
Practice of Streaming Processing of Dynamic
Graphs: Concepts, Models, and Systems
Maciej Besta , Marc Fischer, Vasiliki Kalavri , Michael Kapralov, and Torsten Hoefler

Abstract—Graph processing has become an important part of various areas of computing, including machine learning, medical

applications, social network analysis, computational sciences, and others. A growing amount of the associated graph processing

workloads are dynamic, with millions of edges added or removed per second. Graph streaming frameworks are specifically crafted to

enable the processing of such highly dynamic workloads. Recent years have seen the development of many such frameworks.

However, they differ in their general architectures (with key details such as the support for the concurrent execution of graph updates

and queries, or the incorporated graph data organization), the types of updates and workloads allowed, and many others. To facilitate

the understanding of this growing field, we provide the first analysis and taxonomy of dynamic and streaming graph processing. We

focus on identifying the fundamental system designs and on understanding their support for concurrency, and for different graph

updates as well as analytics workloads. We also crystallize the meaning of different concepts associated with streaming graph

processing, such as dynamic, temporal, online, and time-evolving graphs, edge-centric processing, models for the maintenance of

updates, and graph databases. Moreover, we provide a bridge with the very rich landscape of graph streaming theory by giving a broad

overview of recent theoretical related advances, and by discussing which graph streaming models and settings could be helpful in

developing more powerful streaming frameworks and designs. We also outline graph streaming workloads and research challenges.

Index Terms—Streaming graphs, dynamic graphs, evolving graphs, streaming graph processing, dynamic graph processing,

evolving graph processing, online graph processing, graph streaming frameworks, graph databases

Ç

1 INTRODUCTION

ANALYZING massive graphs has become an important
task. Example applications are investigating the Inter-

net structure [39], analyzing social or neural relation-
ships [20], or capturing the behavior of proteins [58].
Efficient processing of such graphs is challenging. First,
these graphs are large, reaching even tens of trillions of
edges [47], [102], [107], [108], [110], [130], [137], [158]. Sec-
ond, the graphs in question are dynamic: new friendships
appear, novel links are created, or protein interactions
change. For example, 500 million new tweets in the Twitter
social network appear per day, or billions of transactions in
retail transaction graphs are generated every year [11].

Graph streaming frameworks such as GraphOne [103] or
Aspen [56] emerged to enable processing and analyzing

dynamically evolving graphs. Contrarily to static frameworks
such as Ligra [79], [142], such systems execute graph analytics
algorithms (e.g., PageRank) concurrently with graph updates
(e.g., edge insertions). Thus, these frameworks must tackle
unique challenges, for example effective modeling and stor-
age of dynamic datasets, efficient ingestion of a stream of
graph updates concurrently with graph queries, or support
for effective programming model. In this work, we present
the first taxonomy and analysis of such system aspects of the
streaming processing of dynamic graphs.

We also crystallize the meaning of different concepts in
streaming and dynamic graph processing. We investigate
the notions of temporal, time-evolving, online, and dynamic
graphs, as well as the differences between graph streaming
frameworks and a related class of graph database systems.

We also analyze relations between the practice and the
theory of streaming graph processing to facilitate incorpo-
rating recent theoretical advancements into the practical set-
ting, to enable more powerful streaming frameworks. There
exist different related theoretical settings, such as streaming
graphs [115] or dynamic graphs [36] that come with different
goals and techniques. Moreover, each of these settings
comes with different models, for example the dynamic graph
stream model [91] or the semi-streaming model [66]. These
models assume different features of the processed streams,
and they are used to develop provably efficient streaming
algorithms. We analyze which theoretical settings and mod-
els are best suited for different practical scenarios, provid-
ing guidelines for architects and developers on what
concepts could be useful for different classes of systems.

Next, we outline models for the maintenance of updates,
such as the edge decay model [160]. These models are

� Maciej Besta and Torsten Hoefler are with ETH Zurich, 8092 Zurich,
Switzerland. E-mail: {maciej.besta, htor}@inf.ethz.ch.

� Marc Fischer is with PRODYNA (Schweiz) AG, 4052 Basel, Switzerland.
E-mail: marc.fischer@prodyna.com.

� Vasiliki Kalavri is with Boston University, Boston, MA 02215 USA. E-
mail: vkalavri@bu.edu.

� Michael Kapralov is with the School of Computer and Communication
Sciences, EPFL, 1015 Lausanne, Switzerland.
E-mail: michael.kapralov@epfl.ch.

Manuscript received 31 December 2019; revised 30 October 2021; accepted 9
November 2021. Date of publication 30 November 2021; date of current ver-
sion 8 May 2023.
This work was supported in part by the Google European Doctoral Fellowship
and the European Research Council (ERC) under the European Union’s Hori-
zon 2020 programme grant agreement DAPP, under Grant 678880.
(Corresponding author: Maciej Besta.)
Recommended for acceptance by S. Pallickara.
Digital Object Identifier no. 10.1109/TPDS.2021.3131677

1860 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 6, JUNE 2023

1045-9219 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on December 01,2023 at 11:07:29 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6550-7916
https://orcid.org/0000-0002-6550-7916
https://orcid.org/0000-0002-6550-7916
https://orcid.org/0000-0002-6550-7916
https://orcid.org/0000-0002-6550-7916
https://orcid.org/0000-0001-8219-4862
https://orcid.org/0000-0001-8219-4862
https://orcid.org/0000-0001-8219-4862
https://orcid.org/0000-0001-8219-4862
https://orcid.org/0000-0001-8219-4862
https://orcid.org/0000-0002-1333-9797
https://orcid.org/0000-0002-1333-9797
https://orcid.org/0000-0002-1333-9797
https://orcid.org/0000-0002-1333-9797
https://orcid.org/0000-0002-1333-9797
mailto:maciej.besta@inf.ethz.ch
mailto:htor@inf.ethz.ch
mailto:marc.fischer@prodyna.com
mailto:vkalavri@bu.edu
mailto:michael.kapralov@epfl.ch

independent of the above-mentioned models for developing
streaming algorithms. Specifically, they aim to define the
way in which edge insertions and deletions are considered
for updating different maintained structural graph proper-
ties such as distances between vertices. For example, the
edge decay model captures the fact that edge updates from
the past should gradually be made less relevant for the cur-
rent status of a given structural graph property.

Finally, there are general-purpose dataflow systems such
as Apache Flink [44] or Differential Dataflow [116]. We dis-
cuss the support for graph processing in such designs.

In general, we provide the following contributions:

� We crystallize the meaning of different concepts in
dynamic and streaming graph processing, and we
analyze the connections to the areas of graph data-
bases and to the theory of streaming and dynamic
graph algorithms.

� We provide the first taxonomy of graph streaming
frameworks, identifying and analyzing key dimen-
sions in their design, including data models and
organization, concurrent execution, data distribu-
tion, targeted architecture, and others.

� We use our taxonomy to survey, categorize, and
compare over graph streaming frameworks.

� We discuss in detail the design of selected
frameworks.

Complementary Surveys and Analyses. We provide the first
taxonomy and survey on general streaming and dynamic graph
processing. We complement related surveys on the theory of
graph streaming models and algorithms [6], [115], [124],
[164], analyses on static graph processing [18], [32], [59],
[81], [114], [141], and on general streaming [90]. Finally, only
one prior work summarized types of graph updates, parti-
tioning of dynamic graphs, and some challenges [150].

2 BACKGROUND AND NOTATION

We first present concepts used in all the sections.
Graph Model. We model an undirected graph G as a tuple

ðV;EÞ; V ¼ fv1; . . . ; vng is a set of vertices and E ¼
fe1; . . . ; emg � V � V is a set of edges; jV j ¼ n and jEj ¼ m.
If G is directed, we use the name arc to refer to an edge with
a direction. Nv denotes the set of vertices adjacent to
vertex v, dv is v’s degree, and d is the maximum degree in G.
If G is weighted, it is modeled by a tuple ðV;E;wÞ. Then,
wðeÞ is the weight of an edge e 2 E. A weight is a single
arbitrary number (e.g., an integer or a float).

Graph Representations. We also summarize fundamental
static graph representations; they are used as a basis to
develop dynamic graph representations in different frame-
works. These are the adjacency matrix (AM), the adjacency list
(AL), the edge list (EL), and the Compressed Sparse Row
(CSR, sometimes referred to as Adjacency Array [41]).1 We
illustrate these representations and we provide remarks on
their dynamic variants in Fig. 1. In AM, a matrix M 2
f0; 1gn;n determines the connectivity of vertices: Mu;v ¼ 1 ,

ðu; vÞ 2 E. In AL, each vertex u has an associated adjacency
list Au. This adjacency list maintains the IDs of all vertices
adjacent to u. We have v 2 Au , ðu; vÞ 2 E: AM uses O n2ð Þ
space and can check connectivity of two vertices in O 1ð Þ
time. AL requires O nþmð Þ space and it can check connec-
tivity in O jAujð Þ � O dð Þ time. EL is similar to AL in the
asymptotic time and space complexity as well as the general
design. The main difference is that each edge is stored
explicitly, with both its source and destination vertex. In AL
and EL, a potential cause for inefficiency is scanning all
edges to find neighbors of a given vertex. To alleviate this,
index structures are employed [35]. Finally, CSR resembles
AL but it consists of n contiguous arrays with neighborhoods
of vertices. Each array is usually sorted by vertex IDs. CSR
also contains a structure with offsets (or pointers) to each
neighborhood array.

Graph Accesses. We often distinguish between graph
queries and graph updates. A graph query (also called a read)
may perform some computation on a graph and it returns
information about the graph without modifying its struc-
ture. Such query can be local, also referred to as fine (e.g.,
accessing a single vertex or edge) or global (e.g., a PageRank
analytics computation returning ranks of vertices). A graph
update, also called a mutation, modifies the graph structure
and/or attached labels or values (e.g., edge weights).

3 CLARIFICATION OF CONCEPTS AND AREAS

The term “graph streaming” has been used in different
ways and has different meanings, depending on the con-
text. We first extensively discuss and clarify these mean-
ings, and we use this discussion to precisely illustrate the
scope of our taxonomy and analyses. We illustrate all the
considered concepts in Fig. 2. To foster developing more
powerful and versatile systems for dynamic and stream-
ing graph processing, we also summarize theoretical
concepts.

3.1 Applied Dynamic and Streaming Graph
Processing

We first outline the applied aspects and areas of dynamic
and streaming graph processing.

Fig. 1. Illustration of fundamental graph representations.

1. Some works use CSR to describe a graph representation where all
neighborhoods form a single contiguous array [103]. In this work, we
use CSR to indicate a representation where each neighborhood is con-
tiguous, but not necessarily all of them together.

BESTA ETAL.: PRACTICE OF STREAMING PROCESSING OF DYNAMIC GRAPHS: CONCEPTS, MODELS, AND SYSTEMS 1861

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on December 01,2023 at 11:07:29 UTC from IEEE Xplore. Restrictions apply.

3.1.1 Streaming, Dynamic, and Time-Evolving Graphs

Many works [56], [63] use a term “streaming” or “streaming
graphs” to refer to a setting in which a graph is dynamic [136]
(also referred to as time-evolving [86], continuous [55], or
online [69]) and it can be modified with updates such as
edge insertions/deletions. This setting is the primary focus of
this survey. In the work, we use “dynamic” to refer to the
graph dataset being modified, and we reserve “streaming”
to refer to the form of incoming graph accesses or updates.
The time window of the associated queries in the online set-
ting is of the form Now� d;Now½ � [87].

Closely related terms are batch analytics or stream analyt-
ics, used in relation to the computations and/or the computa-
tion model [10]. They refer to, respectively, running graph
analytics from scratch (on static or dynamic data), and to run-
ning such analytics incrementally, on dynamic data. In this
work, to comply with naming used in numerous works on
dynamic graph processing, unless stated otherwise, we use
the term “batch” to refer to the ingestion of a certain number of
graph updates together.

3.1.2 Graph Databases and NoSQL Stores

Graph databases [31] are related to streaming and
dynamic graph processing in that they support graph
updates. Graph databases (both “native” graph database
systems and NoSQL stores used as graph databases (e.g.,
RDF stores or document stores)) were described in detail
in a recent work [31] and are beyond the main focus of
this paper. However, there are numerous fundamental
differences and similarities between graph databases and
graph streaming frameworks, and we discuss these
aspects in Section 6.

3.1.3 Streaming Processing of Static Graphs

Some works [34], [123], [131], [165] use “streaming” (also
referred to as edge-centric) to indicate a setting in which the
input graph is static but its edges are processed in a stream-
ing fashion (as opposed to an approach based on random
accesses into the graph data). Example associated frame-
works are X-Stream [131], ShenTu [107], RStream [153], and
several FPGA designs [34]. Such designs are outside the
main focus of this survey; some of them were described by
other works dedicated to static graph processing [34], [59].

