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ABSTRACT
Simple graph algorithms such as PageRank have recently
been the target of numerous hardware accelerators. Yet, there
also exist much more complex graph mining algorithms for
problems such as clustering or maximal clique listing. These
algorithms are memory-bound and thus could be acceler-
ated by hardware techniques such as Processing-in-Memory
(PIM). However, they also come with non-straightforward
parallelism and complicated memory access patterns. In
this work, we address this with a simple yet surprisingly
powerful observation: operations on sets of vertices, such
as intersection or union, form a large part of many com-
plex graph mining algorithms, and can offer rich and simple
parallelism at multiple levels. This observation drives our
cross-layer design, in which we (1) expose set operations
using a novel programming paradigm, (2) express and ex-
ecute these operations efficiently with carefully designed
set-centric ISA extensions called SISA, and (3) use PIM to
accelerate SISA instructions. The key design idea is to alle-
viate the bandwidth needs of SISA instructions by mapping
set operations to two types of PIM: in-DRAM bulk bitwise
computing for bitvectors representing high-degree vertices,
and near-memory logic layers for integer arrays representing
low-degree vertices. Set-centric SISA-enhanced algorithms
are efficient and outperform hand-tuned baselines, offering
more than 10× speedup over the established Bron-Kerbosch
algorithm for listing maximal cliques. We deliver more
than 10 SISA set-centric algorithm formulations, illustrating
SISA’s wide applicability.

1. INTRODUCTION
Research in graph analytics in the architecture commu-

nity has mostly targeted graph algorithms based on vertex-
centric formulations [5, 6, 13, 26, 73, 93, 123, 131, 154, 196].
Some works also focus on edge-centric or linear algebra
paradigms [97, 145, 162, 164]. Such algorithms have com-
plexities described by low-degree polynomials [98], for exam-
ple Breadth-First Search (BFS) [47] (O(n+m)) or iteration-
based PageRank (PR) [25] (O(m ·#iterations)), where n and
m are numbers of vertices and edges, respectively.

Yet, there are numerous important problems and algorithms
in the area of graph mining [28, 45, 89, 148, 170] that re-
ceived little or no attention in the architecture community.
One large class is graph pattern matching [89], which fo-
cuses on finding certain specific subgraphs (also called mo-

tifs or graphlets). Examples of such problems are k-clique
listing [53], maximal clique listing [33, 36, 62, 172], k-star-
clique mining [84], and many others [45]. Another class is
broadly referred to as graph learning [45], with problems
such as unsupervised learning or clustering [86], link predic-
tion [8, 109, 113, 168], or vertex similarity [104]. All these
problems are used in social sciences [62], bioinformatics [62],
computational chemistry [166], medicine [166], cybersecu-
rity [59], healthcare [171], web graph analysis [90], and
many others [37, 45, 80, 89]. These problems often run in
time at least quadratic in the number of vertices, and many
problems are NP-complete [33, 45, 53, 173]. Thus, they of-
ten differ significantly in their performance properties from
“low-complexity” problems such as BFS or PageRank.

Importantly, the established vertex-centric model, origi-
nally proposed in the Pregel graph processing system [117], is
not the right tool for expressing graph mining problems. This
paradigm exposes only the local graph structure: A thread
executing a vertex kernel for any vertex v can only access
the neighbors of v. While this suffices for algorithms such as
PageRank, graph mining often requires non-local knowledge
of the graph structure [45]. Obtaining such knowledge in
the vertex-centric paradigm is hard or infeasible, as noted
by Kalavri et al. [93] (“(...) graph algorithms, like triangle
counting, are not a good fit for the vertex-centric model”)
and many others [100, 110, 147, 187]. Similar arguments
apply to other paradigms such as GraphBLAS [97, 145] and
to frameworks such as Ligra [157]. None of them supports a
wide selection of graph mining problems (e.g., GraphBLAS
only enables subgraph isomorphism assuming patterns are
trees); we show it in detail in Table 1 and Section 4.

Several graph mining software frameworks (Peregrine [85]
and others [40,41,58,83,91,121,122,170,186,188,198]) have
been proposed. Yet, they focus exclusively on a few graph
pattern matching problems. Moreover, these frameworks
usually do not offer theoretical guarantees (unlike parallel
graph algorithms for specific mining problems). Overall,
there is a need for a graph mining paradigm that would enable
expressing many graph mining problems, and ideally offer
competitive theoretical guarantees on their runtimes.

Moreover, past works illustrated that graph mining algo-
rithms are memory bound [42, 60, 85, 193, 197]. This is be-
cause these algorithms generate and heavily use large interme-
diate structures, but – similarly to algorithms such as PageR-
ank – they are not compute-heavy [62,85,194]. We show this
in Figure 1. When increasing the number of parallel threads,
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Abstraction or
programming model

A? Pattern M. Learning “Low-c.” Remarks
mc kc ds si vs lp cl av tc bf cc pr

Vertex-centric (ver-c) é é é é é é é é é �∗ � � � ∗High comm. costs
Edge-centric (edge-c) é é é é é é é é é �∗ �∗ �∗ � ∗High work and depth
Array maps é é é � é é é �∗é � � � � ∗Only low-diameter decomposition
GraphBLAS [97] � (L) é é é �∗é é é é � � �† � ∗Only trees as patterns

GNN, GCN � (L) é é é �† � � � � é é é �

†GNNs are as powerful as
the Weisfeiler-Lehman test [185].

Pattern matching é �∗ �∗ �∗ �∗é é é é �∗é é é ∗No bounds, low perf.
Joins [43] � (R)é �∗ �∗é �∗ �∗ �∗é �∗é �∗ �∗ ∗No bounds, low perf.

Set-Centric / SISA � (S) � � � � � � � � � é é é

Table 1: Comparison of the set-centric programming approach and SISA to ex-
isting graph processing abstractions/programming models, focusing on support
for selected graph mining problems (pattern matching, learning), and for “low-
complexity” graph problems. A?: Underlying algebra? L: linear, R: relational, S:
set. “�”: Support / significant focus. “�”: Partial support / some focus. “é”: no
support / no focus. Pattern M.: selected graph pattern matching problems, mc: maxi-
mal clique listing, kc: k-clique listing, ds: dense subgraph, si: subgraph isomorphism,
Learning: selected graph learning problems, vs: vertex similarity, lp: link prediction,
cl: clustering or community detection, av: accuracy verification (of link prediction
outcomes), “Low-c.”: selected “low-complexity” problems targeted by vast majority
of existing works on graph processing. tc: triangle counting, bf: BFS, cc: connected
components, pr: PageRank. The analysis in this table is extended in Section 10 and
Table 7 by detailing specific hardware accelerators for graph processing.

speedups are decreasing and the counts of stalled CPU cycles
increase. This motivates using processing-in-memory (PIM)
to gain the much needed speedups in graph mining. While
PIM is not the only potential solution for hardware accelera-
tion of graph mining, we select PIM because (1) it represents
one of the most promising trends to tackle the memory bot-
tleneck [69, 128] outperforming other approaches [153], (2)
it offers well-understood designs [129], and (3) numerous
works illustrate it brings very large speedups in simple graph
algorithms such as BFS or PageRank (see more than 15 works
in Table 7), also using processing fully inside DRAM [10].
Yet, graph mining algorithms are much more complex: they
employ deep recursion, create many intermediate data struc-
tures with non-trivial inter-dependencies, and have high load
imbalance [62, 186]. As we show in Section 10, no exist-
ing HW design targets broad graph mining (i.e., both graph
pattern matching and graph learning), or explores PIM tech-
niques for accelerating broad graph mining.

To address all these issues, we propose a novel design that
is high-performance (both empirically and theoretically), ap-
plicable to many graph mining problems, and easily amenable
to PIM acceleration. We first observe that large parts of many
graph mining algorithms can be expressed with simple set
operations such as intersection ∩ or union ∪, where sets
contain vertices or edges. Driven by this observation, we pro-
pose a set-centric programming paradigm, in which the
developer identifies sets and set operations in a given graph
mining algorithm. Then, these operations are mapped to a
small and simple yet expressive group of instructions that
implement many set operations and their variants, offering
a rich selection of storage/performance tradeoffs. Finally,
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Figure 1: Speedups and counts of stalled CPU cycles when increasing parallelism,
for the Bron-Kerbosch algorithm for listing maximal cliques, for different input graphs
(evaluation methodology is discussed in Section 9).

these instructions are offloaded to PIM units. We call these
instructions SISA as they form a “Set-centric” ISA extension
that enables a simple interface between numerous graph min-
ing algorithms and PIM hardware. Overall, our cross-layer
design consists of three key elements: a new set-centric pro-
gramming paradigm and formulations of graph algorithms
(contribution #1), the actual set-centric ISA extension with
its instructions, implemented set operations, set organiza-
tion, and a thin software layer (contribution #2), and PIM
acceleration (contribution #3).

