
STen: An Interface for Efficient Sparsity in PyTorch
Andrei Ivanov, Nikoli Dryden, Torsten Hoefler
Department of Computer Science, ETH Zurich

• Plain COO – slow fine-grained n-dimensional tensors
• Hybrid COO – fast blocked n-dimensional tensors
• CSR – fast fine-grained two-dimensional tensors
Sparse operators: ~3% of all operators (not even convolution)
torch.autograd support: ~0.2% of all operators
No general pipeline for sparsity : no custom formats, no re-sparsifying
in runtime, no control over sparsity in training.

Our programming model

Evaluation

Implementation

Sparsifiers

References
1. Jacob Devlin, et al.. BERT: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint

arXiv:1810.04805, 2018.
2. Thomas Wolf, et al. Transformers: State-of-the-art natural language processing. In Proceedings of the 2020

Conference on Empirical Methods in Natural Language Processing: System Demonstrations, 2020.
3. Aojun Zhou, et al. Learning N:M fine-grained structured sparse neural networks from scratch. In International

Conference on Learning Representations (ICLR), 2021.
4. Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning for model compression.

arXiv preprint arXiv:1710.01878, 2017.
5. Hao Li, et al. Pruning filters for efficient convnets. In International Conference on Learning Representations (ICLR),

2017.
6. Torsten Hoefler, et al. Sparsity in deep learning: Pruning and growth for efficient inference and training in neural

networks. Journal of Machine Learning Research, 22(241), 2021.

Top: Forward-pass runtime of a single BERT
(base, uncased) [1] encoder layer from
HuggingFace [2]. We sparsify the weights of
feedforward layers and attention projections
(except biases; shaded right).

Configuration: batch size 8, sequence length
128. CPU: Intel i7–4770.

n:m sparsity format: each group of m elements
has n nonzeros [3]

State of the sparsity in PyTorch

a

b c

d

grad_d

c.gradb.grad

a.grad

external sparsifier

inline sparsifier
temporary tensor

output tensor

external sparsifier

inline sparsifier
temporary tensor

output tensor

a

b

c

d

grad_d

c.grad

b.grad

a.grad

original tensor
initial sparsifier

sparsified tensor

external sparsifier

inline sparsifier
temporary tensoroutput tensor

Sparse intermediate tensor Sparse weight

Sparsifier types and examples, the number of passes over a tensor made, their memory requirements (nnz total
nonzeros, block size b when blocking), and sparsifier type. Some complex weight sparsifiers could be implemented more
efficiently than with materialization.

Construct sparse model Sparsify existing dense model

[4]

[5]

[3]

[6]

