

Dipl.-Math. Jens Domke

Research Associate – Technische Universität Dresden

Institute of Computer Engineering – Computer Architecture

Email: jens.domke@tu-dresden.de

Tel.: +49 351 - 463 – 38783

Zentrum für Informationsdienste und Hochleistungsrechnen (ZIH)

Scheduling-Aware Routing for Supercomputers

 Jens Domke

 Torsten Hoefler

TU Dresden

ETH Zurich

Outline

Motivation

Scheduling-Aware Routing

– Interface between Batch System and Subnet Manager

– Routing Optimization with modified DFSSSP

Property Preserving Network Updates for IB

– Five-phase Update Protocol

– Current Limitations and Problems

Evaluation of Scheduling-Aware Routing

– Theoretical Evaluation of Network Metrics

– Practical Evaluation on a Production System

Summary and Conclusions

Jens Domke 2

Interconnection Networks for HPC-Systems

Massive networks

needed to connect

all compute nodes

of supercomputers

(see TOP500 list)

Jens Domke 3

1993: NWT (NAL)

140 Nodes

Crossbar Network

2004: BG/ L (LLNL)

16,384 Nodes

3D-Torus Network

2011: K (RIKEN)

82,944 Nodes

6D Tofu Network

2013: Tianhe-2 (NUDT)

16,000 Nodes

 Fat-Tree

[F1]

[F2]

[F3]

[F4]

[F5]

[F6]

[F7]

[F8]

Towards ExaScale

≥100.000 nodes [Kogge, 2008]

Fat-trees not sustainable

Sparse/random

topologies

(SimFly [Besta, 2014],

Dragonfly [Kim, 2008],

Jellyfish [Singla, 2012], …)

Routing Metrics:

Low latency

High throughput

Low congestion

Fault-tolerant

Deadlock-free

Utilization

Realistic Workload of Multi-User/Multi-Job HPC Systems

Jens Domke 4

Avg. 50% of nodes are used for multi-node/multi-switch jobs

Many small jobs (≤18 nodes) connected to multiple switches

➥ Natural fragmentation of the batch system/supercomputer

➥ Potential to improve network utilization?

0

15

30

45

60

75

90

105

01. 08. 15. 22. 28.

0

20

40

60

80

100

N
u

m
b

e
r

o
f
jo

b
s
 [
a

b
s
o

lu
te

;
ro

w
s
ta

c
k
e

d
]

N
o

d
e

s
 u

s
e

d
 f
o

r
m

u
lt
i-

s
w

it
c
h

 j
o

b
s
 [
in

 %
]

Day of the month (Feb'15)

Nodes per job

1-18

19-54

55-108

109-180

181-270

271-396

Fig. 1: Batch jobs of Tsubame2.5

(sampled every 10 min)

Current state-of-the-art: Flow-Oblivious and Static Routing

Artificial example

– Full-bisection fat-tree w/ 180 nodes

– 3x 60-node jobs (non-contiguous)

Implication of flow-oblivious DFSSSP

– Imbalance of intra-job paths

– Few links underutilized (0 paths)

 ➥ Known problem: performance

 degradation through mismatch

 between comm. pattern and static

 routing [Hoefler, 2008]

Alternative approaches, e.g.:

– Topology mapping [Yu, 2006; Hoefler, 2011]

– Application-aware routing [Kinsy, 2009]

– Adaptive routing [Alverson, 2012; Birrittella, 2015]

Jens Domke 5

0

20

40

60

80

100

0 40 80 120 160

N
u
m

b
e
r

o
f
L
in

k
s

EFI per Link

Fig. 2/ 3: Effective EFI for 3 jobs on 2-level fat-tree

Histogram

Heatmap

Spine

Leaf switches

Outline

Motivation

Scheduling-Aware Routing

– Interface between Batch System and Subnet Manager

– Routing Optimization with modified DFSSSP

Property Preserving Network Updates for IB

– Five-phase Update Protocol

– Current Limitations and Problems

Evaluation of Scheduling-Aware Routing

– Theoretical Evaluation of Network Metrics

– Practical Evaluation on a Production System

Summary and Conclusions

Jens Domke 6

Idea to Improve the Network Utilization and Performance

Initial hypothesis

Optimizing for global path balancing suboptimal for production HPC

Inter-job paths not used (between nodes of different batch jobs)

