EHzürich

ANKOLE MELLON UNILERSITY

CRGH PENNSYLVANIA

Slim NoC: A Low-Diameter On-Chip Network Topology for High Energy Efficiency and Scalability MACIEJ BESTA, SYED

MACIEJ BESTA, SYED MINHAJ HASSAN, SUDHAKAR YALAMANCHILI, RACHATA AUSAVARUNGNIRUN, ONUR MUTLU, TORSTEN HOEFLER

Georgia

Mary Market and Andrews and Andrews

MASSIVELY PARALLEL MANYCORES

SW26010: 260 cores

the second

PEZY-SC2: 2048 cores

SW26010: 260 cores

PEZY-SC2: 2048 cores

SW26010: 260 cores

Adapteva Epiphany: 1024 cores

PEZY-SC2: 2048 cores

SW26010: 260 cores

Valley Charles State

Adapteva Epiphany: 1024 cores

Chief and the second states and

The second second second second

A DEAL AND A

*** SPCL

spcl.inf.ethz.ch 🍸 @spcl_eth

ETHzürich

NETWORKS IN COMPUTE CLUSTERS

spcl.inf.ethz.ch

DRAGONFLY, SLIM FLY

[1] C. E. Leiserson. Fat-trees: Universal Networks for Hardware-Efficient Supercomputing. IEEE Transactions on Computers. 1985.

***SPCL

spcl.inf.ethz.ch 🌱 @spcl_eth ETHzürich

DRAGONFLY, SLIM FLY **Dragonfly** [2] Fat tree [1] diameter = 4 **TSUBAME2.0** diameter = 3 CASCADE **Cray Cascade**

[1] C. E. Leiserson. Fat-trees: Universal Networks for Hardware-Efficient Supercomputing. IEEE Transactions on Computers. 1985.
 [2] J. Kim et al. Technology-Driven, Highly-Scalable Dragonfly Topology. ISCA'08.

***SPCL

spcl.inf.ethz.ch

DRAGONFLY, SLIM FLY

Fat tree [1]

diameter = 4

Slim Fly [3] based on the Hoffman-Singleton Graph [4]: > ~50% fewer routers than Fat tree > ~30% fewer cables than Fat tree diar

diameter = 3

diameter = 2

TSUBAME2.0

Cray Cascade

C. E. Leiserson. Fat-trees: Universal Networks for Hardware-Efficient Supercomputing. IEEE Transactions on Computers. 1985.
 J. Kim et al. Technology-Driven, Highly-Scalable Dragonfly Topology. ISCA'08.
 M. Besta and T. Hoefler. Slim Fly: A Cost Effective Low-Diameter Network Topology. SC14.
 A. J. Hoffman and R. R. Singleton. Moore graphs with diameter 2 and 3, IBM Journal of Research and Development. 1960.

DRAGONFLY, SLIM FLY

spcl.inf.ethz.ch

Slim Fly [3] based on
the Hoffman-Singleton Graph [4]:
> ~50% fewer routers than Fat tree
> ~30% fewer cables than Fat tree
diameter = 2

C. E. Leiserson. Fat-trees: Universal Networks for Hardware-Efficient Supercomputing. IEEE Transactions on Computers. 1985.
 J. Kim et al. Technology-Driven, Highly-Scalable Dragonfly Topology. ISCA'08.
 M. Besta and T. Hoefler. Slim Fly: A Cost Effective Low-Diameter Network Topology. SC14.
 A. J. Hoffman and R. R. Singleton. Moore graphs with diameter 2 and 3, IBM Journal of Research and Development. 1960.

the second second

INSPIRATION: DIAMETER-2 SLIM FLY

ems@=T

all the state was

INSPIRATION: DIAMETER-2 SLIM FLY

Key idea:

Key idea:

Key idea:

Key idea:

Key idea:

Key idea:

Key idea:

Key idea:

Key idea:

Key idea:

Lower diameter and thus average path length: fewer needed links / routers.

🛠 Key method

Optimize towards the Moore Bound [1]: the upper bound on the *number of vertices* in a graph with given *diameter D* and *radix k*.

[1] M. Miller, J. Siráň. Moore graphs and beyond: A survey of the degree/diameter problem, Electronic Journal of Combinatorics, 2005.

Lower diameter and thus average path length: fewer needed links / routers.

🛠 Key method

Optimize towards the Moore Bound [1]: the upper bound on the *number of vertices* in a graph with given *diameter D* and *radix k*.

MooreBound(D,k)

[1] M. Miller, J. Siráň. Moore graphs and beyond: A survey of the degree/diameter problem, Electronic Journal of Combinatorics, 2005.

Lower diameter and thus average path length: fewer needed links / routers.

🛠 Key method

Optimize towards the Moore Bound [1]: the upper bound on the *number of vertices* in a graph with given *diameter D* and *radix k*.

MooreBound(D,k)

[1] M. Miller, J. Siráň. Moore graphs and beyond: A survey of the degree/diameter problem, Electronic Journal of Combinatorics, 2005.

Lower diameter and thus average path length: fewer needed links / routers.

Key method

Optimize towards the Moore Bound [1]: the upper bound on the *number of vertices* in a graph with given *diameter D* and *radix k*.

MooreBound(D,k) = 1

Lower diameter and thus average path length: fewer needed links / routers.

🛠 Key method

Optimize towards the Moore Bound [1]: the upper bound on the *number of vertices* in a graph with given *diameter D* and *radix k*.

MooreBound(D,k) = 1

Lower diameter and thus average path length: fewer needed links / routers.

🛠 Key method

Optimize towards the Moore Bound [1]: the upper bound on the *number of vertices* in a graph with given *diameter D* and *radix k*.

MooreBound(D,k) = 1 + k

Lower diameter and thus average path length: fewer needed links / routers.

🛠 Key method

Optimize towards the Moore Bound [1]: the upper bound on the *number of vertices* in a graph with given *diameter D* and *radix k*.

MooreBound(D,k) = 1 + k

Lower diameter and thus average path length: fewer needed links / routers.

🛠 Key method

Optimize towards the Moore Bound [1]: the upper bound on the *number of vertices* in a graph with given *diameter D* and *radix k*.

MooreBound(D,k) = 1 + k + k(k-1)

Lower diameter and thus average path length: fewer needed links / routers.

🛠 Key method

Optimize towards the Moore Bound [1]: the upper bound on the *number of vertices* in a graph with given *diameter D* and *radix k*.

MooreBound(D,k) = 1 + k + k(k-1)

Lower diameter and thus average path length: fewer needed links / routers.

🛠 Key method

Optimize towards the Moore Bound [1]: the upper bound on the *number of vertices* in a graph with given *diameter D* and *radix k*.

MooreBound(D,k) = 1 + k + k(k-1)

Lower diameter and thus average path length: fewer needed links / routers.

🛠 Key method

Optimize towards the Moore Bound [1]: the upper bound on the *number of vertices* in a graph with given *diameter D* and *radix k*.

MooreBound(D,k) = 1 + k + k(k-1)

+ k(k - 1)² + ...
Thus, Slim Fly ensures
the lowest radix (port count)
for a given node count
and for a fixed diameter...
Sounds ideal for an on-chip setting?

Y

WHY NOT JUST USE SLIM FLY AS AN ON-CHIP NETWORK?

and and the

SLIM FLY ON CHIP – FIRST ATTEMPT STRUCTURE INTUITION

Example design for *diameter* = 2

Example design for *diameter* = 2

The second

Example design for *diameter* = 2

Example design for *diameter* = 2

Example design for *diameter* = 2

A subgraph with identical groups of routers

Example design for *diameter* = 2

A subgraph with identical groups of routers

Example design for *diameter* = 2

P. Landa

the second

Groups form a fully-connected bipartite graph

[1] J. Kim, W. J. Dally, D. Abts. Flattened butterfly: a cost-efficient topology for high-radix networks. ISCA'07

[1] J. Kim, W. J. Dally, D. Abts. Flattened butterfly: a cost-efficient topology for high-radix networks. ISCA'07

Bad! No clear advantages from a topology that is close-to-optimal in the radix-size-diameter tradeoff

[1] J. Kim, W. J. Dally, D. Abts. Flattened butterfly: a cost-efficient topology for high-radix networks. ISCA'07

Bad! No clear advantages from a topology that is close-to-optimal in the radix-size-diameter tradeoff

[1] J. Kim, W. J. Dally, D. Abts. Flattened butterfly: a cost-efficient topology for high-radix networks. ISCA'07

What are the problems with the simple on-chip Slim Fly?

A PARTY PARTY AND

Near-best radix-size-diameter tradeoff, but...

ALL TA LINE

Near-best radix-size-diameter tradeoff, but...

the state of the second

Near-best radix-size-diameter tradeoff, but...

The second second second second

Near-best radix-size-diameter tradeoff, but...

The Party of Party of States

Short wire: small

input buffers

Near-best radix-size-diameter tradeoff, but...

Long wire: traversing the whole die requires large input buffers for full link utilization

The second

PROBLEMS WITH SIMPLE ON-CHIP SLIM FLY, PART 2

and the manufacture was

PROBLEMS WITH SIMPLE ON-CHIP SLIM FLY, PART 2

Network radix k'	Concen- tration <i>p</i>	$p/\left\lceil \frac{k'}{2} \right ceil^{**}$	Network size N	Router count N _r	Input param. <i>q</i>
3	2	100%	16	8	2
5	2	66%	36	18	3
5	3	100%	54	18	3
5	4	133%	72	18	3
7	3	75%	150	50	5
7	4	100%	200	50	5
7	5	120%	250	50	5
11	4	66%	392	98	7
11	5	83%	490	98	7
11	6	100%	588	98	7
11	7	116%	686	98	7
11	8	133%	784	98	7

Paker Participation and the

PROBLEMS WITH SIMPLE ON-CHIP SLIM FLY, PART 2

Various Slim Fly configurations

Network radix k'	Concen- tration <i>p</i>	$p/\left\lceil \frac{k'}{2} \right ceil **$	Network size N	Router count N _r	Input param. q
3	2	100%	16	8	2
5	2	66%	36	18	3
5	3	100%	54	18	3
5	4	133%	72	18	3
7	3	75%	150	50	5
7	4	100%	200	50	5
7	5	120%	250	50	5
11	4	66%	392	98	7
11	5	83%	490	98	7
11	6	100%	588	98	7
11	7	116%	686	98	7
11	8	133%	784	98	7

and the second and

PROBLEMS WITH SIMPLE ON-CHIP SLIM FLY, PART 2

Various Slim Fly configurations

Network radix k'	Concen- tration <i>p</i>	$p/\left\lceil \frac{k'}{2} \right ceil **$	Network size N	Router count N _r	Input param. q
		No noo	dto po	50attant	ion
		no nee	u to pa	yalleni	lion
		⁸ to all t	hoso n	mbors	\bigcirc
			liese ii	unners	

A Charles and

PROBLEMS WITH SIMPLE ON-CHIP SLIM FLY, PART 2

Various Slim Fly configurations			? Are there configurations with				
Network radix k'	Concen- tration <i>p</i>	$p/\left\lceil \frac{k'}{2} \right ceil^{**}$	Network size N	Router count N _r	Input param. q		
		No noo	d to na	$\sqrt{2}^{0}$ attont	·ion		
		NO HEE	u lu pa	yallem	JUII		
		to all t	hose n	imhers	\odot		
		10 0% and		unibers			

PROBLEMS WITH SIMPLE ON-CHIP SLIM FLY, PART 2								
	Various Sli configurat	m Fly tions	? conf	with	be			
Network radix k'	Concen- tration <i>p</i>	$p/\left\lceil \frac{k'}{2} \right ceil^{**}$	Network size N	Router count N _r	Input param.	t . q		
3	2	100%	16	8	2			
		No noo	25to no	50 attant	ion			
		no nee	a lo pa	yattent	,ION			
			those n	mborc	\bigcirc			
			liese n	umpers				

...number of nodes/routers being a power of two?

