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Abstract—Deep learning at scale is dominated by communi-
cation time. Distributing samples across nodes usually yields the
best performance, but poses scaling challenges due to global
information dissemination and load imbalance across uneven
sample lengths. State-of-the-art decentralized optimizers miti-
gate the problem, but require more iterations to achieve the
same accuracy as their globally-communicating counterparts.
We present Wait-Avoiding Group Model Averaging (WAGMA)
SGD, a wait-avoiding stochastic optimizer that reduces global
communication via subgroup weight exchange. The key insight
is a combination of algorithmic changes to the averaging scheme
and the use of a group allreduce operation. We prove the con-
vergence of WAGMA-SGD, and empirically show that it retains
convergence rates equivalent to Allreduce-SGD. For evaluation,
we train ResNet-50 on ImageNet; Transformer for machine
translation; and deep reinforcement learning for navigation at
scale. Compared with state-of-the-art decentralized SGD vari-
ants, WAGMA-SGD significantly improves training throughput
(e.g., 2.1× on 1,024 GPUs for reinforcement learning), and
achieves the fastest time-to-solution (e.g., the highest score using
the shortest training time for Transformer).

Index Terms—stochastic gradient descent, distributed deep
learning, decentralized optimization

I. INTRODUCTION

The introduction of deep learning is one of the most
important advancements in science over the past two decades,
powering industries from autonomous driving [1] to drug dis-
covery [2]. With the rise of deep neural networks, their training
evolved into a computationally-intensive task that consumes as
many resources as modern complex high-performance comput-
ing problems [3]. As a result, an abundance of research has
been conducted into its scaling and distribution [4].

The leading contenders for largest workloads in deep learn-
ing are Neural Language Models [5], [6], Deep Reinforcement
Learning (RL) [7], [8] and Neural Architecture Search [9].
In these regimes, computation time is measured in thousands
of “GPU days”, with some utilizing hundreds of accelerators
(GPUs, TPUs) for several weeks [7], [10], [11].

Distributed training is largely supported by data parallelism,
where sample evaluation is partitioned across processors. In
this mode of parallelism, all participants must exchange their
gradients or model, resulting in an Allreduce operation
across a cluster [12]. In practice, the exchange communica-
tion dominates the overall runtime [10], especially in large-
minibatch SGD. To exacerbate the problem, certain datasets
and environments are inherently imbalanced, e.g., with differ-
ent sentence/video lengths [13] or heterogeneous environments
in RL [14].

In order to mitigate the wait time for gradient/weight
exchange, existing approaches attempt to relax model con-
sistency between processors [4], [15]. Examples include
synchronous gossip-based SGD [16], [17], asynchronous
SGD [18]–[21], and asynchronous SGD with bounded stal-
eness [22]–[25]. Gossip-based SGD replaces the global allre-
duce by communicating with randomly selected neighbors.
Asynchronous SGD breaks the global synchronization to miti-
gate the effect of stragglers (slow processes). However, most of
these approaches adversely impact convergence, necessitating
an increase in the number of iterations [17], [26], sometimes
to the point where synchronous waits are preferable.

In this paper, we solve this problem by introducing Wait-
Avoiding Group Model Averaging (WAGMA) SGD, a novel
optimizer that combines group collective communication with
bounded staleness, in order to ensure competitive performance
with decentralized and asynchronous methods, while retaining
the convergence rate of synchronous model-averaging SGD.
WAGMA-SGD locally communicates model updates across
subgroups of processors, mitigating the need for global com-
munication at every training iteration. Specifically, we propose
to use a group allreduce operation for model averaging, in
which the fastest process will trigger exchanges within all
subgroups. Grouping is performed dynamically to facilitate
model update propagation, and as a result not only speeds up
communication, but also mitigates the effect of unbalanced



workloads, all without harming convergence in practice.
We theoretically prove the convergence of WAGMA-SGD,

showing that, for certain parameter values, its convergence
rate is comparable to synchronous SGD with model averag-
ing. Subsequently, we test the algorithm on a supercomputer
equipped with GPUs for three different categories of deep
learning: supervised image classification on the ImageNet
dataset; semi-supervised language modeling on the WMT17
translation dataset; and deep reinforcement learning on the
Habitat indoor navigation dataset. We show that both theoret-
ically and empirically, WAGMA-SGD is favorable over other
asynchronous algorithms and the baselines, which makes it an
excellent approach for scaling up distributed deep learning.

Our main contributions are:
• We propose a novel asynchronous decentralized optimizer

— WAGMA-SGD, and realize it based on a wait-avoiding
group allreduce operation.

• We theoretically analyze the convergence of WAGMA-
SGD, showing that, under reasonable parameter values, it
converges at the same rate as SGD, with linear speedup due
to parallel updates.

• Compared with state-of-the-art decentralized SGD,
WAGMA-SGD significantly improves the training
throughput (e.g., 2.1× on 1,024 GPUs on RL), and
achieves the fastest time-to-solution for all three evaluated
tasks (e.g., the highest score using the shortest training
time for Transformer).

II. BACKGROUND AND RELATED WORK

Deep neural networks are primarily trained with mini-batch
stochastic gradient descent [27]. Let b be the batch size, Wt

the neural network weights at step t, (xi, yi) a set of samples
of size b, and ` a loss function. We compute the loss for each
sample as zi = `(Wt, xi, yi) and then a stochastic gradient as

Gt =
1

b

b∑
i=0

∇`(Wt, zi).

SGD then iterates steps such that Wt+1 = Wt − ηtGt. In
more general terms, first-order stochastic gradient update rules
can take different forms (e.g., by adding a momentum term),
which is represented as Wt+1 = Wt + U

(
Gt,W(0,...,t), t

)
.

In distributed environments with P processors, b denotes
the local batch size per processor. We refer to Ben-Nun &
Hoefler [4] for a general overview of distributed deep learning.

Thanks to the robustness of stochastic optimization, in
distributed environments one can relax weight updates by
varying several axes, trading off communication overhead for
convergence. Data-parallel distributed SGD algorithms can be
broadly identified by answering the following five questions:
Q1. What are we averaging?

There are two typical approaches for aggregating distributed
updates: gradient and model averaging. When performing
gradient averaging, we simply compute Gt as the average over
the global batch size. With standard model averaging, the SGD
update is applied locally at the node, and then the resulting
model Wt+1 is averaged over all processors.

Complementary to these approaches is the degree of quanti-
zation or sparsity in the exchanged updates. As these concepts
are out of the scope of this paper, we refer to Tang et al. [15]
for a comprehensive survey.
Q2. Who is coordinating the averaging?

Earlier implementations of distributed SGD for deep learn-
ing [28] use a centralized coordination architecture, where a
parameter server or other coordinator maintains a master copy
of the model that workers use. As this approach does not
scale to large numbers of processors, a decentralized global
clock can be synchronized across workers, where each worker
maintains a local replica of the model and communicates
updates to other workers directly.

To mitigate the overheads of global communication and
synchronization, several decentralized instances of SGD have
been proposed, e.g., [16], [17], [20], [26], where each worker
maintains a local model but communicates updates in separate
schedules, rather than synchronizing globally.
Q3. How old (stale) can averaged components be?