3.1.4 Historical Graph Processing

There exist efforts into analyzing temporal (also referred to
as historical or – somewhat confusingly – as [time]-evolving)
graphs [82]. As noted by Dhulipala et al. [56], these efforts
differ from streaming/dynamic/time-evolving graph anal-
ysis in that one stores all past (historical) graph data to be able to
query the graph as it appeared at any point in the past. Con-
trarily, in streaming/dynamic/time-evolving graph proc-
essing, one focuses on keeping a graph in one (present)
state. Additional snapshots are mainly dedicated to more
efficient ingestion of graph updates, and not to preserving
historical data for time-related analytics. Moreover, almost
all works that focus solely on temporal graph analysis, for
example the Chronos system [82], are not dynamic (i.e., they
are offline): there is no notion of new incoming updates, but
solely a series of past graph snapshots (instances). The time
window of queries in historical graph processing is of the
form T � d; T þ d½ � [87], where T is some selected arbitrary
point in the past. These efforts are outside the focus of this survey
(we exclude these efforts, because they come with numer-
ous challenges and design decisions (e.g., temporal graph
models [163], temporal algebra [118], strategies for snapshot
retrieval [159]) that require separate extensive treatment,
while being unrelated to the streaming and dynamic graph
processing). Still, we describe concepts and systems that – while
focusing on streaming processing of dynamic graphs, also enable
keeping and processing historical data. One such example is
Tegra [87].

3.1.5 Temporal Graph Algorithms

Certain works analyze graphs where edges carry timing
information, e.g., the order of communication between enti-
ties [156], [157]. One method to process such graphs is to
model them as a stream of incoming edges, with the arrival time
based on temporal information attached to edges. Thus,
while being static graphs, their representation is dynamic.
Thus, we picture these schemes as being partially in the
dynamic setting in Fig. 2. These works come with no frame-
works, and are outside the focus of our work.

3.1.6 General Dataflow and Streaming Systems

General streaming and dataflow systems, such as Apache
Flink [44], Naiad [120], Tornado [140], or Differential Data-
flow [116], can also be used to process dynamic graphs.
However, most of the dimensions of our taxonomy are not
well-defined for these general purpose systems. Overall,
these systems provide a very general programming model
and impose no restrictions on the format of streaming

Fig. 2. Overview of the domains and concepts in the practice and theory
of streaming and dynamic graph processing and algorithms. This work
focuses on streaming graph processing and its relations to other
domains.

1862 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 6, JUNE 2023

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on December 01,2023 at 11:07:29 UTC from IEEE Xplore. Restrictions apply.

updates or graph state that the users construct. Thus, in
principle, they could process queries and updates concur-
rently, support rich attached data, or even use transactional
semantics. However, they do not come with pre-built fea-
tures specifically targeting graphs.

3.2 Theory of Streaming and Dynamic Graphs

Wenext proceed to outline concepts in the theory of dynamic
and streaming graph models and algorithms. Despite the
fact that detailed descriptions are outside the scope of this
paper, we firmly believe that explaining the associated gen-
eral theoretical concepts and crystallizing their relations to
the applied domainmay facilitate developingmore powerful
streaming systems by – for example – incorporating efficient
algorithms with provable bounds on their performance. In
this section, we outline different theoretical areas and their
focus. In general, in all the following theoretical settings, one
is interested inmaintaining (sometimes approximations to) a
structural graph property of interest, such as connectivity
structure, spectral structure, or shortest path distancemetric,
for graphs that are being modified by incoming updates
(edge insertions and deletions).

3.2.1 Streaming Graph Algorithms

In streaming graph algorithms [49], [66], one usually starts with
an empty graph with no edges (but with a fixed set of verti-
ces). Then, at each algorithm step, a new edge is inserted into
the graph, or an existing edge is deleted. Each such algorithm
is parametrized by (1) space complexity (space used by a data
structure that maintains a graph being updated), (2) update
time (time to execute an update), (3) query time (time to com-
pute an estimate of a given structural graph property), (4)
accuracy of the computed structural property, and (5) preprocess-
ing time (time to construct the initial graph data struc-
ture) [37]. Different streaming models can introduce
additional assumptions, for example the Sliding Window
Model provides restrictions on the number of previous edges in
the stream, considered for estimating the property [49].

The goal is to develop algorithms that minimize different
parameter values, with a special focus on minimizing the
storage for the graph data structure. While space complexity is
the main focus, significant effort is devoted to optimizing
the runtime of streaming algorithms, specifically the time to
process an edge update, as well as the time to recover the
final solution (see, e.g., [105] and [95] for some recent devel-
opments). Typically the space requirement of graph stream-
ing algorithms is Oðn polylog nÞ (this is known as the semi-
streaming model [66]), i.e., about the space needed to store
a few spanning trees of the graph. Some recent works
achieve ”truly sublinear” space oðnÞ, which is sublinear in
the number of vertices of the graph and is particularly good
for sparse graphs [16], [17], [40], [65], [93], [94], [125]. The
reader is referred to surveys on graph streaming algo-
rithms [77], [115], [121] for more references.

3.2.2 Graph Sketching and Dynamic Graph Streams

Graph sketching [9] is an influential technique for process-
ing graph streams with both insertions and deletions. The
idea is to apply classical sketching techniques such as
COUNTSKETCH [117] or distinct elements sketch (e.g.,

HYPERLOGLOG [70]) to the edge incidence matrix of the input
graph. Existing results show how to approximate the con-
nectivity and cut structure [9], [13], spectral structure [95],
[96], shortest path metric [9], [97], or subgraph counts [89],
[91] using small sketches. Extensions to some of these tech-
niques to hypergraphs were also proposed [78].

3.2.3 Dynamic Graph Algorithms

In the related area of dynamic graph algorithms one is inter-
ested in developing algorithms that approximate a combi-
natorial property of the input graph of interest (e.g.,
connectivity, shortest path distance, cuts, spectral proper-
ties) under edge insertions and deletions. Contrarily to
graph streaming, in dynamic graph algorithms one puts
less focus on minimizing space needed to store graph data.
Instead, the primary goal is to minimize time to conduct graph
updates. This has led to several very fast algorithms that pro-
vide updates with amortized poly-logarithmic update time
complexity. See [19], [36], [45], [60], [62], [71], [149] and
references within for some of the most recent developments.

3.2.4 Parallel Dynamic Graph Algorithms

Many algorithms were developed under the parallel dynamic
model, in which a graph undergoes a series of incoming par-
allel updates. Next, the parallel batch-dynamic model is a
recent development in the area of parallel dynamic graph
algorithms [3], [4], [143], [147]. In this model, a graph is
modified by updates coming in batches. A batch size is usu-
ally a function of n, for example logn or

ffiffiffi

n
p

. Updates from
each batch can be applied to a graph in parallel. The motiva-
tion for using batches is twofold: (1) incorporating parallel-
ism into ingesting updates, and (2) reducing the cost per
update. The associated algorithms focus on minimizing
time to ingest updates into the graph while accurately main-
taining a given structural graph property.

A variant [61] that combines the parallel batch-dynamic model
with the Massively Parallel Computation (MPC) model [98] was
also recently described. The MPC model is motivated by
distributed frameworks such as MapReduce [53]. In this
model, the maintained graph is stored on a certain number
of machines (additionally assuming that the data in one
batch fits into one machine). Each machine has a certain
amount of space sublinear with respect to n. The main goal
of MPC algorithms is to solve a given problem using Oð1Þ
communication rounds while minimizing the volume of
data communicated between the machines [98].

Finally, another variant of the MPC model that addresses
dynamic graph algorithms but without considering batches,
was also recently developed [84].

4 TAXONOMY OF FRAMEWORKS

We identify a taxonomy of graph streaming frameworks.
We offer a detailed analysis of concrete frameworks using
the taxonomy in Section 5 and in Tables 1 and 2. Overall,
the identified taxonomy divides all the associated aspects
into six classes: ingesting updates (Section 4.2), historical data
maintenance (Section 4.3), dynamic graph representation (Sec-
tion 4.1), incremental changes (Section 4.4), programming API
and models (Section 4.5), and general architectural features

BESTA ETAL.: PRACTICE OF STREAMING PROCESSING OF DYNAMIC GRAPHS: CONCEPTS, MODELS, AND SYSTEMS 1863

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on December 01,2023 at 11:07:29 UTC from IEEE Xplore. Restrictions apply.

(Section 4.6). Due to space constraints, we focus on the details
of the system architecture and we only sketch the straightfor-
ward taxonomy aspects (e.g., whether a system targets CPUs
or GPUs) and list2 them in Section 4.6.

4.1 Architecture of Dynamic Graph Representation

A core aspect of a streaming framework is the used repre-
sentation of the maintained graph.

4.1.1 Used Fundamental Graph Representations

While the details of how each system maintains the graph
dataset usually vary, the used representations can be
grouped into a small set of fundamental types. Some frame-
works use one of the basic graph representations (AL, EL,
CSR, or AM) which are described in Section 2. Other graph
representations are based on trees, where there is some addi-
tional hierarchical data structure imposed on the otherwise
flat connectivity data; this hierarchical information is used
to accelerate dynamic queries. Finally, frameworks con-
structed on top of more general infrastructure use a represen-
tation provided by the underlying system.

4.1.2 Blocking Within and Across Neighborhoods

In the taxonomy, we distinguish a common design choice in
systems based on CSR or its variants. Specifically, one can
combine the key design principles of AL and CSR by divid-
ing each neighborhood into contiguous blocks (also referred
to as chunks) that are larger than a single vertex ID (as in a
basic AL) but smaller than a whole neighborhood (as in a
basic CSR). This offers a tradeoff between flexible modifica-
tions in AL and more locality (and thus more efficient
neighborhood traversals) in CSR [128]. Now, this blocking
scheme is applied within each single neighborhood. We also
distinguish a variant where multiple neighborhoods are
grouped inside one block. We will refer to this scheme as
blocking across neighborhoods. An additional optimization
in the blocking scheme is to pre-allocate some reserved
space at the end of each such contiguous block, to offer
some number of fast edge insertions that do not require
block reallocation. All these schemes are pictured in Fig. 3.

4.1.3 Supported Types of Vertex and Edge Data

Contrarily to graph databases that heavily use rich graph
models such as the Labeled Property Graph [14], graph
streaming frameworks usually offer simple data models,
focusing on the graph structure and not on rich data attached

TABLE 1
Comparison of Selected Representative Works

They are grouped by the method of achieving concurrency between queries and updates (mutations). Within each group, the systems are sorted by publication
date. “Ds?” (distributed): does a design target distributed environments such as clusters, supercomputers, or data centers? “Data location”: the location of stor-
ing the processed dataset (“M-mem.”: main memory; a system is primarily in-memory). “Arch.”: targeted architecture. “F”: focus on: computation (C), storage
(S), computation and storage (C/S), mainly computation with some focus on storage (C+S), or mainly storage with some focus on computation (S+C). “Con?” (a
method of achieving concurrent updates and queries): does a design support updates (e.g., edge insertions and removals) proceeding concurrently with queries
that access the graph structure (e.g., edge lookups or PageRank computation). Whenever supported, we detail the method used for maintaining this concurrency:
(s): snapshots (method unknown), (s:C): snapshots created with copy-on-write, (s:P): snapshots created periodically, (s:T): snapshots created with tombstones, (f):
fine-grained synchronization, (sc): scheduling, (o): overlap. “B?” (batches): are updates batched? Batching entails support for data mutations at coarse granular-
ity. “sB?” (sorted batches): can batches of updates be sorted for more performance? “T?” (transactions): are transactions supported? “acid?”: are ACID transac-
tion properties offered? “P”: Does the system enable storing past graph snapshots? “L?” (live): are live updates supported (i.e., does a system maintain a graph
snapshot that is “up-to-date”: it continually ingests incoming updates)? “S?” (sliding): does a system support the Sliding Window Model for accessing past
updates? “D?” (decay): does a system support the Decay Model for accessing past updates? “Vertex / edge updates”: support for inserting and/or removing
edges and/or vertices; “A”: add, “R”: remove, “U”: update. “ ”: Support. “ ”: Partial / limited support. “ ”: No support. “ ”: Unknown.

2. More details are in the extended paper version (see the link on
page 1).

1864 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 6, JUNE 2023

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on December 01,2023 at 11:07:29 UTC from IEEE Xplore. Restrictions apply.

to vertices or edges. Still, different frameworks support basic
additional vertex or edge data, most often weights. Next, in
certain systems, both an edge and a vertex can have a type
or an attached property. Finally, an edge can also have a time-
stamp that indicates the time of inserting this edge into the
graph. A timestamp can also indicate a modification (e.g.,
an update of a weight of an existing edge). Details of such
rich data are specific to each framework.

4.1.4 Other Indexing Structures

One uses indexing structures to accelerate different queries.
In our taxonomy, we distinguish indices that speed up
queries related to the graph structure, rich data (i.e., vertex or
edge properties or labels), and historic (temporal) aspects
(e.g., indices for edge timestamps).

4.2 Graph Storage Architecture and Mutations

The first core architectural aspect of any graph streaming
framework are the details of its graph storage engines, and
how incoming updates are ingested into it.

4.2.1 Concurrent Queries and Updates

We start with achieving concurrency between queries and
updates (mutations).

One approach is based on coarse-grained synchronization
(also referred to as discretization).

Here, one popular method is based on snapshots. Updates
and queries are isolated from each other by making them
execute on two different copies (snapshots) of the graph
data. At some point, such snapshots are merged together.
Depending on a system, the scope of data duplication (i.e.,
only a part of the graph may be copied into a new snapshot)
and the details of merging may differ.

Snapshots can be created in different ways, for example
with the well-known copy-on-write scheme, or periodically as
determined by the underlying system details, or using
tombstones.