July Charles and

PROBLEMS WITH SIMPLE ON-CHIP SLIM FLY, PART 2r							nber of nodes/routers
	Various Sli	m Fly	?	Are there		bei	ng a power of two?
	configurat	ions	conf	igurations	with		equally many cores on each die side?
Network radix <i>k'</i>	Concen- tration <i>p</i>	$p/\left\lceil \frac{k'}{2} \right ceil^{**}$	Network size N	Router count N _r	Input param.	q	
3	2	100%	16	8	2		
		No nee	d to pa	y attent	ion		
		to all t	these n	umbers	\odot		
		100%					

PROBLEMS WITH SIMPLE ON-CHIP SLIM FLY, PART 2n							nber of nodes/routers
	Various Slim Fly		?	Are there		bei	ng a power of two?
	configurat	tions	conf	igurations	with		equally many cores on each die side?
Network radix k'	Concen- tration p	$p/\left\lceil \frac{k'}{2} \right\rceil^{**}$	Network size N	Router count N _r	Inpu param	t . q	equally many routers
							on cach are side.
		No nee	d to pa	y attent	tion		
		to all t	these n	umbers	\odot		

and the second s

PROBLEMS WITH SIMPLE ON-CHIP SLIM FLY, PART 2							number of nodes/routers	
	Various Slim Fly		?	Are there		being a power of two?		
	configurat	ions	confi	igurations v	with		equally many cores on each die side?	
radix k'	tration <i>p</i>	$p/\left\lceil \frac{k'}{2} \right\rceil^{**}$	Network size N	count N_r	param	t . <u>q</u>	equally many routers	
					2	_	on cach aic siac:	
					3 3 5	equal o	ly many router groups n each die side?	
		No nee	d to pa	y attent	ion			
		to all t	these n	umbers	\odot			

Contraction of the second s

PROBLEM	PROBLEMS WITH SIMPLE ON-CHIP SLIM FLY, PART 2number of nodes/routers							
	Various Sli	m Fly	?	Are there		b	eing a power of two?	
	configurat	ions	conf	igurations v	with		equally many cores on each die side?	
Network radix <i>k</i> '	Concen- tration <i>p</i>	$p/\left\lceil \frac{k'}{2} \right ceil^{**}$	Network size N	Router count N _r	Inpu param	t . q	equally many routers	
			16				on each die side?	
			36 54 72		3 3 3 5	equa	ally many router groups on each die side?	
		No nee	d to pa	y attent	ion			
		to all t	these n	umbers	\odot			

Contraction of the second s

PROBLEM	is with <mark>S</mark> i	MPLE ON-	2	number of nodes/routers			
	Various Sli	m Fly	?	Are there		be	ing a power of two?
	configurat	ions	conf	igurations v	with		equally many cores on each die side?
Network radix k'	Concen- tration p	$p/\left\lceil \frac{k'}{2} \right\rceil^{**}$	Network size N	count N _r	Input param	t . <u>q</u>	.equally many routers on each die side?
			36		3	_	
					3 •	equal	lly many router groups
					3	C	n each die side?
					5		
		No noo	d to pa	vottont		S The	re are few Slim Flies
		NO HEE	u lo pa	yalleni		that a	satisfy various on chin
		to all t	these n	umbers	\odot	tech	nological constraints
					7		

Contraction of the second second

How to solve these problems?

and the second s

Charles and and and

Short wire: small

input buffers

SOLUTION: SLIM NOC Part I **NEW COST AND AREA MODELS, NEW LAYOUTS** Near-best radix-size-diameter tradeoff, but...

And and and a

Short wire: small

input buffers

SOLUTION: SLIM NOC Part I **NEW COST AND AREA MODELS, NEW LAYOUTS** Near-best radix-size-diameter tradeoff, but...

The second second

Short wire: small

input buffers

SOLUTION: SLIM NOC Part I New cost and area models, New layouts

radix-size-diameter tradeoff, but...

SOLUTION: SLIM NOC Part I New cost and area models,

Short wire: small

input buffers

NEW LAYOUTS

Near-best radix-size-diameter tradeoff, but...

Contraction of the Party of

SOLUTION: SLIM NOC Part I

NEW COST AND AREA MODELS,

NEW LAYOUTS

NEW COST AND AREA MODELS, NEW LAYOUTS

Minimize the average wire length (*M*) :

State of the second second

$$M = \frac{\text{Sum of distances}}{\text{Number of links}}$$

NEW COST AND AREA MODELS, NEW LAYOUTS

Minimize the average wire length (*M*) :

$$M = \frac{\text{Sum of distances}}{\text{Number of links}}$$

Minimize the total buffer area (Δ):

$$\Delta = \sum_{\substack{\text{All router} \\ \text{pairs } i, j}}$$

and the second

If *i*, *j* are connected, ($\varepsilon_{ij} = 1$) add the size of a buffer from *i* to *j*

NEW COST AND AREA MODELS, NEW LAYOUTS

ILP formulation: many more details for reproducibility and genericness, check the paper ⓒ

NEW COST AND AREA MODELS, NEW LAYOUTS

ILP formulation: many more details for reproducibility and genericness, check the paper $\Phi(i, j) = 1$ if $|x_i - x_j| > |y_i - y_j|$, and 0 otherwise $\Psi(i, j) = 1$ if $|x_i - x_j| \le |y_i - y_j|$, and 0 otherwise.

A REAL PROPERTY AND A REAL

 $\phi_{ij}(k, l) = \begin{cases} 1, \text{ if } k = x_i \land \min\{y_i, y_j\} \le l \le \max\{y_i, y_j\} \\ 1, \text{ if } l = y_j \land \min\{x_i, x_j\} \le k \le \max\{x_i, x_j\} \\ 0, \text{ otherwise} \end{cases}$

 $\psi_{ij}(k, l) = \begin{cases} 1, \text{ if } k = x_j \land \min\{y_i, y_j\} \le l \le \max\{y_i, y_j\} \\ 1, \text{ if } l = y_i \land \min\{x_i, x_j\} \le k \le \max\{x_i, x_j\} \\ 0, \text{ otherwise.} \end{cases}$

$$\sum_{i=1}^{N_r} \sum_{j=1}^{N_r} \varepsilon_{ij} [\phi_{ij}(k, l) \Phi(i, j) + \psi_{ij}(k, l) \Psi(i, j)] \le W$$

NEW COST AND AREA MODELS,

NEW LAYOUTS

A REAL PROPERTY OF

NEW COST AND AREA MODELS,

NEW LAYOUTS

A MARK CALLER AND AND A

NEW COST AND AREA MODELS,

NEW LAYOUTS

A REAL PROPERTY OF THE REAL PR

NEW COST AND AREA MODELS,

NEW LAYOUTS

Contra La contra Parto

NEW COST AND AREA MODELS, NEW LAYOUTS

Let us see some layouts

What difference do they make for lengths of wires?

A to Part of the second second

NEW COST AND AREA MODELS, NEW LAYOUTS

What difference do they make for lengths of wires? The "subgroup layout" (sn_subgr) is best for 200 nodes The "group layout" (sn_gr) is best for 1296 nodes (it reduces wiring complexity)

Now let's move to the second problem...

SOLUTION: SLIM NOC Part II NON-PRIME FINITE FIELDS Are there configurations with			/ith	num beii	nber of nodes/routers ng a power of two?		
Various Slin	n Fly configu	rations				_	equally many cores on each die side?
Network C radix k' ti	Concen- ration p ^p /	$\left\lceil \frac{k'}{2} \right\rceil **$	Network size N	Router count N _r	Input param. 2	$\frac{1}{2}$	equally many routers on each die side?
					3 3 3	equall. or	y many router groups n each die side?
	75% 100 120 66% 83% 100 116	No nee	d to pa	ay atten	tion	Ther that sa techr	re are few Slim Flies atisfy various on-chip hological constraints

Contraction of the second second

SOLUTIO Non-Prin	N: SLIM N ME FINITE FI	oc Part	II ? conf	Are there	with	number of nodes/routers being a power of two?
Various S	Slim Fly cor	nfigurations	Notwork	, Poutor	Innu	equally many cores on each die side?
radix k'	tration p	$\frac{p}{\left \frac{k'}{2}\right ^{**}}$	size N	$\frac{\text{count } N_r}{8}$	param	$\frac{1}{1}$ equally many routers on each die side?
5 5 5 5	2 3 4	66% 100% 133%	36 54 72	18 18 18 18	2 3 3 3	equally many router groups on each die side?
7 7 7	3 4 5	75% 100% 120%	150 200 250	50 50 50	5 5 5	There are few Slim Flies
11 11 11	4 5 6	66% 83% 100%	392 490 588	98 98 98	7 7 7	that satisfy various on-chip technological constraints
11 11	/ 8	116% 133%	686 784	98 98	7 7	

and the second s

And Alexander and Alexander

13

13

13

13

5

6

7

8

Solutio Non-Prim	with				
Various	Slim Fly cor	nfigurations			
Network radix <i>k</i> '	Concen- tration <i>p</i>	$p/\left\lceil \frac{k'}{2} \right ceil **$	Network size N	Router count N _r	Input param. q
6	2	66%	64	32	4
6	3	100%	96	32	4 🧰
6	4	133%	128	32	4e
12	4	66%	512	128	8
12	5	83%	640	128	8
12	6	100%	768	128	8
12	7	116%	896	128	8
12	8	133%	1024	128	8

71%

85%

100%

114%

810

972

1134

1296

162

162

162

162

9

9

9

9

...number of nodes/routers being a power of two?

> ...equally many cores on each die side?

...equally many routers on each die side?

...equally many router groups on each die side?

13

13

13

13

5

6

7

8

Solutio Non-Prim	with				
Various	Slim Fly cor	nfigurations			
Network radix <i>k</i> '	Concen- tration <i>p</i>	$p/\left\lceil \frac{k'}{2} \right ceil **$	Network size N	Router count N _r	Input param. q
6	2	66%	64	32	4
6	3	100%	96	32	4 🧰
6	4	133%	128	32	4e
12	4	66%	512	128	8
12	5	83%	640	128	8
12	6	100%	768	128	8
12	7	116%	896	128	8
12	8	133%	1024	128	8

71%

85%

100%

114%

810

972

1134

1296

162

162

162

162

9

9

9

9

...number of nodes/routers being a power of two?

> ...equally many cores on each die side?

...equally many routers on each die side?

...equally many router groups on each die side?