In a synchronous system, model or gradient averaging
occurs when all processes are on the same training itera-
tion t. This does not guarantee that every worker uses the
same parameters (i.e., consistent model), however, standard
parameter server or globally-coordinated methods ensure all
workers have a consistent model. In an asynchronous system,
averaging can occur between workers at any point. We thus
define the staleness of models/gradients by τ , indicating how
many iterations have passed since the produced value’s model
was updated. A bounded staleness system mitigates conver-
gence issues with asynchronous systems by ensuring that the
difference in the number of training iterations between the
slowest and fastest processor is bounded, using τ as a proxy.
Q4. How often are we globally averaging?

While bounded and unbounded staleness SGD variants do
not adhere to rigid communication schedules, some algorithms
may periodically synchronize all processors’ model replicas.
This ensures not only the staleness is bounded by τ but
also the consistency of the model is retained throughout
training, mitigating its divergence across processors. In other
algorithms, this global consensus is achieved post-training, by
choosing the model average or the model with best general-
ization scores. Note that under this nomenclature, synchronous
variants’ global average frequency is one step.
Q5. How many learners are averaging at every step?

In the steps between the aforementioned global model
averaging period, decentralized SGD variants perform local
averages with a certain group (or quorum) size S, leveraging
the fact that several averaging steps can be performed in
parallel. Removing the global communication bottleneck in
decentralized SGD has been shown to enable scaling to
tens and even hundreds of nodes [16], [17], [20]. However,
performing averaging in pairs does come at the cost of worse
convergence: in particular, early proposals on decentralized
algorithms [16], [20] lose accuracy with respect to the syn-
chronous baseline at scale, while more recent work [17],
[26] observe that the algorithms can achieve full accuracy if
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TABLE I: Classification of data-parallel SGD variants.

Coordination Staleness Gradient Averaging Model Averaging

Centralized

None Parameter server [29], P3 [30] —
Unbounded Hogwild! [18], Downpour SGD [28], AASGD [31] SAPS-PSGD [32]
Bounded SSP [22], Rudra [33], Softsync SGD [34], Gaia [35], k-async

SGD [36], Qsparse-local-SGD [37], Hybrid sync/async [38]
EASGD [23], Federated learning [39], [40]

Decentralized,
S = P

None Allreduce-SGD [41]–[44] BMUF [24]
Unbounded — One-shot SGD [45], SimuParallelSGD [46]
Bounded Eager-SGD [13], SFB [47], Gradient lag [48] —

Decentralized,
S =
√
P

None — —
Unbounded — —
Bounded — FWAGMA-SGDF

Decentralized,
S = O(1)

None — D-PSGD [16], SGP [17]
Unbounded GossipGraD [21], Choco-SGD [49] AD-PSGD [20], Gossiping SGD [50], SwarmSGD [26]
Bounded CDSGD [51] Local SGD [25], [52]–[55]

executed for more iterations than the synchronous baseline:
in particular, they execute between twice and four times more
SGD iterations in total, relative to the synchronous baseline,
erasing much of the speedup due to increased scalability. This
decreased convergence behavior is connected to the analytical
bounds provided by these algorithms: while the theoretical
convergence rates suggest linear speedup with respect to the
number of SGD steps and executing nodes, these rates only
apply after a very large number of SGD steps have been taken,
in order to allow the pairwise averaging process to “mix” well,
thereby simulating all-to-all averaging. See Section IV-A for
a detailed discussion.

A. Training at Scale

An orthogonal challenge to distributed stochastic optimiza-
tion is that of unbalanced workloads. Imbalance may be caused
by the training system [13], [20], [56] or by the task itself [13],
[14]. Training on multi-tenant cloud systems can suffer from
performance variability due to resource sharing. Several deep
learning tasks, such as video classification and machine trans-
lation, have inherent load imbalance, because input/output
sequences have different lengths [13]. In deep reinforcement
learning, an agent must interact with the environment to
generate training data. For RL tasks using heterogeneous en-
vironments [14], the runtime of training data generation varies
significantly. Quantitative profiling for the load imbalance of
language modeling and reinforcement learning is presented in
Section V-C and Section V-D, respectively.

Beyond deep learning, allreduces have a long history within
the HPC community [57]–[68] and nonblocking versions have
been used to improve performance [69]. Particular imple-
mentations have become widely-used within the deep learn-
ing community, including Baidu-Allreduce [41], NCCL [43],
Gloo [44], and Horovod [42]. Most deep learning frameworks
incorporate support for distributed training, either via parame-
ter servers or allreduces [28], [70]–[72]. Communication com-
pression is another common (and complementary) approach to
reducing communication overhead [73]–[82]. Communication

may also be impacted by different approaches to partitioning
layer parameters, such as model parallelism [83]–[88].

B. Comparison Targets

In Table I we summarize and classify the distributed SGD
algorithms most relevant to our work. Algorithms in bold
are used for comparison in this work. Since decentralized
algorithms typically scale and perform better on large-scale
systems than centralized algorithms, we limit our comparison
to decentralized algorithms.

The algorithms we compare our evaluation with are chosen
specifically to be spread across the different answers to the
above five questions, prioritizing popular algorithms with
proven convergence, both in theory and in practical deep
learning applications:
• Allreduce-SGD is the standard data-parallel training.
• Local SGD [25], [52], [54] performs a fixed number of

local iterations of SGD (a hyperparameter determined by
the user) and then averages the models over all processes
with a standard allreduce. Several variants with different
methods for determining the frequency of global averaging
exist.

• Decentralized parallel SGD (D-PSGD) [16] uses a ring
topology, where each process averages its local model with
its two neighbors. Processes advance synchronously with a
single global clock.

• Stochastic gradient push (SGP) [17] generalizes the topol-
ogy used in D-PSGD to support more flexible, asymmetric
communication patterns.

• Eager-SGD [13] uses partial collective allreduces over the
gradients, allowing at most half processors to contribute
stale gradients if not ready.

• Asynchronous decentralized parallel SGD (AD-PSGD) [20]
extends the idea of D-PSGD by allowing processors to
communicate updates at any point in time.
These cover nearly all varieties of consistency and averag-

ing, as well as practical differences in communication patterns.
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C. Discussion

Following the discussion on the impact of quorum size on
convergence (Q5), it is natural to ask whether performing
decentralized averaging in larger groups would be able to
provide the best of both worlds, enabling the full convergence
of the synchronous algorithm, and the scalability of fully de-
centralized ones. There are two main barriers to this solution:
the first one is at the implementation level, since, to our
knowledge, no efficient non-blocking implementation of group
model averaging exists. The second is at the application level,
since it is not clear whether group averaging would be able
to achieve the same convergence as the synchronous solution
(both in theory and in practice). In the following sections, we
address both of these issues.

III. WAIT-AVOIDING GROUP COMMUNICATION

The allreduce collective operation [12] is defined as a
reduction whose results are shared among all participants.
Although serveral optimizations [41], [58] have been designed
to improve the performance of this collective, allreduce poses
an implicit global synchronization point, which makes it
vulnerable to stragglers during deep learning training. On
larger systems, the performance of the compute nodes can
be impacted by different internal (e.g., load imbalance) and
external factors (e.g., OS or network [89] noise), potentially
increasing the synchronization overhead. We define this col-
lective as synchronous allreduce. While non-blocking collec-
tives [90] can alleviate the synchronization overhead, they do
not fully remove it and completion still waits. Even if the
participating processes are perfectly synchronized, the optimal
scaling of an allreduce of size N is at best O (logP +N)
for P processes [10], [91]. Therefore, growing process counts
will reduce the parallel efficiency and eventually make the
reduction a scaling bottleneck.