In coarse-grained synchronization, one ingests updates,
or resolves queries, in batches, i.e., multiple at a time, to
amortize overheads from ensuring consistency of the main-
tained graph. We distinguish this design choice in the

TABLE 2
Comparison of Selected Representative Works

They are grouped by the used fundamental graph representation (within each group, by publication date). “Rich edge/vertex data”: enabling additional data to
be attached to an edge or a vertex (“T”: type, “P”: property, “W”: weight, “TS”: timestamp). “Tested analytics workloads”: evaluated workloads beyond sim-
ple queries (PR: PageRank, TR: TunkRank, CL: clustering, BC: Betweenness Centrality, CC: Connected Components, BFS: Breadth-First Search, SSSP: Single
Source Shortest Paths, DFS: Depth-First Search, TC: Triangle Counting, SpMV: Sparse matrix-vector multiplication, BP: Belief Propagation, LP: Label Propa-
gation, CoEM: Co-Training Expectation Maximization, CF: Collaborative Filtering, SSWP: Single Source Widest Path, TAO & LinkBench: workloads used
in Facebook’s TAO and in LinkBench [15], MIS: Maximum Independent Set), RW: Random Walk. “Fundamental Representation”: A key representation
used to store the graph structure; all representation are explained in Section 4. “iB”: Is blocking used to increase the locality of edgeswithin the representation of
a single neighborhood? “(g)”: one uses empty gaps at the ends of blocks, to provide pre-allocated empty storage for faster edge insertions. “aB”: Is blocking used
to increase the locality of edges across different neighborhoods (i.e., can one store different neighborhoods within one block)? “Id”: Is indexing used? “(a)”:
Indexing of the graph adjacency data, “(d)”: Indexing of rich edge/vertex data, “(t)”: Indexing of different graph snapshots, in the time dimension? “Ic”: Are
incremental changes supported? “Rc”: incremental changes based on recomputation (the “offline approach”). “Rf”: incremental changes based on refinement
(the “online approach”). “(m)”: Explicit support formonotonic algorithms in the context of incremental changes. “(m,n)”: Explicit support for bothmonotonic
and non-monotonic algorithms in the context of incremental changes. “PrM”: Does the system offer a dedicated programming model (or API) related to graph
modifications? “(sm)”: API for simple graph modifications. “(am)”: API for advanced graph modifications. “(tr)”: API for triggered reactions to graph modifi-
cations. “(ss)”: API for manipulating with the updates awaiting being ingested (e.g., stored in the log). “PrC”: Does the system offer a dedicated programming
model (or API) related to graph computations(i.e., analytics running on top of the graph being modified)? “(sa)”: API for graph algorithms / analytics (e.g.,
PageRank) processing the main (i.e., up-to-date) graph snapshot. “(p)”: API for graph algorithms / analytics (e.g., PageRank) processing the past graph snap-
shots. “(i)”: API for incremental processing of graph algorithms / analytics. “(sai)” (i.e., (sa) + (i)): API for graph algorithms / analytics processing the incre-
mental changes themselves. “ ”, “ ”, “ ”: A design offers a given feature, offers it in a limited way, and does not offer it, respectively. “ ”: Unknown.

BESTA ETAL.: PRACTICE OF STREAMING PROCESSING OF DYNAMIC GRAPHS: CONCEPTS, MODELS, AND SYSTEMS 1865

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on December 01,2023 at 11:07:29 UTC from IEEE Xplore. Restrictions apply.

taxonomy because of its widespread use. Moreover, we
identify a popular optimization in which a batch of edges to
be removed or inserted is first sorted based on the ID of adja-
cent vertices. This introduces a certain overhead, but it also
facilitates parallel ingestion of updates: updates associated
with different vertices can be easier identified.

In fine-grained synchronization (also referred to as contin-
uous updates), in contrast to coarse-grained synchronization
(where updates are merged with the main graph represen-
tation during dedicated phases), updates are incorporated
into the main dataset as soon as they arrive, often inter-
leaved with queries, using synchronization protocols based
on fine-grained locks and/or atomic operations. A variant
of fine-grained synchronization is Differential Dataflow [116],
where the ingestion strategy allows for concurrent updates
and queries by relying on a combination of logical time,
maintaining the knowledge of updates (referred to as del-
tas), and progress tracking. Specifically, the differential
dataflow design operates on collections of key-value pairs
enriched with timestamps and delta values. It views
dynamic data as additions to or removals from input collec-
tions and tracks their evolution using logical time.

Finally, as also noted in past work [56], a system may
simply not enable concurrency of queries and updates, and
instead alternate between incorporating batches of graph
updates and graph queries (i.e., updates are being applied
to the graph structure while queries wait, and vice versa).
This type of architecture may enable a high ratio of digest-
ing updates as it does not have to resolve the problem of the
consistency of graph queries running interleaved, concur-
rently, with updates being digested.

4.2.2 Transactional Support

We distinguish systems that support transactions, under-
stood as units of work that enable isolation between concur-
rent accesses and correct recovery from potential failures.
Moreover, some (but not all) systems ensure the ACID
semantics of transactions.

4.3 Architecture of Historical Data Maintenance

While we do not focus on systems solely dedicated to the off-
line analysis of historical graph data, some streaming sys-
tems enable different forms of accessing/analyzing such data.

4.3.1 Storing Past Snapshots

In general, a streaming system may enable storing past snap-
shots, i.e., consistent past views (instances) of the whole
dataset. Two general approaches for maintaining such past
instances are (1) keeping snapshots themselves and (2)
maintaining changes to the graph. The former approach
makes deriving a given snapshot very efficient. However, it
may come with storage overheads if many snapshots are
maintained. The latter scheme reduces storage overheads,
but it may be time-consuming because one has to reapply
graph changes to construct a snapshot on demand.

4.3.2 Visibility of Past Graph Updates

There are several ways in which the information about past
updates can be stored. Most systems only maintain a “live”

version of the graph, where information about the past
updates is not maintained,3 in which all incoming graph
updates are being incorporated into the structure of the
maintained graph and they are all used to update or derive
maintained structural graph properties. For example, if a
user is interested in distances between vertices, then – in the
snapshot model – the derived distances use all past graph
updates. Formally, if we define the maintained graph at a
given time t as Gt ¼ ðV;EtÞ, then we have Et ¼ fe j e 2
E ^ tðeÞ � tg, where E are all graph edges and tðeÞ is the
timestamp of e 2 E [160].

Some streaming systems use the sliding window model, in
which edges beyond certain moment in the past are being
omitted when computing graph properties. Using the same
notation as above, the maintained graph can be modeled
as Gt;t0 ¼ ðV;Et;t0 Þ, where Et;t0 ¼ fe j e 2 E ^ t � tðeÞ � t0g.
Here, t and t0 are moments in time that define the width of
the sliding window, i.e., a span of time with graph updates
that are being used for deriving certain query answers [160].

Both the snapshot model and the sliding window model
do not reflect certain important aspects of the changing real-
ity. The former takes into account all relationships equally,
without distinguishing between the older and more recent
ones. The latter enables omitting old relationships but does
it abruptly, without considering the fact that certain connec-
tions may become less relevant in time but still be present. To
alleviate these issues, the edge decay model was pro-
posed [160]. In this model, each edge e (with a timestamp
tðeÞ � t) has an independent probability PfðeÞ of being
included in an analysis. PfðeÞ ¼ fðt� tðeÞÞ is a non-decreas-
ing decay function that determines how fast edges age. The
authors of the edge decay model set f to be decreasing
exponentially, with the resulting model being called the
probabilistic edge decay model.

4.4 Architecture of Incremental Computation

A streaming framework may support an approach called
“incremental changes” for faster convergence of graph
algorithms. Assume that a certain graph algorithm is exe-
cuted and produces some results, for example page ranks
of each vertex. Now, the key observation behind the
incremental changes is that the subsequent graph updates
may not necessarily result in large changes to the derived
page rank values. Thus, instead of recomputing the ranks
from scratch, one can attempt to minimize the scope of
recomputation, resulting in “incremental” changes to the
ranking results. In our taxonomy, we will distinguish
between supporting incremental changes in the offline
(“recomputation”) or the online (“refinement”) mode. In the
former, one updates analytics outcomes with recomputa-
tion. In the latter, one tracks dependencies (on-the-fly)
between modified values and uses these dependencies to
simply adjust the values that must be updated, from the
point where the values become affected, without restart-
ing computation. Recomputation based schemes may

3. This approach is sometimes referred to as the “snapshot” model.
Here, the word “snapshot” means “a complete view of the graph, with
all its updates”. This naming is somewhat confusing, as “snapshot” can
also mean “a specific copy of the graph generated for concurrent proc-
essing of updates and queries”, cf. Section 4.2.

1866 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 6, JUNE 2023

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on December 01,2023 at 11:07:29 UTC from IEEE Xplore. Restrictions apply.

further differ in the amount of data that must be recom-
puted. For example, one may restart the computation
from scratch for the whole graph upon mutations, or
identify which vertices changed, and recompute precisely
the values associated with these vertices.

4.5 Supported Programming APIs and Models

The final part of our taxonomy is the offered programming
model and API. We identify two key classes of designs.

Graph Mutations. First, a framework may offer a selection
of functions for modifying the maintained graph; such API
may consist of simple basic functions (e.g., insert an edge) or
complex ones (e.g., merge two graphs). Here, we additionally
identify APIs for triggered events taking place upon specific
updates, and for accessing and manipulating the pending
graph updates (that await being ingested into the graph
representation).

API for Graph Analytics. The second key API that a frame-
work may support consists of functions for running graph
computations on top of the maintained graph. Here, we iden-
tify specific APIs for controlling graph algorithms (e.g., Pag-
eRank) processing the main (i.e., “live”) graph snapshot, or
for controlling such computations running on top of past
snapshots. Moreover, our taxonomy includes an API or
models for incremental processing of the outcomes of graph
algorithms (cf. Section 4.4).

4.6 General Architectural Features of Frameworks

The general features are the location of the maintained graph
data (e.g., main memory or GPU memory), whether it is dis-
tributed, what is the targeted hardware architecture (general
CPUs or GPUs), and whether a system is general-purpose or
is it developed specifically for graph analytics.

5 ANALYSIS OF FRAMEWORKS

We now analyze existing frameworks using our taxonomy
(cf. Section 4) in Tables 1 and 2, and in the following text.

We use symbols “ ”, “ ”, and “ ” to indicate that a
given system offers a given feature, offers a given feature in
a limited way, and does not offer a given feature,
respectively.4

5.1 Graph Storage Architecture and Mutations

We start with analyzing the method for achieving concur-
rency between updates and queries. Note that, with queries,
we mean both local (fine) reads (e.g., fetching a weight of a
given edge), but also global analytics (e.g., running Pag-
eRank) that also do not modify the graph structure.

First, most frameworks use snapshots. We observe that
such frameworks have also some other snapshot-related
design feature, for example Grace (uses snapshots also to
implement transactions), GraphTau and Tegra (both sup-
port storing past snapshots), or DeltaGraph (harnesses
Haskell’s feature to create snapshots). The most popular
mechanism for creating snapshots is copy-on-write, used in
Grace, LLAMA, and others. The details (e.g., layouts or
structures being copied) heavily depend on a specific sys-
tem. Kineograph uses snapshots created periodically.
GraphOne uses tombstones that mark which edges are to be
removed, and thus could be swapped with new edges to be
inserted. Second, a certain group of frameworks use fine-
grained synchronization. The interleaving of updates and
read queries is supported only with respect to fine reads
(i.e., parallel ingestion of updates while running global ana-
lytics such as PageRank are not supported in the considered
systems). Furthermore, two interesting methods for efficient
concurrent ingestion of updates and queries have recently
been proposed in the RisGraph system [68] and by Sha et al.
[136]. The former uses scheduling of updates, i.e., the system
uses fine-grained synchronization enhanced with a special-
ized scheduler that manipulates the ordering and timing of
applying incoming updates to maximize throughput and
minimize latency (different timings of applying updates
may result in different performance penalties). In the latter,
one overlaps the ingestion of updates with transferring the
information about queries (e.g., over PCIe).

Most systems use batching, but only a few sort batches;
the sorting overhead often exceeds benefits from faster
ingestion. Next, only five frameworks use transactions, and
four offer the ACID semantics of transactions. This illus-
trates that performance and high ingestion ratios are priori-
tized in the design of streaming frameworks over overall
system robustness. Some frameworks that support ACID
transactions rely with this respect on some underlying data
store infrastructure: Sinfonia (for Concerto) and CouchDB
(for the system by Mondal et al.). Others (Grace and Live-
Graph) provide their own implementations of ACID.

5.2 Analysis of Support for Keeping Historical Data

Our analysis shows that reasonably many systems (> 10)
support keeping past data in some way. The details heavily

Fig. 3. Illustration of blocking-related optimizatios in dynamic graph representations.

4. We encourage participation in this survey. In case the reader pos-
sesses additional information relevant for the tables, the authors would
welcome the input. We also encourage the reader to send us any other
information that they deem important, e.g., details of systems not men-
tioned in the current survey version.

BESTA ETAL.: PRACTICE OF STREAMING PROCESSING OF DYNAMIC GRAPHS: CONCEPTS, MODELS, AND SYSTEMS 1867

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on December 01,2023 at 11:07:29 UTC from IEEE Xplore. Restrictions apply.

depend on a given system. For example, Kineograph
focuses on keeping past snapshots created periodically by
the underlying runtime. Tegra enhances this approach by
enabling the user to additionally create snapshots at arbi-
trary times.