Using set algebra as a basis for algorithm design ensures
that SISA set-centric algorithms are succinct, applicable to
many problems, and theoretically efficient. Our set-centric
paradigm is the first to use set operations as fundamental
general building blocks for both algorithmic formulations
and their execution. Next, when mapping set-centric formu-
lations to the SISA code, one can use different set representa-
tions (e.g., a sparse integer array or a dense bitvector), and set
operations such as intersection can be executed using differ-
ent set algorithms (e.g., merge or galloping intersection [74]).
These choices enable flexibility as they come with different
performance/storage tradeoffs, which we analyze in detail.

For the in-memory acceleration of SISA, we investigate
which types of PIM are beneficial for which set operations.
We process sets stored as bitvectors using in-situ PIM [70],
as offered in Ambit [153], ELP2IM [183], DRISA [107], or
ComputeDRAM [65], for highest performance and energy ef-
ficiency (“SISA processing using memory” – SISA-PUM).
In contrast, while sets stored as sparse arrays cannot be sim-
ply processed in situ with today’s technology, they can use
the high throughput of near-memory PIM [112] as offered
in the 2D UPMEM architecture [101] or logic layers of 3D
DRAM such as Hybrid Memory Cube (HMC) [88] (“SISA
processing near memory” – SISA-PNM). For even higher
speedups, we provide a small HW controller that selects the
best variant of a set instruction to be executed on-the-fly.

Overall, we show that graph mining algorithms, despite be-
ing complex and lacking straightforward parallelism (unlike
PageRank and similar), benefit from PIM. Our key solution
is using parallelism offered by set operations and exposed
with the set-centric approach. This harnesses parallelism at
the level of bits, DRAM subarrays, and vaults. We build
upon recent HW developments and are the first to compre-
hensively implement graph mining algorithms with PIM. We
integrate SISA with the RISC-V ISA [181] and we show that
SISA-enhanced algorithms are theoretically efficient (contri-
bution #4) and empirically outperform tuned parallel base-
lines (contribution #5), for example offering more than 10×
speedup for many real-world graphs over the established
Bron-Kerbosch algorithm for listing maximal cliques [62].

2. NOTATION AND BACKGROUND
We first describe background and notation, see Table 2.
Graphs We model an undirected graph G as a tuple (V,E);

V and E ⊆ V ×V are sets of vertices and edges; |V | = n,
|E|= m. Vertices are modeled with integers 1, ...,n and V =
{1, ...,n}. N(v) denote the neighbors of v ∈ V ; d and d(v)
denote G’s maximum degree and a degree of v.

Set Representations SISA heavily uses sets. Consider a
set of k vertices S = {v1, ...,vk} ⊆V (we focus on vertex sets,
but SISA also works with edges). One can represent S as a
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G = (V,E) An undirected graph; V and E are sets of vertices and edges.
n,m The numbers of vertices and edges in G (|V |= n, |E|= m).
N(v),N+(v) The neighbors and the out-neighbors of a vertex v.
d,d(v) The maximum degree of G, the degree of v ∈V .
c The graph degeneracy (a property used in theoretical analysis).
SA, DB sparse array, dense bitvector

A
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ur

e lM , bM The latency and bandwidth of accessing DRAM.
bL The bandwidth of the interconnect (e.g., QPI) between cores.
lI The latency of one bulk bitwise operation run with in-situ PIM.
q #rows that can be processed in parallel (e.g., in a DRAM bank).
R The size [bits] of a single DRAM row.
SCU, SM SISA Controller Unit, Set Metadata

Table 2: The most important symbols and acronyms.

simple contiguous sparse array (SA) with integers from S
(“sparse” means that only non-zero elements are explicitly
stored). SA’s size is W |S| [bits] where W is the memory word
size (we assume that the maximum vertex ID fits in one word).
One can also represent S with a dense bitvector (DB) of size
n [bits]: the i-th set bit indicates that a vertex i ∈ S (“dense”
means that all zero bits are explicitly stored).

Set Operations SISA uses fundamental set operations:
intersection A∩B, union A∪B, difference A\B, cardinality
|A|, and membership ∈ A. We use different algorithms to
implement these operations (described later in the paper).

3. OVERVIEW & CROSS-LAYER DESIGN
We now overview SISA’s cross-level design, see Figure 2.
(a) Set-Centric Formulations [Section 5 & 5.1] SISA re-

lies on set-centric formulations of algorithms in graph mining.
While some algorithms (e.g., Bron-Kerbosch [62]) by default
use rich set notation, many others, such as k-clique listing by
Danisch et al. [53], do not. In such cases, we develop such
formulations. Details on deriving set-centric formulations are
in Section 5.1; the key common step is to express two nested
loops, commonly used to identify connections between two
sets of vertices, with a single intersection of these sets.

A set can be represented in different ways, and a set op-
eration can be executed using different set algorithms. A
set-centric formulation hides these details, focusing on what
a given graph algorithm does, and not how it is done.

(b.1) Set-Centric ISA (Instructions) [Section 6] Our
ISA extension implements set operations. These instructions
support all variants of operations, for example there is an in-
struction for both merge and galloping set intersection (details
in Section 6). We also provide a thin software layer: iterators

 

Implementation

sisa_set(...)
sisa_vertices(...)
...
sisa_union(...)
sisa_intersect(...)
sisa_cardinality(...)
sisa_delete(...)
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n

Memory subsystem, PIM acceleration

CPU

Metadata
of SISA sets

SISA
Controller
Unit (SCU) cache

SCU picks most
beneficial variants
of set instructions
and accelerators 

Programmable &
succinct thanks to

set algebra generality
Extensible: one can add new

SISA instructions or use new forms
of acceleration, such as ReRAM
or FPGAs (discussion in Sec. XII)

(b.1) Set-centric ISA

(c) SISA HW

/* "tc":
count of
triangles */

/* "N(v)":
neighbors
of v" */

(a) Set-centric algorithms & code (§5) (§4, §6, §7)

SISA structure:
Software abstractions

& C-style wrappers

SISA instructions

(§4, §9)

 

/* Triangle Counting. */ 
tc = 0; init_sets( ) 
for v in vertices:
   for w in N(v):  
      tc += |N(v)      N(w)|
tc /= 3; cleanup( )

Set organization, set representations,
set algorithms, theoretical analysis

/* More than 10 other
set-centric formulations of
graph mining algorithms */

(b.2) SISA sets (§4, §6, §7)

Input graph

Theoretically efficient & fast:
ability to choose set representations

& operations ensure good bounds

Expressive: one can
easily develop new

set-centric algorithms

Cache for set metadata

SISA-PNM (near-memoryPIM, e.g.,
logic layers in 3D DRAM, or 2D UPMEM)

SISA-PUM (in-situ PIM, 
e.g., bulk bitwise

operations with Ambit)

Figure 2: The overview of SISA with a summary of new introduced architecture and
graph representation elements (green) and advantages (brown).

over sets and C-style wrappers for SISA instructions. For
programmability and performance, many SISA instructions
automatize selecting the best set operation variant on-the-fly.

(b.2) Set-Centric ISA (Organization of Sets) [Section 6]
We represent sets as DBs or SAa. The former are processed
by bulk bitwise in-situ PIM, harnessing huge internal DRAM
bandwidth (SISA-PUM). The latter use near-memory PIM,
for example DRAM cores in the UPMEM architecture, or
logic layers in 3D stacked DRAM, harnessing the large
through-silicon via (TSV) bandwidth (SISA-PNM).

(c) HW Implementation Details [Section 8] To maxi-
mize SISA’s programmability and performance, we use hard-
ware to automatically decide between SISA-PUM and SISA-
PNM, or to pick a set algorithm variant (merge vs. galloping).
For this, we use a dedicated unit called the SISA Controller
Unit (SCU). The SCU can be an additional unit, or it can
also be emulated by a process occupying a dedicated core in
the logic layer, to avoid any HW modifications. The SCU re-
ceives SISA instructions from the CPU, and it appropriately
schedules their execution on SISA-PNM and SISA-PUM.
Two bitvectors are always processed with SISA-PUM, while
in other scenarios SCU uses SISA-PNM. The SCU can also
select the most advantageous set algorithm. For example,
whenever two sets have similar sizes, it is better to intersect
them using a merge-based intersection, in which input sets are
streamed and they can harness high sequential bandwidth.

4. PROVABLY FAST GRAPH MINING
We first show that the set-centric approach is superior to ex-

isting graph programming paradigms as (1) it supports many
graph mining problems and (2) it enables algorithms with
theoretical guarantees on performance (e.g., work/depth [31])
that are competitive to those of tuned algorithms. Such prov-
able guarantees are often key to low runtimes and scalabil-
ity [56, 98]. The analysis results are in Table 1.