A. Wait-Avoiding Group Allreduce

To overcome the synchronization overhead and overall
collective cost, we introduce a new class of wait-avoiding
group collectives, focusing on group allreduce for the purpose
of this work. We relax synchronization by making the col-
lectives externally-triggerable [13], [92], namely, a collective
can be initiated without requiring that all the processes enter
it, by externally activating the communication schedule of
late processes with activation messages sent by the early
ones. Once activated, a group allreduce does not perform a
global reduction. Instead, it partially reduces the data within
non-overlapping groups of processes, limiting the number of
communications needed to implement the group collective.

1) Collective activation: In a wait-avoiding group allre-
duce, any process can make progress regardless of what
the other processes are working on. This wait-avoidance is
achieved by the activation component. We call the process
reaching the collective call first the activator. The activator is
in charge of informing all the other processes that an allre-
duce operation has started and that they have to participate,
regardless of whether they reached the collective call-site.

Activation

P0 P1 P2 P3

Group 
allreduce

Group0

Group1

P0 P1

P2 P3

Fig. 1: Wait-avoiding group allreduce on four processes with a
group size of two. P1 arrived first and activates the operation.

In a wait-avoiding group allreduce, any process can initiate
the collective. We use a modified version of the recursive
doubling algorithm that builds a butterfly topology, which can
be seen as a set of overlapping binomial trees, one rooted
at each process. Any node can activate the collective by
sending activation messages along the binomial tree rooted
at itself. Fig. 1 shows an example where P1 is the activator. In
this case, P1 uses its broadcast tree and sends the activation
messages to P0 and P3. Once activated, P0 first forwards the
activation message to P2, after which it starts executing its
group allreduce schedule.

It is possible that several processes arrive at the wait-
avoiding group allreduce operation at close proximity, which
means we may have more than one activator during the
activation phase. To guarantee that a process does not execute
the same collective twice, we assign each operation a version
number that is increased every time the collective is executed.
The collective version number is encoded in the tag of
the activation messages: once an activation is received, the
collective schedule is activated only if its version number is
lower or equal than the one carried by the activation message.
The version number check is executed also when a process
reaches the collective call: if it fails, then the version of the
collective that the process wants to activate has already been
executed (and the process has passively participated in it). In
this case, no activation messages are sent.

2) Asynchronous execution: To enable asynchronous execu-
tion of the custom collectives, we extend the fflib commu-
nication library [92], adding support for wait-avoiding group
allreduce. fflib allows programmers to customize collective
operations via a flexible, DAG-based representation of point-
to-point and local compute operations, defined as schedules.
The library provides a C-based interface for schedule creation
and nonblocking invocation, using MPI as its primary backend,
with additional support for network offloading engines such as
sPIN [93]. Our defined schedule for group operations models
both the activation and group allreduce phases.

B. Dynamic Grouping Strategy

As discussed in Section II, in data-parallel SGD variants
such as allreduce SGD [42], [94] and gossip SGD [16], [17],
[20], each process keeps propagating local model updates to all
the other processes at every iteration to make global progress.
We propose a dynamic grouping strategy to reduce the latency
(in steps) of local update propagation. Together with the
group allreduce operation, the grouping strategy guarantees
that the local updates can be globally propagated within logP
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iterations. The larger the group size, the faster the updates
are propagated. By carefully selecting the group size, we can
achieve both lower latency than gossip SGD and efficient
communication by reducing contention.

Algorithm 1 Dynamic grouping strategy
1: Input: Total P processes. S is the group size. t is the training iteration.
2: mask = 1, global_phases = log2P , group_phases = log2S
3: shift = (t∗group_phases) mod global_phases
4: make each process an individual group . initialize P groups
5: for r = 1 to group_phases do
6: mask <<= shift . bitwise left shift on mask
7: for p = 0 to P − 1 do
8: q = p XOR mask . equivalence relation p ≡ q
9: Find groups: p ∈ group_p, q ∈ group_q

10: if group_p 6= group_q then
11: Merge groups: group_merge = group_p ∪ group_q
12: end if
13: end for
14: shift = (shift+1) mod global_phases
15: end for . processes are partitioned into P/S groups in iteration t

We define the dynamic grouping strategy in Algorithm 1.
We assume the number of processes P is a power-of-two,
which is a common case in current distributed training sys-
tems. The group size S (≤ P ) is also set to a power-of-two.
In line 2, we initialize the mask, and calculate the number
of phases in a butterfly topology for P and S processes,
respectively. Line 3 initializes the shift. In each training itera-
tion t, the algorithm first initializes P groups, each of which
contains one process (line 4). In line 8, an equivalence relation
between each pair of processes is found using the bitwise XOR
operation. For a pair of processes with an equivalence relation
(i.e., p ≡ q), we find the groups p and q belong to, respectively
(line 9); if p and q are not in the same group, we merge the
two groups into one using the union operation (lines 10–12).
In line 15, all the processes will have been partitioned into
P/S groups in iteration t. Note that the initial value of shift
is periodically changing in every iteration (line 3), which, in
turn, changes the group composition in every iteration.

To demonstrate dynamic grouping, we use P = 8 and
S = 4 as an example. In iteration 0, all processes are initially
partitioned into 8 groups. The set of equivalence relations
includes 0 ≡ 1, 2 ≡ 3, 4 ≡ 5, 6 ≡ 7, 0 ≡ 2, 1 ≡ 3,
4 ≡ 6, and 5 ≡ 7. By recursively merging the two groups in
which a pair of processes with a equivalence relation belongs
to, we obtain two non-overlapping groups, which contain the
processor sets {0, 1, 2, 3} and {4, 5, 6, 7}. In iteration 1,
the set of equivalence relations changes; thus, the grouping
changes accordingly (i.e., {0, 1, 4, 5} and {2, 3, 6, 7}).

Note that we only use Algorithm 1 to formally describe the
grouping strategy. The grouping strategy together with allre-
duce within each group is implemented concisely following
the phases of the butterfly topology, namely each pair of pro-
cesses with a equivalence relation in a phase would exchange
messages. We use the variable t to change the phases that
should be executed in the current iteration. Fig. 2 presents the
iterative execution of group allreduce with dynamic grouping
in WAGMA-SGD, and grouping is shown on the right side.

P0 P1 P2 P3

...
...

t=0

t=1

t=2

t=

P4 P5 P6 P7
P0 P1

P2 P3

P4 P5

P6 P7

P0 P1

P2 P3

P4 P5

P6 P7

P0 P1

P2 P3

P4 P5

P6 P7

P0 P1

P2 P3

P4 P5

P6 P7

Activation

Activation

Group 
allreduce

Group 
allreduce

Activation

Group 
allreduce

Synchronous
global

allreduce

Fig. 2: Communication scheme of WAGMA-SGD. Total 8
processes and the group size is 4. Every τ iterations, the
algorithm synchronizes globally.