To reduce both storage and performance overheads, the
authors of Tegra observe that one could employ some com-
bination of keeping snapshots and maintaining graph
changes. Thus, performance would be improved as one
would not have to start from scratch to arrive at a certain
snapshot. Simultaneously, the memory pressure is reduced
because not all snapshots are stored explicitly. However,
this approach is not heavily explored in the literature. Sys-
tems such as STINGER or ZipG enable maintaining time-
stamps of graph mutations, which facilitates deriving the
graph state at a selected point in time. However, these sys-
tems do not offer a dedicated API for such snapshot deriva-
tion, delegating such logic to the system user.

Systems keeping past snapshots often employ some
additional form of reusing the graph structure across snap-
shots, to reduce memory overheads. For example, LLAMA
employs a scheme in which parts of the graph, which are
identical across the snapshots, are stored only once. Tegra
uses a similar approach, with its Distributed Graph Snap-
shot Index. Some systems also use persistent storage to fur-
ther alleviate the issue of maintaining multiple snapshots.
An example such system is Tegra.

CelliQ, GraphTau, a system by Sha et al. , and Tegra also
support the sliding window model. This is possible as they
enable keeping past snapshots as well as obtaining the dif-
ferences between these snapshots. Thus, the user can choose
the range of past updates (e.g., incoming edges) when com-
puting a given graph property. They also usually maintain
indexing structures over historical data to accelerate fetch-
ing respective past instances. Tegra has a particularly rich
set of features for analyzing historical data efficiently,
approaching in its scope offline temporal frameworks such
as Chronos [82]. Another system with a rich set of such fea-
tures is Kineograph, the only one to support the exponential
decay model of the visibility of past updates.

5.3 Analysis of Graph Representations

Most frameworks use some form of CSR. In certain cases,
CSR is combined with an EL to form a dual representation; EL
is often (but not exclusively) used in such cases as a log to
store the incoming edges, for example in GraphOne. Certain
other frameworks use AL, prioritizing the flexibility of
graph updates over locality of accesses.

Most frameworks based on CSR use blocking within
neighborhoods (i.e., each neighborhood consists of a linked
list of contiguous blocks (chunks)). This enables a tradeoff
between the locality of accesses and time to perform
updates. The smaller the chunks are, the easier is to update
a graph, but simultaneously traversing vertex neighbor-
hoods requires more random memory accesses. Larger
chunks improve locality of traversals, but require more time
to update the graph structure. Two frameworks (Concerto
and Hornet) use blocking across neighborhoods. This may
help in achieving more locality whenever processing many
small neighborhoods that fit in a block.

A few systems use tree based graph representations. For
example, Sha et al. [136] use a variant of packed memory array
(PMA), which is an array with all neighborhoods (i.e.,
essentially a CSR) augmented with an implicit binary tree
structure for edge insertions and deletions in Oðlog 2nÞ time.

Frameworks constructed on top of a more general infra-
structure use a representation provided by the underlying
system. For example, GraphTau [86], built on top of Apache
Spark [162], uses the underlying abstraction called Resilient
Distributed Datasets (RDDs) [161], [162]. RDDs can be
implemented differently, for example using HDFS
files [161]. Other frameworks use data representations that
are harnessed by general processing systems or databases,
for example KV stores, tables, or general collections.

All considered frameworks use some form of indexing.
However, the indexes mostly keep the locations of vertex
neighborhoods. Such an index is usually a simple array of
size n, with cell i storing a pointer to the neighborhood Ni;
this is a standard design for frameworks based on CSR.
Whenever CSR is combined with blocking, a corresponding
framework also offers the indexing of blocks used for stor-
ing neighborhoods contiguously. For example, this is the
case for faimGraph and LiveGraph. Frameworks based on
more complex underlying infrastructure benefit from index-
ing structures offered by the underlying system. For exam-
ple, Concerto uses hash indexing offered by MySQL, and
CellIQ and others can use structures offered by Spark.
Finally, relatively few frameworks apply indexing of addi-
tional rich vertex or edge data, such as properties or labels.
This is due to the fact that streaming frameworks, unlike
graph databases, place more focus on the graph structure
and much less on rich attached data. For example, STINGER
indexes edges and vertices with given labels.

5.4 Analysis of Support for Incremental Changes

Around half of the considered frameworks support incre-
mental changes to accelerate global graph analytics running
on top of the maintained graph datasets. Frameworks that
do not support them (e.g., faimGraph) usually put less focus
on global analytics in the streaming setting.

Among systems that do support incremental computa-
tion, many are offline. These systems offer different mecha-
nisms for detecting which vertices must be recomputed to
update the analytics results to reflect recent graph muta-
tions. This includes GraphIn, EvoGraph, Tegra, Kineo-
graph, and others. Here, Tegra maintains is additionally
able to incorporate incremental computation for different
past snapshots, due to its focus on keeping and analyzing
historical data.

Some systems are online, focusing on update refinement.
For example, GraphBolt and KickStarter both carefully track
dependencies between vertex values (that are being com-
puted) and edge modifications. The differences between
these two are driven by targeted classes of algorithms.
GraphBolt assumes the Bulk Synchronous Parallel
(BSP) [148] computation and thus ensures synchronous
semantics. KickStarter instead focuses on path-based mono-
tonic algorithms such as SSSP. It provides different optimi-
zations. For example, it uses the fact that in many graph
algorithms, the vertex value is simply selected from one

1868 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 6, JUNE 2023

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on December 01,2023 at 11:07:29 UTC from IEEE Xplore. Restrictions apply.

single incoming edge. Unlike some other systems (e.g., Kin-
eograph), GraphBolt and KickStarter enable performance
gains also in the event of edge deletions, not only insertions.
Finally, a very recent system called DZiG [112] improves
the incremental capabilities of GraphBolt by utilizing the
fact that in iterative graph algorithms, values of many verti-
ces stabilize across iterations. This enables opportunities for
annihilating unnecessary refinements. RisGraph applies
KickStarter’s approach for incremental computation to its
design based on concurrent ingestion of fine-grained
updates and queries.

Almost all the systems that support incremental changes
focus on monotonic graph algorithms, i.e., algorithms, where
the computed properties (e.g., vertex distances) are consis-
tently either increasing or decreasing. Here, GraphBolt,
DZiG, and Tegra also cover non-monotonic algorithms, such
as Belief Propagation, Co-Training Expectation Maximiza-
tion, or Collaborative Filtering.

5.5 Analysis of Offered Programming APIs and
Models

Graph Mutations. We first analyze the supported APIs for
graph modifications. All considered frameworks support a
simple API for manipulating the graph, which includes
operations such as adding or removing an edge. However,
some frameworks offer more capabilities. We identify three
such frameworks: Concerto, DeltaGraph, and GraphOne.
Concerto has special functions for programming triggered
events, i.e., events taking place automatically upon certain
specific graph modifications. DeltaGraph offers functions
for merging different graphs. Finally, GraphOne enables
accessing and analyzing the updates that are still waiting
(in a special log structure) to be ingested into the main
graph structure. This can be used to apply some form of
preprocessing of the updates, before they are applied to the
main graph data, or to run some analytics on the updates.

Graph Analytics. We also discuss supported APIs for run-
ning global analytics on the maintained graph. First, we
observe that a large fraction of frameworks do not support
developing graph analytics at all. These systems, for exam-
ple faimGraph, focus completely on graph mutations and
local queries. However, other systems do offer an API for
graph analytics (e.g., PageRank) processing the main (live)
graph snapshot. These systems usually harness some exist-
ing programming model, for example Bulk Synchronous
Parallel (BSP) [148]. Furthermore, frameworks that enable
maintaining past snapshots, for example Tegra, also offer
APIs for running analytics on such snapshots. These APIs
are similar to the APIs for processing the main (live) graph
versions, with a difference that the user also must identify
the targeted specific past snapshot.

Finally, systems offering incremental changes also offer
the associated APIs. Online systems such as GraphBolt and
DZiG provide user-defined algorithm specific functions
that enable refining aggregation values. Example functions
are propagate, retract, or repropagate. The goal of
these functions is to appropriately implement the logic of
contributing to, or withdrawing from, vertex aggregation
values. Offline systems often provide some way to indicate
which vertices must be recomputed. For example, GraphIn

and EvoGraph make the developer responsible for imple-
menting a dedicated function that detects inconsistent verti-
ces, i.e., vertices that became affected by graph updates.
This function takes as arguments a batch of incoming
updates and the vertex property related to the graph prob-
lem being solved (e.g., a parent in the BFS traversal prob-
lem). Whenever any update in the batch affects a specified
property of some vertex, this vertex is marked as inconsis-
tent, and is scheduled for recomputation. Another example
is Tegra. It offers two functions, diff and expand. The for-
mer returns the difference (i.e., a modified subgraph)
between two graph snapshots. The latter expands this sub-
graph with its 1–hop neighborhood. The resulting part of
the graph is then scheduled for recomputation. A similar
approach is used in other systems based on the underlying
Spark infrastructure, i.e., CellIQ.

5.6 Supported Types of Graph Updates

Different systems support different forms of graph updates.
The most widespread update is edge insertion, offered by all
the considered systems. Second, edge deletions are supported
by most frameworks. Finally, a system can also explicitly
enable adding or removing a specified vertex. In the latter, a
given vertex is removed with its adjacent edges.

5.7 Distributed Designs

Almost all the distributed frameworks rely on underlying
existing backend infrastructure such as Spark (CelliQ,
GraphTau, Tegra, ZipG, iGraph, Sprouter), CouchDB (work
by Mondal et al.), or Giraph (GraphInc). Two frameworks
that offer specialized distributed implementations are Kin-
eograph and Concerto. Streaming frameworks rely on dis-
tribution mostly to enable scaling to larger datasets (by
distributing a larger graph instance over multiple nodes)
and to increase the throughput of graph queries (by distrib-
uting computation and update ingestion over multiple
nodes). Furthermore, streaming frameworks rely on mature
backends for effective fault tolerance.

5.8 Computation versus Storage

Some systems focus primarily on computation aspects of
dynamic graph processing. For example, KickStarter offers
an interesting model for incremental computation, while
storage is outside its focus. Similarly, DZiG and GraphBolt
focus on incremental computation, extending KickStarter’s
capabilities by – respectively – targeting BSP programs and
by harnessing certain properties of such programs for more
performance gains. Contrarily, systems such as Aspen focus
on storage, usually by providing elaborate graph representa-
tions. Some systems, such as Tegra, come with enhance-
ments into both aspects.

5.9 Analysis of Relations to Theoretical Models

First, despite the similarity of names, the (theoretical) field
of streaming graph algorithms is not well connected to graph
streaming frameworks: the focus of the former are fast algo-
rithms operating with tight memory constraints that by
assumption prevent from keeping the whole graph in mem-
ory, which is not often the case for the latter. Similarly, graph
sketching focuses on approximate algorithms in a streaming

BESTA ETAL.: PRACTICE OF STREAMING PROCESSING OF DYNAMIC GRAPHS: CONCEPTS, MODELS, AND SYSTEMS 1869

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on December 01,2023 at 11:07:29 UTC from IEEE Xplore. Restrictions apply.

setting, which is of little interest to streaming frameworks.
On the other hand, the (theoretical) settings of dynamic graph
algorithms and parallel dynamic graph algorithms are similar to
that of the streaming frameworks. Their common assump-
tion is that the whole maintained graph is available for
queries (in-memory), which is also common for the stream-
ing frameworks. Moreover, the batch dynamic model is even
closer, as it explicitly assumes that edge updates arrive in
batches, which reflects a common optimization in the
streaming frameworks. We conclude that future develop-
ments in streaming frameworks could benefit from deep-
ened understanding of the above mentioned theoretical
areas. For example, one could use the recent parallel batch
dynamic graph connectivity algorithm [3] in the implemen-
tation of any streaming framework, for more efficient con-
nected components problem solution.

6 GRAPH DATABASES

Graph databases such as Neo4j [128] were introduced to
alleviate performance overheads of querying graphs main-
tained as tables in relational databases; these overheads
have been caused by the need to conduct many expensive
joins when, for example, traversing a graph.

Streaming graph frameworks, similarly to graph data-
bases, maintain a dynamically changing graph dataset
under a series of updates and queries to the graph data.
However, there are certain crucial differences that we now
discuss. We refer the reader to a recent survey on the latter
class of systems [31], which provides details of native graph
databases such as Neo4j [128], RDF stores [48], and other
types of NoSQL stores used for managing graphs.

6.1 Graph Databases versus Graph Streaming
Systems

Targeted Workloads. Graph databases have traditionally
focused on simple fine graph queries or updates, related to
both the graph structure (e.g., verify if two vertices are con-
nected) and the rich attached data (e.g., fetch the value of a
given property) [64]. Another important class are “business
intelligence” complex queries (e.g., fetch all vertices model-
ing cars, sorted by production year) [145]. Only recently,
there has been interest in augmenting graph databases with
capabilities to run global analytics such as PageRank [43]. In
contrast, streaming frameworks focus on fine updates and
queries, and on global analytics, but not on complex busi-
ness intelligence queries. These frameworks put more focus
on high velocity updates that can be rapidly ingested into the
maintained. Next, of key interest are queries into the struc-
ture of the adjacency of vertices. This is often in contrast to
graph databases, where many queries focus on the rich data
attached to edges and vertices. These differences are
reflected in all the following design aspects.