InfiniBand/OpenSM allows for coarse grain routing optimizations

Requirements for a feasible Scheduling-Aware Routing (SAR)

Light-weight interface analyzing jobs which run simultaneously

– Filtering: collect jobs which require network (at least 2 switches)

– Inform OpenSM about desired re-routings

Fast and optimized routing calculation for multi-user environments

– Enhancements based on proven techniques (… don’t reinvent the wheel)

– Integrate job locality information into balancing decisions

No user interaction or input needed

Jens Domke 7

Filtering tool: Interface between SLURM and OpenSM

Why not a SLURM plugin?

Portability to other batch system

SLURM latency already slow

Filtering tool workflow

Periodically poll queue state

Filter out small jobs (attached

to only 1 switch)

Compare job-to-node mapping

with previous run

If changed: prepare input file

for OpenSM and send signal

to request routing optimization

Jens Domke 8

Fig. 4: Flowchart of filtering tool

Routing Optimization with modified (DF-)SSSP

Why deadlock-free single-source shortest-path (DFSSSP) routing [Domke, 2011]?

Deadlock-free and topology-

agnostic  wide support range

High global throughput even

for irregular fat-trees [Domke, 2014]

Distinguishes three node types:

compute, I/O, and other

 ➥ SAR should inherit these

 good characteristics

(DFSSSP was a choice, not

 a requirement  SAR method

 applicable to other routings, too)

Jens Domke 9

Routing Optimization with modified (DF-)SSSP

Scheduling-aware DFSSSP routing (or SAR) for

all 𝑁 ∙ (𝑁 − 1) routes:

Read job-to-node mapping file

and add job IDs to nodes

Sort list of nodes by job size

(➥ improves balancing for

 large jobs which need “more

 network”)

Search all paths towards a

destination (w/ inverse Dijkstra)

Update edge weights only

for intra-job paths

Calculate balanced routes

for remaining nodes and

create cycle-free CDG

(Furthermore: OpenSM extended to receive SIGUSR2  triggers re-routing)

Jens Domke 10

Scheduling-Aware Routing applied to previous Example

Hotspot (max. EFI) reduction from ≥160 to ≈60

 ➥ theoretically lower worst-case congestion [Heydemann, 1989]

Overall path balance improved and better utilization (no unused ports)

Jens Domke 11

0

20

40

60

80

100

0 40 80 120 160

N
u
m

b
e
r

o
f
L
in

k
s

EFI per Link

Fig. 2/ 3: Eff. EFI for 3 jobs

0

20

40

60

80

100

0 40 80 120 160

N
u
m

b
e
r

o
f
L
in

k
s

EFI per Link

Fig. 5/ 6: Eff. EFI with SAR
 Scheduling-

 Aware

Spine

Leaf

switches

Spine

Leaf

switches

Outline

Motivation

Scheduling-Aware Routing

– Interface between Batch System and Subnet Manager

– Routing Optimization with modified DFSSSP

Property Preserving Network Updates for IB

– Five-phase Update Protocol

– Current Limitations and Problems

Evaluation of Scheduling-Aware Routing

– Theoretical Evaluation of Network Metrics

– Practical Evaluation on a Production System

Summary and Conclusions

Jens Domke 12

One Implications of Optional Routing Changes

What happens if we change the LFTs while packets are in-flight?