Algorithm 2 WAGMA-SGD
1: Input: b is local batchsize for P processes. S is the group size of the

processes. τ is the synchronization period.
2: for t = 0 to T − 1 do
3: ~x, ~y ← Each process samples b elements from dataset
4: ~z ← ` (Wt, ~x, ~y)
5: Glocal

t ← 1
b
Σb

i=0∇` (Wt, ~zi)

6: ∆Wt ← U
(
Glocal

t ,W(0,...,t), t
)

7: W ′
t ←Wt + ∆Wt

8: if (t+ 1) mod τ 6= 0 then
9: W sum

t ← wait-avoiding_group_allreduce (W ′
t , t)

10: if W ′
t is not stale then

11: Wt+1 ← 1
S
W sum

t
12: else
13: Wt+1 ← 1

S+1
(W sum

t +W ′
t )

14: end if
15: else
16: Wt+1 ← 1

P
sync_allreduce (W ′

t )
17: end if
18: end for

We can see that although the group size is fixed, the groups
are dynamically changing during the iterations. Within each
group, the allreduce is conducted following log2 S phases
of the butterfly topology. To maintain convergence with this
communication scheme in data-parallel deep learning training,
a standard synchronous allreduce across all the processes is
conducted every τ iterations, bounding the staleness of the
weights. In the following section, we present the algorithm in
detail and further discuss this periodic synchronization.

IV. WAIT-AVOIDING GROUP MODEL AVERAGING

Based on the insight that larger groups converge faster, and
on the novel implementation of wait-avoiding group collec-
tives, we design the Wait-Avoiding Group Model Averaging
(WAGMA) SGD algorithm. The algorithm can be classified
as a model-averaging, bounded-staleness, decentralized SGD
with a group size of S ∝

√
P and a global communication

period of τ steps. As listed in Algorithm 2, WAGMA-SGD
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is similar to minibatch SGD, but makes a few important
distinctions.

In lines 3–7, each process calculates the local gradients
Glocalt and then applies the local gradients to derive and apply
the model update ∆Wt, as in distributed SGD. Subsequently,
the wait-avoiding group model averaging is conducted (lines
8–17) using the aforementioned wait-avoiding communication
scheme. From an algorithmic perspective, WAGMA-SGD does
not rely on certain choice of group members for the local
collectives. However, instead of randomly choosing groups
of processes, we use the butterfly strategy (Algorithm 1) for
topology-aware, efficient, deterministic communication.

In each iteration, faster processes will trigger the model
averaging immediately without waiting (line 9, t is used to
control grouping), which may incur averaging the local models
with some stale models from the slower processes. To both
bound the staleness and mitigate divergence across local model
replicas, we define a synchronization period τ , in which the
models are averaged across all the processes using a global
allreduce (line 16). Empirically, we set the synchronization
period τ to 10 training iterations, which balances model accu-
racy with training throughput, as we will show in Section V.

An execution snapshot of WAGMA-SGD (P = 4 and
S = 2) is presented in Fig. 3. Suppose P1 is a straggler.
When the group allreduce in iteration t is triggered by any
of the other three processes, P1 contributes the stale model
parameters W 1′

t−1 while the other three processes contribute
up-to-date models. In iteration t, P1 and P0 are in the same
group; therefore, W 1′

t−1 and W 0′

t will be added together to
derive W sum

t . P0 will use the averaged model W 0
t+1 for the next

iteration of training. P1 subsequently finishes the calculation
for the local updated model in iteration t (i.e., W 1′

t ), but
finds out that the group allreduce in iteration t is already
finished. In this case, it will average the stale model W 1′

t with
W sum
t (line 13 in Algorithm 1), and the averaged model W 1

t+1

will be used for the next iteration of training. Meanwhile,
the data in the send buffer of P1 is updated by W 1′

t . If the
group allreduce in iteration t + 1 is triggered by some faster
process at this time, P1 will continue to passively contribute
the stale model W 1′

t . When a standard allreduce is called at the
synchronization point, it forces all the processes to contribute
the model parameters after training for the same number of
iterations. In Fig. 3, P1 catches up with the other processes in
iteration t+ 1; thus, it will contribute the timely model W 1′

t+1

to P3, as they are in the same group.

A. Proof of Convergence

1) Algorithm Modelling: For analysis purposes, we will
model the algorithm’s execution as follows. We will proceed
in steps, indexed by time t ≥ 0. Each node i maintains its own
local model W i

t , and has a local partition of the data. In each
step, a group of nodes of size S is chosen to interact. Each
node takes a local gradient step, and then nodes average their
models. This averaging step might be inconsistent, as per the
above semantics.

P0

wt
0' wt-1

1'sbuff0

rbuff0

sbuff1

rbuff1

wt
sum

wt+1
0 wt

sum= /2

wt
sum

wt
1'

wt+1
1

(wt
1' t

sum /3+
=

w  )

sbuff1

wt
1'

wt+1
1'

wt
2' wt

3'sbuff2

rbuff2

sbuff3

rbuff3

wt
sum

wt+1
2 wt

sum= /2

wt
sum

wt+1
3 wt

sum= /2

rbuff1

sbuff3

rbuff3

wt+1
3

wt+1
3'

wt+1
sum wt+1

sum

wt
1'sbuff1

wt+1
1'

Computation thread Communication thread

......

P1 P2 P3

'
ITER t+1

ITER t+1

ITER t+1 ITER t+1

ITER t

ITER t ITER t ITER t

... ...wt+2
1 =wt+1
sum/2

wt+2
3 =wt+1
sum/2

wt
0' wt-1

1' wt
2' wt

3'

Fig. 3: Execution snapshot for WAGMA-SGD for P=4 and
S=2.

In the analysis, we will assume that the group of S inter-
acting nodes is chosen uniformly at random—in the long run,
the resulting interaction graph will have the same properties as
the butterfly interaction strategy used in the implementation.
While our analysis considers each interaction sequentially, in
practice Θ(P/S) interaction steps can occur in parallel.

2) Setup and Analytic Assumptions: We will assume a
standard setting in which we are given a dataset of D samples
D = {e1, e2, . . . , eD}, and to each associate a differentiable
loss function fe : Rd → R. Each node i is given a random
partition Di of the dataset E , and we wish to solve an empirical
risk minimization problem by finding

x? = argminx∈Rd

[
F (x) :=

1

D

∑
e∈D

fe(x)

]
.

Let Fi = P
D

∑
e∈Di

fe be the loss function corresponding
to the dataset of the ith node, and F ? = F (x?). To make
the analysis tractable, we will make the following standard
assumptions on the loss function.

Assumption 1. We assume the following hold:
1) (Lipschitz gradients) All functions fe have L-Lipschitz

gradient, for some constant L.
2) (Bounded Second Moment) There exists a constant M such

that for any node i and w ∈ Rd, Ee∈Di
‖∇fe(w)‖2 ≤M2.

3) (Bounded Staleness) The staleness during the averaging
step is upper bounded by a parameter τ . That is, for
any node i participating in the averaging step at time t,
averaging is performed with respect to model W i

t′ , where
t′ ≥ t−τ+1, and every gradient update is applied globally
at most τ steps after it was generated.

3) Convergence result: We can now state the main con-
vergence result. For readability, we state a simplified variant
that highlights the relationship between parameter values, in
particular the relation between the convergence time T , P
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processors, and the size of the interacting group S. We provide
a detailed proof in the supplementary.

Theorem 1. Consider the setting described above, in which
we wish to optimize a non-convex function F : Rd → R. Let
S be the size of a communication group, and assume that
the maximum staleness τ is constant. Fix a success parameter
ε > 0. For each time t, we define µt =

∑P
i=1W

i
t to be the

average of local models at time t. Then there exists a setting
of the learning rate in the order of P/

√
T such that, if the

algorithm has taken

T = Ω

(
max

{
(F (W0)− F ?)2

ε2
,
S4M4L4

ε2
, P 4τ4

})
steps,

then there exists an iterate 0 ≤ T ? ≤ T such that

E‖∇F (µT?)‖2 ≤ ε,

where the expectation is taken w.r.t. the randomness in the
sampling and interactions.