To illustrate the above points, we first extensively examined
the related literature to identify representative graph mining
problems and important graph processing paradigms [4,9,
37, 64, 89, 103, 104, 109, 113, 138, 139, 141, 167, 178]. For the
former, we pick four problems from both graph pattern match-
ing and graph learning areas (maximal clique listing [33],
k-clique listing [44], dense subgraph discovery [72, 103],
subgraph isomorphism [173], vertex similarity [104, 142],
link prediction [8, 109, 113, 168], graph clustering [86, 148],
verification of prediction accuracy [177]). For fairness, we
also consider four popular “low-complexity” problems, tar-
geted by many past works (triangle counting, BFS, connected
components, and PageRank). For the latter, we first select
vertex-centric [117] and edge-centric [145], two established
graph processing paradigms implemented in the Pregel and
X-Stream systems. Second, we pick vertex/edge array maps
from Ligra [157], an approach for developing graph algo-
rithms based on transforming arrays of vertices or edges
according to a specified map. Third, we consider Graph-
BLAS and its linear algebraic approach [97], where graph
algorithms are expressed with linear algebra building blocks
such as matrix-vector products. Moreover, we consider pat-
tern matching frameworks [64] that usually employ some
form of exploring neighbors of each vertex, combined with
user-specified filtering, to search for specified graph patterns.
For completeness, we also consider recent attempts at solving
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Problem Algorithm Used set operations

Maximal clique list. Bron-Kerbosch [62] A∪B, A∩B, A\B

k-clique listing Danisch et al. [53]
+[This work] A∩B

4-clique counting [This work] A∩B, |A∩B|
Triangle counting [well-known] |A∩B|
k-clique-star listing Jabbour et al. [84] A∩B, A∪B
k-clique-star listing [This work] A∩B
Subgr. isomorphism [This work] A∩B, |A∩B|, A∪B, A\B

Vertex similarity Jaccard coeff., others [23, 142] |A∩B|, |A∪B|
Clustering Jarvis-Patrick [86] |A∩B|, |A∪B|
Link prediction (LP) Jaccard coeff., others [142] |A∩B|, |A∪B|
LP accuracy testing Wang et al. [177] A\B, |A∩B|
Approx. degeneracy Besta et al. [16] A\B

Table 3: Overview of set-centric graph algorithms. In maximal clique listing, sub-
graph isomorphism, and clustering, one also uses variants of union and difference
where one set is always a single-element set (i.e., A∪{b}, A\{b}). Bolded text indi-
cates algorithms with set-centric formulations derived in this work.

graph problems with graph neural (GNN) and convolution
(GCN) networks, or general deep learning [15, 182], as well
as joins and principles from relational databases and the asso-
ciated algebra [199].

The analysis results are in Table 1. Overall, no single
paradigm, except for the set-centric approach, enables effi-
cient graph mining algorithms for the considered problems.
Some paradigms, such as the vertex-centric or the edge-
centric model, do not focus on such problems at all. Other
paradigms, for example array maps or GNNs, address only
certain problems. Finally, graph pattern matching or RDBMS
can solve different graph mining problems, but they do not
offer formal guarantees, as indicated by past work.

5. SET-CENTRIC GRAPH ALGORITHMS
We present set-centric formulations of graph mining algo-

rithms. A list of algorithms and set operations used in each
algorithm is in Table 3. Due to space constraints, we provide
a few selected key formulations.

Notes on Listings Set operations accelerated by SISA are
marked with the gray color. “[in par]” indicates that in a
given loop one can issue set operations in parallel. We ensure
that the parallelization does not involve conflicting memory
accesses. We now focus on formulations and we discuss
set representations, instructions, and parallelization later. For
clarity, we exclude unrelated optimizations from the listings.

Maximal Cliques Listing [Pattern Matching] A clique
is a fully-connected subgraph of an input graph; a maximal
clique is a clique not contained in a larger clique. Finding
all maximal cliques is an important NP-hard problem [54,
140, 163, 179]. Listing 1 shows the widely used recursive
backtracking Bron-Kerbosch algorithm (BK) [33,36,62]. BK
heavily uses different set operations. The main recursive func-
tion BKPivot (Line 5) has three arguments that are dynamic
sets containing vertices. R is a partially constructed, non-
maximal clique c, P are candidate vertices that may belong to
c but are yet to be tried, and X are vertices that definitely do
not belong to c. The algorithm recursively calls BKPivot for
each new candidate vertex, checks if this gives a clique, and
updates accordingly P and X . Some optimizations need more
set operations, but they reduce the search space of potential
cliques [172]. For example, the set of candidates (for extend-
ing a clique c) is P\N(u) instead of P, where u ∈ P∪X .

k-Clique-Star Listing [Graph Pattern Matching] k-
clique-stars are dense subgraphs that combine the charac-
teristics of cliques and stars. A k-clique-star is a k-clique
with additional neighboring vertices that are connected to all

1 /* Input: A graph G. Output: Maximal clique R (R⊆V).*/
2 P = V ; R = /0; X = /0; //Init sets appropriately.
3 for v ∈V [in par] do: BKPivot({v}, P, X);
4 function BKPivot(R, P, X):

5 if |P| == 0 and |X | == 0: return R; //Found a maximal clique

6 u = /* Choose a pivot vertex from P∪X */

7 for v ∈ P\N(u) do: BKPivot( R∪{v} , P∩N(v) , X ∩N(v) )

8 P = P\{v} ; X = X ∪{v}

Algorithm 1: Maximal Clique Listing (Bron-Kerbosch) [33, 36].

the vertices in the clique. k-clique-stars were proposed as
graph motifs that relax the restrictive nature of k-cliques [84].
Listing 2 shows our reformulated set-centric algorithm vari-
ant. Our observation is that those extra vertices that are con-
nected to the k-clique actually form a (k+1)-clique (together
with this k-clique). Thus, to find k-clique-stars, we first mine
(k + 1)-cliques. Then, we find k-clique-stars within each
(k+1)-clique using set union, membership, and difference.

1 /* Input: A graph G. Output: All k-clique-stars, S.*/

2 C = /* First , find k-cliques (e.g., with Table 4)*/
3 S = /0 //S is a set with identified k-clique -stars.

4 foreach c = (Vc ,Ec) ∈C do: //For each k-clique ...

5 X =
⋂

u∈Vc N(u) // Intersect all N(u) such that u ∈Vc

6 Gs = X ∪Vc // Derive the actual k-clique -star

7 S = S∪{Gs} //Add an identified k-clique -star to S
8 //At the end , remove duplicates from S

Algorithm 2: k-clique-star listing [84].

Vertex Similarity & Clustering [Graph Learning] Var-
ious measures assess how similar two vertices v and u are,
see Listing 3. They can be used on their own, or as a main
building block of more complex algorithms such as clustering.
In clustering, one iterates over all adjacent vertex pairs, and
uses their similarity to decide if the pair belongs to a cluster.

1 /* Input: A graph G. Output: Similarity S ∈ R of neighborhoods
2 * N(u) and N(v) of some vertices u and v. */

3 SJ (v,u) = |N(v)∩N(u)| / |N(v)∪N(u)| /* Jaccard Similarity */

4 SO(v,u) = |N(v)∩N(u)| / min(|N(v)|, |N(u)|) // Overlap Similarity

Algorithm 3: Vertex similarity measures.

“Low-Complexity” Graph Algorithms: Discussion
SISA does not target the “low-complexity” algorithms such
as PageRank, as these algorithms offer few straightforward
opportunities for set-centric acceleration. For example, in
PageRank, one iterates over two nested loops, and updates
vertex ranks, which is not easily expressible with set opera-
tions. We analyzed many other such algorithms, including Di-
jkstra’s SSSP [160], ∆–Stepping [124], Bellman-Ford [47],
Betweenness Centrality schemes [161], traversals [24], Con-
nected Components algorithms [71, 156, 165, 187], Low-
Diameter Decomposition [125], or Boruvka’s Minimum
Spanning Tree [32]. Some of them use set notation, but
these are not “PIM-friendly” operations such as bulk set in-
tersections of vertex sets, and are thus not easily accelerated
with SISA (we list such operations in Table 3). While this
may be possible, we leave this direction for future work.