Assume (simplified):

– 3-level fat-tree with static, flow-oblivious routing

– 2 flows (blue & green) to different destinations

– Blue flow has 5 packets

with sequence number

1…5 currently in-flight

– More packets are

waiting (6, …)

 ➥ congested link between

 L0 and L1 switches

Jens Domke 13

Fig. 7: Out-of-order packet delivery through

congestion and re-routing

One Implications of Optional Routing Changes

Modifying the LFTs (e.g., via SAR) changes blue flow onto red path:

– Packets 4 and 5 slow via old, congested link

– Packets 6, 7, … routed via fast and empty links

 ➥ Packet 6 arrives before packet 4

Consequence for InfiniBand?

HCA detects out-of-order

delivery through packet

sequence numbers

IB doesn’t support OOO
[IBTA, 2015]

 ➥ Message dropped

 ➥ Sender retries delivery

 ➥ RETRY EXCEEDED ERROR

 ➥ MPI app. crashes!!!

Jens Domke 14

Fig. 7: Out-of-order packet delivery through

congestion and re-routing

Property Preserving Network Updates

Atomic LFT updates impossible in IB (new LFT distributed via 64 B chunks)

➥ potential for out-of-order, security vulnerability, packet loss, deadlocks, …

Existing approaches for SDN/Ethernet not applicable, e.g.

– Two-phase update [Reitblatt, 2012]

• Install passive routing configurations

• Swap passive→active if tagged packet is identified

– Ordering Updates [McClurg, 2015]

• Choose a correct order of switch updates

Requirements for lossless InfiniBand

Jens Domke 15

Property Preserving Network Update

The transition between two routing configurations (i.e., 2 valid LFT sets)

is called a property preserving network update if the following holds:

 1) each configuration itself is deadlock-free,

 2) the transition is a per-flow consistent update (only one routing applies),

 3) simultaneous processing of flows by both routings is deadlock-free.

Five-Phase Property Preserving Update Protocol

SAR build on top of DFSSSP

 ➥ deadlock-free  (1) 

Per-flow consistent update

Each IB HCA gets 2 LIDs assigned

SAR routes baseLIDs and uses

0 ≤ 𝑉𝐿 < 𝑛 − 1

Up*/Down* used for highLIDs

and uses 𝑉𝐿 ≔ 𝑛 − 1

MPI applications subscribe for

event forwarding (un-/repath trap)

Unpath trap (repath similar):

– Drain send queues of all ranks

– Trigger path migration (APM)

– Change LFTs for baseLIDs / SAR

 ➥ no packets betw. baseLIDs  (2,3) 

Jens Domke 16

Fig. 8: Sequence diagram of our

five-phase update protocol for IB

Current Limitations and Problems

Potential packet loss between OpenSM and subscribers

– OpenSM and AsyncThread of rank 0 use (u)MAD packets to subscribe and

forward traps  QP0 / QP1 use unreliable transport service

– MADs usually send multiple times if not acknowledged 

No simultaneous calls to MPI API allowed for Open MPI + openib

– Workaround: pthread mutex locks to serializing MPI calls between main

application and AsyncThread of all ranks 

QP draining impossible with two tested firmware for our IB devices 

 ➥ Implementation challenging

 but theoretically possible! 

Jens Domke 17

-1

0

1

2

3

4

5

6

0 100 200 300 400 500 600 700 800

T
h

ro
u

g
h

p
u

t
[i
n

 G
b

y
te

/s
]

Sample counter

Link 1

Link 2

Fig. 9: Network update protocol (w/ o

QP draining) on testbed

Outline

Motivation

Scheduling-Aware Routing

– Interface between Batch System and Subnet Manager

– Routing Optimization with modified DFSSSP

Property Preserving Network Updates for IB

– Five-phase Update Protocol

– Current Limitations and Problems

Evaluation of Scheduling-Aware Routing

– Theoretical Evaluation of Network Metrics

– Practical Evaluation on a Production System

Summary and Conclusions

Jens Domke 18

Petascale HPC Systems and Workloads

Modified simulation framework to analyze routing/jobs combinations [Domke, 2014]

Comparison of four routings:

– Topology-agnostic: (DF-)SSSP [Hoefler, 2009; Domke, 2011], SAR

– Topology-aware: fat-tree [Zahavi, 2010], Up*/Down* [Schroeder, 1991]

Based on two job-depended metrics (eff. EFI and unused ports/links)

“Replay” exact job history of Feb.’15

Jens Domke 19

Taurus @TU Dresden

• 2014 compute nodes (1.4 Pflop/s)

• Multiple 2-level full-bisec. FDR/QDR

fat-tree islands connected by director

Tsubame2.5 @Titech

• 1408 compute nodes (5.7 Pflop/s)

• Two full-bisection fat-tree QDR rails

[F10]
[F9]

Job-depended Metrics: Effective Edge Forwarding Index

Common network metrics (e.g., bisection BW, latency, …) not applicable

– Usually ignore routing algorithm

– Node locality of batch jobs required to compare SAR to others

Routes between nodes of different jobs not used (except I/O): EFI  eff. EFI

 𝒥 - set of batch jobs

 𝑁𝑗 - set of nodes belonging to job 𝑗

 𝐶∗ - inter-switch links

 𝑃𝑛𝑥,𝑛𝑦 - path from 𝑛𝑥 to 𝑛𝑦

Jens Domke 20

Effective Edge Forwarding Index

The effective edge forwarding index 𝛾𝑒 of a switch port or outgoing link

𝑐 ∈ 𝐶∗ is the sum of intra-job routes being forwarded via this port, i.e.,

𝛾𝑒(𝑐) ≔ 𝑃𝑛𝑥,𝑛𝑦 | 𝑛𝑥, 𝑛𝑦 ∈ 𝑁𝑗 and 𝑐 ∈ 𝑃𝑛𝑥,𝑛𝑦
𝑗

for all batch jobs 𝑗 ∈ 𝒥 running on the system.

➥ Prediction of

 worst-case congestion

Job-depended Metrics: Dark Fiber Percentage

After filtering unused routes: how many ports/links are actually in use?

𝐶∗ - inter-switch links

𝛾𝑒 - effective edge forwarding index

Jens Domke 21

Dark Fiber Percentage

The dark fiber percentage is the percentage of links in the system, which

are not used for intra-job routes, and can therefore be derived from 𝛾𝑒
in the following way:

𝜃 ≔
 𝑐 ∈ 𝐶∗ | 𝛾𝑒(𝑐) = 0

𝐶∗

➥ Utilization of network

 hardware

Relative Improvements for Tsubame2.5 (base: fat-tree)

Maximum 𝛾𝑒
for all jobs

Avg. max. 𝛾𝑒
across jobs

Dark fiber

percentage

Used ports/links

(avg. across jobs)

(higher is better)

Jens Domke 22

-300

0

300

600

900

1200

M
a

x
.
e

ff
.
E

F
I

DFSSSP
Up*/Down*
Fat-tree
SAR

-20

0

20

40

M
a

x
.
E

F
I
p

e
r
jo

b
 [
a

v
g

.]

-5

0

5

10

15

20

D
a

rk
 f
ib

e
r
[i
n

 %
]

01. 08. 15. 22. 28.

-20

0

20

40

60

80

#
L

in
k
s
 p

e
r
jo

b
 [
a

v
g

.]

Day of the month (Feb'15)

Fig. 11: Replay of job history for Tsubame2.5 (four

routings); Values relative to fat-tree routing

What happened?