At a high level, this claim shows that the algorithm will
eventually reach a point where the model average has neg-
ligible gradient, i.e., is at a local minimum. While this does
not guarantee convergence to a global minimum, it matches
the best achievable guarantees for SGD in the non-convex set-
ting [95]. The convergence proof, provided as additional mate-
rial, generalizes the decentralized asynchronous framework of
Nadiradze et al. [26] since we allow for group communication,
whereas they only consider pairwise interactions.

It is interesting to examine the rate at which convergence
occurs — for standard parameter settings, i.e. constant τ , S,M
and L, the convergence (i.e., the rate at which we get to a point
of negligible gradient) matches that of standard SGD, and the
speedup with respect to the number of nodes can be linear
in P . More precisely, we can examine the three terms in the
lower bound on the number of steps T to convergence given
by the Theorem. The first is the standard convergence rate for
SGD. (Recall however that we express this bound in terms
of total steps, whereas P/S such steps can occur in parallel.)
The second bounds the impact of the variance on the total
number of iterations, wheras the third suggests that, to negate
the impact of asynchrony, the algorithm has to execute for at
least P 4τ4 steps. The convergence ensured by the first term is
the best possible, and matches the rates for other decentralized
algorithms, e.g. [16], [20]. We encourage the interested reader
to refer to the convergence proof in the Appendix.

V. EXPERIMENTAL EVALUATION

We conduct our experiments on the CSCS Piz Daint su-
percomputer. Each Cray XC50 compute node contains a 12-
core Intel Xeon E5-2690 CPU with 64 GB RAM, and one
NVIDIA Tesla P100 with 16 GB memory. The compute nodes
are connected by Cray Aries interconnect in a Dragonfly
topology. The communication library is Cray MPICH 7.7.2.
We use one MPI process per node and utilize the GPU for
acceleration in all following experiments. We evaluate three
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Fig. 4: Throughput comparison between different parallel SGD
algorithms for ResNet-50 on ImageNet with simulated load
imbalance. Local batch size is 128. (AD-PSGD achieves the
highest throughput but with much less accuracy.)

different deep learning problems, including image classifica-
tion (ResNet-50 [96] on ImageNet [97]), machine translation
(Transformer [98] on WMT17), and deep reinforcement learn-
ing (PPO [14] for navigation in Habitat [99]). For throughput
tests, we run the number of nodes until reaching a point where
batch size is too large to converge [100].

A. Baselines

We compare our WAGMA-SGD with the state-of-the-art
data-parallel SGD variants, including Allreduce-SGD [42],
[94], local SGD [25], [52], gossip-based SGD variants (D-
PSGD [16], AD-PSGD [20], and SGP [17]), and eager-
SGD [13]. Unless mentioned specifically, the synchronization
period of local SGD is set to one, namely calling a standard
allreduce to average the models in each training iteration,
which essentially is a synchronous SGD. For SGP, we evalu-
ate its performance with different number of communication
neighbors [17]. For more detailed discussion about the base-
lines, please refer to Section II.

B. Image Classification with Simulated Workload Imbalance

Residual Networks (ResNet) [96] are pervasively used in
computer vision tasks. To evaluate their performance, we
train ResNet-50 v1 (total 25,559,081 trainable parameters)
on ImageNet using TensorFlow [71] as the basic platform.
Although the training workload is balanced due to the input
size being fixed, performance variability is observed when
training on multi-tenant cloud systems [13], [20], [101] due to
resource sharing. To simulate the same degree of imbalance,
we randomly select two processes at every training step to
inject a certain amount of delay (320 ms). This simulated
load imbalance also helps us to compare the robustness of
the parallel SGD variants with the most popular deep learning
benchmark. For WAGMA-SGD, we set the synchronization
period τ = 10, and the group size S =

√
P . Both P and S

are power-of-two in our experimental configuration.
Fig. 4 shows the training throughput as the number of

GPU nodes increases from 4 to 256, and the top of the
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rectangle wrapping each cluster indicates the ideal throughput
without communication overhead. Compared with local SGD,
Allreduce-SGD (implemented in Deep500 [94]), D-PSGD,
SGP (two communication neighbors), and eager-SGD when
training on 64 GPU nodes, WAGMA-SGD achieves 1.25x,
1.26x, 1.23x, 1.25x, and 1.13x speedup, respectively. The
speedup becomes larger as the number of GPU nodes increases
to 256: WAGMA-SGD achieves up to 1.37x speedup. The
only algorithm with higher throughput than WAGMA-SGD
is AD-PSGD, in which the asynchronous communication is
completely overlapped with the computation. These results
show that WAGMA-SGD can better handle the unbalanced
workload than the synchronous SGD algorithms (i.e., local
SGD, Allreduce-SGD, D-PSGD, and SGP), as well as the
bounded-staleness eager-SGD variant. In the latter case, while
staleness is bounded, the algorithm still conducts a global
collective communication for gradient averaging in each train-
ing iteration. In contrast, WAGMA-SGD keeps the collectives
within each group, and thus has a better parallel scalability.
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Fig. 5: Top-1 validation accuracy of ResNet-50 on ImageNet
training for 90 epochs using 64 GPU nodes. Each point is at
the boundary of every 10 epochs.

Fig. 5 presents the Top-1 validation accuracy when train-
ing for 90 epochs on 64 nodes, with a total batch size
of 4,096 and simulated load imbalance. We can see that
the accuracy of WAGMA-SGD (75.3%) is very close to
the standard Allreduce-SGD (75.9%, in accordance with that
in MLPerf [102]) and local SGD (75.6%), and the slightly
decreased accuracy is caused by the staled model parame-
ters in the unbalanced workload environment; WAGMA-SGD
significantly reduces the training time (e.g., 1.45x, 1.54x,
and 1.63x speedup over SGP, local SGD, and Allreduce-
SGD, respectively). Gossip-based SGD algorithms, such as
D-PSGD and the higher-throughput AD-PSGD, attain much
lower accuracy (71.3% and 66.9%, respectively) than the other
variants. This can be explained by the fact that the algorithms
have not fully converged, requiring more steps to be taken
to achieve comparable accuracy [26]. For SGP, we set and
tune the number of communication neighbors to achieve the
highest generalization using a directed exponential graph [17],
which causes it to achieve higher accuracy (74.8%) than D-

PSGD and AD-PSGD, yet still lower than WAGMA-SGD.
Note that the default setting for the number of communication
neighbors in SGP is one, whereas we set it to two for better
generalization performance. Overall, WAGMA-SGD achieves
the highest accuracy-vs-time among all parallel SGD variants
and quite robust to the unbalanced workloads.

By setting the group size S =
√
P = 8, WAGMA-SGD has

a faster model update propagation speed (globally propagate
only using logS P = 2 iterations) than the gossip-based
algorithms (globally propagate using at least log2 P = 6 iter-
ations), which makes WAGMA-SGD achieve higher accuracy.
This is consistent with our analysis in Section IV-A.

To further analyze the convergence properties of WAGMA-
SGD, we conduct additional experiments. ¶ In the first
experiment, we remove the wait-avoiding group collectives in
WAGMA-SGD and only keep standard allreduce operations on
the synchronization points, which is essentially equivalent to
local SGD with a synchronization period τ = 10. This causes
the top-1 validation accuracy to sharply drop to 68.5%. ·
In a second experiment, we execute group model averaging
without using the dynamic grouping strategy (i.e., the groups
are fixed). In this case, the top-1 validation accuracy drops
to 72.2%. ¸ We also experiment with increasing the group
size to 64 (i.e., a global collective). While accuracy does not
increase, the throughput drops by factor of 1.24x. ¹ Lastly,
we decrease the group size to 4 and observe that the top-1
validation accuracy drops to 72.8%.