5.1 Deriving a Set-Centric Formulation
Often, algorithms use set notation, and one may simply

pick operations for memory acceleration. This is the case
with, for example, Jarvis-Patrick clustering (Section 5). Yet,
sometimes one may need to apply more complex changes
to “expose” set instructions. The general rule is to associate
used data structures with sets, and then identify respective
set operations. As an example, we compare a traditional
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Algorithmic Formulations
 SISA set-centric

formulations

Example corresponding syntax:

SISA software: 
thin abstraction

+ wrappers

SISA HW units SCU Cache

SISA drivers

for (Vertex v : set) { ... }                       // Set iterators
VertexSet A = ..., B = ...;                       // Sets
VertexSet union = A.SISA_Union(B);      // Set operations 

 

SetId create(Vertex* vs, size_t count);
void delete(SetId id); SetId clone(SetId id);
void insert(SetId id, Vertex v, ...);
void remove(SetId id, Vertex v, ...);
SetId union(SetId A, SetId B, ...);
SetId intersect(SetId A, SetId B, ...);
SetId difference(SetId A, SetId B, ...);
size_t intersect_count(SetId A, SetId B, ...);
size_t cardinality(SetId id, ...);
bool is_member(SetId id, Vertex v, ...);
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Figure 3: Overview of SISA instructions and syntax at different levels of abstraction.

snippet for deriving the count of all 4-cliques cnt, a derived
set-centric algorithmic formulation, and the corresponding
SISA snippet in Table 4. The key algorithmic change is using
set intersections instead of explicitly verifying if vertices
are connected. For example, instead of iterating over all
neighbors of v1-v3 (Lines 4-6, the top snippet), in SISA, we
intersect neighborhoods of v1-v3 (Line 4 & 6, the middle
snippet) to filter 4-cliques.

1 //Non set-centric code:
2 CSR_Graph g(G); // Standard codes often use some form of CSR
3 #pragma omp parallel for
4 for (auto v1: g.V()) //For all vertices in parallel.
5 for (auto v2: g.N_out(v1)) // Explore neighborhoods of v1 -v4...
6 for (auto v3: g.N_out(v2)) //... searching for a 4-clique
7 for (auto v4: g.N_out(v3)) //If v1-v4 are connected pairwise
8 if(g.edge(v1,v3) && g.edge(v1,v4) && g.edge(v2,v4)) ++cnt;

1 //A set-centric algorithmic formulation:
2 for v1 ∈V in parallel do: //For all vertices in parallel.
3 for v2 ∈ N+(v1) do: //For each neighbor of v1 ...

4 S1 = N+(v1)∩N+(v2) //Find common neighbors of v1 and v2.

5 for v3 ∈ S1 do: // Narrow further search to S1.

6 cnt += |S1 ∩N+(v3)| // Common neighbors of v1, v2, and v3

1 //SISA (simplified) set-centric code:
2 SetGraph g = SetGraph(G);
3 #pragma omp parallel for
4 for (auto v1: g.V()) for (auto v2: g.N_out(v1)) {
5 auto S1 = intersect(g.N_out(v1), g.N_out(v2));
6 for (auto v3: S1) cnt += intersect_card(S1, g.N_out(v3)); }

Table 4: Listing all 4-cliques: a traditional (non-set-centric) snippet, a set-centric algo-
rithmic formulation derived in this work, and a SISA set-centric snippet.

6. SISA: DESIGN, SYNTAX, SEMANTICS
We now present the details of representing and processing

sets used in set-centric formulations. This constitutes core
parts of SISA’s design. We summarize SISA in Figure 3 and
we detail key SISA instructions in Table 5.

6.1 Representation of Sets
The first key question is how to represent sets: SISA’s

“first-class citizens”. We observe that – in each graph algo-
rithm – there are two fundamentally different classes of data
structures. One class are (1) vertex neighborhoods N(v)
that maintain the structure of the input graph. There are n
such sets, their total size is O(m), and each single neighbor-
hood is static (we currently focus on static graphs) and sorted
(following the established practice in graph processing [118]).
Another class are (2) auxiliary structures, for example P in
Bron-Kerbosch (Listing 1). These sets are used to maintain
some algorithmic state. They are usually dynamic, they may
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element (usually
a memory word)
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Figure 4: SISA representations of sets and graphs, and processing SISA sets.

be unsorted, their number (in a given algorithm) is usually
a (small) constant, and their total size is O(n). While SISA
enables using any set representation for any specific set, we
offer certain recommendations to maximize performance.

SAs should be used for small neighborhoods and DBs for
the large ones (in the evaluation, we vary the threshold so that
5%-30% largest neighborhoods use DBs). This approach is
memory efficient. For example, for |N(v)|= n/2, a DB takes
only n bits while an SA uses 16n bits (for a 32-bit word size).

Auxiliary sets benefit from being stored as dense bitvectors.
This is because such sets are often dynamic, and updates or
removals take O(1) time. Simultaneously, as in practice there
is usually a small constant number of such sets in considered
algorithms, the needed storage is not excessive (e.g., less than
3% of the total storage needed for a graph with the average
degree 100 (such as orkut), assuming using 32 threads and the
Bron-Kerbosch algorithm, with auxiliary sets P, X , and R).
We analyze and confirm it for other algorithms and datasets.

The user controls selecting a set representation. For
programmability, SISA offers a predefined graph structure,
where small and large neighborhoods are automatically
stored as sparse arrays and dense bitvectors, respectively.
This is guided by a simple model: a given neighborhood N(v)
is stored as a DB whenever |N(v)| ≥ t ·n (t ∈ (0;1) is a user
parameter that controls a “bias” towards using DBs or SAs)
and it does not exceed a storage budget limit set by the user
(SISA by default uses a limit of 10% of the additional storage
on top of the graph size when stored only with SAs). For
example, t = 0.5 indicates that each vertex connected to at
least 50% of all vertices has its neighborhood stored as a DB.

Figure 4 shows an SA and a DB built from the same vertex
set. Then, it illustrates an example SISA graph representation
where some neighborhoods are DBs and some are SAs.

6.2 High-Performance Set Operations
The second key challenge in SISA is how to apply set

ins Set op. A and B
represent. Set algorithm S? Time complexity Input size

[bits]
Main form of data
transfer (§ 8.3)

0x0A∩B SA ∩ SA Merge -,- O(|A|+ |B|) W |A|+W |B|Streaming
0x1A∩B SA ∩ SA Galloping -,- O(|A| log |B|) W |A|+W |B|Random accesses
0x2A∩B SA ∩ SA Merge / gallop.-,- cf. 0x0 and 0x1 W |A|+W |B|cf. 0x0 and 0x1
0x3A∩B SA ∩ DB Galloping -, na O(|A|) W |A|+n Random accesses
0x4A∩B DB ∩ DB Bitwise AND na, na O(n/(qS)) n+n In-situ row copies

0x5A∪{x}DB ∪ {x} Set bit na, na O(1) n+W Random access
0x6A\{x} DB \ {x} Clear bit na, na O(1) n+W Random access

Table 5: Overview of SISA instructions, one row describes one specific set operation
variant. Set elements are vertices (A,B ⊆ V,x ∈ V ). “-” means “yes”. “na” means
“not applicable”. “ins” is a proposed instruction opcode. “S (Sorted)” indicates if an
instruction assumes set representations of A and B to be sorted (thus two columns).

5



operations for highest performance. For this, we detail the al-
gorithmic aspects, a summary is in Table 5. HW details (used
PIM and a performance model) are discussed in Section 8.
An overview of the structure of SISA is in Figure 3.

Set Intersection A∩B is a key operation in SISA, because
our analysis illustrates that it is used in essentially all con-
sidered graph algorithms. We now briefly discuss the most
relevant variants of ∩, a summary is in Figure 4.

• SA [sorted] A ∩ SA [sorted] B The intersection of two
sorted SAs is commonly used when processing two neigh-
borhoods. It comes in two “flavors”. If A and B have simi-
lar sizes (|A| ≈ |B|), one prefers the merge scheme where
one simply iterates through A and B, identifying common
elements (time O(|A|+ |B|)). If one set is much smaller
than the other (|A| � |B|), it is better to use the galloping
scheme [1], in which one iterates over the elements of a
smaller set and uses a binary search to check if each element
is in the bigger set (time O(|A| log |B|)). SISA offers both
variants, and a variant that automatically selects the best
variant with a performance model (described in § 8.3).
• SA [unsorted or sorted] A ∩ DB B Iterate over A (O(|A|))

and check if each element is in B (O(1)). This variant is
often used to intersect a neighborhood with an auxiliary set
represented as a bitvector, for example X ∩N(v) in Listing 1.
• DB A ∩ DB B Apply bitwise AND over both input DBs

(they both have sizes of n bits, giving O(n/C) time, where
C is the maximum chunk of bits that can be processed in
O(1) time using bit-level parallelism). This variant is used
for example when intersecting two dense neighborhoods.

Set Union A∪B and Set Difference A\B A\B and A∪B
have variants similar to those for ∩, there are also correspond-
ing merge and galloping variants.

Set Membership x∈ A and Set Cardinality |A| Set mem-
bership takes O(|A|) time for an unsorted SA (linear scan),
O(log |A|) time for a sorted SA (binary search), and O(1) for
a DB (a single access to verify if x-th bit is set). As for set
cardinality, we maintain this information for any set. This
incurs only O(1) storage overhead for any set as well O(1)
time overhead needed to update the size, but it enables O(1)
time to resolve any set cardinality operation. Finally, we note
that SISA provides dedicated instructions for computing car-
dinalities of the results of set operations, for example |A∩B|.
This enables speedups as SISA avoids creating any interme-
diate structures needed for keeping the results of operations
such as intersection.

