
spcl.inf.ethz.ch

@spcl_eth

T. HOEFLER

Twelve ways to fool the masses when reporting performance of deep learning 
workloads! (not to be taken too seriously)
IPAM workshop “HPC for Computationally and Data-Intensive Problems” at UCLA, November 2018
Los Angeles, CA, USA

https://www.arxiv.org/abs/1802.09941

http://htor.inf.ethz.ch/blog/index.php/2018/11/08/twelve-ways-to-fool-the-masses-when-reporting-performance-of-deep-learning-workloads/

All images belong to the respective owners!

https://www.arxiv.org/abs/1802.09941


spcl.inf.ethz.ch

@spcl_eth

▪ Deep learning is HPC

▪ In fact, it’s probably (soon?) bigger than traditional HPC

Definitely more money …

▪ Interest in the HPC community is tremendous

▪ Number of learning papers at HPC conferences seems to be 
growing exponentially

Besides at SC18, whut!?

▪ Risk of unrealism

▪ HPC people know how to do HPC

▪ And deep learning is HPC, right?

Not quite … while it’s really similar (tensor contractions)

But it’s also quite different!

2

Deep learning and HPC
Yann LeCun’s conclusion slide yesterday!



spcl.inf.ethz.ch

@spcl_eth

▪ Tradeoffs between those two

▪ Very weird for HPC people – we always operated in double precision

Mostly out of fear of rounding issues 

▪ Deep learning shows how little accuracy one can get away with

▪ Well, examples are drawn randomly from some distribution we don’t know …

▪ Usually, noise is quite high …

▪ So the computation doesn’t need to be higher precision than that noise 

Pretty obvious! In fact, it’s similar in scientific computing but in tighter bounds and not as well known

▪ But we HPC folks like flop/s! Or maybe now just ops or even aiops? Whatever, fast compute!

▪ A humorous guide to floptimization

▪ Twelve rules to help present your (not so great?) results in a much better light

3

“Statistical performance” vs. “hardware performance”



spcl.inf.ethz.ch

@spcl_eth

▪ Too obvious for this audience

▪ Was very popular in 2015!

▪ Surprisingly many (still) do this

4

1) Ignore accuracy when scaling up!

1) Ignore accuracy when scaling up!

Learning community’s 
self-correction

(Y. LeCun)

HPC picking up!

Scalability without 
a good baseline? 

(D. Bailey)



spcl.inf.ethz.ch

@spcl_eth

▪ Training accuracy is sufficient isn’t it?

5

2) Do not report test accuracy!

Source: quora.com



spcl.inf.ethz.ch

@spcl_eth

▪ Report the best run – SGD is a bit fragile, so don’t worry

At the end, the minutes for the final run matter most!

6

3) Do not report all training runs needed to tune hyperparameters!

flop/s!



spcl.inf.ethz.ch

@spcl_eth

▪ Tesla K20 in 2018!?

Even though the older machines would win the beauty contest!

7

4) Compare outdated hardware with special-purpose hardware!

vs.



spcl.inf.ethz.ch

@spcl_eth

▪ Run layers or communication kernels in isolation

▪ Avoids issues with accuracy completely ☺

Doesn’t that look a bit like GoogLeNet?

8

5) Show only kernels/subsets when scaling!

vs.



spcl.inf.ethz.ch

@spcl_eth

▪ Reading the data? Nah, make sure it’s staged in memory when the benchmark starts!

9

6) Do not consider I/O!



spcl.inf.ethz.ch

@spcl_eth

▪ Yes, we’re talking ops today, 64-bit flops was so yesterday!

▪ If we don’t achieve a target fast enough, let’s redefine it!

And never talk about how many more of those ops one needs to find a solution, it’s all about the rate, op/s!

▪ Actually, my laptop achieves an “exaop”: 

▪ each of the 3e9 transistors switching a binary digit each at 2.4e9 Hz

10

7) Report highest ops numbers (whatever that means)!

vs.



spcl.inf.ethz.ch

@spcl_eth

▪ Pretty cool idea isn’t it? Hyperparameters sometimes conflict

So always tune the to show the best result, whatever the result shall be!

11

8) Show performance when enabling option set A and show accuracy when 
enabling option set B!



spcl.inf.ethz.ch

@spcl_eth

▪ The pinnacle of floptimization! Very hard to catch!

But Dr. Catlock Holmes below can catch it.

12

9) Train on (unreasonably) large inputs!

Low-resolution cat (244x244 – 1 Gflop/example)

vs.

High-resolution cat (8kx8x – 1 Tflop/example)



spcl.inf.ethz.ch

@spcl_eth

▪ Train for fixed wall-time when scaling processors

▪ so when you use twice as many processors you get twice as many flop/s!

But who cares about application speedup?

13

10) Run training just for the right time!



spcl.inf.ethz.ch

@spcl_eth

▪ All DL is strong scaling – limited model and limited data

▪ So just redefine the terms relative to minibatches:

▪ Weak scaling keeps MB size per process constant – overall grows (less iterations per epoch, duh!)

▪ Strong scaling keeps overall MB size constant (better but harder)

▪ Microbatching is not a problem!

14

11) Minibatch sizing for fun and profit – weak vs. strong scaling.



spcl.inf.ethz.ch

@spcl_eth

▪ Compare either time to solution or accuracy if both together don’t look strong!

There used to be conventions but let’s redefine them.

15

12) Select carefully how to compare to the state of the art!