Outlier for Fat-Tree Routing on Tsubame2.5 on 02/16/2015

One 200-node job (≈24 h)

– Nodes spread across 15 leave switches

– 1 hotspot link (with intra-job EFI of 1272)

– SAR reduces max. EFI for this job to 376

Jens Domke 23

Spine

Line cards

Leaf switches
Fig. 12: Heatmap of eff. EFI for one job

on first rail of Tsubame2.5 supercomputer

Collected Metrics for Taurus and Tsubame2.5

Maximum and average improvements by SAR for full month (Feb.’15), e.g.:

– Taurus

• Maximum 𝛾𝑒 reduced by 279.0 (50.8%) compared to DFSSSP

• Avg. 𝜃 improved between 4% and 9% (dep. on routing)

– Tsubame2.5

• Max. 𝜃 improved by up to 17.7%

• On avg. 27% more ports/links available per job (compared to fat-tree)

 ➥ Overall: remarkable benefits through SAR

Jens Domke 24

Runtime Measurement for MPI_Alltoall on Taurus

Modified OSU MPI_Alltoall benchmark (const. message size of 1 MiB)

28 nodes (1 ppn) allocated via SLURM: system fragmentation  10 switches

Seamless routing switch (fat-tree routing  DFSSSP  SAR)

 Runtime increase of 7.1% for DFSSSP

 SAR decreases runtime by 17.6% (DFSSSP) or 11.7% (fat-tree)

 Congestion overhead reduced by 50% for SAR vs. fat-tree

Jens Domke 25

0

2

4

6

8

10

12

14

16

0 1000 2000 3000 4000 5000

R
u

n
ti
m

e
 [

in
 m

s
]

Iteration counter

MPI_Alltoall runtime

Theoretical optimal runtime is 8.7ms

assuming no congestion (based on ib_send_bw)

fat-tree routing
DFSSSP

scheduling-aware routing

Fig. 13:

Runtime

measurement

for MPI_Alltoall

Statistics for 1 year of SAR on Taurus HPC System

Runtime of the filtering tool (scheduled to run every 5 min on Taurus)

– Depends almost entirely on squeue latency

– Recorded min./avg.: 0.02 s and 16 s

– Worst case within a year:

 ≤ 2 min for 99.1% of the runs

 3 runs with ≥ 10 min

Routing overhead induced by SAR (compared to DF-/SSSP)

– Negligible; same runtime complexity of 𝒪 𝑁 2 ∙ 𝑙𝑜𝑔 𝑁

– Total runtime ≤1 s for Taurus with 2014 compute nodes

Jens Domke 26

Statistics for 1 year of SAR on Taurus HPC System

New routing configurations calculated per day

– Between 0 and 57 re-routings by SAR (avg. of 14)  approx. every 2 h

– 4 days without re-routings: 3x on weekend; 1x Monday

Time needed to reconfigure all 210 switches of Taurus

– Avg. of 4.6 𝜇𝑠 to send LFT block and receive ACK

– Usually ≈0.8 𝑠 to reconfigure full fabric (incl. OpenSM-internal overhead)

Application crashes due out-of-order packages in these 0.8 𝑠?

– Probably mitigated through IB’s end-to-end error detection and retry

– No crashes reported by users

Jens Domke 27

Outline

Motivation

Scheduling-Aware Routing

– Interface between Batch System and Subnet Manager

– Routing Optimization with modified DFSSSP

Property Preserving Network Updates for IB

– Five-phase Update Protocol

– Current Limitations and Problems

Evaluation of Scheduling-Aware Routing

– Theoretical Evaluation of Network Metrics

– Practical Evaluation on a Production System

Summary and Conclusions

Jens Domke 28

Summary and Conclusions

State-of-the-art static routings are suboptimal for production systems!

Optimizing for global path balancing  only effective if whole system used by

single parallel application

We created low-overhead filtering tool to interface SLURM and OpenSM

(avg. runtime of 16 s; but depends on SLURM latency)

We enhanced topology-agnostic DFSSSP to consider job-to-node mapping

 SAR inherits features: deadlock-freedom, separate I/O balancing,…

Our scheduling-aware routing (SAR) outperforms other flow-oblivious routings

– Up to 70% reduced path overlap for production workloads

– More inter-switch links available per batch job  higher network utilization

Jens Domke 29

Summary and Conclusions

Reconfiguring switch LFTs can cause out-of-order packages in IB!