Adding and Removing Elements Auxiliary sets often
grow and shrink by one element. Both add and remove
straightforwardly take O(1) time for a DB (setting or ze-
roing a corresponding bit) and O(|A|) for an SA (moving
data in case the SA is sorted). Thus, in general, we advocate
using DBs for auxiliary sets; the size is n bits.

6.3 Additional Details of SISA Design
We detail several aspects of SISA’s design; cf. Figure 3.
SISA Instructions SISA offers instructions that package

the described set operations in all the considered variants,
including instructions that automatically select merge or gal-
loping set algorithms (cf. § 6.2). Finally, SISA also provides
instructions for creating and deleting sets.

Programming Interface (Set Iterators & Wrappers)
For programmability, SISA offers a thin software layer on

top of high-level instructions that consists of abstractions and
wrappers. In the former, we provide an opaque type Set that
is a reference to a SISA set; this enables using C++ iterators
over sets, see left side of Figure 3. In the latter, SISA provides
functions that directly map to SISA set instructions.

RISC-V Compliant Encoding SISA can be integrated
with the RISC-V ISA [181]. To enable modularity and flexi-
bility, SISA’s new instructions are encoded using the custom
opcode set [180]. We encode the opcode and functionality
of custom RISC-V instructions using bits [31..25] and [6..0],
see Figure 5. The former represent the different SISA instruc-
tions (up to 128). The latter are set to 0x16 to represent the
custom characteristic of the instruction. Fields rs1, rs2, and
rd indicate registers with IDs of input sets and the output set,
respectively. In Table 5, we assign ISA codes (bits [31..25])
to respective instructions. The number of SISA instructions
is less than 20, leaving space for potential new variants.

funct7 rs2 rs1 xd rd opcodexs1 xs2
31 25 24 20 19 15 14 13 12 11 7 6 0

7 5 5 1 1 1 5 7

. 
SISA operation

identifier. Support
for up to 128 
operations

SISA source
operands

Set to "1" if
SISA uses the

register operands

SISA
destination

register

Custom
instruction

opcode

Bit index

#bits:

Figure 5: Encoding of SISA instructions.

7. THEORETICAL ANALYSIS
We now support our claim that SISA-enhanced algorithms

are theoretically efficient, i.e., their time complexities match
those of hand-tuned graph mining algorithms. In general, this
is enabled by SISA’s ability to control used set representations
and set operations, facilitates tuning performance and storage
tradeoffs. To show this, we analyze how varying a used set
intersection variant (merge vs. galloping) impacts the runtime
of set-centric algorithms. We focus on intersection as it is
prevalent in considered algorithms. The analysis results are
in Table 6 (proofs are in the report). Crucially, all set-centric
variants are able to match the competitive time complexities
of considered tuned graph mining algorithms.

We parametrize complexities with degeneracy c, a well-
known measure of graph sparsity [120]. The degeneracy c of
a graph G is the smallest number x such that every subgraph in
G has a vertex of degree at most x (i.e., every subgraph has at
least one sparsely connected vertex). We consider degeneracy
as it is used by many recent graph mining algorithms to
enhance their time complexities [53, 62, 206].

8. HARDWARE IMPLEMENTATION
We now discuss details of SISA hardware implementation.

8.1 Processing-In-Memory for Sets
We start with how SISA uses PIM for set operations.
SISA-PUM First, the intersection, union, and difference

of sets represented as DBs are processed with SISA-PUM
that relies on in-situ DRAM bulk bitwise schemes. For
concreteness, we pick Ambit [153], a recent design that
enables energy-efficient bulk bitwise operations fully in-
side DRAM, by small extensions to the DRAM circuitry
but without any changes to the DRAM interface. However,
SISA is generic and other designs could also be used (e.g.,
ELP2IM [183], DRISA [107], ComputeDRAM [65], PCM
(Pinatubo) [108]). The key extension in Ambit (for in-situ
processing) is to modify a decoder for three selected DRAM
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Table 6: The impact of set intersection schemes (merging vs. galloping) on the runtime of graph mining algorithms.. “�” means that a given SISA variant matches asymptoti-
cally the best known non-set-centric baseline, referenced in the top row. k, c, and d denote the size of the mined pattern, the graph degeneracy (a popular measure of graph sparsity)
and the maximum vertex degree, respectively (other symbols are described in Section 2 and Table 2). Link prediction complexities are valid for the following vertex similarity
measures: †Jaccard, Overlap, Adamic Adar, Resource Allocation, Common Neighbors; ‡Total Neighbors; §Preferential Attachment [104, 132].

rows (that share the same set of sense amplifiers) in such a
way that one amplifier connects directly to three DRAM cells.
This enables logical AND and OR over two of such three
rows, immediately computing the result in the third row (NOT
is provided by including a single row of dual-contact DRAM
cells [153]). Importantly for SISA-PUM, only three selected
designated DRAM rows (per single DRAM subarray) are
modified this way. Whenever the running code requests an
in-situ memory operation, Ambit uses a recent RowClone
technology [152] to copy (also in-situ) the rows that store
input sets to these two designated rows, compute the result
in-situ, and again use RowClone to copy the result to the
destination (unmodified) DRAM row. Now, SISA-PUM uses
Ambit’s execution model and interface without any modifica-
tions: set intersection and union are processed with an in-situ
AND and OR, respectively. Set difference is processed using
set intersection, along with the well-known set algebra rule:
A\B = A∩B′ [87].

SISA-PNM A set operation with no bulk bitwise pro-
cessing uses SISA-PNM that relies on high bandwidth be-
tween processing units and DRAM (as in UPMEM [101],
HMC [88], or Tesseract [5]). Adding or removing an element
from a set stored as a DB (A∪ {x},A \ {x}) is conducted
with a single DRAM access to a specific memory cell. Other
set operations on SAs that employ streaming or random
accesses are also executed using small in-order cores.

8.2 Automatizing SISA Decisions
We use a small SISA Control Unit (SCU), cf. Section 3,

to automatically decide which SISA instructions to run, and
how. SCU could either be added to the CPU or to the DRAM
circuitry (see the feasibility discussion later in this section),
or – to avoid any HW modifications – it can also be emulated
by a single designated in-order logic layer core.

Automatic Selection of SISA-PUM & SISA-PNM First,
SCU decides whether to use SISA-PUM or SISA-PNM for
given two sets. This decision is simple and is based on how
sets are represented (this information is stored in the SISA
metadata structure and possibly cached in SCU’s cache).

Automatic Selection of Variants of Set Operations Sec-
ond, SCU automatically detects if it is best to use merge or
galloping, and processes input sets using the corresponding
variant. This decision is guided by our performance models.

8.3 Performance Models for Set Operations
The runtime of each SISA instruction variant is dominated

by either streaming or random accesses.
Streaming takes place when two sets A and B stored as

SAs are processed using merging. We model the runtime as
lM +W ·max{|A|, |B|} ·min{bM,bL}. lM and bM are latency
and bandwidth of accessing DRAM, and bL is bandwidth
between cores. The model conservatively assumes that A and
B may be located in memory locations attached to different

cores (e.g., in different vaults), and thus the overall bandwidth
is bottlenecked by min{bM,bL}.

To model random accesses, we simply count the number
of performed operations and multiply it by the memory ac-
cess latency. This gives lM ·min{|A|, |B|} · log(max{|A|, |B|})
for a binary search over the larger of input sets, used when
processing two SAs with galloping.

Then, a specific variant is selected automatically to min-
imize the predicted runtime. To parametrize these models,
SISA needs (1) the sizes of processed sets, (2) their represen-
tation types, and (3) bM,bL, lM . (1) and (2) are maintained
(for each set) in a simple in-memory SM (“set metadata”)
structure. (3) describe the execution environment and are
thus identical for each set; they are stored directly in the SCU.
We instantiate (3) to reflect logic layers in Tesseract [5].

8.4 Details of SISA Hardware
Life Cycle of a Set A set is allocated with a standard mal-

loc, augmented with setting the appropriate set information
in the set metadata (SM) structure. Loading, processing, and
storing sets is conducted by the respective existing elements
such as logic layer cores; the SCU is only responsible for
selecting the appropriate instruction variant to be executed.
Once a set is deleted, the standard free call is used, together
with removing a respecting entry from the SM structure.

Set Metadata The SM structure is a simple associative
structure that holds constant amount of data per set (set repre-
sentation, set size). The total SM size is O(n) as there are n
neighborhoods and a constant number of auxiliary sets. Thus,
while we conservatively assume that SM is an in-memory
structure, in practice it fits completely in cache or a small
scratchpad. This is because many datasets processed by graph
mining algorithms have small n, in the order of hundreds or
thousands [143]. These graphs pose computational chal-
lenges, but these challenges come from high computational
complexities (e.g., listing maximal cliques is NP-hard) or
from relatively high edge counts m (as some vertices may
have high degrees [143]), but not (or to a smaller extend)
from n. Each SM entry describing one set also contains the
set location. Now, entries in the SM structure are indexed
by set IDs. A set ID is returned by a function creating a
set, cf. Figure 3. Set IDs and set creation (and destruction)
calls are used by a developer analogously to pointers and
malloc/free calls.

