=collective
(ci+ni)<Wi

(ci + ni) +

k−1∑
i=1

ci=p2p

(ci + ni +Wi)

≤

k∑
i=1

Wi +

k−1∑
i=1

(ci + ni)

k−1∑
i=1

(ci + ni)
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= 1 +

β

k−1∑
i=1

ci

k−1∑
i=1

(ci + ni)

(6)

A similar derivation yields:

speedup =
Ts

T̂s

≤ 1 +

k−1∑
i=1

(ci + ni)

k∑
i=1

Wi

= 1 +

k−1∑
i=1

(ci + ni)

β

k−1∑
i=1

ci

(7)

Equations 6 and 7 establish upper bounds on the achievable speedup. The effective upper bound on

speedup will be given by the smaller of the two. Equation 6 will be a tighter upper bound when the appli-

cation’s computation-to-communication ratio is smaller than the degree to which time spent in communi-

cation is inflated by noise propagation. More precisely, Equation 6 is a tighter upper bound on application

speedup when:

β ≤

k−1∑
i=1

(ci + ni)

k−1∑
i=1

ci

Conversely, Equation 7 will be the tighter bound when:

β >

k−1∑
i=1

(ci + ni)

k−1∑
i=1

ci

The maximum value of the upper bound on speedup is two. It reaches this value when the computation-

to-communication ratio is exactly equal to the factor by which noise propagation inflates the application’s
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Figure 7: Speedup results for asynchronous checkpointing noise (0.5 Hz, 1s)

communication time. In other words, nonblocking collectives can reduce the application’s time-to-solution

by as much as a factor of two when the application’s computation and communication (including noise

propagation) exactly overlap.

These upper bounds show that when noise propagation is modest, the benefits of nonblocking collec-

tives will be limited by the application’s computation-to-communication ratio (β). This is consisent with

what we observed in Section 3. However, as the application’s execution begins to be dominated by noise

propagation, the opportunities to overlap communication (and noise-induced delays) with computation

are eventually exhausted and the application is unable to absorb additional noise.

As our model shows, the performance benefit of nonblocking collectives is potentially significant.

However, for applications that spend a large fraction of their execution on point-to-point operations and

their associated work intervals, this bound is not particularly tight and the benefits will be more mod-

est. In practice, the benefit of non-blocking collectives will depend on the target application’s computa-

tion/communication pattern and the extent to which it can allow collective communication operations and

computation to overlap.

4.2 Application simulation results

Figure 7 shows application speedup when we simulate applications using an idealized MPI Iallreduce() in

the presence of asynchronous checkpointing noise. The noise characteristics we use here reflect an applica-

tion using asynchronous checkpointing where each process takes a checkpoint every 120 seconds (locally

timed as the checkpoint operation is not coordinated across nodes), writes 2 GiB of data per checkpoint, and
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has a data path to stable storage with 2 GiB/second write bandwidth. This configuration results in a check-

point frequency of 0.5 Hz and a checkpoint duration of 1 second. These checkpoint interval and checkpoint

size figures are typical of many production workloads, and the write bandwidth reflects the planned incor-

poration of solid-state storage on a per-node basis in exascale machines currently being designed by DOE

and other organizations.

Using an idealized MPI Iallreduce() allows us to consider the case where collectives are allowed to over-

lap with other communication operations. The results shown in Figure 7 imply that allowing more liberal

overlap of computation and communication can lead to significant speedup for most of the applications

we considered. However, exploiting this difference in behavior will likely require radical changes to the

computational structure of the applications.

Figure 7 also shows a markedly different result than we observed for the low noise environment. This

difference reflects an important point about the nature of noise, on which we digress briefly. Asynchronous

checkpointing noise introduces detours with very long durations compared to OS or daemon noise —

on the order of seconds, as opposed to the millisecond- and microsecond-scale durations of OS/daemon

noise. Prior research on OS noise [8] has shown that the duration of noise events has a larger impact on

application performance than the frequency of those events. In the context of checkpointing, this suggests

that checkpoint commit time, rather than checkpoint interval, has the larger impact; this is confirmed by

experimental results [9] shown in Figure 8. We vary each of checkpoint interval (Figure 8(a)) and checkpoint

commit time (Figure 8(b)), holding the other constant in each case to satisfy Daly’s optimality equation [5].

In both cases, we measured simulated application completion time for a subset of the applications we

consider in this paper. These figures show that changes to the checkpoint interval have very little impact

on application performance, while increasing checkpoint commit time can significantly increase time-to-

solution.

Returning to our discussion of the potential impact of MPI Iallreduce(), Figure 7 shows that many of

our applications could possibly benefit significantly from its ability to mitigate the effect of asynchronous

checkpoint noise. HPCCG and miniFE both show large speedup factors, as does CTH. The outlier here

is LAMMPS, which benefits little from this improvement because of its infrequent use of MPI Allreduce().

This result suggests that other nonblocking collectives may show similar benefits in applications using

asynchronous checkpointing.
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Figure 8: Effects on execution time of LAMMPS, CTH, miniFE, and HPCCG observed when varying
checkpoint frequency (τ) vs. checkpoint duration (δ), for different node MBTF (Θnode) values.

4.3 Microbenchmark analysis

The results of our microbenchmark simulations in a high-noise environment appear in Figure 9. In contrast

to the low-noise microbenchmark result, here the completion times of our simulated dissemination-based

collectives (e.g., MPI Iallreduce() and MPI Iallgather()) are sped up by a noticeable factor. The completion

times of simulated binomial-tree collectives (e.g., MPI Igather() and MPI Iscatter()) are barely affected,

only beginning to register a performance benefit as scale increases past 128Ki processes.