The results from experiments ¶ and · indicate that the
combination of group allreduce operations and the dynamic
grouping strategy is essential to achieve good generalization
performance. The results from experiments ¸ and ¹ demon-
strate that S =

√
P empirically exhibits the best performance

among different group size settings.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
un

tim
e 

(s
ec

on
ds

)

Fig. 6: Runtime distribution of different sentences on a P100
GPU for a Transformer network on WMT17.

C. Machine Translation
Transformers are sequence-to-sequence transducers that can

be used to translate a sequence of words from one language to
another. We use the standard-sized Transformer network [98],
which has 61,362,176 trainable parameters, to train English
to German translation WMT17 dataset using TensorFlow as
the basic platform. While training the model, the computation
overhead changes with the length of the input and output sen-
tences. The samples in the training dataset typically consist of
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sentences in various lengths and thus the training workload is
unbalanced. As shown in Fig. 6, even when using a bucketing
strategy to group sentences with similar lengths, there is a
high variance in workload size between samples. Specifically,
in our experiment each local batch contains equal number of
sentences sampled from a randomly selected bucket, where
the maximum local batch size is set to 8,192 tokens. For
WAGMA-SGD, we set the synchronization period τ = 8 and
the group size S =

√
P .
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Fig. 7: Throughput comparison between different parallel SGD
algorithms for Transformer on WMT17.

Fig. 7 presents the training throughput as the number of
GPU nodes increases from 4 to 64, where the top of the
rectangle indicates the ideal throughput without communica-
tion overhead. On 16 GPU nodes, WAGMA-SGD achieves
the highest throughput, compared with local SGD, Allreduce-
SGD (implemented in Horovod [42]), D-PSGD, AD-PSGD,
and SGP (one communication neighbor). When the number
of GPU nodes increases to 64, as with image classification
WAGMA-SGD exhibits a lower throughput than AD-PSGD
but higher than all the other variants. Observe that on 64
nodes, all the algorithms perform far worse than the ideal
throughput. We believe that this effect stems from the balance
of the number of parameters (occupying 245 MB alone) vs.
the operational intensity to compute backpropagation. Since
transformer networks mostly consist of tensor contractions
implemented as batched matrix products, which utilize GPUs
well, communication overhead dominates and not even AD-
PSGD manages to overlap communication with computation.

As for accuracy, Fig. 8 presents the BiLingual Evaluation
Understudy (BLEU) score (higher is better) on the test dataset
after training for 10 epochs on 16 nodes. D-PSGD and
AD-PSGD, have lower score (25.69 and 25.21, respectively)
than the other SGD variants, likely because of the slower
model update propagation. SGP (1n, i.e., one communication
neighbor) achieves higher score (i.e., 25.75) than D-PSGD and
AD-PSGD. After increasing the number of communication
neighbors to two in SGP (2n), the score increases to 26.01
(equivalent to local SGD, 25.98). However, this accuracy
increase comes at the cost of reduced training speed compared
with SGP (1n). Among all SGD variants, WAGMA-SGD not
only achieves the highest score (i.e., 26.12, higher than 25.00
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Fig. 9: Runtime distribution of experience collecting on a P100
GPU in heterogeneous environments.

which is claimed in MLPerf [102]) but also uses the shortest
training time (e.g., 1.48x, 1.10x and 1.39x speedup over SGP
(2n), AD-PSGD, and local SGD, respectively).

We conduct additional experiments for WAGMA-SGD, sim-
ilarly to Section V-B: (1) Without using the dynamic grouping
strategy (i.e., fixed groups), the score drops to 24.79; (2)
By increasing the group size to 16 (i.e., global collective),
accuracy does not improve and training throughput drops by a
factor of 1.28x; and (3) By decreasing the group size to 2, the
score drops to 24.53. These results reaffirm the conclusions
from image classification.

D. Deep Reinforcement Learning

Due to the inherent characteristics of the problem, reinforce-
ment learning poses a more challenging training process over
supervised and semi-supervised learning. This also applies to
the heterogeneity in workloads during training — since the
problems in question involve interacting with an environment
in episodes (where failure terminates an episode early), a
variety of episode lengths may occur within a single minibatch,
in a way that cannot be anticipated or categorized in buckets.

We use the popular Proximal Policy Optimization (PPO)
policy gradient optimizer [14] to train a model for robot
navigation on a meta-dataset called Habitat [99], which is
composed of multiple heterogeneous environments. We first
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confirm previous claims [14] and our own in Fig. 9, where we
collate the runtime distribution of 5,000 training iterations. The
runtime is very widely distributed: from 1.7 seconds to 43.5,
with a median below 2 seconds, which makes it an excellent
use case for the load-rebalancing properties of WAGMA-SGD.

To evaluate the performance, we train a standard ResNet-
LSTM model for navigation using PyTorch [103] as the basic
platform. In particular, the network structure is composed of a
ResNet-18 visual encoder, connected to a stack of two Long
Short-Term Memory (LSTM) [104] recurrent units function-
ing as the policy, containing 8,476,421 trainable parameters.
The measured heterogeneous environments in Habitat, Gib-
son [105] and Matterport3D [106], consist of interactive RGB-
D datasets. We set the experience steps to 128 and use the two
vectorized (namely, optimized) environments, which means
each GPU node needs to collect 256 experience steps for each
training iteration. We set the WAGMA-SGD synchronization
period to τ = 8.

Fig. 10 presents the training throughput as the number of
GPU nodes increases from 16 to 1,024, where the top of
the rectangle indicates the ideal throughput without commu-
nication overhead. Compared with local SGD, D-PSGD, and
SGP (four communication neighbors) on 1,024 GPU nodes,
WAGMA-SGD achieves 2.33x, 1.88x, and 2.10x speedup,
respectively. The violin plot shows the throughput distribution.
WAGMA-SGD only has lower throughput than AD-PSGD,
since AD-PSGD is fully asynchronous. These results show
that WAGMA-SGD excels in handling highly unbalanced
workloads, achieving good scaling efficiency.

Complementary to training throughput, we study the Suc-
cess weighted by Path Length (SPL) score (higher is better)
after training the model for 10 hours on 64 GPUs. All models
are tested four separate times to account for variability, and
the average scores together with the standard deviation (shaded
regions) over training time are plotted in Fig. 11. As the figure
shows, despite the scalability of AD-PSGD, it only achieves
0.051 SPL on average, and seems to converge, deeming it
unusable for RL problems. On the other hand, WAGMA-SGD
achieves the highest score over time. A possible reason for
this might be asynchronous methods tend to overcome local
convergence issues in deep reinforcement learning [19]. This
is also seen in SGP, which scores higher than local SGD, but
not as well as WAGMA-SGD, whose quorum size is larger.

Beyond our experiments, the current state-of-the-art (SOTA)
SPL score is 0.922 [14], which is achieved after training on
2.5 billion experience steps. WAGMA-SGD consumes total
2.6 million experience steps after training for 10 hours using
64 GPUs, and achieves on average 83.1% (up to 91.2%) of
the SOTA score. This indicates that WAGMA-SGD achieves
generalization performance close to the SOTA using three
orders of magnitude fewer iterations.