Ingesting Updates. Graph databases can use many differ-
ent underlying designs (RDBMS style engines, native graph
databases, KV stores, document stores, and others [31]),
which means they may use different schemes for ingesting
updates. However, a certain general difference between
graph streaming frameworks and graph databases is that
graph databases often include transactional support with
ACID properties [31], [80], while very few streaming

frameworks supports transactions and the ACID semantics
of transactions. While most graph databases offer ACID, an
example that does not is Cray Graph Engine [31]. The
streaming graph updates, even if sometimes they also
referred to as transactions [166], are usually “lightweight”:
single edge insertions or deletions, rather than arbitrary pat-
tern matching queries common in graph database work-
loads. Overall, streaming frameworks focus on lightweight
methods for fast and scalable ingestion of incoming
updates, which includes optimizations such as batching of
updates.

Graph Models and Representations. Graph databases usu-
ally deal with complex and rich graph models (such as the
Labeled Property Graph [14] or Resource Description
Framework [48]) where both vertices and edges may be of
different types and may be associated with arbitrary rich
properties such as pictures, strings, arrays of integers, or
even data blobs. In contrast, models in streaming frame-
works are usually simple, without support for arbitrary
properties. This reflects the fact that the main focus in
streaming frameworks is to investigate the structure of the
maintained graph and its changes, and usually not rich
attached data. This is also reflected by the associated index-
ing structures. While graph database systems maintain
complex distributed index structures to accelerate different
forms of queries over the rich attached data, streaming
frameworks use simple index structures, most often only
pointers to each vertex neighborhood, and very rarely addi-
tional structures pointing to edges/vertices with, e.g., com-
mon labels.

Data Distribution. Another interesting observation is sup-
port for data replication and data sharding. These two con-
cepts refer to, respectively, the ability to replicate the
maintained graph to more than one server (to accelerate cer-
tain read queries), and to partition the same single graph
into several servers (to enable storing large graphs fully in-
memory and to accelerate different types of accesses). Inter-
estingly, streaming frameworks that enable distributed
computation also support the more powerful but also more
complex data sharding. Contrarily, while many distributed
data stores used as graph databases (e.g., document stores)
enable sharding as well, the class of “native” graph data-
bases do not always support sharding. For example, the
well-known Neo4j [128] graph databases only recently
added support for sharding for some of its queries.

Keeping Historical Data.We observe that streaming frame-
works often offer dedicated support for maintaining histori-
cal data, starting from simple forms such as dedicated edge
insertion timestamps (e.g., in STINGER), to rich forms such
as full historical data in a form of snapshots and different
optimizations to minimize storage overheads (e.g., in
Tegra). In contrast, graph databases most often do not offer
such dedicated schemes. However, the generality of the
used graph models facilitates maintaining such information
at the user level (e.g., the user can use a timestamp label
and/or property attached to each vertex or edge).

Incremental Changes. We do not know of any graph data-
bases that offer explicit dedicated support for incremental
changes. However, as most of such systems do not offer
open source implementations, confirming this is hard. How-
ever, many streaming frameworks offer strong support for

1870 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 6, JUNE 2023

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on December 01,2023 at 11:07:29 UTC from IEEE Xplore. Restrictions apply.

incremental changes, both in the form of its architecture and
computational model tuned for this purpose, and its offered
programming API. This is because incremental changes spe-
cifically target accelerating global graph analytics such as
PageRank. These analytics have always been of key focus
for streaming frameworks, and only recently became a rele-
vant use case for graph databases [43].

Programming APIs and Models. Despite a lack of agree-
ment on a single language for querying graph databases, all
the languages (e.g., SPARQL [126], Gremlin [129],
Cypher [72], [83], and SQL [50]) provide rich support for
pattern matching queries [64] or business intelligence
queries [145]. On the other hand, streaming frameworks do
not offer such support. However, they do come with rich
APIs for global graph analytics.

Summary. In summary, graph databases and streaming
frameworks, despite different shared characteristics, are
mostly complementary designs. Graph databases focus on
rich data models and complex business intelligence work-
loads, while streaming frameworks’ central interest are
lightweight models and very fast update ingestion rates
and global analytics. This can be seen in, for example, the
design of the GraphTau framework, which explicitly offers
an interface to load data for analytics from a graph database.
Thus, using both systems together may often help to com-
bine their advantages. Simultaneously, the gap between
these two system classes is slowly shrinking, especially
from the side of graph databases, where focus on global
analytics and more performance can be seen in recent
designs [43].

6.2 Systems Combining Both Areas

We describe example systems that provide features related
to both graph streaming frameworks and graph databases.

Concerto [106] is a distributed in-memory graph store.
The system presents features that can be found both in
graph streaming frameworks (real-time graph queries and
focus on fast, concurrent ingestion of updates) and in graph
databases (triggers, ACID properties). It relies on Sinfo-
nia [7], an infrastructure that provides a flat memory region
over a set of distributed servers. Further, it offers ACID
guarantees by distributed transactions (similar to the two-
phase commit protocol) and writing logs to disk. The trans-
actions are only short living for small operations such as
reading and writing memory blocks; no transactions are
available that consist of multiple updates. The graph data is
stored by Sinfonia directly within in-memory objects that
make up a data structure similar to an adjacency list. This
data structure can also hold arbitrary properties.

ZipG [100] is a framework with focus on memory-effi-
cient storage. It builds on Succint [5], a data store that sup-
ports random access to compressed unstructured data. ZipG
exploits this feature and stores the graph in two files. The
vertex file consists of the vertices that form the graph. Each
row in the file contains the data related to one vertex,
including the vertex properties. The edge file contains the
edges stored in the graph. A single record in the edge file
holds all edges of a particular type (e.g., a relationship or a
comment in a social network) that are incident to a vertex.
Further, this record contains all the properties of these

edges. To enable fast access to the properties, metadata
(e.g., lengths of different records, and offsets to the positions
of different records) are also maintained by ZipG files. Suc-
cint compresses these files and creates immutable logs that
are kept in main memory for fast access. Updates to the
graph are stored in a single log store and compressed after a
threshold is exceeded, allowing to run updates and queries
concurrently. Pointers to the information on updates are
managed such that logs do not have to be scanned during a
query. Contrary to traditional graph databases, the system
does not offer strict consistency or transactions.

Finally, LiveGraph [166] targets both transactional graph
data management and graph analytics. Similarly to graph
databases, it implements the property graph model and
supports transactions, and similarly to analytics frame-
works, it handles long running tasks that access the whole
graph. For high performance, the system focuses on sequen-
tial data accesses. Vertices are stored in an array of vertex
blocks on which updates are secured by a lock and applied
using copy-on-write. For edges, a novel graph data struc-
ture is presented, called transactional edge log. Similar to an
adjacency list there is a list of edges per vertex, but the data
structure keeps all insertions, deletions and updates as edge
log entries appended to the list. The data is stored in blocks,
consisting of a header, edge log entries of fixed size and
property entries (stored separately from the edge log
entries). Each edge log entry stores the incident vertex, a
create time and an update time. During a transaction, the
reader receives a time stamp and reads only the data for
which the create time is smaller than the given time stamp.
Also the update time must be considered to omit stale data.
Data is read starting from a tail pointer so a reader sees the
updates first (no need to scan the old data). Further optimi-
zations are applied, e.g., a Bloom filter allows to check
quickly for existing edges. For an update, a writer must
acquire a lock of the vertex. New data is appended on the
tail of the edge log entries. Since the transaction edge log
grows over time, a compression scheme is applied which is
non-blocking for readers. The system guarantees persis-
tence by writing data into a log and keeps changes locally
until the commit phase, guaranteeing snapshot isolated
transactions.

7 PERFORMANCE ANALYSIS

We now summarize key insights about performance of the
described frameworks. We focus on (1) identifying the fast-
est frameworks, and on (2) understanding the performance
effects of various design choices. Due to space constraints,
we refer the reader to respective publications for the details
of the evaluation setup. For concreteness, we report specific
performance numbers, but the general performance pat-
terns of the analyzed effects are similar for other input data-
sets and hardware architectures used in respective works.
Our key source of data is a recent excellent broad analysis
accompanying the evaluation of the DZiG processing
system [112].

Summary of Performance-Oriented Goals. Two main perfor-
mance goals of the studied frameworks are (1) maximizing
the throughput of ingested updates, usually expressed in
millions of inserted (or deleted) edges per second, and (2)

BESTA ETAL.: PRACTICE OF STREAMING PROCESSING OF DYNAMIC GRAPHS: CONCEPTS, MODELS, AND SYSTEMS 1871

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on December 01,2023 at 11:07:29 UTC from IEEE Xplore. Restrictions apply.

accelerating graph analytics running on top of the main-
tained graph. Some systems (e.g., faimGraph [155]) only
focus on maximizing the raw update rate. However, most
systems attempt to maximizing the performance in both (1)
and (2). Here, certain systems offer incremental changes
(e.g., GraphBolt [113] or DZiG [112]) while others do not
offer this capability, instead focusing on enhancing the
schemes for incorporating graph mutations efficiently in the
graph structures (e.g., Aspen [56] or GraphOne [103]).

Different results indicate that the former significantly
outperform the latter when considering both (1) and (2) at
the same time (i.e., in the end-to-end runtime comparisons of
graph analytics such as PageRank or SSSP and simultaneous
graph mutations) [112]. Here, we summarize the analysis
in [112], which considers the following dimensions (the
TwitterMPI graph): a targeted graph problem (PageRank
with batched mutations, SSSP with batched mutations, and
plain mutations), the size of graph mutation batches (1, 10,
100, 1k, 10k), and a framework (DZiG, GraphBolt, Aspen,
GraphOne, LLAMA, STINGER). Now, in the DZiG analy-
sis [112], for plain mutations, Aspen is the fastest on the
above batch sizes (e.g., on a 32-core machine, Aspen
achieves runtimes of 1e-4, 3e-4, 2e-3, 6e-3, 7e-3 for batches
of 1, 10, 100, 1k, and 10k, respectively). When combining
mutations and analytics, frameworks featuring depen-
dency-driven incremental computation (GraphBolt, DZiG)
outperform all other comparison targets, regardless of batch
sizes and targeted problems. For example, for batch size
100, GraphBolt/DZiG use 11.7s/11.2s for PR and both take
0.06s for SSSP. Aspen takes 29.8s for PR and 3.31s for SSSP.

Systems such as Aspen come with more potential for the
highest performance of raw graph updates [112]. These frame-
works still try to minimize performance penalties when
running graph analytics, compared to the running times of
static graph processing frameworks. The highest perfor-
mance of raw updates reported in the literature, without
considering analytics, belongs to the GPU based faim-
Graph [155]. It achieves processing rates of nearly 200M
edge updates / second (for batch size 1M, on several graphs
such as coAuthorsD, on an NVIDIA Geforce GTX Titan Xp).

We also summarize performance patterns of techniques
for incremental computation, using existing detailed analy-
ses [112], [113]. First, dependency tracking (the online
approach) systematically outperforms restarting computa-
tion upon graph mutations (the offline approach) [113].
Within the class of dependency tracking, differences
between respective schemes depend on design details and
targeted algorithms. For example, as expected, KickStarter
outperforms GraphBolt on a non-BSP SSSP problem (consis-
tent speedups of � 7� or more on the Twitter graph, for
batch sizes of 1, 10, 100, 1k, 10k, on a single-socket 32-core
machine), because GraphBolt, being tuned for BSP pro-
grams, ensures synchronous semantics, which is unneces-
sary for SSSP. Moreover, a very recent design indicates
further opportunities for speedups within the class of
dependency driven designs. Specifically, one can also utilize
the fact that, in iterative graph algorithms, vertex values
often stabilize after several iterations. This enables pruning
unnecessary updates, and deliver speedups over other
tuned dependency-driven systems that do not consider this
effect [112]. We expect that this direction will be further

explored in future works, for example by considering com-
plex non-iterative and non-path-based graph mining
workloads.

8 CHALLENGES

Many research challenges related to streaming graph frame-
works are similar to those in graph databases [31]. First,
existing systems support numerous forms of data organiza-
tion and types of graph representations, and it is unclear
how to match these different schemes for different work-
load scenarios. A strongly related challenge, similarly to
that in graph databases, is a high-performance system
design for supporting both OLAP and OLTP style work-
loads. One can also try to accelerate different graph analyt-
ics problems in the streaming setting, for example graph
coloring [21].

Second, while there is no consensus on a standard lan-
guage for querying graph databases, even less is established
for streaming frameworks. Different systems provide differ-
ent APIs or programming abstractions [146]. Difficulties are
intensified by a similar lack of consensus on most beneficial
techniques for update ingestion and on computation mod-
els. This area is rapidly evolving and one should expect
numerous new ideas, before a certain consensus is reached.

Moreover, contrarily to static graph processing, little
research exists into accelerating streaming graph processing
using hardware acceleration such as FPGAs [23], [34], [52],
high-performance networking hardware and associated
abstractions [24], [25], [28], [57], [73], [132], low-cost
atomics [122], [133], hardware transactions [27], and
others [8], [24]. One could also investigate topology-aware
or routing-aware data distribution for graph streaming,
especially together with recent high-performance network
topologies [26], [101] and routing [22], [33], [74], [109].
Finally, ensuring speedups due to different data modeling
abstractions, such as the algebraic abstraction [29], [30], [99],
[104], may be a promising direction.