SOLUTION	N: SLIM N 16 FINITE FI	oC Part	II ? confi	Are there	with	number of nodes/routers being a power of two?
Various S	Slim Fly con	figurations				equally many cores
Network radix k'	Concen- tration <i>p</i>	$p/\left\lceil \frac{k'}{2} \right ceil^{**}$	Network size N	Router count N _r	Input param. q	equally many routers
6	2	66%	64	32	4	on each die side?
6	3	100%	96	32	4	
6	4	133%	128	32	4 6	equally many router groups
12	4	66%	512	128	8	on each die side?
12	5	83%	640	128	8	
12	6	100%	768	128	8	
12	7	116%	896	128	8	
12	8	133%	1024	128	8	
13	5	71%	810	162	9	
13	6	85%	972	162	9	
13	7	100%	1134	162	9	
13	8	114%	1296	162	9	

SOLUTION: SLIM NOC Part II NON-PRIME FINITE FIELDS Are there configurations with						number of nodes/routers being a power of two?
Various S	Slim Fly cor	nfigurations				equally many cores
Network radix k'	Concen- tration <i>p</i>	$p/\left\lceil \frac{k'}{2} \right ceil **$	Network size N	Router count N _r	Input param. q	equally many routers
6	2	66%	64	32	4	on each die side?
6	3	100%	96	32	4	
6	4	133%	128	32	46	equally many router groups
12	4	66%	512	128	8	on each die side?
12	5	83%	640	128	8	
12	6	100%	768	128	8	
12	7	116%	896	128	8	
12	8	133%	1024	128	8	
2 How t	- o develon	71%	810	162	9	
	$r \cdot r$		9/2	162	9	
such a i	finite field		1134	162	У 0	
13	0	14%	1296	162	9	

Contraction of the second s

The second second

SOLUTION: SLIM NOC NON-PRIME FINITE FIELDS

How to develop such a finite field?

The second second

SOLUTION: SLIM NOC NON-PRIME FINITE FIELDS Recap: a finite field \mathcal{F}_q

Assuming *q* is **prime**:

 $\mathcal{F}_q = \mathbb{Z}/q\mathbb{Z}$ = {0,1, ..., q - 1} (with modular arithmetic).

Example: q = 5 50 routers

 $\mathcal{F}_5 = \{0, 1, 2, 3, 4\}$

How to develop such a finite field?

SOLUTION: SLIM NOC NON-PRIME FINITE FIELDS Recap: a finite field \mathcal{F}_a

Assuming *q* is **prime**:

 $\mathcal{F}_q = \mathbb{Z}/q\mathbb{Z}$ = {0,1, ..., q - 1} (with modular arithmetic).

Example: q = 5 50 routers

 $\mathcal{F}_5 = \{0, 1, 2, 3, 4\}$

Assuming *q* is **non-prime**: $\mathcal{F}_q = \mathbb{Z}/q\mathbb{Z} = \{x_0, x_1, \dots, x_{q-1}\}$

Provide Statements

How to develop such a finite field?

...with instruction tables that define operations on the field.

Example: q = 9 162 routers $\mathcal{F}_9 = \{0, 1, 2, u, v, w, x, y, z\}$

+ 0 1 2 u v w x y z	× 0 1 2 u v w x y z	elem -elem
0 012uvwxyz	0 0 0 0 0 0 0 0 0 0 0	0 0
1 1 2 0 v w u y z x	1 0 1 2 u v w x y z	1 2
2 2 0 1 w u v z x y	2 0 2 1 x z y u w v	2 0
u u v w x y z 0 1 2	u 0 u x 2 w z 1 v y	u x
vvwuyzx120	v	v z
wwuvzxy201	w 0 w y z 1 u v x 2	w y
x	x 0 x u 1 y v 2 z w	x u
y	y 0 y w v 2 x z u 1	y w
z	z 0 z v y u 2 w 1 x	z v
Addition	Multiplication	Inverse

SOLUTION: SLIM NOC NON-PRIME FINITE FIELDS Recap: a finite field \mathcal{F}_q	Assuming q is non-prime : $\mathcal{F}_q = \mathbb{Z}/q\mathbb{Z} = \{x_0, x_1, \dots, x_{q-1}\}$ How to deve such a finite fi with instruction tables that define operations on the fi					
Assuming q is prime : $\mathcal{F}_q = \mathbb{Z}/q\mathbb{Z}$	Example: $q = 9$	162 routers				
= {0,1, (with mc arithmet	ck the paper for details 😳					
Example: $q = 5$ 50 routers $\mathcal{F}_{r} = \{0 \ 1 \ 2 \ 3 \ 4\}$	u u v w x y z 0 1 2 u 0 u x 2 w z 1 v v v w u y z x 1 2 0 v 0 v z w x 1 y 2 w w u v z x y 2 0 1 w 0 w y z 1 u v x x x y z 0 1 2 u v w x 0 x u 1 y v 2 z y y z x 1 2 0 v w u y 0 y w v 2 x z u z z x y 2 0 1 w u v z 0 z v y u 2 w 1	y u x 2 u v z 2 w y z w x u 1 y w 1 x z v				
J 5 – (U,I,Z,J,T)	Addition Multiplicatio	n Inverse				

and the second second second

How do we optimize the router microarchitecture for Slim NoC to provide high performance and high efficiency?

***SPCL

SLIM NOC ROUTER MICROARCHITECTURE PERFORMANCE OPTIMIZATIONS Part III

all the states and

SLIM NOC ROUTER MICROARCHITECTURE PERFORMANCE OPTIMIZATIONS Part III

Let's leave the details for the paper and just focus on the core aspects ⓒ

and the states of

SLIM NOC ROUTER MICROARCHITECTURE PERFORMANCE OPTIMIZATIONS Part III

Let's leave the details for the paper and just focus on the core aspects ⓒ

SLIM NOC ROUTER MICROARCHITECTURE PERFORMANCE OPTIMIZATIONS Part III

Let's leave the details for the paper and just focus on the core aspects ⓒ

ENHANCEMENT 1: ELASTIC BUFFER LINKS [1] + ELASTISTORE [2]

[1] G. Michelogiannakis et al. Elastic-Buffer Flow Control for On-Chip Networks. HPCA'09.

[2] I. Seitanidis et al. ElastiStore: An Elastic Buffer Architecture for Network-on-Chip Routers. DATE'14.

[2] I. Seitanidis et al. ElastiStore: An Elastic Buffer Architecture for Network-on-Chip Routers. DATE'14.

[2] I. Seitanidis et al. ElastiStore: An Elastic Buffer Architecture for Network-on-Chip Routers. DATE'14.

[3] C.-H. O. Chen et al. SMART: A Single-Cycle Reconfigurable NoC for SoC Applications. DATE'13.

[2] I. Seitanidis et al. ElastiStore: An Elastic Buffer Architecture for Network-on-Chip Routers. DATE'14.

[3] C.-H. O. Chen et al. SMART: A Single-Cycle Reconfigurable NoC for SoC Applications. DATE'13.

[2] I. Seitanidis et al. ElastiStore: An Elastic Buffer Architecture for Network-on-Chip Routers. DATE'14.

[3] C.-H. O. Chen et al. SMART: A Single-Cycle Reconfigurable NoC for SoC Applications. DATE'13.

[4] S. Hassan and S. Yalamanchili. Centralized Buffer Router: A Low Latency, Low Power Router for High Radix NoCs. NOCS'13.

[2] I. Seitanidis et al. ElastiStore: An Elastic Buffer Architecture for Network-on-Chip Routers. DATE'14.

[3] C.-H. O. Chen et al. SMART: A Single-Cycle Reconfigurable NoC for SoC Applications. DATE'13.

[4] S. Hassan and S. Yalamanchili. Centralized Buffer Router: A Low Latency, Low Power Router for High Radix NoCs. NOCS'13.

LET'S SUMMARIZE...

LET'S SUMMARIZE...

A The sea of the second second

LET'S SUMMARIZE...

a light a second station

(

EVALUATION

EVALUATION METHODOLOGY: SENSITIVITY ANALYSES

METRICS:

- LATENCY
- THROUGHPUT
- BUFFER AREA
- BUFFER SIZE
- STATIC/DYNAMIC POWER CONSUMPTION
- THROUGHPUT/POWER
- ENERGY-DELAY PRODUCT

METRICS:

- LATENCY
- THROUGHPUT
- BUFFER AREA
- BUFFER SIZE
- STATIC/DYNAMIC POWER CONSUMPTION
- THROUGHPUT/POWER
- ENERGY-DELAY PRODUCT

TRAFFIC / WORKLOAD:

- UNIFORM RANDOM
- BIT SHUFFLE
- BIT REVERSAL
- ADVERSARIAL PATTERNS
- PARSEC/SPLASH TRACES

METRICS:

TOPOLOGY:

- LATENCY
- THROUGHPUT
- BUFFER AREA
- BUFFER SIZE
- STATIC/DYNAMIC POWER CONSUMPTION
- THROUGHPUT/POWER
- ENERGY-DELAY PRODUCT

TRAFFIC / WORKLOAD:

- UNIFORM RANDOM
- BIT SHUFFLE
- BIT REVERSAL
- ADVERSARIAL PATTERNS
- PARSEC/SPLASH TRACES

METRICS:

- LATENCY
- THROUGHPUT
- BUFFER AREA
- BUFFER SIZE
- STATIC/DYNAMIC POWER CONSUMPTION
- THROUGHPUT/POWER
- ENERGY-DELAY PRODUCT

TRAFFIC / WORKLOAD:

- UNIFORM RANDOM
- BIT SHUFFLE
- BIT REVERSAL
- ADVERSARIAL PATTERNS
- PARSEC/SPLASH TRACES

TOPOLOGY:

CONCENTRATED MESH (CM)

METRICS:

- LATENCY
- THROUGHPUT
- BUFFER AREA
- BUFFER SIZE
- STATIC/DYNAMIC POWER CONSUMPTION
- THROUGHPUT/POWER
- ENERGY-DELAY PRODUCT

TRAFFIC / WORKLOAD:

- UNIFORM RANDOM
- BIT SHUFFLE
- BIT REVERSAL
- ADVERSARIAL PATTERNS
- PARSEC/SPLASH TRACES

TOPOLOGY:

CONCENTRATED MESH (CM)

METRICS:

- LATENCY
- THROUGHPUT
- BUFFER AREA
- BUFFER SIZE
- STATIC/DYNAMIC POWER CONSUMPTION
- THROUGHPUT/POWER
- ENERGY-DELAY PRODUCT

TRAFFIC / WORKLOAD:

- UNIFORM RANDOM
- BIT SHUFFLE
- BIT REVERSAL
- ADVERSARIAL PATTERNS
- PARSEC/SPLASH TRACES

TOPOLOGY:

CONCENTRATED MESH (CM)

2D TORUS (T2D)

FLATTENED BUTTERFLY [1] (FBF)

[1] J. Kim, W. J. Dally, D. Abts. Flattened butterfly: a cost-efficient topology for high-radix networks. ISCA'07

METRICS:

- LATENCY
- THROUGHPUT
- BUFFER AREA
- BUFFER SIZE
- STATIC/DYNAMIC POWER CONSUMPTION
- THROUGHPUT/POWER
- ENERGY-DELAY PRODUCT

TRAFFIC / WORKLOAD:

- UNIFORM RANDOM
- BIT SHUFFLE
- BIT REVERSAL
- ADVERSARIAL PATTERNS
- PARSEC/SPLASH TRACES

TOPOLOGY:

CONCENTRATED MESH (CM)

2D Torus (T2D)

FLATTENED BUTTERFLY [1] (FBF)

FLATTENED
 BUTTERFLY [1],
 A "PARTITIONED"
 VARIANT (PFBF)

[1] J. Kim, W. J. Dally, D. Abts. Flattened butterfly: a cost-efficient topology for high-radix networks. ISCA'07

METRICS:

- LATENCY
- THROUGHPUT
- BUFFER AREA
- BUFFER SIZE
- STATIC/DYNAMIC POWER CONSUMPTION
- THROUGHPUT/POWER
- ENERGY-DELAY PRODUCT

TRAFFIC / WORKLOAD:

- UNIFORM RANDOM
- BIT SHUFFLE
- BIT REVERSAL
- ADVERSARIAL PATTERNS
- PARSEC/SPLASH TRACES

TOPOLOGY:

CONCENTRATED MESH (CM)

2D TORUS (T2D)

FLATTENED BUTTERFLY [1] (FBF)

- FLATTENED
 BUTTERFLY [1],
 A "PARTITIONED"
 VARIANT (PFBF)
- (BRIEFLY)
 HIERARCHICAL
 NOCs

[1] J. Kim, W. J. Dally, D. Abts. Flattened butterfly: a cost-efficient topology for high-radix networks. ISCA'07

EVALUATION METHODOLOGY: SENSITIVITY ANALYSES

EVALUATION METHODOLOGY: SENSITIVITY ANALYSES

LAYOUT:

- GROUP
- SUBGROUP
- RANDOM
- NAIVE

LAYOUT:

- GROUP
- SUBGROUP
- RANDOM
- NAIVE

LAYOUT:

- GROUP
- SUBGROUP
- RANDOM
- NAIVE

ROUTER CYCLE TIME:

- 0.4NS
- 0.5NS
- 0.6NS

LAYOUT:

- GROUP
- SUBGROUP
- RANDOM
- NAIVE

ROUTER CYCLE TIME:

- 0.4NS
- 0.5NS
- 0.6NS

?