We designed a reliable update protocol to prevent out-of-order

Implementation in practice “failed” (vendor firmware not 100% IB-compliant)

SAR is default on petascale production HPC systems!

Stable operation for more than one year

No user interaction/input needed

No application crashes despite missing update protocol

Avg. of 4% less dark fiber compared to fat-tree routing (suggested by vendor)

Jens Domke 30

Acknowledgments and Downloadable Content

Jens Domke 31

SAR for InfiniBand (OpenSM

implementation):

• https://gitlab.com/domke/osm-

routing-dev/tree/sar-3.3.20

• http://jdomke.info/#research

Prof. Nagel and his team provided

the batch job history of the Taurus

HPC system installed at TU Dresden

and allowed us to modify Taurus’

routing algorithm over a longer

period of time.

Prof. Matsuoka and his team gave

us access to their batch job history of

the Tsubame2.5 supercomputer

located at the Tokyo Institute of

Technology.

References (A-H)

[Alverson, 2014] B. Alverson, E. Froese, L. Kaplan, and D. Roweth, “Whitepaper: Cray XC Series Network,” Cray Inc.,

 Tech. Rep. WP-Aries01-1112. [Online: http://www.cray.com/sites/default/files/resources/CrayXCNetwork.pdf]

[Besta, 2014] M. Besta and T. Hoefler, "Slim Fly: A Cost Effective Low-Diameter Network Topology," New Orleans, LA,

 USA, 2014.

[Birrittella, 2015] M. S. Birrittella, M. Debbage, R. Huggahalli, J. Kunz, T. Lovett, T. Rimmer, K. D. Underwood, and R. C.

 Zak, “Intel Omni-path Architecture: Enabling Scalable, High Performance Fabrics,” in 2015 IEEE 23rd Annual

 Symposium on High-Performance Interconnects (HOTI). Santa Clara, CA: IEEE, Aug. 2015, pp. 1–9.

[Domke, 2011] J. Domke, T. Hoefler, and W. E. Nagel, “Deadlock-Free Oblivious Routing for Arbitrary Topologies,” in

 Proceedings of the 25th IEEE International Parallel & Distributed Processing Symposium (IPDPS). Washington, DC,

 USA: IEEE Computer Society, May 2011, pp. 613– 624.

[Domke, 2014] J. Domke, T.Hoefler, and S.Matsuoka, “Fail-in-Place Network Design: Interaction between Topology,

 Routing Algorithm and Failures,” in Proceedings of the IEEE/ACM International Conference for High Performance

 Computing, Networking, Storage and Analysis (SC14), ser. SC ’14. New Orleans, LA, USA: IEEE Press, Nov. 2014,

 pp. 597–608.

[Heydemann, 1989] M. C. Heydemann, J. Meyer, and D. Sotteau, “On Forwarding Indices of Networks,” Discrete Appl.

 Math., vol. 23, no. 2, pp. 103–123, May 1989.

[Hoefler, 2008] T. Hoefler, T. Schneider, and A. Lumsdaine, “Multistage Switches are not Crossbars: Effects of Static

 Routing in High-Performance Networks,” in Proceedings of the 2008 IEEE International Conference on Cluster

 Computing. IEEE Computer Society, Oct. 2008.

[Hoefler, 2009] T. Hoefler, T. Schneider, and A. Lumsdaine, “Optimized Routing for Large-Scale InfiniBand Networks,” in

 17th Annual IEEE Symposium on High Performance Interconnects (HOTI 2009), Aug. 2009.

[Hoefler, 2011] T. Hoefler and M. Snir, “Generic Topology Mapping Strategies for Large-scale Parallel Architectures,” in

 Proceedings of the 2011 ACM International Conference on Supercomputing (ICS’11). Tucson, AZ: ACM, Jun. 2011,

 pp. 75–85.

Jens Domke 32

References (I-Z)

[IBTA, 2015] InfiniBand Trade Association, “InfiniBandTM Architecture Specification Volume 1 Release 1.3 (General

 Specifications),” Mar. 2015.