VI. COLLECTIVES IN CONTEXT

Collective operations have a core role in running applica-
tions efficiently at scale. As such, their optimization has led
to several implementation and algorithmic variants.
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Blocking collectives [12] constitute the basic class of opera-
tions. In this case, the collective call is allowed to return only
when the calling process has completed all the actions needed
to its participation in the operation.

A first optimization to blocking collectives is to make them
non-blocking [90], enabling processes to return immediately
and overlap other activities with the ongoing collective.

Some collectives require all the processes to invoke it in
order to complete, e.g., a reduction cannot be computed before
knowing all the values to reduce. Hence, their completion time
can be influenced by any skewing (imbalance) among the
processes. Solo collectives [92] remove this synchronization
overhead by making the collectives externally-triggerable:
once a process joins the collective, it sends an activation
message to all the others, making them to start the collective
independently from their state. An issue of solo collectives is
that they make triggering the collective possible, even if there
is only one process joining it. Majority collectives [13] extend
the solo idea by requiring that at least P/2 processes join the
collective before triggering it. While these collectives are not
guaranteed to be equivalent to their blocking or non-blocking
counterparts, they are suited for machine learning tasks, due
to the robustness of stochastic optimization to staleness.
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Both solo and majority collectives aim to minimize the syn-
chronization overhead. However, once activated, the collective
is fully performed, making the application pay the full oper-
ation cost plus the activation overhead. Wait-avoiding group
collectives (this work) utilize the approach of solo collectives
to achieve asynchrony, and further reduce the overall operation
cost by dynamically selecting subgroups of processes, each of
which executing the collective independently from the others.

VII. CONCLUSION

We show, both theoretically and in practice, that stochastic
optimization via group model averaging — asynchronously
averaging the learned weights across subgroups of nodes —
functions well in large clusters. We prove that the algorithm
converges under the standard conditions of SGD, and through
a careful implementation of wait-avoiding collectives, we
use the topology of the network to attain the best scaling
results without losing accuracy. With the same number of
steps, WAGMA-SGD achieves equivalent (or even higher)
generalization scores as the standard synchronous SGD, while
significantly reducing the training time (e.g., up to 1.48×
speedup on Transformer) over the previous state-of-the-art,
gossip-based SGD. Similar results are observed on the models
from various sub-fields, where WAGMA-SGD consistently
achieves the fastest time-to-solution. These results empirically
prove that this approach successfully tackles the unbalanced
training workloads in large scales, and brings asynchronous
decentralized SGD to the regime of supercomputers.
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APPENDIX

In this section, we focus on providing a formal proof for the convergence statement provided in Theorem 1.
a) Preliminaries: Let K be a set all subsets of {1, 2, ..., P}, which have size S. if set K ∈ K is chosen for interaction.

we have that for each i ∈ K

W i
t+1/2 = W i

t /S +
∑

j∈K/{i}

W j
t

′
/S.

and

W i
t+1 = W i

t+1/2 − ηG̃(W i
t )

Where for each process i, if t ≥ qit > t− τ is the last time it interacted before the step t, we have

W i
t

′
= W i

qit+1/2 = Wqit+1 + ηG̃(W i
qit

) = W i
t + ηG̃(W i

qit
). (1)

Let Et be expectation which is conditioned on the entire history up to and including step t.
This means that

Et[µt+1] = µt +
1(
P
S

) ∑
K∈K

∑
i∈K

Et
[
− ηG̃(W i

t )

P
+
η(S − 1)G̃(W i

qit
)

PS

]
= µt +

S

P

P∑
i=1

(
− η∇f(W i

t )

P
+
η(S − 1)G̃(W i

qit
)

PS

)
. (2)

b) Potential Bound: Now we derive bound on the potential Γt =
∑P
i=1 ‖W i

t −µt‖2 in expectation. Observe that for each
t, Γrt = 0, where t ≥ rt > t− τ is the last time global averaging happened. Hence we need to bound the change over τ steps.
Using induction we show that:

Lemma 1. for each t ≥ 0 and process i:

E ‖W i
t − µrt‖2 ≤ 4η2M2(t− rt)2 ≤ 4η2τ2M2. (3)

Proof. Base case t = rt holds trivially. We assume that the claim holds for t (and every process i), and we show that it holds
for t+ 1. Let K be a set chosen for averaging. If i ∈ K then we have that

W i
t+1 =

∑
j∈K

W j
t /S − ηG̃(W i

t ) +
∑

j∈K/{i}

ηG̃(W j

qjt
)/S.

Hence, if t > rt

‖W i
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)/S
∥∥∥2
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)/S
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Cauchy−Schwarz
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Next we take expectations:

E ‖W i
t+1 − µrt‖2 ≤

1

S
(1 +

1

t− rt
)
∑
j∈K

E
∥∥∥W j

t − µrt
∥∥∥2 + 2(1 + t− rt)η2 E

∥∥∥G̃(W i
t )
∥∥∥2

+
2η2(1 + t− rt)(S − 1)

S2

∑
j∈K/{i}

E
∥∥∥G̃(W j

qjt
)
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Using the second moment bound we get

E ‖W i
t+1 − µrt‖2 ≤

1

S
(1 +

1

t− rt
)
∑
j∈K

E
∥∥∥W j
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+
2η2(1 + t− rt)(S − 1)2M2
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S
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1
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∑
j∈K

E
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Finally using the assumption that claim holds for t (And every i), we get that

E ‖W i
t+1 − µrt‖2 ≤ 4η2M2(t− rt)2(1 +

1

t− rt
) + 4(1 + t− rt)η2M2

= 4(t− rt + 1)2η2M2.

If i does not belong to K, claim for t+ 1 holds trivially (since i does not perform SGD step).

This allows us to show the following lemma:

Lemma 2.
E ‖µt − µrt‖2 ≤ 4η2M2τ2.

Proof. Observe that since µt =
∑P
i=1W

i
t /P , by Jensen’s inequality we have that

E ‖µt − µrt‖2 ≤
P∑
i=1

E ‖W i
t − µrt‖2/P

Lemma 1
≤ 4η2M2τ2.

Next we need another lemma which upper bounds discrepancy between µt and W i
qit

for each process i:

Lemma 3. For each t ≥ 0 and process i we have that:

E ‖W i
qit
− µt‖2 ≤ 16η2M2τ2.

Proof. Recall that for each t and i, t ≥ qit > t − τ . Hence we have that rt = rqit . From Lemmas 2 and 1 it follows that
E ‖µrt −W i

qit
‖2 ≤ 4η2M2τ2 and E ‖µt − µrt‖2 ≤ 4η2M2τ2. Thus by using Cauchy-Schwarz inequality we get that

E ‖W i
qit
− µt‖2 ≤ 2E ‖W i

qit
− µrt‖2 + 2E ‖µt − µrt‖2 ≤ 16η2M2τ2.

Finally we upper bound the Gamma potential in expectation:

Lemma 4. For any t ≥ 0, we have that

E[Γt] =

P∑
i=1

E ‖W i
t − µt‖2 ≤ 16Pη2M2τ2. (4)

Proof. For each process i, we have that:

E ‖W i
t − µt‖2 ≤ 2E ‖W i

t − µtr‖2 + 2E ‖µt − µtr‖2 ≤ 16η2M2τ2. (5)

Where first inequality is Cauchy-Schwarz and second inequality is combination of Lemmas 1 and 2. The upper bound we need
to prove the lemma follows trivially.
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c) Convergence Proof: We are now ready to state and prove our main theorem. We provide a slightly more general
version, which implies Theorem 1 from the main text.