- 22NM
- 45NM

9

LAYOUT:

- GROUP
- SUBGROUP
- RANDOM
- NAIVE

ROUTER CYCLE TIME:

- 0.4NS
- 0.5NS
- 0.6NS

?

- 22NM
- 45NM

- CENTRAL
- EDGE

LAYOUT:

- GROUP
- SUBGROUP
- RANDOM
- NAIVE

ROUTER CYCLE TIME:

- 0.4NS
- 0.5NS
- 0.6NS

TECHNOLOGY NODE:

?

- 22NM
- 45NM

- CENTRAL
- EDGE

LAYOUT:

- GROUP
- SUBGROUP
- RANDOM
- NAIVE

ROUTER CYCLE TIME:

- 0.4NS
- 0.5NS
- 0.6NS

TECHNOLOGY NODE:

- 22NM
- 45NM

Edge

- SMART ON/OFF
- CENTRAL BUFFERS ON/OFF

LAYOUT:

- GROUP
- SUBGROUP
- RANDOM
- NAIVE

ROUTER CYCLE TIME:

- 0.4NS
- 0.5NS
- 0.6NS

INJECTION RATE: ■ 0.01 - 0.95

TECHNOLOGY NODE:

- 22NM
- 45NM

GLOBAL

- SMART ON/OFF
- CENTRAL BUFFERS ON/OFF

LAYOUT:

- GROUP
- SUBGROUP
- RANDOM
- NAIVE

ROUTER CYCLE TIME:

- 0.4NS
- 0.5NS
- 0.6NS

INJECTION RATE: 0.01 – 0.95

TECHNOLOGY NODE:

- 22NM
- 45NM

GLOBAL

NETWORK SIZE (NODE COUNT):

- **200**
- **1**024
- 1296

- SMART ON/OFF
- CENTRAL BUFFERS ON/OFF

ROUTING

- MINIMUM STATIC
- **NON-MINIMUM ADAPTIVE**

LAYOUT:

- GROUP
- SUBGROUP
- Random
- NAIVE

ROUTER CYCLE TIME:

- 0.4ns
- 0.5ns
- 0.6NS

INJECTION RATE: 0.01 – 0.95

TECHNOLOGY NODE:

- 22NM
- 45_{NM}

WIRE TYPE:

GLOBAL

NETWORK SIZE (NODE COUNT):

- 200
- 1024
- 1296

3

8

9

- SMART ON/OFF
- CENTRAL BUFFERS ON/OFF

RESULTS: PERFORMANCE

in-house simulator [1]

cm3: concentrated mesh, t2d3: torus,
pfbf3, pfbf4, fbf3: variants of Flattened Butterfly,
sn_subgr: Slim NoC (the subgroup layout)

SMART LINKS: ON CENTRAL BUFFERS: ON NODE COUNT: 192/200

[1] S. Hassan and S. Yalamanchili. Centralized Buffer Router: A Low Latency, Low Power Router for High Radix NoCs. NOCS'13.

RESULTS: PERFORMANCE

in-house simulator [1]

cm3: concentrated mesh, t2d3: torus,
pfbf3, pfbf4, fbf3: variants of Flattened Butterfly,
sn_subgr: Slim NoC (the subgroup layout)

SMART LINKS: ON CENTRAL BUFFERS: ON NODE COUNT: 192/200

[1] S. Hassan and S. Yalamanchili. Centralized Buffer Router: A Low Latency, Low Power Router for High Radix NoCs. NOCS'13.

RESULTS: AREA AND POWER CONSUMPTION DSENT power simulator [1]

SMART LINKS: ON CENTRAL BUFFERS: ON NODE COUNT: 192/200, TECHNOLOGY NODE: 45NM

i-routers: routers (intermediate layer), a-routers: routers (active layer),
 RRg-wires: router-router wires (global layer), RNg-wires: router-node wires (global layer).
 [1] C. Sun et al. DSENT - A Tool Connecting Emerging Photonics with Electronics for Opto-Electronic Networks-on-Chip Modeling. NOCS'12.

RESULTS: AREA AND POWER CONSUMPTION DSENT power simulator [1]

SMART LINKS: ON CENTRAL BUFFERS: ON NODE COUNT: 192/200, TECHNOLOGY NODE: 45NM

Slim NoC is more efficient than high-radix designs

i-routers: routers (intermediate layer), a-routers: routers (active layer),
 RRg-wires: router-router wires (global layer), RNg-wires: router-node wires (global layer).
 [1] C. Sun et al. DSENT - A Tool Connecting Emerging Photonics with Electronics for Opto-Electronic Networks-on-Chip Modeling. NOCS'12.

RESULTS: THROUGHPUT / POWER (PARSEC/SPLASH) in-house simulator [1]

SMART LINKS: ON CENTRAL BUFFERS: ON NODE COUNT: 192/200

[1] S. Hassan and S. Yalamanchili. Centralized Buffer Router: A Low Latency, Low Power Router for High Radix NoCs. NOCS'13.

RESULTS: THROUGHPUT / POWER (PARSEC/SPLASH) in-house simulator [1]

SMART LINKS: ON CENTRAL BUFFERS: ON NODE COUNT: 192/200

[1] S. Hassan and S. Yalamanchili. Centralized Buffer Router: A Low Latency, Low Power Router for High Radix NoCs. NOCS'13.

RESULTS: SCALABILITY

Slim NoC is similarly advantageous when we move from 200 nodes to 1296 nodes (check the paper for details ⓒ)

The Content of the second

OTHER RESULTS

***SPCL

spcl.inf.ethz.ch

***SPCL

EHzürich

Slim NoC: A Low-Diameter On-Chip Network Topology for High Energy Efficiency and Scalability MACIEJ BESTA, SYEE

MACIEJ BESTA, SYED MINHAJ HASSAN, SUDHAKAR YALAMANCHILI, RACHATA AUSAVARUNGNIRUN, ONUR MUTLU, TORSTEN HOEFLER

Georgia

ALCONT AND AND

ANALYSIS: DIAMETER-2 SLIM FLY

ANALYSIS: DIAMETER-2 SLIM FLY

Lowest latency
Better throughput than Dragonfly
Almost-the-best throughput

spel |

ANALYSIS: DIAMETER-2 SLIM FLY

~25-30% cost reduction vs. second-best topology (Dragonfly)

Lowest latency
Better throughput than Dragonfly
Almost-the-best throughput

ANALYSIS: DIAMETER-2 SLIM FLY COST OF NETWORK CONSTRUCTION

ANALYSIS: DIAMETER-2 SLIM FLY COST OF NETWORK CONSTRUCTION

ANALYSIS: DIAMETER-2 SLIM FLY COST OF NETWORK CONSTRUCTION

Number of endpoints [thousands]

ANALYSIS: DIAMETER-2 SLIM FLY PERFORMANCE (UNIFORM RANDOM)

ANALYSIS: DIAMETER-2 SLIM FLY PERFORMANCE (UNIFORM RANDOM)

Lowest latency
Better throughput than Dragonfly
Almost-the-best throughput

The stand and and and and and

Slim Fly:

The start and the start was

Dragonfly:

State of the second state of the

"q": the input parameter that determines the network structure. Formally, the base of a finite field (Slim Fly uses <u>prime</u> q; the corresponding field: {0, 1, ..., q-1}.

Dragonfly:

SLIM FLY ON CHIP – FIRST ATTEMPT STRUCTURE INTUITION

"q": the input parameter that determines the network structure. Formally, the base of a finite field (Slim Fly uses <u>prime</u> q; the corresponding field: {0, 1, ..., q-1}.

The second

Dragonfly:

two groups

SLIM FLY ON CHIP – FIRST ATTEMPT STRUCTURE INTUITION

"q": the input parameter that determines the network structure. Formally, the base of a finite field (Slim Fly uses <u>prime</u> q; the corresponding field: {0, 1, ..., q-1}.

SLIM FLY ON CHIP – FIRST ATTEMPT STRUCTURE INTUITION

"q": the input parameter that determines the network structure. Formally, the base of a finite field (Slim Fly uses <u>prime</u> q; the corresponding field: {0, 1, ..., q-1}.

SOLUTION: SLIM NOC

NEW COST AND AREA MODELS, NEW LAYOUTS

Let us see some layouts

What difference do they make for lengths of wires?

Distance ranges

Figure 6. (§ 3.3) Distribution of link distances in SNs. A bar associated with a distance range X illustrates the probability that, for a given layout, two routers are connected with a link that has the distance falling within X. Bars of different colors are placed pairwise so that it is easier to compare the subgroup and group layouts.

SOLUTION: SLIM NOC

NEW COST AND AREA MODELS, NEW LAYOUTS

Let us see some layouts

Distance ranges

What difference do they make for lengths of wires?

The "group layout" (sn_gr) is best for 1296 nodes The "subgroup layout" (sn_subgr) is best for 200 nodes

SOLUTION: SLIM NOC NON-PRIME FINITE FIELDS

How to develop such a finite field?

The second second

SOLUTION: SLIM NOC NON-PRIME FINITE FIELDS

Recap: a finite field \mathcal{F}_q Assuming q is prime: $\mathcal{F}_q = \mathbb{Z}/q\mathbb{Z}$ $= \{0, 1, ..., q - 1\}$ (with modular

arithmetic).

How to develop such a finite field?

A CONTRACTOR

SOLUTION: SLIM NOC NON-PRIME FINITE FIELDS *Recap: a finite field* \mathcal{F}_q Assuming q is prime: $\mathcal{F}_q = \mathbb{Z}/q\mathbb{Z}$ $= \{0, 1, ..., q - 1\}$ (with modular arithmetic).

Example: q = 5 50 routers

 $\mathcal{F}_5 = \{0, 1, 2, 3, 4\}$

How to develop such a finite field?

Participation (State)

SOLUTION: SLIM NOC NON-PRIME FINITE FIELDS

> Recap: a finite field \mathcal{F}_q Assuming q is prime: $\mathcal{F}_q = \mathbb{Z}/q\mathbb{Z}$ $= \{0, 1, ..., q - 1\}$ (with modular arithmetic).

