
Performance Engineering: A Must for Petaflops and
Beyond

Extended Abstract

Torsten Hoefler
University of Illinois at Urbana-Champaign

htor@illinois.edu

Marc Snir
University of Illinois at Urbana-Champaign

snir@illinois.edu

ABSTRACT

We discuss the need for a more principled approach to the
management of the performance of applications for petascale
platforms and outline some initial successes, related to the
Blue Waters project.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Modeling techniques

General Terms

Performance

Keywords

High performance computing, Performance analysis, Perfor-
mance modeling

1. MOTIVATION
Modern supercomputers are increasingly complex and ex-

pensive. For example, Blue Waters [6], a system with a peak
performance of 10 Petaflop/s that is being installed at the
University of Illinois, is funded by a $200M NSF grant; it will
consume in excess of 10 Megawatts. Large computation may
run for weeks, utilizing a large fraction of the system; they
will cost millions of dollars. With such costs, it is imperative
to run applications in the most efficient way possible. In-
deed, while current resource allocation mechanisms may not
encourage such a choice, it would be perfectly rational for a
good expert to spend a year in order to improve performance
by 10%.

Much of the work on application performance tuning is
done today using a very ad-hoc trial and error process: Pro-
filing is used to figure out where an application spends most
of its time. Programmers then try various approaches in
order to reduce the time consumed by these expensive mod-
ules. As the code is ported to a new platform, and as it
is scaled to larger systems, the process is repeated. The
process is repeated until the achieved performance is “good
enough”; usually, the programmer does not know whether
the achieved performance is close or far from the best achiev-
able for the program on the target platform.

Various groups pursue interesting work on performance
modeling tools and methodologies [5, 7] These can be used

Copyright is held by the author/owner(s).
LSAP’11, June 8, 2011, San Jose, California, USA.
ACM 978-1-4503-0703-1/11/06.

by experts to understand the performance of an application
after the fact, or to predict its performance on a new system.
These frameworks are not used by application development
teams to guide their performance tuning work. We believe
that the use of performance modeling must be an integral part
of application development and an essential tool for perfor-
mance tuning. This extended abstract motivates this belief
and describes some reasonably successful approaches.

2. METHODOLOGY
A good performance tuning methodology should achieve

the following goals:

1. Require limited experimentation at full size: Such ex-
periments are expensive; furthermore, because of the
fast depreciation of computing equipment, it is impor-
tant to be able to use a supercomputer efficiently as
soon as it is deployed; much of the code development
must occur before the platform is available.

2. Be accessible to code developing teams: It is not practi-
cal to develop large codes (many scientific codes today
exceed 1 MLOCs), and then toss them over to the“per-
formance experts”. While the expertise in code perfor-
mance may not be equally shared across all members of
a team, we believe that each large HPC code develop-
ment team must contain a “code performance expert”.

3. Indicates what code changes can improve performance
and indicate the likely improvement to be obtained by
any change. Changing code is always tedious and
error-prone; coding resources are always limited. It is
important to be able to make informed choices about
tuning strategies, and it is important to know what
can be gained by further coding efforts.

Supercomputing applications are often run for very differ-
ent input configurations, with varying number of processors.
Only parametrized models can cover all this range – hence,
a tuning strategy cannot be based entirely on measurements
– it needs a performance model.

In many cases, the development team has an implicit per-
formance model: For example, it understands whether it
uses a linear or quadratic algorithm, it can estimate commu-
nication, etc. However, this model is seldom documented;
furthermore, the translation from floating point operation
counts or bytes transferred to running time is lacking.

This suggests a methodology that combines analytical mod-
eling of applications – representing the knowledge of algo-
rithm designers – together with empirical measurements of

the code or parts of it. The analytical model defines a for-
mula for the performance of the code; the coefficients in this
formula are estimated using measurements. Elements of De-
cision Theory can be applied to choose a set of measurements
that minimizes uncertainty, for a given computation budget.
For example, should one do more measurements at smaller
scale, or fewer, at larger scale?

The utilization (aka efficiency) of a code is the ratio be-
tween its performance and the peak achievable performance.
We often interpret “peak performance” as meaning the top
number of floating point operations the system can perform,
and compare this to the actual achieved floating point per-
formance. This definition is misleading as floating point
units are almost never the main performance bottleneck;
communication, to memory and to other nodes, is much
more likely to be the effective bottleneck.

This simple-minded definition of utilization can be ex-
tended to include consideration of additional resources: floating-
point operations, memory bandwidth, message bandwidth
per node, message count per node bisection bandwidth, etc.
For each such resource, we have a measure of efficiency –
the ratio between peak achievable and achieved. A combi-
nation of analysis and measurements can provide a model,
not only for total compute time, but also for the number
of memory accesses or number of messages communicated.
Simple benchmarks can measure the peak capability for each
resource (see, e.g., [8]).