Caching Set Metadata Depending on how SISA HW is
deployed, the SM information can be cached in either a small
dedicated scratchpad or cache (if the SCU is implemented as
an additional circuitry), or in the standard cache of a logic
layer core (if the SCU is emulated by a designated such core).

Using SISA-PNM and SISA-PUM Together We rely
on Ambit’s full compatibility with DRAM, as described in
the original publication [153]. Specifically, Ambit fully
preserves the DRAM interface: the sets are always stored in
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standard DRAM rows, and moved to the designated rows only
for bulk bitwise processing. Thus, one can freely use standard
DRAM accesses for any non-SISA-PUM set modifications.

Harnessing Parallelism SISA HW harnesses memory
parallelism at different levels, enabling parallel execution of
both a single set operation and different set operations. First,
bit-level parallelism is enabled by using Ambit’s bulk bitwise
operations: bits in a row are ANDed or ORed in parallel.
Second, pairs of bitvectors placed in different subarrays can
be processed in parallel. This applies to other parts of the
DRAM hierarchy, for example banks. Third, processing pairs
of sets stored as integer arrays in different vaults can also
be parallelized. Here, SISA benefits from the same effect of
bandwidth scalability as the Tesseract graph accelerator [5].

Managing Concurrency SISA relies on established tech-
niques (locks, lock-free protocols, and general parallel pro-
gramming principles [78] and libraries such as OpenMP [39])
to manage concurrent accesses to the same set.

Memory Layout and Storage of Sets We ensure that
storing SISA sets is feasible (i.e., a maximum-size neighbor-
hood, represented as SA or DB, fits into a single vault).

8.5 SISA Hardware Cost and Feasibility
We also briefly discuss the hardware cost. First, the needed

DRAM chip modifications are minimal and identical to
those already discussed in Ambit. Second, as the logic to be
implemented in SCU is straightforward decision making on
what instruction variant to use, its costs are not prohibitive, as
shown by many designs proposed in the past, for example in
HyVE [81] (a hybrid vertex-edge memory hierarchy that uses
ReRAM and DRAM) or in GraphH [51] (an accelerator that
combines HMC with SRAM). Third, the code of all SISA
instructions is also straightforward: a simple binary search
(galloping), merging of two arrays (merge), or setting/clear-
ing a DRAM cell (set element add/remove). Thus, they can
be trivially deployed in in-order cores in the logic layer of
3D stacked DRAM, as shown by other designs [51].

9. EVALUATION
We illustrate example performance advantages from SISA.

9.1 Methodology, Setup, Parameters
Simulation Infrastructure We use Sniper [77] with the

Pin frontend [114]. Sniper is a popular cycle-level simulator
used in many works proposing various architectural exten-
sions for both CPUs and memory subsystem [126, 174].

SISA Implementation We simulate the SISA HW design
and the ISA, instrumenting the code so that the simulation
toolchain can distinguish between SISA and non-SISA in-
structions. To model each component of SISA, we add the
respective set instructions and simulate the SCU (a small
fixed delay), the cache in SCU (with the LRU policy), the
SM structure (random memory accesses whenever the SCU
cache is not hit), and the execution of all used set operations
by appropriate delays in the simulation execution. For opera-
tions based on streaming and random memory accesses, we
use the performance models described in § 8.3. To simulate
SISA-PUM, we model a run-time of in-situ operations with
a delay lM + lI · dn/(qS)e, where lM is the latency of access-
ing DRAM (to initiate the operation) and lI is the latency
of executing a single in-situ instruction. dn/(qR)e models

a scenario when the bitvector size n exceeds the size of all
DRAM rows that can be processed in parallel (cf. Table 2).

Simulated Platform for SISA & SISA Parametrization
For concreteness, we set the platform for executing SISA
instructions to match Tesseract [5] (for SISA-PNM) and Am-
bit [153] (for SISA-PUM). The former has simple in-order
cores (1 core/vault in its logic layer) with 32 KB L1 instruc-
tion/data caches, no L2, 16 8GB HMCs (128 GB in total),
32 vaults/cube, 16 banks/vault. Each vault offers 16 GB/s
of memory bandwidth to its core. Thus, we assume scalable
bandwidth as proposed by Tesseract: using more vaults in-
creases the total memory bandwidth. In the latter, we set the
DRAM row rank size to 8 KB, following Ambit [153]. Next,
we set the parameter t ∈ [0;1] (that controls the bias towards
using DBs or SAs to store neighborhoods) to 0.4 (i.e., 40% of
neighborhoods are stored as DBs); we also analyze other val-
ues. We ensure that the total storage used for neighborhoods
does not exceed the size of the simple CSR graph storage by
more than 10%. Finally, we set the size of SISA SCU’s cache
to be 32 KB (matching Tesseract’s L1).

Simulated Platform for non-SISA Instructions & Base-
lines For any non-SISA instructions and comparison base-
lines, we use a high-performance Out-of-Order manycore
CPU. Each core has a 128-entry instruction window, a branch
predictor, 32 KB L1 instruction/data caches, a 256 KB L2
cache. All cores share an 8 MB L3 cache. There is also a
four-way associative 64-entry D-TLB, a 128-entry I-TLB,
and a 512-entry S-TLB. For fair comparison, we also use
bandwidth scalability in this configuration, i.e., we increase
the memory bandwidth with the number of cores, matching it
with that of SISA-PNM.

Considered Mining Problems The graph mining prob-
lems that we consider are clustering with the Jaccard
(cl-jac), overlap (cl-ovr), and total neighbors (cl-tot)
coefficients, listing k-cliques (kcc-k, k ∈ {4,5,6}), k-clique-
stars (ksc-k, k ∈ {4,5,6}), maximal cliques (mc), triangles
(tc), and subgraph isomorphism (si-ks for k-stars).

Comparison Targets: Hand-Tuned Algorithms Our
most important (the most challenging to outperform) base-
lines are hand-optimized parallel algorithms for each graph
mining problem. Specifically, we use a tuned version from
the GAP Benchmark Suite [14] for tc, Eppstein’s version of
BK for mc [62], Danisch’ scheme for kcc-k [53], enhanced
Jabbour’s scheme for ksc-k [84], parallel VF2 for si-ks [46],
and cl-jac based on counting triangles in the GAP suite [14].
All used baselines have competitive work and depth complex-
ities, cf. Table 6. For fair comparison, all baselines benefit
from the high bandwidth of PIM. We consider algorithms
that do not explicitly use set algebra (denoted with _non-set)
and their set-centric variants (denoted with _set-based).

Comparison Targets: Pattern Matching Frameworks
When possible, we compare to graph pattern matching frame-
works: Peregrine [85] (a very recent and fast design that
represents accelerators such as Gramer [194], cf. “pattern
matching” in Table 1), and RStream [176] which represents
accelerators such as TrieJax [94] based on relation algebra
(cf. “joins” in Table 1). We stress that we focus on comparing
to (much faster) hand-tuned parallel algorithms.

Graphs We select a broad set of input datasets from Net-
work Repository [144], considering biological (bio-), inter-
action (int-), social (soc-), brain (bn-), dynamic (D), web
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(web-), economical (econ-), ecological (eco-), and structural
(str-) networks. We pick graphs with different structural
properties (low/high density, small/large maximum degree,
low/high degree distribution skew, etc.).

Tackling Long Simulation Runtimes Most benchmarks
use relatively small graphs because (1) we run cycle ac-
curate simulations, tracing all memory accesses, which is
very time-consuming, and (2) the considered algorithms are
computationally hard and even software codes use graphs
much smaller than those used with algorithms such as PageR-
ank [53,62]. However, even this is often not enough to enable
finishing simulations of algorithms such as Bron-Kerbosch.
Thus, we usually also pre-specify a number of graph patterns
to be found. Past work analogously handled long simulations
graph algorithms [5] such as PageRank (limiting #iteration).

Performance Measures & Summaries: We focus on
plain runtimes; this is recommended when measuring perfor-
mance of parallel codes [79] as speedup may be misleading
because it is higher on unoptimized baselines. However, for
overview, we also summarize speedups (following [79]), i.e.,
we provide (1) speedups of average runtimes (“arithm”), and
(2) geometric means of speedups of all data points (“geom”).

9.2 Discussion of Results
Comparison to Hand-Tuned Algorithms We first ana-

lyze run-times with all available cores, comparing SISA set-
centric variants to non-set-based and set-based hand-tuned
parallel baselines that all benefit from high-bandwidth stor-
age. The results are in Figure 6. SISA is almost always the
fastest by a large margin of at least 2×, often more than 10×
(than non-set schemes). The differences vary depending on
the processed graphs and the considered problem. Gains are
usually larger on graphs with large maximum degrees, such
as brain graphs, where SISA-PUM is used more often to di-
rectly process sets inside DRAM, reducing the latency. Such
graphs are prevalent in many computational domains [144],
and this is the case for the majority of considered datasets.