> > **Example:** q = 5 50 routers

 $\mathcal{F}_5 = \{0, 1, 2, 3, 4\}$

Assuming *q* is **non-prime**: $\mathcal{F}_q = \mathbb{Z}/q\mathbb{Z} = \{x_0, x_1, \dots, x_{q-1}\}$ How to develop such a finite field?

...with instruction tables that define operations on the field.

SOLUTION: SLIM NOC NON-PRIME FINITE FIELDS *Recap: a finite field* \mathcal{F}_q Assuming q is prime: $\mathcal{F}_q = \mathbb{Z}/q\mathbb{Z}$

 $= \{0,1, \dots, q-1\}$ (with modular arithmetic).

Example: q = 5 50 routers

 $\mathcal{F}_5 = \{0, 1, 2, 3, 4\}$

Assuming q is **non-prime**: $\mathcal{F}_q = \mathbb{Z}/q\mathbb{Z} = \{x_0, x_1, \dots, x_{q-1}\}$ How to develop such a finite field?

The second the the

...with instruction tables that define operations on the field.

Example: q = 9 162 routers $\mathcal{F}_9 = \{0, 1, 2, u, v, w, x, y, z\}$

SOLUTION: SLIM NOC NON-PRIME FINITE FIELDS *Recap: a finite field* \mathcal{F}_a Assuming *q* is **prime**: $\mathcal{F}_q = \mathbb{Z}/q\mathbb{Z}$ $= \{0, 1, \dots, q-1\}$ (with modular arithmetic).

Example: q = 5 50 routers

 $\mathcal{F}_5 = \{0, 1, 2, 3, 4\}$

Assuming q is **non-prime**: $\mathcal{F}_q = \mathbb{Z}/q\mathbb{Z} = \{x_0, x_1, \dots, x_{q-1}\}$ How to develop such a finite field?

...with instruction tables that define operations on the field.

Example: q = 9 162 routers

 $\mathcal{F}_9 = \{0, 1, 2, u, v, w, x, y, z\}$
 $\frac{+|0|1|2|u|v|w|x|y|z}{0|0|1|2|u|v|w|x|y|z|x}$
 $\frac{0|0|1|2|u|v|w|x|y|z}{1|1|2|0|v|w|u|y|z|x}$

 2|0|1|w|u|v|z|x||2|0|

Addition

w w u v z x y 2 0 1 x x y z 0 1 2 u v w y y z x 1 2 0 v w u z z x y 2 0 1 w u v

SOLUTION: SLIM NOC NON-PRIME FINITE FIELDS Recap: a finite field \mathcal{F}_q Assuming q is prime:

> $\mathcal{F}_q = \mathbb{Z}/q\mathbb{Z}$ = {0,1, ..., q - 1} (with modular arithmetic).

> > **Example:** q = 5 50 routers

 $\mathcal{F}_5 = \{0, 1, 2, 3, 4\}$

Assuming *q* is **non-prime**: $\mathcal{F}_q = \mathbb{Z}/q\mathbb{Z} = \{x_0, x_1, \dots, x_{q-1}\}$

How to develop such a finite field?

...with instruction tables that define operations on the field.

Example: q = 9 162 routers $\mathcal{F}_9 = \{0, 1, 2, u, v, w, x, y, z\}$

+ 0 1 2 u v w x y z	× 0 1 2 u v w x y z
0 012uvwxyz	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 2 0 v w u y z x	1 0 1 2 u v w x y z
2 2 0 1 w u v z x y	2 0 2 1 x z y u w v
uuvwxyz012	u 0 u x 2 w z 1 v y
vvwuyzx120	v
wwwvzxy201	w 0 w y z 1 u v x 2
x x y z 0 1 2 u v w	x 0 x u 1 y v 2 z w
y y z x 1 2 0 v w u	y 0 y w v 2 x z u 1
z z x y 2 0 1 w u v	z 0 z v y u 2 w 1 x

Addition Multiplication

SOLUTION: SLIM NOC NON-PRIME FINITE FIELDS Recap: a finite field \mathcal{F}_a

Assuming *q* is **prime**:

 $\mathcal{F}_q = \mathbb{Z}/q\mathbb{Z}$ = {0,1, ..., q - 1} (with modular arithmetic).

Example: q = 5 50 routers

 $\mathcal{F}_5 = \{0, 1, 2, 3, 4\}$

Assuming *q* is **non-prime**: $\mathcal{F}_q = \mathbb{Z}/q\mathbb{Z} = \{x_0, x_1, \dots, x_{q-1}\}$

Provide States

How to develop such a finite field?

...with instruction tables that define operations on the field.

Example: q = 9 162 routers $\mathcal{F}_9 = \{0, 1, 2, u, v, w, x, y, z\}$

+ 0 1 2 u v w x y z	× 0 1 2 u v w x y z	elem -elem
0 012uvwxyz	0 0 0 0 0 0 0 0 0 0 0	0 0
1 1 2 0 v w u y z x	1 0 1 2 u v w x y z	1 2
2 2 0 1 w u v z x y	2 0 2 1 x z y u w v	2 0
u u v w x y z 0 1 2	u	u x
vvwuyzx120	v	v z
wwuvzxy201	w 0 w y z 1 u v x 2	w y
x	x 0 x u 1 y v 2 z w	x u
y	y 0 y w v 2 x z u 1	y w
z	z 0 z v y u 2 w 1 x	z v
Addition	Multiplication	Inverse

SOLUTION: SLIM NOC NON-PRIME FINITE FIELDS

Recap: a finite field \mathcal{F}_q

Assuming a is prime: Generate with an exhaustive search, or use a construction (based on polynomials arithmetic).

Example: q = 5 50 routers

 $\mathcal{F}_5 = \{0, 1, 2, 3, 4\}$

Assuming q is **non-prime**: $\mathcal{F}_q = \mathbb{Z}/q\mathbb{Z} = \{x_0, x_1, \dots, x_{q-1}\}$

How to develop such a finite field?

...with instruction tables that define operations on the field.

Example: q = 9 162 routers $\mathcal{F}_9 = \{0, 1, 2, u, v, w, x, y, z\}$

	+ 0 1 2 u v w x y z	× 0 1 2 u v w x y z	elem -elem
	0 012uvwxyz	0 0 0 0 0 0 0 0 0 0 0	0 0
-	1 1 2 0 v w u y z x	1 0 1 2 u v w x y z	1 2
	2 2 0 1 w u v z x y	2 0 2 1 x z y u w v	2 0
	u u v w x y z 0 1 2	u	u x
	vvwuyzx120	v 0 v z w x 1 y 2 u	v z
	wwuvzxy201	w 0 w y z 1 u v x 2	w y
	x	x 0 x u 1 y v 2 z w	x u
	y y z x 1 2 0 v w u	y 0 y w v 2 x z u 1	y w
	z	z 0 z v y u 2 w 1 x	z V
	Addition	Multiplication	Inverse

The state

EVALUATION METHODOLOGY SIMULATION INFRASTRUCTURE

EVALUATION METHODOLOGY SIMULATION INFRASTRUCTURE

Performance

Cycle-accurate simulations (in-house simulator [1], Booksim [2])

EVALUATION METHODOLOGY SIMULATION INFRASTRUCTURE

PERFORMANCE

- Cycle-accurate simulations (in-house simulator [1], Booksim [2])
- Routing protocols:

EVALUATION METHODOLOGY SIMULATION INFRASTRUCTURE

PERFORMANCE

- Cycle-accurate simulations (in-house simulator [1], Booksim [2])
- Routing protocols:

EVALUATION METHODOLOGY SIMULATION INFRASTRUCTURE

PERFORMANCE

- Cycle-accurate simulations (in-house simulator [1], Booksim [2])
- Routing protocols:
 - Minimum static routing

EVALUATION METHODOLOGY SIMULATION INFRASTRUCTURE

PERFORMANCE

- Cycle-accurate simulations (in-house simulator [1], Booksim [2])
- Routing protocols:
 - Minimum static routing

EVALUATION METHODOLOGY SIMULATION INFRASTRUCTURE

PERFORMANCE

- Cycle-accurate simulations (in-house simulator [1], Booksim [2])
- Routing protocols:
 - Minimum static routing
 - Valiant routing [3]

 [1] S. Hassan and S. Yalamanchili. Centralized Buffer Router: A Low Latency, Low Power Router for High Radix NoCs. NOCS'13.
 [2] N. Jiang et al. A detailed and flexible cycle-accurate Network-on-Chip simulator. ISPASS'13.
 [3] L. Valiant. A scheme for fast parallel communication. SIAM journal on

computing, 1982.

EVALUATION METHODOLOGY SIMULATION INFRASTRUCTURE

PERFORMANCE

- Cycle-accurate simulations (in-house simulator [1], Booksim [2])
- Routing protocols:
 - Minimum static routing
 - Valiant routing [3]

 [1] S. Hassan and S. Yalamanchili. Centralized Buffer Router: A Low Latency, Low Power Router for High Radix NoCs. NOCS'13.
 [2] N. Jiang et al. A detailed and flexible cycle-accurate Network-on-Chip simulator. ISPASS'13.
 [3] L. Valiant. A scheme for fast parallel communication. SIAM journal on

computing, 1982.

EVALUATION METHODOLOGY SIMULATION INFRASTRUCTURE

PERFORMANCE

- Cycle-accurate simulations (in-house simulator [1], Booksim [2])
- Routing protocols:
 - Minimum static routing
 - Valiant routing [3]

 [1] S. Hassan and S. Yalamanchili. Centralized Buffer Router: A Low Latency, Low Power Router for High Radix NoCs. NOCS'13.
 [2] N. Jiang et al. A detailed and flexible cycle-accurate Network-on-Chip simulator. ISPASS'13.
 [3] L. Valiant. A scheme for fast parallel communication. SIAM journal on

computing, 1982.

simulator. ISPASS'13.

thesis, Stanford University, 2005.

computing, 1982.

[1] S. Hassan and S. Yalamanchili. Centralized Buffer Router: A Low

[4] A. Singh. Load-Balanced Routing in Interconnection Networks. PhD

Latency, Low Power Router for High Radix NoCs. NOCS'13.

EVALUATION METHODOLOGY SIMULATION INFRASTRUCTURE

- Cycle-accurate simulations (in-house simulator [1], Booksim [2])
- Routing protocols:
 - Minimum static routing
 - Valiant routing [3]
 - Universal Globally-Adaptive Load-Balancing routing [4]

EVALUATION METHODOLOGY SIMULATION INFRASTRUCTURE

- Cycle-accurate simulations (in-house simulator [1], Booksim [2])
- Routing protocols:
 - Minimum static routing
 - Valiant routing [3]
 - Universal Globally-Adaptive Load-Balancing routing [4]

- computing, 1982. [4] A. Singh. Load-Balanced Routing in Interconnection Networks. PhD
 - thesis, Stanford University, 2005.

EVALUATION METHODOLOGY SIMULATION INFRASTRUCTURE

- Cycle-accurate simulations (in-house simulator [1], Booksim [2])
- Routing protocols:
 - Minimum static routing
 - Valiant routing [3]
 - Universal Globally-Adaptive Load-Balancing routing [4]

- computing, 1982.
- [4] A. Singh. Load-Balanced Routing in Interconnection Networks. PhD thesis, Stanford University, 2005.

EVALUATION METHODOLOGY SIMULATION INFRASTRUCTURE

- Cycle-accurate simulations (in-house simulator [1], Booksim [2])
- Routing protocols:
 - Minimum static routing
 - Valiant routing [3]
 - Universal Globally-Adaptive Load-Balancing routing [4]
 UGAL-L: each router has access to its local output queues

- computing, 1982.
- [4] A. Singh. Load-Balanced Routing in Interconnection Networks. PhD thesis, Stanford University, 2005.