We also observe that, despite the fact that several stream-
ing frameworks offer distributed execution and data shard-
ing, the highest rate of ingestion is achieved by shared-
memory single-node designs (cf. Section 7). An interesting
challenge would be to make these designs distributed and
to ensure that their ingestion rates increase even further,
proportionally to the number of used compute nodes.

Finally, an interesting question is whether graph data-
bases are inherently different from streaming frame-
works. While merging these two classes of systems is an
interesting ongoing effort, reflected by systems such as
Graphflow [92] with many potential benefits, the differ-
ence in the associated workloads and industry require-
ments may be fundamentally different for a single unified
solution.

9 CONCLUSION

Streaming and dynamic graph processing is an important
research field. It is used to maintain numerous dynamic
graph datasets, simultaneously ensuring high-performance
graph updates, queries, and analytics workloads. Many
graph streaming frameworks have been developed. They

1872 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 6, JUNE 2023

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on December 01,2023 at 11:07:29 UTC from IEEE Xplore. Restrictions apply.

use different data representations, they are based on miscel-
laneous design choices for fast parallel ingestion of updates
and resolution of queries, and they enable a plethora of
queries andworkloads.We present the first analysis and tax-
onomy of the rich landscape of streaming and dynamic
graph processing. We crystallize a broad number of related
concepts (both theoretical and practical), we list and catego-
rize existing systems and discuss key design choices, we
explain associated models, and we discuss related fields
such as graph databases. Ourwork can be used by architects,
developers, and project managers who want to select the
most advantageous processing system or design, or simply
understand this broad and fast-growing field.

ACKNOWLEDGMENTS

The authors would like to thank PRODYNA AG (Darko
Krizic, Jens Nixdorf, and Christoph Korner) for generous
support, anonymous reviewers for useful comments, and
Khuzaima Daudjee for suggestions on related work.

REFERENCES

[1] Apache giraph project. Accessed: Nov. 18, 2021. [Online].
Available: https://giraph.apache.org/

[2] T. Abughofa and F. Zulkernine, “Sprouter: Dynamic graph proc-
essing over data streams at scale,” in Proc. 29th Int. Conf., DEXA,
2018, pp. 321–328.

[3] U. A. Acar, D. Anderson, G. E. Blelloch, and L. Dhulipala,
“Parallel batch-dynamic graph connectivity,” in Proc. 31st ACM
Symp. Parallelism Algorithms Archit., 2019, pp. 381–392.

[4] U. A. Acar, A. Cotter, B. Hudson, and D. T€urkoglu, “Parallelism
in dynamic well-spaced point sets,” in ACM Symp. Parallelism
Algorithms Archit., pp. 33–42, 2011.

[5] R.Agarwal et al., “Succinct: Enabling queries on compressed data,”
in Proc. Symp. Netw. Syst. Des. Implementation, 2015, pp. 337–350.

[6] C. Aggarwal and K. Subbian, “Evolutionary network analysis: A
survey,” ACM Comput. Surv., vol. 47, no. 1, 2014, Art. no. 10.

[7] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and
C. Karamanolis, “Sinfonia: A new paradigm for building scalable
distributed systems,” in ACM SIGOPS Oper. Syst. Rev., vol. 41,
no. 6, pp. 159–174, 2007.

[8] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable proc-
essing-in-memory accelerator for parallel graph processing,”
ACMSIGARCH Comp. Arch. News, vol. 43, no. 3, pp. 105–117,
2016.

[9] K. J. Ahn, S. Guha, and A. McGregor, “Graph sketches: Sparsifi-
cation, spanners, and subgraphs,” in Proc. ACM Symp. Princ.
Database Syst., 2012, pp. 5–14.

[10] T. Akidau et al., “The dataflow model: A practical approach
to balancing correctness, latency, and cost in massive-scale,
unbounded, out-of-order data processing,” Proc. VLDB Endow-
ment, vol. 8, no. 12, pp. 1792–1803, 2015.

[11] K. Ammar, “Techniques and systems for large dynamic graphs,”
in SIGMOD’16 PhD Symp., pp. 7–11, 2016.

[12] J. C. Anderson, J. Lehnardt, and N. Slater, CouchDB: The Definitive
Guide: Time to Relax. Newton,MA, USA:O’ReillyMedia, Inc., 2010.

[13] A. Andoni, J. Chen, R. Krauthgamer, B. Qin, D. P. Woodruff, and
Q. Zhang, “On sketching quadratic forms,” in Proc. ACM Conf.
Innov. Theor. Comput. Sci., 2016, pp. 311–319.

[14] R. Angles, M. Arenas, P. Barcel�o, A. Hogan, J. Reutter, and
D. Vrgo�c, “Foundations of modern query languages for graph
databases,” ACM Comput. Surv., vol. 50, no. 5, pp. 68:1–68:40,
2017.

[15] T. G. Armstrong, V. Ponnekanti, D. Borthakur, andM. Callaghan,
“Linkbench: A database benchmark based on the facebook social
graph,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2013,
pp. 1185–1196.

[16] S. Assadi, S. Khanna, and Y. Li, “On estimating maximum
matching size in graph streams,” Proc. Annu. ACM-SIAM Symp.
Discrete Algorithms, 2017.

[17] S. Assadi, S. Khanna, Y. Li, and G. Yaroslavtsev, “Maximum
matchings in dynamic graph streams and the simultaneous com-
munication model,” in Proc. 27th Annu. ACM-SIAM Symp. Dis-
crete Algorithms, 2016, pp. 1345–1364.

[18] O. Batarfi, R. El Shawi, A. G. Fayoumi, R. Nouri, A. Barnawi, S.
Sakr et al., “Large scale graph processing systems: Survey and an
experimental evaluation,” Cluster Comput., vol. 18, no. 3, pp.
1189–1213, 2015.

[19] S. Behnezhad, M. Derakhshan, M. Hajiaghayi, C. Stein, and
M. Sudan, “Fully dynamic maximal independent set with polylo-
garithmic update time,” in Proc. IEEE 60th Annu. Symp. Found.
Comput. Sci., 2019, pp. 382–405.

[20] T. Ben-Nun, M. Besta, S. Huber, A. N. Ziogas, D. Peter,
and T. Hoefler, “A modular benchmarking infrastructure for
high-performance and reproducible deep learning,” 2019,
arXiv:1901.10183.

[21] M. Besta, A. Carigiet, K. Janda, Z. Vonarburg-Shmaria,
L. Gianinazzi, and T. Hoefler, “High-performance parallel graph
coloring with strong guarantees on work, depth, and quality,” in
Proc. ACM/IEEE Supercomput., 2020, pp. 1–17.

[22] M. Besta et al., “High-performance routing with multipathing and
path diversity in ethernet andHPC networks,” IEEE Trans. Parallel
Distrib. Syst., vol. 32, no. 4, pp. 943–959, Apr. 2021.

[23] M. Besta, M. Fischer, T. Ben-Nun, J. De Fine Licht, and
T. Hoefler, “Substream-centric maximummatchings on FPGA.,” in
Proc. ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays, 2019,
pp. 152–161.

[24] M. Besta, S. M. Hassan, S. Yalamanchili, R. Ausavarungnirun,
O. Mutlu, and T. Hoefler, “Slim noc: A low-diameter on-chip net-
work topology for high energy efficiency and scalability,” ACM
SIGPLAN Notices, vol. 53, no. 2, pp. 43–55, 2018.

[25] M. Besta and T. Hoefler, “Fault tolerance for remote memory
access programming models,” in Proc. ACM 23rd Int. Symp.
High-Perform. Parallel Distrib. Comput., 2014, pp. 37–48.

[26] M. Besta and T. Hoefler, “Slim fly: A cost effective low-diameter
network topology,” in Proc. ACM/IEEE Int. Conf. High Perform.
Comput., Netw., Storage Anal., 2014, pp. 348–359.

[27] M. Besta and T. Hoefler, “Accelerating irregular computations
with hardware transactional memory and active messages,” in
Proc. 24th Int. Symp. High-Perform. Parallel Distrib. Comput., 2015,
pp. 161–172.

[28] M. Besta and T. Hoefler, “Active access: A mechanism for high-
performance distributed data-centric computations,” in Proc.
ACM Int. Conf. Supercomput., 2015, pp. 155–164.

[29] M. Besta et al., “Communication-efficient jaccard similarity for
high-performance distributed genome comparisons,” 2019,
arXiv:1911.04200.

[30] M. Besta, F. Marending, E. Solomonik, and T. Hoefler, “Slimsell:
A vectorizable graph representation for breadth-first search,” in
IEEE IPDPS, pp. 32–41, 2017.

[31] M. Besta et al., “Demystifying graph databases: Analysis and tax-
onomy of data organization, system designs, and graph queries,”
2019, arXiv:1910.09017.

[32] M. Besta, M. Podstawski, L. Groner, E. Solomonik, and
T. Hoefler, “To push or to pull: On reducing communication and
synchronization in graph computations,” in Proc. 24th Int. Symp.
High-Perform. Parallel Distrib. Comput., 2017, pp. 93–104.

[33] M. Besta et al., “FatPaths: Routing in supercomputers and data
centers when shortest paths fall short,” in Proc. 24th Int. Symp.
High-Perform. Parallel Distrib. Comput., 2019, pp. 1–18.

[34] M. Besta, D. Stanojevic, J. D. F. Licht, T. Ben-Nun, and T. Hoefler,
“Graph processing on FPGAs: Taxonomy, survey, challenges,”
2019, arXiv:1903.06697.

[35] M. Besta, D. Stanojevic, T. Zivic, J. Singh, M. Hoerold, and
T. Hoefler, “Log (graph): A near-optimal high-performance
graph representation,” in Proc. 27th Int. Conf. Parallel Archit. Com-
pilation Techn., 2018, Art. no. 7.

[36] S. Bhattacharya, M. Henzinger, and D. Nanongkai, “A new
deterministic algorithm for dynamic set cover,” in Proc. IEEE
Annu. Symp. Found. Comput. Sci., 2019, pp. 406–423.

[37] S. Bhattacharya, M. Henzinger, D. Nanongkai, and C. Tsouraka-
kis, “Space-and time-efficient algorithm for maintaining dense
subgraphs on one-pass dynamic streams,” in Proc. 47th Annu.
ACM Symp. Theory Comput., 2015, pp. 173–182.

[38] A. Biem et al., “IBM infosphere streams for scalable, real-time,
intelligent transportation services,” in Proc. ACM SIGMOD Int.
Conf. Manage. Data, 2010, pp. 1093–1104.

BESTA ETAL.: PRACTICE OF STREAMING PROCESSING OF DYNAMIC GRAPHS: CONCEPTS, MODELS, AND SYSTEMS 1873

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on December 01,2023 at 11:07:29 UTC from IEEE Xplore. Restrictions apply.

https://giraph.apache.org/

[39] P. Boldi and S. Vigna, “The webgraph framework i: Compression
techniques,” in Proc. ACMWorld Wide Web, 2004, pp. 595–602.

[40] M. Bury et al., “Structural results on matching estimation
with applications to streaming,” Algorithmica, vol. 81, no. 1,
pp. 367–392, 2019.

[41] F. Busato, O. Green, N. Bombieri, and D. A. Bader, “HorNet: An
efficient data structure for dynamic sparse graphs and matrices
on GPUs,” in Proc. IEEE Conf. High Perform. Extreme Comput.,
2018, pp. 1–7.

[42] Z. Cai, D. Logothetis, and G. Siganos, “Facilitating real-time
graph mining,” in Proc. ACM CloudDB, 2012, pp. 1–8.

[43] M. Capot�a, T. Hegeman, A. Iosup, A. Prat-P �erez, O. Erling, and
P. Boncz, “Graphalytics: A big data benchmark for graph-proc-
essing platforms,” in Proc. GRADES’15, pp. 1–6, 2015.

[44] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and K.
Tzoumas, “Apache flink: Stream and batch processing in a single
engine,” IEEE-Comput. Soc. Bull. Tech. Committee Data Eng.,
vol. 38, no. 4, pp. 28–38, 2015.

[45] S. Chechik and T. Zhang, “Fully dynamic maximal independent
set in expected poly-log update time,” in Proc. IEEE Annu. Symp.
Found. Comput. Sci., 2019, pp. 370–381.

[46] R. Cheng et al., “Kineograph: Taking the pulse of a fast-changing
and connected world,” in Proc. ACM EuroSys, 2012, pp. 85–98.

[47] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and S. Muthuk-
rishnan, “One trillion edges: Graph processing at facebook-
scale,” in Proc. VLDB Endowment, vol. 8, no. 12, pp. 1804–1815,
2015.

[48] R. Cyganiak, D. Wood, and M. Lanthaler, “RDF 1.1 Concepts and
Abstract Syntax,” Accessed: Jul. 5, 2018. [Online]. Available:
https://www.w3.org/TR/rdf11-concepts/

[49] M. Datar, A. Gionis, P. Indyk, and R. Motwani, “Maintaining
stream statistics over sliding windows,” SIAM J. Comput., vol. 31,
no. 6, pp. 1794–1813, 2002.

[50] C. J. Date and H. Darwen, A Guide to the SQL Standard. vol. 3,
New York, NY, USA: Addison-Wesley, 1987.

[51] A. Dave, J. E. Gonzalez, M. J. Franklin, and I. Stoica, “Persistent
adaptive radix trees: Efficient fine-grained updates to immutable
data.”