Algorithmic vs. Architectural Speedups We also ob-
serve speedups from using only set-centric formulations (over
non-set-based variants). Namely, speedups of “_set-based”
schemes over the “_non-set” ones indicate gains from purely
algorithmic (set-centric) changes, while speedups of “_sisa”
schemes over the “_set-based” indicate gains only from
architectural changes (i.e., from using PIM). First, the dif-
ferences between _set-based and _non-set heavily depend
on the targeted mining algorithm. These speedups are par-
ticularly visible for more complex algorithms such as mc,
with multiple nested loops and/or recursion. Packaging dif-
ferent parts of such algorithms into, e.g., set intersections,
and being able to control the used operation variant (e.g.,
merging based on streaming) helps to utilize features such
as high sequential bandwidth. Contrarily, for certain sim-
pler schemes such as clustering, the very tuned _non-set
baseline outperforms _set-based (while still falling short
of _sisa). Second, the difference between _set-based and
_sisa depend more on the used graph. Here, in many cases,
_sisa is only marginally faster than _set-based, because
the graph structure (e.g., sizes of neighborhoods) favor using
SAs rather than DBs, diminishing benefits from SISA-PUM
(e.g., for econ- graphs) and equalizing the differences be-
cause both _set-based and _non-set take advantage from
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Non-set almost
always timeouts

(1) SISA speedup over non-set ("geom"), (2) SISA speedup over non-set ("arithm"),
(3) SISA speedup over set-based ("geom"), (4) SISA speedup over set-based ("arithm"),

In each plot, we 
show respectively:

"geom" and "arithm" are different ways to derive speedups, explained at the end of Section IX.A

SISA speedups:
2x, 1.4x, 2.2x, 2.4x

SISA speedups:
6.36x, 21x, 1.5x, 1.46x

SISA speedups:
9.3x, 29.6x, 2.4x, 3.5x

SISA speedups:
10.8x, 29x, 2.5x, 4.3x

SISA speedups:
4x, 8.6x, 3.8x, 4.9x

SISA speedups:
3.3x, 2.3x, 3.6x, 1.04x

SISA speedups:
2.4x, 5.6x, 3.8x, 8.9x

SISA speedups:
2.3x, 7.2x, 4.9x, 9.8x

SISA speedups:
1.8x, 1.6x, 3.8x, 9.7x

Figure 6: Run-times with full parallelism. The bold red line indicates the cutoff of
long simulation runtimes, used for readability (the bars reaching the line have much
larger runtimes). No bar indicates the timeout of the respective baseline (>24h). The
results for cl-jac (clustering based on the Jaccard coefficient) are very similar to
those that use other coefficients and for link prediction as well as vertex similarity. All
32 cores are used. Acronyms are stated in “Comparison Targets: Hand-Tuned
Algorithms”.
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Graphs often used in graph mining have often very heavy tails. Graphs used also outside mining have much lighter (or no) tails.
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Figure 7: Figure 7a: Differences between degree distributions in graphs used mostly in graph mining and the ones used also outside graph mining (on the right). Figure 7b: Sensitivity
analysis: the percentage of neighborhoods stored as dense bitvectors vs. different thresholds for using the galloping or the merging intersection.

the high bandwidth setting. In other cases (e.g., bio-HS-LC),
more vertices have large enough degrees to benefit from DBs
and low latencies of SISA-PUM.

Scalability We also analyze how run-times change when
varying numbers of threads T , for a fixed graph size (“strong
scaling”), and when increasing T proportionally to the graph
size (“weak scalability”). To fix the used graph model, we use
Kronecker graphs [105] and we vary the number of edges/ver-
tex. SISA maintains its speedups, but they become less dis-
tinctive when T is small. This is expected because fewer
threads exert less pressure on the memory subsystem, and
there is overall smaller potential from using PIM in SISA.

Large Graphs We execute SISA on several large graphs,
see Figure 8. Runtime benefits from SISA and the set-centric
formulations are similar to those in smaller graphs in Figure 6.
The only two graphs where SISA and non-SISA set baselines
are comparable, are sc-pwtk and soc-orkut. This is because
these networks, due to their origin (social and scientific) do
not have large cliques or very dense clusters (unlike, e.g.,
genome graphs), somewhat lowering SISA benefits.
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Figure 8: Run-times for large graphs. The bold red line indicates the cutoff of long
simulation runtimes, used for readability (the bars reaching the line have much larger
runtimes). 8 cores are used.

Comparison to Pattern Matching Frameworks We
compare SISA set-centric algorithms to Peregrine and
RStream. Peregrine is able to express only listing k-cliques
and subgraph isomorphism, and maximal clique listing in a
limited way (i.e., it does not offer a native scheme for MC and
we implemented it by iterating over possible clique sizes and
listing maximal cliques of each size). RStream is only able to
find k-cliques. In each case, SISA baselines are much faster:
10-100× than Peregrine (and more than 1,000× for mc due to
Peregrine’s inability to natively support mc), and more than
100× for RStream. This is because these frameworks focus
on programmability in the first place, sacrificing performance,
while in SISA we start with tuned graph algorithms and only
then restructure them with the set-centric paradigm.

Sensitivity Analysis & Design Exploration We investi-
gate the impact from varying SISA parameters.

SCU cache First, not using the SCU cache results in the

loss of performance of ≈1.5× for T = 1 and ≈0.05-0.1× for
T = 32. The lower performance loss for high T is because,
with more threads executing set operations, it becomes in-
creasingly more difficult to ensure high hit ratio. Overall, the
behavior of the SCU cache is similar to that of other such
units such as L1, including varying cache parameters such as
size.

Varying Fraction of Dense/Sparse Neighb Second, we
observe that – while using SISA-PUM is beneficial for the
overall performance – too many neighborhoods stored as DBs
result in slowdowns. This is because when sparse neighbor-
hoods are also stored as DBs, processing such sets (which
have always size n bits) with SISA-PUM begins to take more
time than processing them with SISA-PNM. Thus, it is rele-
vant to not choose the bias parameter to be too high. We find
that 0.4 works well for most processed graphs. We illustrate
this in Figure 7b, where we analyze how the performance
changes when varying the fraction of largest neighborhoods
stored as DBs. Smallest and largest fractions that correspond
to using only SISA-PNM or only SISA-PUM give slowest
runtimes. We also vary the “galloping threshold”, i.e., the
relative difference between two sets that causes the set opera-
tion to switch to the galloping variant. For example, the value
of 5 indicates that galloping is used if any of the two sets is
at least 5× larger than the other one. While this threshold
influences performance, the general pattern stays the same.

We also analyze the impact from the degree distribu-
tions of datasets, see Figure 7a. Graphs often used in graph
mining, such as biological networks, that SISA focuses on,
have often very heavy tails. This implies many large neigh-
borhoods and very dense large clusters, benefiting from SISA-
PUM. For example, the human genome graph has many
vertices connected to more than 30% of all other vertices.
Other graphs such as social networks have much lighter tails,
cf. soc-orkut and sc-pwtk in Figure 7a. This is because these
networks, due to their origin (social, scientific) do not have
large cliques or very dense clusters. Such graphs benefit
less from SISA-PUM. Still, using SISA-PNM enables high
performance, outperforming tuned non-set-based baselines,
cf. Figure 8.

We also analyze load balancing. Figure 9a illustrates
total fractions of time during which each parallel thread is
stalled when executing a given algorithm. SISA stall times
are low because its design implicitly tackles two types of
load imbalance. First, SISA’s performance models enable
adaptive selection of the best variant of a set algorithm to be
executed for any two sets. This minimizes load imbalance
from processing two sizes that differ a lot in sizes. Second,
load imbalance due to processing imbalanced pairs of sets

10



(i.e., two very small and two very large sets) is alleviated by
the fact that very large pairs of sets are processed with very
fast SISA-PUM.

We also show that the reduced simulation runtimes do not
artificially eliminate load imbalance. We gather traces of exe-
cuted set operations in full vs. partial simulation executions,
and we plot histograms of the sizes of processed sets, see
Figure 9b. In both types of executions, we encounter large
sets which are the primary source of load imbalance.
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Figure 9: Load balancing analysis.

SISA Limitations For some graphs with small maximum
degrees (e.g., soc-fbMsg) in Figure 6, SISA speedups are
smaller, or even (in the extreme cases) result in slowdowns.
This is because the benefits from SISA-PUM, or from the au-
tomatic selection of the most beneficial set operation variant,
are out-weighted by having to process too many large bitvec-
tors. This effect rare, and it can be alleviated by reducing the
number of neighborhoods stored as DBs. In this case, the
performance of SISA variants gradually converges towards
that of standard CSR based set-centric algorithms. We plan
on addressing it with advanced bitvector representations.