EVALUATION METHODOLOGY SIMULATION INFRASTRUCTURE

PERFORMANCE

- Cycle-accurate simulations (in-house simulator [1], Booksim [2])
- Routing protocols:
 - Minimum static routing
 - Valiant routing [3]
 - Universal Globally-Adaptive Load-Balancing routing [4]
 UGAL-L: each router has access to its local output queues

computing, 1982. [4] A. Singh. Load-Balanced Routing in Interconnection Networks. PhD thesis, Stanford University, 2005.

EVALUATION METHODOLOGY SIMULATION INFRASTRUCTURE

PERFORMANCE

- Cycle-accurate simulations (in-house simulator [1], Booksim [2])
- Routing protocols:
 - Minimum static routing
 - Valiant routing [3]
 - Universal Globally-Adaptive Load-Balancing routing [4]
 UGAL-L: each router has access to its local output queues

[4] A. Singh. Load-Balanced Routing in Interconnection Networks. PhD thesis, Stanford University, 2005.

EVALUATION METHODOLOGY SIMULATION INFRASTRUCTURE

PERFORMANCE

- Cycle-accurate simulations (in-house simulator [1], Booksim [2])
- Routing protocols:
 - Minimum static routing
 - Valiant routing [3]
 - Universal Globally-Adaptive Load-Balancing routing [4]
 UGAL-L: each router has access to its local output queues
 UGAL-G: each router has access to the sizes of all the queues

- [3] L. Valiant. A scheme for fast parallel communication. SIAM journal on computing, 1982.
 - [4] A. Singh. Load-Balanced Routing in Interconnection Networks. PhD thesis, Stanford University, 2005.

simulator. ISPASS'13.

thesis, Stanford University, 2005.

computing, 1982.

[1] S. Hassan and S. Yalamanchili. Centralized Buffer Router: A Low

[4] A. Singh. Load-Balanced Routing in Interconnection Networks. PhD

Latency, Low Power Router for High Radix NoCs. NOCS'13.

EVALUATION METHODOLOGY SIMULATION INFRASTRUCTURE

- Cycle-accurate simulations (in-house simulator [1], Booksim [2])
- Routing protocols:
 - Minimum static routing
 - Valiant routing [3]
 - Universal Globally-Adaptive Load-Balancing routing [4] *UGAL-L:* each router has access to its local output queues *UGAL-G:* each router has access to the sizes of all the queues

EVALUATION METHODOLOGY SIMULATION INFRASTRUCTURE

Performance

- Cycle-accurate simulations (in-house simulator [1], Booksim [2])
- Routing protocols:
 - Minimum static routing
 - Valiant routing [3]
 - Universal Globally-Adaptive Load-Balancing routing [4]
 UGAL-L: each router has access to its local output queues
 UGAL-G: each router has access to the sizes of all the queues

POWER CONSUMPTION

DSENT power simulator [5]

- [1] S. Hassan and S. Yalamanchili. Centralized Buffer Router: A Low Latency, Low Power Router for High Radix NoCs. NOCS'13.
 [2] N. Jiang et al. A detailed and flexible cycle-accurate Network-on-Chip
 - simulator. ISPASS'13.
- [3] L. Valiant. A scheme for fast parallel communication. SIAM journal on computing, 1982.
 - [4] A. Singh. Load-Balanced Routing in Interconnection Networks. PhD thesis, Stanford University, 2005.
 - [5] C. Sun et al. DSENT A Tool Connecting Emerging Photonics with Electronics for Opto-Electronic Networks-on-Chip Modeling. NOCS'12.

EVALUATION METHODOLOGY SIMULATION INFRASTRUCTURE

PERFORMANCE

- Cycle-accurate simulations (in-house simulator [1], Booksim [2])
- Routing protocols:
 - Minimum static routing
 - Valiant routing [3]
 - Universal Globally-Adaptive Load-Balancing routing [4]
 UGAL-L: each router has access to its local output queues
 UGAL-G: each router has access to the sizes of all the queues

POWER CONSUMPTION

- DSENT power simulator [5]
- Considered elements for leakage: Router-router wires, Router-node wires, Routers.

 [1] S. Hassan and S. Yalamanchili. Centralized Buffer Router: A Low Latency, Low Power Router for High Radix NoCs. NOCS'13.
 [2] N. Jiang et al. A detailed and flexible cycle-accurate Network-on-Chip simulator. ISPASS'13.

- [3] L. Valiant. A scheme for fast parallel communication. SIAM journal on computing, 1982.
 - [4] A. Singh. Load-Balanced Routing in Interconnection Networks. PhD thesis, Stanford University, 2005.

[5] C. Sun et al. DSENT - A Tool Connecting Emerging Photonics with Electronics for Opto-Electronic Networks-on-Chip Modeling. NOCS'12.

EVALUATION METHODOLOGY SIMULATION INFRASTRUCTURE

PERFORMANCE

- Cycle-accurate simulations (in-house simulator [1], Booksim [2])
- Routing protocols:
 - Minimum static routing
 - Valiant routing [3]
 - Universal Globally-Adaptive Load-Balancing routing [4]
 UGAL-L: each router has access to its local output queues
 UGAL-G: each router has access to the sizes of all the queues

POWER CONSUMPTION

- DSENT power simulator [5]
- Considered elements for leakage: Router-router wires, Router-node wires, Routers.
- Considered elements for dynamic power: Buffers, Crossbars, Wires.

 [1] S. Hassan and S. Yalamanchili. Centralized Buffer Router: A Low Latency, Low Power Router for High Radix NoCs. NOCS'13.
 [2] N. Jiang et al. A detailed and flexible cycle-accurate Network-on-Chip simulator. ISPASS'13.

- [3] L. Valiant. A scheme for fast parallel communication. SIAM journal on computing, 1982.
 - [4] A. Singh. Load-Balanced Routing in Interconnection Networks. PhD thesis, Stanford University, 2005.

[5] C. Sun et al. DSENT - A Tool Connecting Emerging Photonics with Electronics for Opto-Electronic Networks-on-Chip Modeling. NOCS'12.

RESULTS: AREA AND POWER CONSUMPTION

SMART LINKS: ON CENTRAL BUFFERS: ON NODE COUNT: 192/200

RESULTS: AREA AND POWER CONSUMPTION

SMART LINKS: ON CENTRAL BUFFERS: ON NODE COUNT: 192/200

RESULTS: AREA AND POWER CONSUMPTION

SMART LINKS: ON CENTRAL BUFFERS: ON NODE COUNT: 192/200

RESULTS: PERFORMANCE

SMART LINKS: ON CENTRAL BUFFERS: ON NODE COUNT: 192/200

RESULTS: PERFORMANCE

SMART LINKS: ON CENTRAL BUFFERS: ON NODE COUNT: 192/200

RESULTS: PERFORMANCE

SMART LINKS: ON CENTRAL BUFFERS: ON NODE COUNT: 192/200

Slim NoC ensures the lowest latency

SMART LINKS: ON CENTRAL BUFFERS: ON

EVALUATION

SELECTED OTHER INSIGHTS

Node count: 54

the Party of the State of the State of the

NODE COUNT: 192/200

1 Intra-group connections

- 1 Intra-group connections
- Path of length 1 or 2between two routers

- 1 Intra-group connections
- Path of length 1 or 2between two routers

- 1 Intra-group connections
- Path of length 1 or 2between two routers

1 Intra-group connections

Path of length 1 or 2between two routers

Inter-group connections (different types of groups)

- 1 Intra-group connections
- Path of length 1 or 2between two routers
- Inter-group connections (different types of groups)
 Path of length 1 or 2 between two routers

- 1 Intra-group connections
- Path of length 1 or 2between two routers
- Inter-group connections (different types of groups)
 Path of length 1 or 2 between two routers

- 1 Intra-group connections
- Path of length 1 or 2between two routers
- Inter-group connections (different types of groups)
 Path of length 1 or 2 between two routers

- 1 Intra-group connections
- Path of length 1 or 2between two routers
- Inter-group connections (different types of groups)
 Path of length 1 or 2 between two routers

1 Intra-group connections

Path of length 1 or 2between two routers

Inter-group connections (different types of groups)
Path of length 1 or 2 between two routers

Inter-group connections (identical types of groups)

- 1 Intra-group connections
- Path of length 1 or 2between two routers
- Inter-group connections (different types of groups)
 Path of length 1 or 2 between two routers
- Inter-group connections (identical types of groups)
 Path of length 2 between two routers

- 1 Intra-group connections
- Path of length 1 or 2between two routers
- Inter-group connections (different types of groups)
 Path of length 1 or 2 between two routers
- Inter-group connections (identical types of groups)
 Path of length 2 between two routers

- 1 Intra-group connections
- Path of length 1 or 2between two routers
- Inter-group connections (different types of groups)
 Path of length 1 or 2 between two routers
- Inter-group connections (identical types of groups)
 Path of length 2 between two routers

- 1 Intra-group connections
- Path of length 1 or 2between two routers
- Inter-group connections (different types of groups)
 Path of length 1 or 2 between two routers
- Inter-group connections (identical types of groups)
 Path of length 2 between two routers

all the second and and

DIAMETER-2 SLIM FLY

1 Select a prime power q

Station and and and

DIAMETER-2 SLIM FLY

1 Select a prime power q $q = 4w + \delta;$ $w \in \mathbb{N} \quad \delta \in \{-1,0,1\},$

Constant Street Street

DIAMETER-2 SLIM FLY

1 Select a prime power q $q = 4w + \delta;$ $w \in \mathbb{N}$ $\delta \in \{-1,0,1\},$ A Slim Fly based on :q

1 Select a prime power q $q = 4w + \delta;$ $w \in \mathbb{N} \quad \delta \in \{-1,0,1\},$ A Slim Fly based on :q

a la the second and the

and the second

1 Select a prime power q $q = 4w + \delta;$ $w \in \mathbb{N}$ $\delta \in \{-1,0,1\},$ A Slim Fly based on :qNumber of routers: $2q^2$

Carl Contractions

1 Select a prime power q $q = 4w + \delta;$ $w \in \mathbb{N} \quad \delta \in \{-1,0,1\},$ A Slim Fly based on :qNumber of routers: $2q^2$ Network radix: $(3q - \delta)/2$

and and and and

1 Select a prime power q $q = 4w + \delta;$ $w \in \mathbb{N} \quad \delta \in \{-1,0,1\},$ A Slim Fly based on :qNumber of routers: $2q^2$ Network radix: $(3q - \delta)/2$

Carlo and and a

1 Select a prime power q $q = 4w + \delta;$ $w \in \mathbb{N} \quad \delta \in \{-1,0,1\},$ A Slim Fly based on :qNumber of routers: $2q^2$ Network radix: $(3q - \delta)/2$

State and and a

1 Select a prime power q $q = 4w + \delta;$ $w \in \mathbb{N} \quad \delta \in \{-1,0,1\},$ A Slim Fly based on :qNumber of routers: $2q^2$ Network radix: $(3q - \delta)/2$ 2 Construct a finite field \mathcal{F}_q Assuming q is prime: $\mathcal{F}_q = \mathbb{Z}/q\mathbb{Z}$

all a manufacture of

1 Select a prime power q $q = 4w + \delta;$ $w \in \mathbb{N} \quad \delta \in \{-1,0,1\},$ A Slim Fly based on :qNumber of routers: $2q^2$ Network radix: $(3q - \delta)/2$ 2 Construct a finite field \mathcal{F}_q Assuming q is prime: $\mathcal{F}_q = \mathbb{Z}/q\mathbb{Z} = \{0, 1, ..., q - 1\}$

all the second second

1 Select a prime power q $q = 4w + \delta;$ $w \in \mathbb{N} \quad \delta \in \{-1,0,1\},$ A Slim Fly based on :qNumber of routers: $2q^2$ Network radix: $(3q - \delta)/2$ 2 Construct a finite field \mathcal{F}_q Assuming q is prime: $\mathcal{F}_q = \mathbb{Z}/q\mathbb{Z} = \{0, 1, ..., q - 1\}$ with modular arithmetic.