[52] J. de Fine Licht et al., ”Transformations of high-level synthesis
codes for high-performance computing,“ IEEE Trans. Parallel
Distrib. Syst., vol. 32, no. 5, pp. 1014–1029, 2020.

[53] J. Dean and S. Ghemawat, “MapReduce: Simplified data process-
ing on large clusters,“ Commun. ACM, vol. 51, no. 1, pp. 107–113,
2008.

[54] P. Dexter, Y. D. Liu, and K. Chiu, ”Lazy graph processing in
Haskell,” ACM SIGPLAN Notices, vol. 51, pp. 182–192, 2016.

[55] P. Dexter, Y. D. Liu, and K. Chiu, ”Formal foundations of contin-
uous graph processing,“ 2019, arXiv:1911.10982.

[56] L. Dhulipala et al., ”Low-latency graph streaming using com-
pressed purely-functional trees,” 2019, arXiv:1904.08380.

[57] S. Di Girolamo et al., “Network-accelerated non-contiguous
memory transfers,“ 2019, arXiv:1908.08590.

[58] L. Di Paola, M. De Ruvo, P. Paci, D. Santoni, and A. Giuliani,
“Protein contact networks: An emerging paradigm in chem-
istry,” Chem. Rev., vol. 113, no. 3, pp. 1598–1613, 2012.

[59] N. Doekemeijer and A. L. Varbanescu, “A survey of parallel
graph processing frameworks,” Delft Univ. Technol., Delft, The
Netherlands, Tech. Rep. PDS-2014–003, 2014.

[60] R. Duan, H. He, and T. Zhang, “Dynamic edge coloring with
improved approximation,” in Proc. Annu. ACM-SIAM Symp. Dis-
crete Algorithms, 2019, pp. 1937–1945.

[61] D. Durfee, L. Dhulipala, J. Kulkarni, R. Peng, S. Sawlani, and
X. Sun, “Parallel batch-dynamic graphs: Algorithms and lower
bounds,” Proc. Annu. ACM-SIAM Symp. Discrete Algorithms, 2020.

[62] D. Durfee, Y. Gao, G. Goranci, and R. Peng, “Fully dynamic spec-
tral vertex sparsifiers and applications,” in Proc. Annu. ACM
Symp. Theory Comput., 2019, pp. 914–925.

[63] D. Ediger, R. McColl, J. Riedy, and D. A. Bader, “Stinger: High
performance data structure for streaming graphs,” in Proc. IEEE
Conf. High Perform. Extreme Comput., 2012, pp. 1–5.

[64] O. Erling et al., “The LDBC Social network benchmark: Interac-
tive workload,” in Proc. ACM SIGMOD Int. Conf. Manage. Data,
2015, pp. 619–630.

[65] H. Esfandiari, M. Hajiaghayi, V. Liaghat, M. Monemizadeh, and
K. Onak, “Streaming algorithms for estimating the matching size
in planar graphs and beyond,” ACM Trans. Algorithms, vol. 14,
no. 4, pp. 1–23, 2018.

[66] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang,
“On graph problems in a semi-streaming model,” Theor. Comput.
Sci., vol. 348, no. 2–3, pp. 207–216, 2005.

[67] G. Feng et al., “DISTINGER: A distributed graph data structure
for massive dynamic graph processing,” in Proc. IEEE Int. Conf.
Big Data, 2015, pp. 1814–1822.

[68] G. Feng et al., “Risgraph: A real-time streaming system for
evolving graphs to support sub-millisecond per-update analysis
at millions ops/s,” in Proc. Int. Conf. Manage. Data, 2021,
pp. 513–527.

[69] I. Filippidou and Y. Kotidis, “Online and on-demand partition-
ing of streaming graphs,” in Proc. IEEE Int. Conf. Big Data, 2015,
pp. 4–13.

[70] P. Flajolet, �E. Fusy, O. Gandouet, and F. Meunier,
“HYPERLOGLOG: The analysis of a near-optimal cardinality
estimation algorithm,” in Proc. Discrete Math, Theor. Comput. Sci.,
2007, pp. 137–156.

[71] S. Forster and G. Goranci, “Dynamic low-stretch trees via
dynamic low-diameter decompositions,” in Proc. Annu. ACM
Symp. Theory Comput., 2019, pp. 377–388.

[72] N. Francis et al., “Cypher: An evolving query language for prop-
erty graphs,” in Proc. ACM SIGMOD Int. Conf. Manage. Data,
2018, pp. 1433–1445.

[73] R. Gerstenberger et al., “Enabling highly-scalable remote mem-
ory access programming with MPI-3 one sided,” in Proc. ACM/
IEEE Int. Conf. High Perform. Comput., Netw., Storage Anal., 2013,
p. 1.

[74] S. Ghorbani, Z. Yang, P. Godfrey, Y. Ganjali, and A. Firoozsha-
hian, “Drill: Micro load balancing for low-latency data center
networks,” in Proc. Annu. Conf. ACM Special Interest Group Data
Commun., 2017, pp. 225–238.

[75] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin,
and I. Stoica, “Graphx: Graph processing in a distributed data-
flow framework,” in Proc. 11th USENIX Conf. Operating Syst. Des.
Implementation, 2014, pp. 599–613.

[76] O. Green and D. A. Bader, “cuSTINGER: Supporting dynamic
graph algorithms for GPUs,” in Proc. IEEE IEEE Conf. High Per-
form. Extreme Comput., 2016, pp. 1–6.

[77] S. Guha and A. McGregor, “Graph synopses, sketches, and
streams: A survey,” Proc. VLDB Endowment, vol. 5, no. 12,
pp. 2030–2031, 2012.

[78] S. Guha, A. McGregor, and D. Tench, “Vertex and hyperedge
connectivity in dynamic graph streams,” in ACM Symp. Princ.
Database Syst., 2015, pp. 241–247.

[79] M. Han and K. Daudjee, “Giraph unchained: Barrierless asyn-
chronous parallel execution in pregel-like graph processing
systems,” in Proc. VLDB Endowment, vol. 8, no. 9, pp. 950–961,
2015.

[80] M. Han and K. Daudjee, “Providing serializability for pregel-like
graph processing systems,” in Proc. Annu. Int. Conf. Extending
Database Technol., 2016, pp. 77–88.

[81] M. Han, K. Daudjee, K. Ammar, M. T. €Ozsu, X. Wang, and T. Jin,
“An experimental comparison of pregel-like graph processing
systems,” in Proc. VLDB Endowment, vol. 7, no. 12, pp. 1047–1058,
2014.

[82] W. Han et al., “Chronos: A graph engine for temporal graph ana-
lysis,” in Proc. 9th Eur. Conf. Comput. Syst., 2014, pp. 1–14.

[83] F. Holzschuher and R. Peinl, “Performance of graph query lan-
guages: Comparison of cypher, gremlin and native access in
neo4j,” in Proc. ACM Joint EDBT/ICDT Workshops, 2013, pp. 195–
204.

[84] G. F. Italiano, S. Lattanzi, V. S. Mirrokni, and N. Parotsidis,
“Dynamic algorithms for the massively parallel computation
model,” in Proc. ACM ACM Symp. Parallelism Algorithms Archit.,
2019, pp. 49–58.

[85] A. Iyer, L. E. Li, and I. Stoica, “CelliQ: Real-time cellular network
analytics at scale,” in Proc. Symp. Netw. Syst. Des. Implementation,
2015, pp. 309–322.

[86] A. P. Iyer, L. E. Li, T. Das, and I. Stoica, “Time-evolving graph
processing at scale,” in Proc. 4th Int. Workshop Graph Data Manage.
Experiences Syst., 2016, pp. 1–6.

[87] A. P. Iyer, Q. Pu, K. Patel, J. E. Gonzalez, and I. Stoica, “TEGRA:
Efficient ad-hoc analytics on evolving graphs,” in Proc. Symp.
Netw. Syst. Des. Implementation, 2021, pp. 337–355.

[88] W. Ju, J. Li, W. Yu, and R. Zhang, “iGraph: An incremental data
processing system for dynamic graph,” Front. Comput. Sci.,
vol. 10, no. 3, pp. 462–476, 2016.

1874 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 6, JUNE 2023

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on December 01,2023 at 11:07:29 UTC from IEEE Xplore. Restrictions apply.

https://www.w3.org/TR/rdf11-concepts/

[89] J. Kallaugher, M. Kapralov, and E. Price, “The sketching com-
plexity of graph and hypergraph counting,” IEEE Annu. Symp.
Found. Comput. Sci., 2018, pp. 556–567.

[90] S. Kamburugamuve and G. Fox, “Survey of distributed stream
processing,” Bloomington: Indiana University, Bloomington, IN,
USA, 2016.

[91] D. M. Kane, K. Mehlhorn, T. Sauerwald, and H. Sun, “Counting
arbitrary subgraphs in data streams,” in Proc. Int. Colloquium
Automata, Lang., Program., 2012, pp. 598–609.

[92] C. Kankanamge, S. Sahu, A. Mhedbhi, J. Chen, and S. Salihoglu,
“Graphflow: An active graph database,” in Proc. ACM SIGMOD
Int. Conf. Manage. Data, 2017, pp. 1695–1698.

[93] M. Kapralov, S. Khanna, and M. Sudan, “Approximating match-
ing size from random streams,” in Proc. Annu. ACM-SIAM Symp.
Discrete Algorithms, 2014.

[94] M. Kapralov, S. Mitrovic, A. Norouzi-Fard, and J. Tardos, “Space
efficient approximation to maximum matching size from uni-
form edge samples, in Proc. Annu. ACM-SIAM Symp. Discrete
Algorithms, 2020.

[95] M. Kapralov, A. Mousavifar, C. Musco, C. Musco, N. Nouri,
A. Sidford, and J. Tardos, “Fast and space efficient spectral spar-
sification in dynamic streams,” in Proc. Annu. ACM-SIAM Symp.
Discrete Algorithms, 2020.

[96] M. Kapralov, N. Nouri, A. Sidford, and J. Tardos, “Dynamic
streaming spectral sparsification in nearly linear time and
space,” 2019, arXiv:1903.12150v1.

[97] M. Kapralov and D. P. Woodruff, “Spanners and sparsifiers in
dynamic streams,” in Proc. ACM Symp. Princ. Distrib. Comput.,
2014, pp. 272–281.

[98] H. Karloff, S. Suri, and S. Vassilvitskii, “A model of computation
for MapReduce,” in Proc. Annual ACM-SIAM Symp. Discrete
Algorithms, 2010, pp. 938–948.

[99] J. Kepner, P. Aaltonen, D. Bader, A. Buluç, F. Franchetti,
J. Gilbert, D. Hutchison, M. Kumar, A. Lumsdaine, H. Meyer-
henke, et al., “Mathematical foundations of the graphblas,” in
Proc. IEEE High Perform. Extreme Comput. Conf., 2016, pp. 1–9.

[100] A. Khandelwal, Z. Yang, E. Ye, R. Agarwal, and I. Stoica,
“ZipG: A memory-efficient graph store for interactive quer-
ies,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2017,
pp. 1149–1164.

[101] J. Kim, W. J. Dally, S. Scott, and D. Abts, “Technology-driven,
highly-scalable dragonfly topology,” in Proc. Int. Symp. Comput.
Archit., 2008, pp. 77–88.

[102] P. Kumar and H. H. Huang, “G-Store: High-performance graph
store for trillion-edge processing,” in Proc. Proc. Int. Conf. High
Perform. Comput., Netw., Storage Anal., 2016, pp. 830–841.

[103] P. Kumar and H. H. Huang, “Graphone: A data store for real-
time analytics on evolving graphs,” in Proc. 17th USENIX Conf.
File Storage Technol., 2019, pp. 249–263.

[104] G. Kwasniewski, M. Kabi�c, M. Besta, J. VandeVondele, R. Solc�a,
and T. Hoefler, “Red-blue pebbling revisited: Near optimal par-
allel matrix-matrix multiplication,” in Proc. Int. Conf. High
Perform. Comput., Netw., Storage Anal., 2019, Art. no. 24.

[105] K. G. Larsen, J. Nelson, H. L. Nguyen, and M. Thorup, “Heavy
hitters via cluster-preserving clustering,” Commun. ACM, vol. 62,
no. 8, pp. 95–100, 2019.

[106] M. M. Lee, I. Roy, A. AuYoung, V. Talwar, K. Jayaram, and
Y. Zhou, “Views and transactional storage for large graphs,” in
Proc. ACM/IFIP/USENIX Middleware, 2013, pp. 287–306.

[107] H. Lin, X. Zhu, B. Yu, X. Tang, W. Xue, W. Chen, L. Zhang,
T. Hoefler, X. Ma, X. Liu et al., “ShenTu: Processing multi-trillion
edge graphs on millions of cores in seconds,” in Proc. Int. Conf.
High-Perform. Comput., Netw., Storage Anal., 2018, Art. no. 56.

[108] H. Liu and H. H. Huang, “Graphene: Fine-grained IO manage-
ment for graph computing,” in Proc. USENIX Conf. File Storage
Technol, 2017, pp. 285–299.

[109] Y. Lu, G. Chen, B. Li, K. Tan, Y. Xiong, P. Cheng, J. Zhang,
E. Chen, and T. Moscibroda, “Multi-path transport for fRDMAg
in datacenters,” in Proc. Symp. Netw. Syst. Des. Implementation,
2018, pp. 357–371.