One of the principal reasons for the stark performance differences in Figures 7 and 9 is the difference

in the dependencies that are created for collectives based on the dissemination algorithm and the depen-

dencies that are that are created for collectives based on a binomial tree. Figure 10 shows an example of

the dependencies that are created for each algorithm. The dependencies shown for the binomial tree cor-

respond to collectives that use the tree for distribution (e.g., MPI Bcast(), MPI Scatter()). The most obvious

difference is in the sheer number of dependencies that are created. The binomial tree algorithm creates

(n − 1) direct dependencies, whereas the dissemination algorithm creates (n log n) direct dependencies.

For collectives running on extremely large systems, the difference between the number of dependencies

created by these two algorithms will be stark. For example, for a collective with 32Ki participants, the

dissemination algorithm will generate more than 15 times as many direct dependencies. The nature of the

dependencies that are created is also important. As shown in Figure 10(a), the dissemination algorithm

yields bidirectional dependencies between every pair of nodes. For example, in round 1, n1 is dependent

on n0. In round 3, n0 is (indirectly) dependent on n1. As a result, the total number of (direct and indirect)

dependencies created by the dissemination algorithm is O(n2). These dependencies allow noise events to

propagate in the system; if any of the participants in a collective operation is delayed by a noise event, it

has the potential to delay all of the participants. In contrast, the total number of dependencies are much
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Figure 9: Observed microbenchmark speedup achieved by using idealized nonblocking versions of different
collectives in a high-noise regime.

smaller in the binomial tree algorithm O(n log n); when the binomial tree is used for distribution, depen-

dencies only extend to ancestors in the tree. For example, all of the nodes are dependent on n0 but n0 has

no dependencies.

The significance of these dependencies emerges when we consider nonblocking collectives. The ide-

alized nonblocking collectives that we use in the simulator allow the application to make progress even

when the collective operation is delayed by the propagation of noise events. As a result, we see that non-

blocking collectives yield significant speedups in Figures 7 and 9. In contrast, the limited dependencies in

n0 n1

n2

n3

n4n5

n6

n7

(a) dissemination algorithm

n0

n4n1 n2

n3 n5 n6

n7

(b) binomial tree (distribution)

Figure 10: The round-by-round communication dependencies between eight nodes participating in collec-
tives based on: (a) the dissemination algorithm; and (b) the binomial-tree algorithm for distribution (e.g.,
MPI Bcast(), MPI Scatter()). Dependencies that arise in round 1 are shown in blue; dependencies that arise
in rounds 2 and 3 are shown in red and green, respectively. The arrows point in the direction of the de-
pendencies. For example, in round 1, n1 is dependent on n0 for both algorithms. This figure illustrates the
stark difference in the nature of the dependencies that are generated by the two algorithms.
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Figure 11: Comparison of our idealized non-blocking collectives to a scenario with no injected noise. For
each noise type, a speedup of 10 means that an application encountering no noise events completes 10 times
faster than it does using our idealized non-blocking collectives in the presence of noise.

binomial-tree-based collectives are less sensitive to participant delay and therefore benefit much less from

nonblocking collectives.

Comparison of non-blocking MPI Allreduce() to no injected noise. Lastly, we compare the perfor-

mance of our idealized non-blocking allreduce to a scenario with no injected noise. We use the speedup

metric described previously. In this case, speedup tells us how effective a non-blocking MPI Allreduce() is

at mitigating all noise impact on our applications. Figure 11 shows the speedup results for the three injected

noise types. From this figure we see that for nearly all the applications except for AMG, MPI Iallreduce()

mitigates all noise impact. AMG’s behavior can be explained in light of Figure 2; a significant portion of

AMG’s communication time is spent in another dissemination-based collective, MPI Allgather(), which as

we have discussed is subject to significant noise impact. This result underscores the potential performance

benefit of an MPI Iallreduce() in noisy environments.

5 Related work

Techniques for improving the overlap of communication and computation in MPI applications have been

thoroughly explored over the past decade. These techniques include offload [2] and nonblocking collec-

tives. Based on results showing the potential performance benefit of nonblocking collectives [20], Hoefler

et al. have argued for the inclusion of nonblocking collectives in the MPI standard [19]. They have also

developed a library that implements nonblocking versions of all of the MPI collectives and characterized

its impact on application performance [15]. Although the early work only briefly discusses system noise,

Hoefler et al. subsequently made the connection between nonblocking collective operations and OS noise

explicit [16].

Despite this body of research, our work is the first to examine the relationship between OS noise charac-

teristics and nonblocking collectives. We are also the first to explore how nonblocking collectives could be
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used to improve the performance of emerging resilience techniques (e.g., uncoordinated checkpointing).

6 Conclusion

Nonblocking collective operations are of increasing interest, not only as enablers of continued application

scalability but also as potential mitigators of OS noise effects. We have in this paper used a simulation ap-

proach to investigate how applications using an idealized nonblocking allreduce operation might respond

in the presence of different noise environments, at scales likely to be encountered in future extreme scale

systems. Our results indicate that, for noise caused by operating system activity, MPI Iallreduce() is un-

likely to provide much benefit. We suggest that, by themselves, nonblocking collective operations of other

types should not be automatically assumed to be able to mitigate such noise effects. However, we have

also shown that the effect of other noise types, such as that caused by checkpoint/restart activity, might

be usefully reduced by the introduction of nonblocking collectives. We have also demonstrated that the

algorithm used to implement a nonblocking collective may have a non-trivial effect on its performance

benefit. Application designers should consider carefully the characteristics of all the noise sources on their

target systems to decide whether refactoring their code to take advantage of nonblocking collectives will be

worthwhile.
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