[Kinsy, 2009] M. A. Kinsy, M. H. Cho, T. Wen, E. Suh, M. van Dijk, and S. Devadas, “Application-aware deadlock-free

 oblivious routing,” in Proceedings of the 36th annual international symposium on Computer architecture,

 ser. ISCA ’09. New York, NY, USA: ACM, 2009, pp. 208–219.

[Kogge, 2008] P. Kogge, K. Bergman, and S. Borkar, “ExaScale Computing Study: Technology Challenges in Achieving

 Exascale Systems,” University of Notre Dame, Department of Computer Science and Engineering, Notre Dame,

 Indiana, Tech. Rep. TR-2008-13, Sep. 2008.

[McClurg, 2015] J. McClurg, H. Hojjat, P. Cerny, and N. Foster, “Efficient Synthesis of Network Updates,” in

 Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation, ser.

 PLDI 2015. New York, NY, USA: ACM, 2015, pp. 196–207.

[Reitblatt, 2012] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker, “Abstractions for Network Update,”

 in Proceedings of the ACM SIGCOMM 2012 Conference on Applications, Technologies, Architectures, and Protocols

 for Computer Communication, ser. SIGCOMM ’12. New York, NY, USA: ACM, 2012, pp. 323–334.

[Schroeder, 1991] M. D. Schroeder, A. Birell, M. Burrows, H. Murray, R. Needham, T. Rodeheffer, E. Satterthwaite, and

 C. Thacker, “Autonet: A High- speed, Self-Configuring Local Area Network Using Point-to-Point Links,” IEEE Journal

 on Selected Areas in Communications, vol. 9, no. 8, Oct. 1991.

[Singla, 2012] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey, "Jellyfish: Networking Data Centers Randomly," in

 Presented as part of the 9th USENIX Symposium on Networked Systems Design and Implementation (NSDI 12),

 San Jose, CA, 2012, pp. 225-238.

[Yu, 2006] H. Yu, I.-H. Chung, and J. Moreira, “Topology Mapping for Blue Gene/L Supercomputer,” in Proceedings of

 the 2006 ACM/IEEE Conference on Supercomputing, ser. SC ’06. New York, NY, USA: ACM, 2006.

[Zahavi, 2010] E. Zahavi, G. Johnson, D. J. Kerbyson, and M. Lang, “Optimized InfiniBand fat-tree routing for shift

 all-to-all communication patterns,” Concurr. Comput. : Pract. Exper., vol. 22, no. 2, pp. 217–231, Feb. 2010.

Jens Domke 33

Figure References (1-10)

[F1] http://museum.ipsj.or.jp/en/computer/super/0020.html

[F2] http://wiki.expertiza.ncsu.edu/index.php/CSC/ECE_506_Spring_2010/ch_12_PP

[F3] https://asc.llnl.gov/computing_resources/bluegenel/

[F4] https://asc.llnl.gov/computing_resources/bluegenel/configuration.html

[F5] http://www.fujitsu.com/global/about/resources/news/press-releases/2011/0620-02.html

[F6] http://www.fujitsu.com/downloads/TC/sc10/interconnect-of-k-computer.pdf

[F7] http://www.netlib.org/utk/people/JackDongarra/PAPERS/tianhe-2-dongarra-report.pdf

[F8] http://www.netlib.org/utk/people/JackDongarra/PAPERS/tianhe-2-dongarra-report.pdf

[F9] https://gauss-allianz.de/en/profile/Technische%20Universit%C3%A4t%20Dresden

[F10] http://pc.watch.impress.co.jp/img/pcw/docs/609/529/html/271.jpg.html

Jens Domke 34

Jens Domke 35

 BACKUP

– switches, terminals (𝑁) and full-duplex

channels/links (𝐶)

– subset of inter-switch links 𝐶∗ ⊂ 𝐶

– shortest-path and balanced for realistic

HPC workloads

– destination-based (and unicast)