Two factors complicate this calculus; first, one parameter
may not be sufficient to characterize a resource; for exam-
ple, memory bandwidth will be very different for sequen-
tial accesses and random accesses. The modeler will need
to achieve a compromise between model simplicity and ac-
curacy. For example, Snavely et al. assume that memory
accesses fall in two categories: sequential and random [7].
Second, there can be complex interactions between the uti-
lization for different resources. For example, better load bal-
ancing in an SMP node can lead to worse locality and worse
memory traffic. A robust algorithm design should avoid re-
gions where such phenomena result in brittle performance
(e.g., by ensuring that tasks have sufficient granularity to
amortize load balancing costs.) A robust architecture should
minimize complex dependencies across the main resources.

In practice, it is often possible to split performance into
three main components:

core performance: most heavily dependent on the mem-
ory subsystem and the instruction mix

node performance: focused on the interaction between cores
(memory contention, local coordination, local load bal-
ancing, etc.)

global communication focused on the interation between
nodes (network contention, global coordination, global
load balancing, etc.)

3. APPLICATION EXAMPLE – MILC
The first author recently worked with Steven Gottlieb, one

of the main developers of the MILC code [2], in preparation
for its execution on Blue Waters.

First, the compute-intensive components of the code were
identified by profiling; the analysis focused on them.

Based on discussions with Steven, the main parameters
affecting performance were identified; an analytical model
developed for operations per core in each of the code com-

ponents. This, combined with actual measurements for dif-
ferent parameter values, provided a timing model for core
computations.

A model was developed for global communications in each
component: number of messages sent and their length (all
communications are either point-to-point or collective allre-
ductions). The actual communication time is estimated us-
ing a LogGP model [1] and using Netgauge to estimate the
model parameters [4]. This step used information on the
mapping of processes to actual nodes, in order to use dif-
ferent communication parameters for on-node and off-node
message passing (the application uses one MPI process per
core). A similar approach was used to estimate the cost of
global operations.

Assuming no computation/communication overlap (a rea-
sonable assumption for MILC), the sum of computation time
and communication time yields en estimate for total execu-
tion time. This estimate needed to be adjusted, to reflect
that the simultaneous execution on multiple cores results
on memory congestion that slow down the cores. A simple
fixed slow-down factor (10%, for a 16 way POWER5+ node)
provided sufficient accuracy.

The approach was tested for a 120 node (120×16 core)
POWER5+ system. The performance is predicted with an
error of ≈ 1%.

The model has been used prescriptively to indicate bottle-
necks; a 15% performance increase was achieved by replacing
a packing loop with the use of MPI datatypes [3]

4. REFERENCES
[1] A. Alexandrov, M. Ionescu, K. Schauser, and

C. Scheiman. LogGP: incorporating long messages into
the LogP model. In ACM symposium on Parallel
algorithms and architectures, pages 95–105. ACM, 1995.

[2] C. Bernard, C. DeTar, S. Gottlieb, U. Heller, J. Hetrick,
L. Levkova, J. Osborn, D. Renner, R. Sugar, and
D. Toussaint. Status of the MILC light pseudoscalar
meson project. Arxiv preprint arXiv:0710.1118, 2007.

[3] T. Hoefler and S. Gottlieb. Parallel zero-copy
algorithms for fast Fourier transform and conjugate
gradient using MPI datatypes. Recent Advances in the
Message Passing Interface, pages 132–141, 2010.

[4] T. Hoefler, A. Lichei, and W. Rehm. Low-overhead
LogGP parameter assessment for modern
interconnection networks. In 2007 IEEE International
Parallel and Distributed Processing Symposium, page
403. IEEE, 2007.

[5] D. Kerbyson, H. Alme, A. Hoisie, F. Petrini,
H. Wasserman, and M. Gittings. Predictive
performance and scalability modeling of a large-scale
application. In 2001 ACM/IEEE conference on
Supercomputing, pages 37–37. ACM, 2001.

[6] NCSA. The ”blue waters” project.
http:\\www.ncsa.illinois.edu/BlueWaters/.

[7] A. Snavely, L. Carrington, N. Wolter, J. Labarta,
R. Badia, and A. Purkayastha. A framework for
performance modeling and prediction. In 2001
ACM/IEEE conference on Supercomputing. IEEE
Computer Society, 2002.

[8] S. Williams, A. Waterman, and D. Patterson. Roofline:
an insightful visual performance model for multicore
architectures. CACM, 52:65–76, April 2009.