Theorem 2. For a smooth non-convex objective function f , whose minimum x∗ we are trying to find using WAGMA algorithm
and the constant learning rate α = P√

T
, where T ≥ P 4τ4 is the number of iterations:

1

T

T−1∑
t=0

E ‖∇f(µt)‖2 ≤
2(f(µ0)− f(x∗))√

T
+

8S2M2

√
T

+
64S2L2M2

√
T

.

Proof. Recall that Et is expectation which is conditioned on the entire history up to and including step t. By descent Lemma
we know that

Et[f(µt+1)] ≤ f(µt) + Et〈∇f(µt), µt+1 − µt〉+
L

2
Et ‖µt+1 − µt‖2. (6)

First, we look at Et ‖µt+1 − µt‖2:

Et ‖µt+1 − µt‖2 =
1(
P
S

) ∑
K∈K

Et

∥∥∥∥∥∑
i∈K

(
− ηG̃(W i

t )

P
+
η(S − 1)G̃(W i

qit
)

PS

)∥∥∥∥∥
2

.

Next we apply Cauchy-Schwarz inequality and get:

Et ‖µt+1 − µt‖2 ≤
S(
P
S

) ∑
K∈K

∑
i∈K

Et

∥∥∥∥∥− ηG̃(W i
t )

P
+
η(S − 1)G̃(W i

qit
)

PS

∥∥∥∥∥
2

=
S2η2

P 3

P∑
i=1

Et

∥∥∥∥∥− G̃(W i
t ) +

(S − 1)G̃(W i
qit

)

S

∥∥∥∥∥
2

Cauchy−Schwarz
≤ 2S2η2

P 3

P∑
i=1

Et ‖ − G̃(W i
t )‖2 +

2(S − 1)2η2

P 3

P∑
i=1

Et ‖G̃(W i
qit

)‖2

≤ 2S2M2η2

P 2
+

2(S − 1)2η2

P 3

P∑
i=1

‖G̃(W i
qit

)‖2. (7)

Now, we upper bound Et〈∇f(µt), µt+1 − µt〉. Using (2), we have that

Et〈∇f(µt), µt+1 − µt〉 =
ηS

P 2

P∑
i=1

〈∇f(µt),−∇f(W i
t ) +

S − 1

S
G̃(W i

qit
)〉

=
ηS

P 2

P∑
i=1

〈∇f(µt),
S − 1

S
G̃(W i

qit
)〉+

ηS

P 2

P∑
i=1

〈∇f(µt),∇f(µt)−∇f(W i
t )〉 −

ηS

P
‖∇f(µt)‖2

Y oung

≤ ηS

P 2

P∑
i=1

〈∇f(µt),
S − 1

S
G̃(W i

qit
)〉

+
η

4P
‖∇f(µt)‖2 +

ηS2

P 2

P∑
i=1

‖∇f(µt)−∇f(W i
t )‖2 −

ηP

S
‖∇f(µt)‖2

≤ η(S − 1)

P 2

P∑
i=1

〈∇f(µt), G̃(W i
qit

)〉+
ηS2L2

P 2

P∑
i=1

‖µt −W i
t ‖2 −

η(S − 1
4 )

P
‖∇f(µt)‖2.

Using the above inequality and (7) in inequality (6) we get that

Et[f(µt+1)] ≤ f(µt) +
2S3M2η2

P 3
+

2(S − 1)2η2

P 3
‖G̃(W i

qit
)‖2

+
η(S − 1)

P 2

P∑
i=1

〈∇f(µt), G̃(W i
qit

)〉

+
ηS2L2

P 2

P∑
i=1

‖µt −W i
t ‖2 −

η(S − 1
4 )

P
‖∇f(µt)‖2.

16



Next we use E[f(µt+1)] = E[Et[f(µt+1)]]:

E[f(µt+1)] ≤ E[f(µt)] +
2S2M2η2

P 2
+

2(S − 1)2η2

P 3

P∑
i=1

E ‖G̃(W i
qit

)‖2

+
η(S − 1)

P 2

P∑
i=1

E〈∇f(µt), G̃(W i
qit

)〉

+
ηS2L2

P 2

P∑
i=1

E ‖µt −W i
t ‖2 −

η(S − 1
4 )

P
E ‖∇f(µt)‖2. (8)

Recall that by the second moment bound E ‖G̃(W i
qit

)‖2 is at most M2, and by Lemma 4
∑P
i=1 E ‖µt−W i

t ‖2 ≤ 16Pη2M2τ2.
Hence we can rewrite (8) as

E[f(µt+1)] ≤ E[f(µt)] +
2S2M2η2

P 2
+

2(S − 1)2η2M2

P 2

+
η(S − 1)

P 2

P∑
i=1

E〈∇f(µt), G̃(W i
qit

)〉

+
16η3S2L2M2τ2

P
−
η(S − 1

4 )

P
E ‖∇f(µt)‖2. (9)

We proceed by upper bounding
∑P
i=1 E〈∇f(µt), G̃(W i

qit
)〉:

P∑
i=1

E〈∇f(µt), G̃(W i
qit

)〉 =

P∑
i=1

E〈∇f(µt),∇f(W i
qit

)〉

=

P∑
i=1

E〈∇f(µt),−∇f(µt) +∇f(W i
qit

)〉+ P E ‖∇f(µt)‖2

Y oung

≤ P

4(S − 1)
E ‖∇f(µt)‖2 + (S − 1)

P∑
i=1

E ‖∇f(µt)−∇f(W i
qit

)‖2 + P E ‖∇f(µt)‖2

≤ (S − 1)L2
P∑
i=1

‖W i
qit
− µt‖2 + P (1 +

1

4(S − 1)
)E ‖∇f(µt)‖2

Lemma 3
≤ 16P (S − 1)L2η2M2τ2 + P (1 +

1

4(S − 1)
)E ‖∇f(µt)‖2.

Plugging the above inequality in (9) we get that

E[f(µt+1)] ≤ E[f(µt)] +
2S2M2η2

P 2
+

2(S − 1)2η2M2

P 2

+
16η3(S − 1)2L2M2τ2

P
+
η(S − 1 + 1

4 )

P
E ‖∇f(µt)‖2

+
16η3S2L2M2τ2

P
−
η(S − 1

4 )

P
E ‖∇f(µt)‖2

≤ E[f(µt)] +
4S2M2η2

P 2
+

32η3S2L2M2τ2

P
− η

2P
E ‖∇f(µt)‖2.

Next we sum the above inequality for t = 0 to T − 1 and rearrange terms:

η

2P

T−1∑
t=0

E ‖∇f(µt)‖2 ≤ f(µ0)− E[f(µT )] +
4S2M2η2T

P 2
+

32η3S2L2M2τ2T

P

Now we divide the above inequality by η
2PT and use the fact that E[f(µT )] ≥ f(x∗) :

1

T

T−1∑
t=0

E ‖∇f(µt)‖2 ≤
2P (f(µ0)− f(x∗))

ηT
+

8S2M2η

P
+ 64η2S2L2M2τ2.

17



By plugging η = P√
T

and noticing that for T ≥ P 4τ4, η ≤ 1
Pτ2 we get :

1

T

T−1∑
t=0

E ‖∇f(µt)‖2 ≤
2(f(µ0)− f(x∗))√

T
+

8S2M2

√
T

(
1 + 8L2

)
.
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