– deadlock-free (for lossless

technologies, e.g., InfiniBand)

– support arbitrary topologies

– no user-interaction required

Assumptions and Goals for the Remainder of the Talk

Requirements and assumptions:

– Network I consists of

– Routing R should be

– Compute resources are limited

Jens Domke 36

NNCwith

CNGI



),(

CcNnwith

cncR

id

idi



 1),(

Collected Metrics for Tsubame2.5

Maximum 𝛾𝑒
for all jobs

Avg. max. 𝛾𝑒
across jobs

Dark fiber

percentage

Used ports/links

(avg. across jobs)

(lower is better for

 first three plots)

Jens Domke 37

0
300
600
900

1200
1500
1800

M
a
x
.
e
ff

.
E

F
I

DFSSSP
Up*/Down*
fat-tree
SAR

0

20

40

60

80

M
a
x
.
E

F
I
p
e
r

jo
b
 [
a
v
g
.]

0

20

40

60

80

100

D
a
rk

 f
ib

e
r

[i
n
 %

]

01. 08. 15. 22. 28.

0

50

100

150

200

250

#
L
in

k
s
 p

e
r

jo
b
 [
a
v
g
.]

Day of the month (Feb'15)

Fig. 10: Replay of job history for Tsubame2.5 (four

routings applied per 10 min sampling point)

Collected Metrics for Taurus

Maximum 𝛾𝑒
for all jobs

Avg. max. 𝛾𝑒
across jobs

Dark fiber

percentage

Used ports/links

(avg. across jobs)

(lower is better for

first three plots)

Jens Domke 38

0

200

400

600

800

1000

M
a
x
.
e
ff

.
E

F
I

DFSSSP
Up*/Down*
fat-tree
SAR

0

10

20

30

40

50

M
a
x
.
E

F
I
p
e
r

jo
b
 [
a
v
g
.]

0

20

40

60

80

100

D
a
rk

 f
ib

e
r

[i
n
 %

]

01. 08. 15. 22. 28.

0

40

80

120

160

#
L
in

k
s
 p

e
r

jo
b
 [
a
v
g
.]

Day of the month (Feb'15)

Fig. 14: Replay of job history for Taurus (four

routings applied per 10 min sampling point)

Relative Improvements for Taurus (base: fat-tree)

Maximum 𝛾𝑒
for all jobs

Avg. max. 𝛾𝑒
across jobs

Dark fiber

percentage

Used ports/links

(avg. across jobs)

(lower is better for

first three plots)

Jens Domke 39

-300

-200

-100

0

100

M
a

x
.
e

ff
.
E

F
I

DFSSSP
Up*/Down*
Fat-tree
SAR

-20

-10

0

10

M
a

x
.
E

F
I
p

e
r
jo

b
 [
a

v
g

.]

-5

0

5

10

D
a

rk
 f
ib

e
r
[i
n

 %
]

01. 08. 15. 22. 28.

-5

0

5

10

15

#
L

in
k
s
 p

e
r
jo

b
 [
a

v
g

.]

Day of the month (Feb'15)

Fig. 15: Replay of job history for Taurus (four

routings applied per 10 min sampling point)

Working Network Updates on Testbed (w/o QP draining)

Small test system w/ 2 IB QDR switches (connected by two links) and 4 nodes

MPI benchmark: repeatedly MPI_Bcast with 1 MiB send buffer

Use perfquery for inter-switch links every ≈0.07 s to calculate throughput

Artificial delay (10 s) between unpath and repath traps (samples: 400→560)

Jens Domke 40

-1

0

1

2

3

4

5

6

0 100 200 300 400 500 600 700 800

T
h

ro
u

g
h

p
u

t
[i
n

 G
b

y
te

/s
]

Sample counter

Link 1

Link 2

Fig. 16: Visualization of network update protocol (w/ o QP draining)

and APM betw. 2 links on testbed during high MPI load