State -

1 Select a prime power q $q = 4w + \delta;$ $w \in \mathbb{N} \quad \delta \in \{-1,0,1\},$ A Slim Fly based on :qNumber of routers: $2q^2$ Network radix: $(3q - \delta)/2$ 2 Construct a finite field \mathcal{F}_q Assuming q is prime: $\mathcal{F}_q = \mathbb{Z}/q\mathbb{Z} = \{0, 1, \dots, q - 1\}$ with modular arithmetic.

Carlo and and a

1 Select a prime power q $q = 4w + \delta;$ $w \in \mathbb{N} \quad \delta \in \{-1,0,1\},$ A Slim Fly based on :qNumber of routers: $2q^2$ Network radix: $(3q - \delta)/2$ 2 Construct a finite field \mathcal{F}_q Assuming q is prime: $\mathcal{F}_q = \mathbb{Z}/q\mathbb{Z} = \{0, 1, ..., q - 1\}$ with modular arithmetic.

Carlo and and a

1 Select a prime power q $q = 4w + \delta;$ $w \in \mathbb{N} \quad \delta \in \{-1,0,1\},$ A Slim Fly based on :qNumber of routers: $2q^2$ Network radix: $(3q - \delta)/2$ 2 Construct a finite field \mathcal{F}_q Assuming q is prime: $\mathcal{F}_q = \mathbb{Z}/q\mathbb{Z} = \{0, 1, ..., q - 1\}$ with modular arithmetic.

all the state of the second

E Example: q = 550 routers network radix: 7 $\mathcal{F}_5 = \{0,1,2,3,4\}$

and the second

Constant and the second

Constant and the second

Station and the second

and all the second second second

Start Alexandra Startes Startes

Development and the second

4 Find primitive element ξ $\xi \in \mathcal{F}_q$ generates \mathcal{F}_q

and the second

4 Find primitive element
$$\xi$$

 $\xi \in \mathcal{F}_q$ generates \mathcal{F}_q
All non-zero elements of \mathcal{F}_q
can be written as ξ^i ; $i \in \mathbb{N}$

Start Alexander Starten Starten

A PURCHARMENT OF

4 Find primitive element
$$\xi$$

 $\xi \in \mathcal{F}_q$ generates \mathcal{F}_q
All non-zero elements of \mathcal{F}_q
can be written as ξ^i ; $i \in \mathbb{N}$

E Example:
$$q = 5$$

 $\mathcal{F}_5 = \{0, 1, 2, 3, 4\}$

a share and a start way

4 Find primitive element
$$\xi$$

 $\xi \in \mathcal{F}_q$ generates \mathcal{F}_q
All non-zero elements of \mathcal{F}_q
can be written as ξ^i ; $i \in \mathbb{N}$

E Example:
$$q = 5$$

 $\mathcal{F}_5 = \{0, 1, 2, 3, 4\}$
 $\xi = 2$

State State State State

4 Find primitive element
$$\xi \in \mathcal{F}_q$$
 generates \mathcal{F}_q
All non-zero elements of \mathcal{F}_q
can be written as ξ^i ; $i \in \mathbb{N}$

E Example:
$$q = 5$$

 $\mathcal{F}_5 = \{0, 1, 2, 3, 4\}$
 $\xi = 2$
 $1 = \xi^4 \mod 5 =$
 $2^4 \mod 5 = 16 \mod 5$

State of the second state of the

4 Find primitive element ξ $\xi \in \mathcal{F}_q$ generates \mathcal{F}_q All non-zero elements of \mathcal{F}_q can be written as ξ^i ; $i \in \mathbb{N}$

5 Build Generator Sets

$$X = \{1, \xi^2, ..., \xi^{q-3}\}$$

 $X' = \{\xi, \xi^3, ..., \xi^{q-2}\}$

A CONTRACTOR OF ME

E Example:
$$q = 5$$

 $\mathcal{F}_5 = \{0, 1, 2, 3, 4\}$
 $\xi = 2$
 $1 = \xi^4 \mod 5 =$
 $2^4 \mod 5 = 16 \mod 5$

4 Find primitive element ξ $\xi \in \mathcal{F}_q$ generates \mathcal{F}_q All non-zero elements of \mathcal{F}_q can be written as ξ^i ; $i \in \mathbb{N}$

5 Build Generator Sets

$$X = \{1, \xi^2, ..., \xi^{q-3}\}$$

 $X' = \{\xi, \xi^3, ..., \xi^{q-2}\}$

a state of the second

E Example:
$$q = 5$$

 $\mathcal{F}_5 = \{0, 1, 2, 3, 4\}$
 $\xi = 2$
 $1 = \xi^4 \mod 5 =$
 $2^4 \mod 5 = 16 \mod 5$
 $X = \{1, 4\}$

4 Find primitive element ξ $\xi \in \mathcal{F}_q$ generates \mathcal{F}_q All non-zero elements of \mathcal{F}_q can be written as ξ^i ; $i \in \mathbb{N}$

5 Build Generator Sets

$$X = \{1, \xi^2, ..., \xi^{q-3}\}$$

 $X' = \{\xi, \xi^3, ..., \xi^{q-2}\}$

A CALL CONTRACTOR

E Example:
$$q = 5$$

 $\mathcal{F}_5 = \{0, 1, 2, 3, 4\}$
 $\xi = 2$
 $1 = \xi^4 \mod 5 =$
 $2^4 \mod 5 = 16 \mod 5$
 $X = \{1, 4\}$
 $X' = \{2, 3\}$

A PARTY AND A P

ALC AND AND AND

6 Intra-group connections

Two routers in one group are connected iff their "vertical Manhattan distance" is an element from:

Characters to

6 Intra-group connections

Two routers in one group are connected iff their "vertical Manhattan distance" is an element from:

 $X = \{1, \xi^2, ..., \xi^{q-3}\}$ (for subgraph 0)

Cond and and a

6 Intra-group connections

Two routers in one group are connected iff their "vertical Manhattan distance" is an element from:

$$X = \{1, \xi^2, ..., \xi^{q-3}\} \text{ (for subgraph 0)}$$
$$X' = \{\xi, \xi^3, ..., \xi^{q-2}\} \text{ (for subgraph 1)}$$

a liter the second second second

6 Intra-group connections

Two routers in one group are connected iff their "vertical Manhattan distance" is an element from:

$$X = \{1, \xi^2, ..., \xi^{q-3}\} \text{ (for subgraph 0)}$$
$$X' = \{\xi, \xi^3, ..., \xi^{q-2}\} \text{ (for subgraph 1)}$$

and the section was

6 Intra-group connections

Two routers in one group are connected iff their "vertical Manhattan distance" is an element from:

$$X = \{1, \xi^2, ..., \xi^{q-3}\} \text{ (for subgraph 0)}$$
$$X' = \{\xi, \xi^3, ..., \xi^{q-2}\} \text{ (for subgraph 1)}$$

Carla and are

6 Intra-group connections

Two routers in one group are connected iff their "vertical Manhattan distance" is an element from:

$$X = \{1, \xi^2, ..., \xi^{q-3}\} \text{ (for subgraph 0)}$$
$$X' = \{\xi, \xi^3, ..., \xi^{q-2}\} \text{ (for subgraph 1)}$$

E Example:
$$q = 5$$

Take Routers (0,0,.)
 $X = \{1,4\}$

6 Intra-group connections

Two routers in one group are connected iff their "vertical Manhattan distance" is an element from:

$$X = \{1, \xi^2, ..., \xi^{q-3}\} \text{ (for subgraph 0)}$$
$$X' = \{\xi, \xi^3, ..., \xi^{q-2}\} \text{ (for subgraph 1)}$$

E Example:
$$q = 5$$

Take Routers $(0,0,.)$
 $X = \{1,4\}$

the second

6 Intra-group connections

Two routers in one group are connected iff their "vertical Manhattan distance" is an element from:

$$X = \{1, \xi^2, ..., \xi^{q-3}\} \text{ (for subgraph 0)}$$
$$X' = \{\xi, \xi^3, ..., \xi^{q-2}\} \text{ (for subgraph 1)}$$

E Example:
$$q = 5$$

Take Routers $(0,0,.)$
 $X = \{1,4\}$

6 Intra-group connections

Two routers in one group are connected iff their "vertical Manhattan distance" is an element from:

$$X = \{1, \xi^2, ..., \xi^{q-3}\} \text{ (for subgraph 0)}$$
$$X' = \{\xi, \xi^3, ..., \xi^{q-2}\} \text{ (for subgraph 1)}$$

E Example:
$$q = 5$$

Take Routers $(0,0,.)$
 $X = \{1,4\}$

6 Intra-group connections

Two routers in one group are connected iff their "vertical Manhattan distance" is an element from:

$$X = \{1, \xi^2, ..., \xi^{q-3}\} \text{ (for subgraph 0)}$$
$$X' = \{\xi, \xi^3, ..., \xi^{q-2}\} \text{ (for subgraph 1)}$$

E Example:
$$q = 5$$

Take Routers $(0,0,.)$
 $X = \{1,4\}$

6 Intra-group connections

Two routers in one group are connected iff their "vertical Manhattan distance" is an element from:

$$X = \{1, \xi^2, ..., \xi^{q-3}\} \text{ (for subgraph 0)}$$
$$X' = \{\xi, \xi^3, ..., \xi^{q-2}\} \text{ (for subgraph 1)}$$

E Example:
$$q = 5$$

Take Routers $(0,0,.)$
 $X = \{1,4\}$

6 Intra-group connections

Two routers in one group are connected iff their "vertical Manhattan distance" is an element from:

$$X = \{1, \xi^2, ..., \xi^{q-3}\} \text{ (for subgraph 0)}$$
$$X' = \{\xi, \xi^3, ..., \xi^{q-2}\} \text{ (for subgraph 1)}$$

E Example:
$$q = 5$$

Take Routers $(0,0,.)$
 $X = \{1,4\}$

6 Intra-group connections

Two routers in one group are connected iff their "vertical Manhattan distance" is an element from:

$$X = \{1, \xi^2, ..., \xi^{q-3}\} \text{ (for subgraph 0)}$$
$$X' = \{\xi, \xi^3, ..., \xi^{q-2}\} \text{ (for subgraph 1)}$$

E Example:
$$q = 5$$

Take Routers $(0,0,.)$
 $X = \{1,4\}$

6 Intra-group connections

Two routers in one group are connected iff their "vertical Manhattan distance" is an element from:

$$X = \{1, \xi^2, ..., \xi^{q-3}\} \text{ (for subgraph 0)}$$
$$X' = \{\xi, \xi^3, ..., \xi^{q-2}\} \text{ (for subgraph 1)}$$

E Example:
$$q = 5$$

Take Routers $(0,0,.)$
 $X = \{1,4\}$

6 Intra-group connections

Two routers in one group are connected iff their "vertical Manhattan distance" is an element from:

$$X = \{1, \xi^2, ..., \xi^{q-3}\} \text{ (for subgraph 0)}$$
$$X' = \{\xi, \xi^3, ..., \xi^{q-2}\} \text{ (for subgraph 1)}$$

