ETHzürich

STen: An Interface for Efficient Sparsity in PyTorch

Andrei Ivanov, Nikoli Dryden, Torsten Hoefler Department of Computer Science, ETH Zurich

State of the sparsity in PyTorch

- Plain COO **slow** fine-grained n-dimensional tensors
- Hybrid COO fast **blocked** n-dimensional tensors
- CSR fast fine-grained **two**-dimensional tensors

Sparse operators: $\sim 3\%$ of all operators (not even convolution) torch.autograd support: ~0.2% of all operators No general pipeline for sparsity: no custom formats, no re-sparsifying in runtime, no control over sparsity in training.

Our programming model

DINFK

Sparsifiers

Sparsifier types and examples, the number of passes over a tensor made, their memory requirements (*nnz* total nonzeros, block size b when blocking), and sparsifier type. Some complex weight sparsifiers could be implemented more efficiently than with materialization.

Sparsifier	Examples	Passes	Memory	Туре
Keep-all	Sparse add	1	$\mathcal{O}(1)$	streaming
Random fraction	Dropout	1	$\mathcal{O}(1)$	streaming
Scalar threshold	ReLU	1	$\mathcal{O}(1)$	streaming
Scalar fraction	Magnitude ^[4]	2	$\mathcal{O}(nnz)$	materializing
Block-wise fraction	Block magnitude ^[5]	2	$\mathcal{O}(nnz)$	materializing
Per-block fraction	n:m [3]	2	$\mathcal{O}(b)$	blocking
Complex weight sparsifiers	Movement, ℓ_0 , etc.[6]	≥ 1	$\mathcal{O}(nnz)$	materializing

Implementation

Evaluation

(base, uncased) [1] encoder layer from (except biases; shaded right).

128. CPU: Intel i7-4770.

has n nonzeros [3]

References

- arXiv:1810.04805, 2018
- Thomas Wolf, et al. Transformers: State-of-the-art natural language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, 2020.
- Aojun Zhou, et al. Learning N:M fine-grained structured sparse neural networks from scratch. In International Conference on Learning Representations (ICLR), 2021.
- Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning for model compression. arXiv preprint arXiv:1710.01878, 2017.
- 2017.
- Torsten Hoefler, et al. Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. Journal of Machine Learning Research, 22(241), 2021.

. Jacob Devlin, et al.. BERT: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint

5. Hao Li, et al. Pruning filters for efficient convnets. In International Conference on Learning Representations (ICLR),