[110] S. Maass, C. Min, S. Kashyap, W. Kang, M. Kumar, and T. Kim,
“Mosaic: Processing a trillion-edge graph on a single machine,”
in Proc. 12th Eur. Conf. Comput. Syst., 2017, pp. 527–543.

[111] P. Macko, V. J. Marathe, D. W. Margo, and M. I. Seltzer, “Llama:
Efficient graph analytics using large multiversioned arrays,” in
Proc. IEEE 31st Int. Conf. Data Eng., 2015, pp. 363–374.

[112] M. Mariappan, J. Che, and K. Vora, “DZiG: Sparsity-aware incre-
mental processing of streaming graphs,” in Proc. Eur. Conf. Com-
put. Syst., 2021, pp. 83–98.

[113] M. Mariappan and K. Vora, “Graphbolt: Dependency-driven
synchronous processing of streaming graphs,” in Proc. ACM Eur.
Conf. Comput. Syst., 2019, pp. 1–16.

[114] R. R. McCune et al., “Thinking like a vertex: A survey of vertex-
centric frameworks for large-scale distributed graph processing,”
ACM Comput. Surv., vol. 48, no. 2, pp. 1–39, 2015.

[115] A. McGregor, “Graph stream algorithms: A survey,” Proc. ACM
SIGMOD Int. Conf. Manage. Data Record, vol. 43, no. 1, pp. 9–20,
2014.

[116] F. McSherry, D. G. Murray, R. Isaacs, and M. Isard, “Differential
dataflow,” in Proc. Conf. Innov. Data Syst. Res., 2013.

[117] G. T. Minton and E. Price, “Improved concentration bounds
for count-sketch,” in Proc. Annual ACM-SIAM Symp. Discrete
Algorithms, 2014, pp. 669–686.

[118] V. Z. Moffitt and J. Stoyanovich, “Temporal graph algebra,” in
Proc. 16th Int. Symp. Database Program. Lang., 2017, pp. 1–12.

[119] J. Mondal and A. Deshpande, “Managing large dynamic graphs
efficiently,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2012,
pp. 145–146.

[120] D. G. Murray, F. McSherry, M. Isard, R. Isaacs, P. Barham, and
M. Abadi, “Incremental, iterative data processing with timely
dataflow,” Commun. ACM, vol. 59, no. 10, pp. 75–83, 2016.

[121] S. Muthukrishnan et al., Data Streams: Algorithms and Applications.
Hanover, MA, USA: Now Pub., 2005.

[122] L. Nai, R. Hadidi, J. Sim, H. Kim, P. Kumar, and H. Kim,
“GraphPIM: Enabling instruction-level PIM offloading in graph
computing frameworks,” in Proc. IEEE Int. Symp. High Perform.
Comput. Archit., 2017, pp. 457–468.

[123] S. Neuendorffer and K. Vissers, “Streaming systems in
FPGAs,” in Proc. Int. Workshop Embedded Comput. Syst., 2008,
pp. 147–156.

[124] T. C. O’connell, “A survey of graph algorithms under extended
streaming models of computation,” in Fundam. Problems Comput.,
Berlin, Germany: Springer, 2009, pp. 455–476.

[125] P. Peng and C. Sohler, “Estimating graph parameters from ran-
dom order streams,” 2018, arXiv:1711.04881v1.

[126] J. P�erez, M. Arenas, and C. Gutierrez, “Semantics and complexity
of SPARQL,” ACM Trans. Database Syst., vol. 34, no. 3, 2009,
Art. no. 16.

[127] V. Prabhakaran, M. Wu, X. Weng, F. McSherry, L. Zhou, and
M. Haradasan, “Managing large graphs on multi-cores with
graph awareness,” in Proc. USENIX Anuu. Tech. Conf., 2012,
pp. 41–52.

[128] I. Robinson, J. Webber, and E. Eifrem, “Graph database inter-
nals,” Graph Databases, 2nd Ed., chapter 7, Newton, MA, USA:
O’Relly, 2015, pp. 149–170.

[129] M. A. Rodriguez, “The gremlin graph traversal machine and lan-
guage (invited talk),” in Proc. ACM 15th Symp. Database Program.
Lang., 2015, pp. 1–10.

[130] A. Roy, L. Bindschaedler, J. Malicevic, and W. Zwaenepoel,
“Chaos: Scale-out graph processing from secondary storage,” in
Proc. 25th Symp. Oper. Syst. Princ., 2015, pp. 410–424,.

[131] A. Roy, I. Mihailovic, and W. Zwaenepoel, “X-stream: Edge-cen-
tric graph processing using streaming partitions,” ACM Symp.
Oper. Syst. Princ, 2013, pp. 472–488.

[132] P. Schmid, M. Besta, and T. Hoefler, “High-performance distrib-
uted RMA locks,” in Proc. 24th Int. Symp. High-Perform. Parallel
Distrib. Comput., 2016, pp. 19–30.

[133] H. Schweizer, M. Besta, and T. Hoefler, “Evaluating the cost of
atomic operations on modern architectures,” in Proc. IEEE Int.
Conf. Parallel Archit. Compilation, 2015, pp. 445–456.

[134] D. Sengupta and S. L. Song, “Evograph: On-the-fly efficient min-
ing of evolving graphs on GPU,” in Proc. Int. Supercomput. Conf.,
2017, pp. 97–119.

[135] D. Sengupta et al., “Graphin: An online high performance incre-
mental graph processing framework,” in Proc. Eur. Conf. Parallel
Process., 2016, pp. 319–333.

[136] M. Sha, Y. Li, B. He, and K.-L. Tan, “Accelerating dynamic graph
analytics on GPUs.,” in Proc. VLDB Endowment, vol. 11, no. 1,
pp. 107–120, 2017.

[137] B. Shao, H. Wang, and Y. Li, “Trinity: A distributed graph engine
on a memory cloud,” in Proc. ACM SIGMOD Int. Conf. Manage.
Data, 2013, pp. 505–516.

BESTA ETAL.: PRACTICE OF STREAMING PROCESSING OF DYNAMIC GRAPHS: CONCEPTS, MODELS, AND SYSTEMS 1875

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on December 01,2023 at 11:07:29 UTC from IEEE Xplore. Restrictions apply.

[138] F. Sheng, Q. Cao, H. Cai, J. Yao, and C. Xie, “GraPU:
Accelerate streaming graph analysis through preprocessing
buffered updates,” in Proc. ACM Symp. Cloud Comput., 2018,
pp. 301–312.

[139] F. Sheng, Q. Cao, and J. Yao, “Exploiting buffered updates for
fast streaming graph analysis,” IEEE Trans. Comput., vol. 70, no.
2, pp. 255–269, Feb. 2021.

[140] X. Shi, B. Cui, Y. Shao, and Y. Tong, “Tornado: A system for real-
time iterative analysis over evolving data,” in Proc. ACM SIG-
MOD Int. Conf. Manage. Data, 2016, pp. 417–430.

[141] X. Shi et al., “Graph processing on GPUs: A survey,” ACM Com-
put. Surv., vol. 50, no. 6, 2018, Art. no. 81.

[142] J. Shun and G. E. Blelloch, “Ligra: A lightweight graph process-
ing framework for shared memory,” in Proc. ACM Sigplan Noti-
ces, vol. 48, pp. 135–146, 2013.

[143] N. Simsiri, K. Tangwongsan, S. Tirthapura, and K. Wu, “Work-
efficient parallel union-find with applications to incremental
graph connectivity,” in Proc. Euro. Conf. Parallel Process., 2016,
pp. 561–573.

[144] T. Suzumura, S. Nishii, and M. Ganse, “Towards large-scale
graph stream processing platform,” in Proc. ACM World Wide
Web, 2014, pp. 1321–1326.

[145] G. Sz�arnyas et al., “An early look at the LDBC social network
benchmark’s business intelligence workload,” in Proc. 1st ACM
SIGMOD Joint Int. Workshop Graph Data Manage. Experiences Syst.
(GRADES) Netw. Data Anal., 2018, pp. 9:1–9:11.

[146] A. Tate et al., “Programming abstractions for data locality,” in
Proc. Workshop Program. Abstr. Data Locality, 2014.

[147] T. Tseng et al., “Batch-parallel euler tour trees.,” in Proc. SIAM
Symp. Algorithm Eng. Experiments, 2019, pp. 92–106.

[148] L. G. Valiant, “A bridging model for parallel computation,”
Commun. ACM, vol. 33, no. 8, pp. 103–111, 1990.

[149] J. van den Brand and D. Nanongkai, “Dynamic approximate
shortest paths and beyond: Subquadratic and worst-case update
time,” IEEE Annu. Symp. Found. Comput. Sci., 2019, pp. 436–455.

[150] L. M. Vaquero, F. Cuadrado, and M. Ripeanu, “Systems for near
real-time analysis of large-scale dynamic graphs,” 2014,
arXiv:1410.1903.

[151] K. Vora et al., “Aspire: Exploiting asynchronous parallelism in
iterative algorithms using a relaxed consistency based DSM,”
ACM SIGPLAN Notices, vol. 49, no. 10, pp. 861–878, 2014.

[152] K. Vora et al., “KickStarter: Fast and accurate computations on
streaming graphs via trimmed approximations,” ACM SIGOPS
Oper. Systems Rev., vol. 51, no. 2, pp. 237–251, 2017.

[153] K. Wang, Z. Zuo, J. Thorpe, T. Q. Nguyen, and G. H. Xu,
“Rstream: Marrying relational algebra with streaming for effi-
cient graph mining on a single machine,” in Proc. USENIX Symp.
Operating Syst. Des. Implementation, 2018, pp. 763–782.

[154] M. Winter et al., “Autonomous, independent management of
dynamic graphs on GPUs,” in Proc. IEEE High Perform. Extreme
Comput. Conf., 2017, pp. 1–7.

[155] M. Winter, D. Mlakar, R. Zayer, H.-P. Seidel, and M. Steinberger,
“faimGraph: High performance management of fully-dynamic
graphs under tight memory constraints on the GPU,” in Proc. Int.
Conf. High Perform. Comput., Netw., Storage Anal., 2018, pp. 1–13.

[156] H. Wu, J. Cheng, S. Huang, Y. Ke, Y. Lu, and Y. Xu, “Path prob-
lems in temporal graphs,” in Proc. VLDB Endowment, vol. 7,
no. 9, pp. 721–732, 2014.

[157] H. Wu, Y. Huang, J. Cheng, J. Li, and Y. Ke, “Reachability and
time-based path queries in temporal graphs,” in Proc. IEEE 32nd
Int. Conf. Data Eng., 2016, pp. 145–156.

[158] M. Wu et al., “Gram: Scaling graph computation to the trillions,”
in Proc. 6th ACM Symp. Cloud Comput., 2015, pp. 408–421.

[159] L. Xiangyu, L. Yingxiao, G. Xiaolin, and Y. Zhenhua, “An effi-
cient snapshot strategy for dynamic graph storage systems to
support historical queries,” IEEE Access, vol. 8, pp. 90838–90846,
2020.

[160] W. Xie, Y. Tian, Y. Sismanis, A. Balmin, and P. J. Haas, “Dynamic
interaction graphs with probabilistic edge decay,” in Proc. IEEE
32nd Int. Conf. Data Eng., 2015, pp. 1143–1154.

[161] M. Zaharia et al., “Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing,” in Proc. USENIX
Proc. Symp. Netw. Syst. Des. Implementation, 2012, pp. 15–28.

[162] M. Zaharia et al., “Apache spark: A unified engine for big data
processing,” Commun. ACM, vol. 59, no. 11, pp. 56–65, 2016.

[163] A. Zaki, M. Attia, D. Hegazy, and S. Amin, “Comprehensive sur-
vey on dynamic graph models,” Int. J. Adv. Comput. Sci. Appl.,
vol. 7, no. 2, pp. 573–582, 2016.

[164] J. Zhang, “A survey on streaming algorithms for massive
graphs,”Managing Mining Graph Data, 2010, pp. 393–420.

[165] S. Zhou, R. Kannan, H. Zeng, and V. K. Prasanna, “An FPGA
framework for edge-centric graph processing,” in Proc. 15th
ACM Int. Conf. Comput. Front., 2018, pp. 69–77.

[166] X. Zhu, G. Feng,M. Serafini, X.Ma, J. Yu, L. Xie, A.Aboulnaga, and
W. Chen, “LiveGraph: A transactional graph storage system with
purely sequential adjacency list scans,” 2019, arXiv:1910.05773.

Maciej Besta is currently a researcher with ETH Zurich. His research
focuses on understanding and accelerating large-scale irregular graph
processing in any types of settings and workloads.

Marc Fischer is currently a software developer and consultant with
PRODYNA (Schweiz) AG. His research interests include large-scale
graph databases, data modeling, use-case analysis, and developing
custom solutions for a broad range of business applications.

Vasiliki Kalavri is currently an assistant professor with the Depart-
ment of Computer Science, Boston University. Her research research
interests include distributed stream processing and large-scale graph
analytics.

Michael Kapralov is currently an assistant professor with the School of
Computer and Communication Sciences, EPFL, and part of the EPFL
Theory Group. He works on theoretical foundations of big data analysis.

Torsten Hoefler is currently a professor with ETH Zurich, where he
leads the Scalable Parallel Computing Lab. His research focuses on
understanding performance of parallel computing systems ranging from
parallel computer architecture through parallel programming to parallel
algorithms.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

1876 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 6, JUNE 2023

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on December 01,2023 at 11:07:29 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