E Example:
$$q = 5$$

Take Routers $(0,0,.)$
 $X = \{1,4\}$

the second

6 Intra-group connections

Two routers in one group are connected iff their "vertical Manhattan distance" is an element from:

$$X = \{1, \xi^2, ..., \xi^{q-3}\} \text{ (for subgraph 0)}$$
$$X' = \{\xi, \xi^3, ..., \xi^{q-2}\} \text{ (for subgraph 1)}$$

E Example:
$$q = 5$$

Take Routers $(0,0,.)$
 $X = \{1,4\}$

the second

6 Intra-group connections

Two routers in one group are connected iff their "vertical Manhattan distance" is an element from:

$$X = \{1, \xi^2, ..., \xi^{q-3}\} \text{ (for subgraph 0)}$$
$$X' = \{\xi, \xi^3, ..., \xi^{q-2}\} \text{ (for subgraph 1)}$$

Example:
$$q = 5$$

Take Routers $(0,0,.)$
 $X = \{1,4\}$

and the second

6 Intra-group connections

Two routers in one group are connected iff their "vertical Manhattan distance" is an element from:

$$X = \{1, \xi^2, ..., \xi^{q-3}\} \text{ (for subgraph 0)}$$
$$X' = \{\xi, \xi^3, ..., \xi^{q-2}\} \text{ (for subgraph 1)}$$

E Example:
$$q = 5$$

Take Routers $(0,0,.)$
 $X = \{1,4\}$

CTA STATE

6 Intra-group connections

Two routers in one group are connected iff their "vertical Manhattan distance" is an element from:

$$X = \{1, \xi^2, ..., \xi^{q-3}\} \text{ (for subgraph 0)}$$
$$X' = \{\xi, \xi^3, ..., \xi^{q-2}\} \text{ (for subgraph 1)}$$

E Example:
$$q = 5$$

Take Routers $(0,0,.)$
 $X = \{1,4\}$

CTA STATE

6 Intra-group connections

Two routers in one group are connected iff their "vertical Manhattan distance" is an element from:

$$X = \{1, \xi^2, ..., \xi^{q-3}\} \text{ (for subgraph 0)}$$
$$X' = \{\xi, \xi^3, ..., \xi^{q-2}\} \text{ (for subgraph 1)}$$

E Example:
$$q = 5$$

Take Routers (0,0,.)
 $X = \{1,4\}$

CTA

6 Intra-group connections

Two routers in one group are connected iff their "vertical Manhattan distance" is an element from:

$$X = \{1, \xi^2, ..., \xi^{q-3}\} \text{ (for subgraph 0)}$$
$$X' = \{\xi, \xi^3, ..., \xi^{q-2}\} \text{ (for subgraph 1)}$$

E Example:
$$q = 5$$

Take Routers $(0,0,.)$
 $X = \{1,4\}$

and and and

6 Intra-group connections

Two routers in one group are connected iff their "vertical Manhattan distance" is an element from:

$$X = \{1, \xi^2, ..., \xi^{q-3}\} \text{ (for subgraph 0)}$$
$$X' = \{\xi, \xi^3, ..., \xi^{q-2}\} \text{ (for subgraph 1)}$$

E Example:
$$q = 5$$

Take Routers $(0,0,.)$
 $X = \{1,4\}$

and and and

6 Intra-group connections

Two routers in one group are connected iff their "vertical Manhattan distance" is an element from:

$$X = \{1, \xi^2, ..., \xi^{q-3}\} \text{ (for subgraph 0)}$$
$$X' = \{\xi, \xi^3, ..., \xi^{q-2}\} \text{ (for subgraph 1)}$$

E Example:
$$q = 5$$

Take Routers $(0,0,.)$
 $X = \{1,4\}$

The second

6 Intra-group connections

Two routers in one group are connected iff their "vertical Manhattan distance" is an element from:

$$X = \{1, \xi^2, ..., \xi^{q-3}\} \text{ (for subgraph 0)}$$
$$X' = \{\xi, \xi^3, ..., \xi^{q-2}\} \text{ (for subgraph 1)}$$

E Example:
$$q = 5$$

Take Routers $(0,0,.)$
 $X = \{1,4\}$

The second

6 Intra-group connections

Two routers in one group are connected iff their "vertical Manhattan distance" is an element from:

$$X = \{1, \xi^2, ..., \xi^{q-3}\} \text{ (for subgraph 0)}$$
$$X' = \{\xi, \xi^3, ..., \xi^{q-2}\} \text{ (for subgraph 1)}$$

E Example:
$$q = 5$$

Take Routers $(0,0,.)$
 $X = \{1,4\}$

The sectore

6 Intra-group connections

Two routers in one group are connected iff their "vertical Manhattan distance" is an element from:

$$X = \{1, \xi^2, ..., \xi^{q-3}\} \text{ (for subgraph 0)}$$
$$X' = \{\xi, \xi^3, ..., \xi^{q-2}\} \text{ (for subgraph 1)}$$

E Example:
$$q = 5$$

Take Routers (1,4,.)
 $X' = \{2,3\}$

State and and

6 Intra-group connections

Two routers in one group are connected iff their "vertical Manhattan distance" is an element from:

 $X = \{1, \xi^2, ..., \xi^{q-3}\} \text{ (for subgraph 0)}$ $X' = \{\xi, \xi^3, ..., \xi^{q-2}\} \text{ (for subgraph 1)}$

E Example:
$$q = 5$$

Take Routers (1,4,.)
 $X' = \{2,3\}$

all the second and the

A PARTY AND A P

Self Contractions

7 Inter-group connections Router $(0, x, y) \leftrightarrow (1, m, c)$

C. C. Sandara and

7 Inter-group connections Router $(0, x, y) \leftrightarrow (1, m, c)$ iff y = mx + c

States and and and

a la company and a second second

a later and a second second second

E Example:
$$q = 5$$

Take Router (1,0,0) $m = 0, c = 0$

State and and and

Example:
$$q = 5$$

Take Router (1,0,0)
(1,0,0) \leftrightarrow (0, x, 0)
 $m = 0, c = 0$

State States

E Example:
$$q = 5$$

Take Router (1,0,0)
(1,0,0) \leftrightarrow (0, x, 0)
 $m = 0, c = 0$

and and and and

E Example:
$$q = 5$$

Take Router (1,0,0)
(1,0,0) \leftrightarrow (0, x, 0)
 $m = 0, c = 0$

A TA STATE

E Example:
$$q = 5$$

Take Router (1,0,0)
(1,0,0) \leftrightarrow (0, x, 0)
 $m = 0, c = 0$

A TA STATE

E Example:
$$q = 5$$

Take Router (1,0,0)
(1,0,0) \leftrightarrow (0, x, 0)
 $m = 0, c = 0$

and the second

E Example:
$$q = 5$$

Take Router (1,0,0)
(1,0,0) \leftrightarrow (0, x, 0)
Take Router (1,1,0)

E Example:
$$q = 5$$

Take Router (1,0,0)
 $(1,0,0) \leftrightarrow (0, x, 0)$
Take Router (1,1,0)

Ma mananta

Example:
$$q = 5$$

Take Router (1,0,0)
 $(1,0,0) \leftrightarrow (0, x, 0)$
Take Router (1,1,0) $m = 1, c = 0$

CTA - ----

E Example:
$$q = 5$$

Take Router (1,0,0)
 $(1,0,0) \leftrightarrow (0, x, 0)$
Take Router (1,1,0) $m = 1, c = 0$
 $(1,0,0) \leftrightarrow (0, x, x)$

the second

E Example:
$$q = 5$$

Take Router (1,0,0)
 $(1,0,0) \leftrightarrow (0, x, 0)$
Take Router (1,1,0) $m = 1, c = 0$
 $(1,0,0) \leftrightarrow (0, x, x)$

CTA STATE

E Example:
$$q = 5$$

Take Router (1,0,0)
 $(1,0,0) \leftrightarrow (0, x, 0)$
Take Router (1,1,0) $m = 1, c = 0$
 $(1,0,0) \leftrightarrow (0, x, x)$

Carlo and and a

E Example:
$$q = 5$$

Take Router (1,0,0)
 $(1,0,0) \leftrightarrow (0, x, 0)$
Take Router (1,1,0) $m = 1, c = 0$
 $(1,0,0) \leftrightarrow (0, x, x)$

Carlo and and a

DIAMETER-2 SLIM FLY

E Example:
$$q = 5$$

Take Router (1,0,0)
 $(1,0,0) \leftrightarrow (0, x, 0)$
Take Router (1,1,0) $m = 1, c = 0$
 $(1,0,0) \leftrightarrow (0, x, x)$

State of the second

AND A CONTRACTOR

ATTACHING ENDPOINTS: DIAMETER 2

ATTACHING ENDPOINTS: DIAMETER 2

1 Get load *I* per router-router channel (average number of routes per channel)

ATTACHING ENDPOINTS: DIAMETER 2

1 Get load / per router-router channel (average number of routes per channel)

 $l = \frac{total \ number \ of \ routes}{total \ number \ of \ channels}$

ATTACHING ENDPOINTS: DIAMETER 2

1 Get load *I* per router-router channel (average number of routes per channel)

The second

 $l = \frac{total \ number \ of \ routes}{total \ number \ of \ channels}$

ATTACHING ENDPOINTS: DIAMETER 2

1 Get load *I* per router-router channel (average number of routes per channel)

 $l = \frac{total \ number \ of \ routes}{total \ number \ of \ channels}$

Make the network balanced, i.e.,:

ATTACHING ENDPOINTS: DIAMETER 2

1 Get load *I* per router-router channel (average number of routes per channel)

 $l = \frac{total \ number \ of \ routes}{total \ number \ of \ channels}$

2 Make the network balanced, i.e.,: each endpoint can inject at full capacity

ATTACHING ENDPOINTS: DIAMETER 2

1 Get load *I* per router-router channel (average number of routes per channel)

 $l = \frac{\text{total number of routes}}{\text{total number of channels}}$

2 Make the network balanced, i.e.,: each endpoint can inject at full capacity local uplink load = number of endpoints

ATTACHING ENDPOINTS: DIAMETER 2

1 Get load *I* per router-router channel (average number of routes per channel)

 $l = \frac{\text{total number of routes}}{\text{total number of channels}}$

2 Make the network balanced, i.e.,: each endpoint can inject at full capacity local uplink load = number of endpoints = l

ATTACHING ENDPOINTS: DIAMETER 2

1 Get load *I* per router-router channel (average number of routes per channel)

 $l = \frac{total \ number \ of \ routes}{total \ number \ of \ channels}$

ATTACHING ENDPOINTS: DIAMETER 2

1 Get load *I* per router-router channel (average number of routes per channel)

 $l = \frac{total \ number \ of \ routes}{total \ number \ of \ channels}$

concentration = 33% of router radix

AVERAGE DISTANCE

A PARTY PARTY AND A PARTY AND A PARTY

AVERAGE DISTANCE

Uniform random traffic using minimum path routing

A CATA LAND

AVERAGE DISTANCE

Uniform random traffic using minimum path routing

New York Concerns

BISECTION BANDWIDTH (BB)

and the second se

BISECTION BANDWIDTH (BB)

*BB approximated with the Metis partitioner [1]

the state and some

BISECTION BANDWIDTH (BB)

*BB approximated with the Metis partitioner [1]

the state of the second