10. RELATED WORK & DISCUSSION
We already extensively described related graph process-

ing paradigms (Table 1) and various software related graph
processing efforts (Section 1) [20, 20, 25, 115, 146]. We now
briefly summarize other related areas. First, we conducted an
exhaustive analysis of existing hardware accelerators as well
as ISA designs for graph processing, see Table 7. The analy-
sis indicates that SISA offers the only hardware acceleration
for a broad family of problems such as maximal clique listing
or clustering. Additionally, this work is an example of how
to seamlessly integrate PUM and PNM capabilities in a single
system. They work synergistically and produce significantly
better results than working separately. Works orthogonal to
SISA include HW accelerated dynamic (time-evolving) graph
analytics [34, 35, 76], or external memory HW accelerated
graph processing [57, 92, 119]. One could use the latter as a
SISA backend for external memory set instructions; we leave
details for future work.

While in the current SISA version we focus on imple-
menting and executing set operations in set-centric algorithm

Reference /
Accelerator Prob. Key memory

mechanism
Pattern M. Learning “Low-c.” is xl ab
mckc ds si vs lp cl av bf pr cc

[Pi] GaaS-X [38] SpMV [e] CAM/MAC é é é é é é é é �� � é ��

[Pi] GraphSAR [52] ver-c [e] ReRAM é é é é é é é é �� � é é é

[Pi] GraphiDe [10] low-c [e] DRAM é é é é � é é é �� � �� é

[Pi] GraphIA [106] edge-c [e] DRAM é é é é é é é é �� � é é é

[Pc] Spara [200] ver-c [e] ReRAM é é é é é é é é �� � é � é

[Pc] GraphQ [209] ver-c [e] HMC é é é é é é é é �� � é � é

[Pc] GraphS [11] low-c [e] SOT-MRAM é é é é � é é é �� � é é é

[Pc] RAGra [82] ver-c [e] 3D ReRAM é é é é é é é é �� � é � é

[Pc] GRAM [201] ver-c [e] ReRAM é é é é é é é é �� � é � é

[Pc] GraphR [162] SpMV [e] ReRAM é é é é é é é é �� � é ��

[Pc] GraphP [196] ver-c [e] HMC é é é é é é é é �� � é é �

[Pc] Tesseract [5] low-c [e] HMC é é é é é é é é �� � é ��

[Pc] PIM-Enabled [6] low-c [e] HMC é é é é é é é é �� � ���

[Pc] Gao et al. [66] low-c 3D DRAM é é � é é é é é �� � é � é

[Pc] LiM [207, 208] SpMSpM [e] 3D DRAM é é é é é é é é �� � é é é

[A] Gramer [94] pattern m. DRAM, cache é ��� é é é é é é é é � é

[A] TrieJax [94] joins DRAM, LLC é �� é é é é é é é é é ��

[A] HyGCN [189] GCN eDRAM é é é é ��� é é é � é ��

[A] Outerspace [136] SpMSpM HBM é � é é é é é é �� � é é é

[A] Domino [184] low-c on-chip buffers é � é é é é é ��� é é é

[A] GraphPIM [131] low-c [e] HMC é �� é é é é é �� � �� é

[A] Graphicionado [73] ver-c [e] eDRAM é é é é é é é é �� � é é �

[A] Ozdal et al. [135] ver-c [e] caches é é é é é é é é �� � é ��

[M] GraphSSD [119] low-c [e] SSD é é é é é é é é �� � é ��

[M] GRASP [63] low-c [e] LLC é é é é é é é é �� � é � é

[M] DROPLET [12] edge-c [e] DRAM pref. é é é é é é é é �� � é � é

[M] Ainsworth [7] low-c [e] DRAM pref. é é é é é é é é �� � é � é

[M] HyVE [81] ver-c ReRAM, SRAM é é é é é é é é �� � é � é

[M] HATS [127] low-c [e] caches é é é é é é é é �� � é ��

[M] OSCAR [159] edge-c [e] scratchpads é é é é é é é é �� � é ��

[M] IMP [195] low-c [e] caches é � é é é é é é �� � é ��

[F] GraphABCD [191] low-c DRAM é é é é ��� é �� � é ��

[F] Wang et al. [175] clustering BRAM é é é é é é � é é é é � é �

[F] ForeGraph [49, 50] low-c BRAM é é é é é é é é �� � é é �

[F] Yang [190] ver-c DRAM é é é é é é é é �� � é ��

[F] Yao [192] low-c DRAM é � é é é é é é �� � é � é

[F] Zhou [204] edge-c DRAM é é é é é é é é �� � é é �

[F] ExtraV [102] low-c DRAM é é é é é é é é �� � é ��

[F] Ma [116] low-c DRAM é � é é é é é é �� � é � é

[F] Zhou [205] ver-c, edge-c DRAM é é é é é é é é �� � é ��

[F] GraVF [61] ver-c BRAM é é é é é é é é �� � é é �

[F] Zhou [202, 203] edge-c DRAM é é é é é é é é �� � é é �

[F] GraphOps [134] low-c BRAM é é é é é é é é �� � é ��

[F] FPGP [48] ver-c DRAM é é é é é é é é �� � é � é

[F] GraphSoC [95] low-c, SpMV BRAM é é é é é é é é �� � ���

[F] GraphGen [133] ver-c DRAM é é é é é é é é �� � é ��

[F] GraphStep [96] low-c BRAM é é é é é é é é �� � é ��

[F] Betkaoui et al. [30] low-c DRAM é �� é é é é é �� � é ��

[A+Pc] EnGN [75] GNN [e] HBM é é é é ��� é é � é é é é

[A+Pc] OMEGA [2] low-c [e] Scratchpads é � é é é é � é �� � é é �

[A+Pc+M] GraphH [51] ver-c [e] HMC é é é é é é é é �� � é � é

[F+Pc] HRL [67] ver-c [e] 3D DRAM é é é é é é é é �� � é � é

[Pc+Pi] SISA [This work]Graph miningPIM �������� é é é ���

Table 7: Comparison of SISA to graph-related accelerators, focusing on sup-
ported graph mining problems and offered architecture elements. “�”: Support
/ significant focus. “�”: Partial support / some focus. “é”: no support / no focus.
Addressed problems: see Table 1. Graph problems and algorithms: as in Table 1.
Architecture and stack elements that are considered and discussed: is: an ISA, or
its extensions, xl: a cross-layer design, ab: a programming paradigm Classes of ac-
celerators: [Pi]: in-situ PIM, [Pc]: near memory PIM (e.g., logic layers), [A]: ASIC,
[M]: focus on memory hierarchy enhancements, [F]: FPGA, [e] focus on extensions
and modifications to the established (already proposed) HW technology,
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formulations using PIM, SISA could be extended into dif-
ferent directions. This includes parallel and distributed exe-
cution of set operations, and implementing them using high-
performance techniques such as Remote Direct Memory Ac-
cess [19, 21, 68, 150]. One could also enable more efficient
execution of set-centric graph mining algorithms in the con-
text of modern complex heterogeneous architectures that may
host massively parallel on-chip networks [18], NUMA and
systems with locality effects [151,169], or FPGAs [17,26,55].
One could also incorporate various forms of graph compres-
sion and summarization [22, 27, 29, 111].

Sets are used in different graph algorithms, to simplify
operations on selected data structures [25, 33, 99, 124, 137,
149, 155]. For example, the BFS frontier can be modeled as
a set. Here, SISA’s main contribution is not to simply use
set notation. Instead, from the algorithmic perspective, SISA
is the first design that (1) uses set operations as the primary
building blocks, which break down complex graph mining
algorithms into simple units of parallel execution, and (2)
identifies the “appropriate” set operations (i.e., operations that
are easily accelerated with PIM) and reformulates selected
algorithms so that they use such operations, cf. Table 3.

11. DISCUSSION AND CONCLUSION
We develop the first hardware acceleration approach for

general graph pattern matching and learning. First, we offer
a set-centric programming paradigm, where one identifies
and exposes set operations in graph mining algorithms. This
enables competitive time complexities and succinct formula-
tions. Second, the set-centric algorithms are mapped to SISA,
a small yet expressive “set-centric” ISA extension for graph
mining. SISA could be extended with CISC-style set in-
structions that accept multiple arguments (e.g., A1∩ ...∩Al)
to facilitate optimizations such as vectorization with loop
unrolling. Due to the generality of set algebra, SISA can
be used for problems beyond graph mining. Third, while
we pick in-situ and logic layer PIM for hardware acceler-
ation, SISA’s set algebra interface could easily use other
hardware backends, for example a GPU backend for fast
SIMD-based set intersections [74], FPGAs [26], or even exe-
cution in caches [3, 130]. Our cross-layer architecture could
also be extended in other directions, for example by provid-
ing compiler support for generating SISA programs from
set-centric formulations.
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