
Isoefficiency in Practice: Configuring and Understanding
the Performance of Task-based Applications

Sergei Shudler
Technische Universität Darmstadt

Darmstadt, Germany
shudler@cs.tu-darmstadt.de

Alexandru Calotoiu
Technische Universität Darmstadt

Darmstadt, Germany
calotoiu@cs.tu-darmstadt.de

Torsten Hoefler
ETH Zurich

Zurich, Switzerland
htor@inf.ethz.ch

Felix Wolf
Technische Universität Darmstadt

Darmstadt, Germany
wolf@cs.tu-darmstadt.de

Abstract
Task-based programming offers an elegant way to express
units of computation and the dependencies among them,
making it easier to distribute the computational load evenly
across multiple cores. However, this separation of problem
decomposition and parallelism requires a sufficiently large
input problem to achieve satisfactory efficiency on a given
number of cores. Unfortunately, finding a good match be-
tween input size and core count usually requires significant
experimentation, which is expensive and sometimes even
impractical. In this paper, we propose an automated empir-
ical method for finding the isoefficiency function of a task-
based program, binding efficiency, core count, and the input
size in one analytical expression. This allows the latter two
to be adjusted according to given (realistic) efficiency objec-
tives. Moreover, we not only find (i) the actual isoefficiency
function but also (ii) the function one would yield if the pro-
gram execution was free of resource contention and (iii) an
upper bound that could only be reached if the program was
able to maintain its average parallelism throughout its ex-
ecution. The difference between the three helps to explain
low efficiency, and in particular, it helps to differentiate be-
tween resource contention and structural conflicts related to
task dependencies or scheduling. The insights gained can be
used to co-design programs and shared system resources.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org or Publications
Dept., ACM, Inc., fax +1 (212) 869-0481.

PPoPP ’17, February 4–8, 2017, Austin, Texas, USA.
Copyright c© 2017 ACM 978-1-4503-4493-7/17/02. . . $15.00
DOI: http://dx.doi.org/10.1145/3018743.3018770

Categories and Subject Descriptors C.4 [Performance of
Systems]: Modeling techniques; D.1.3 [Concurrent Pro-
gramming]: Parallel programming; D.2.8 [Metrics]: Per-
formance measures; D.4.8 [Performance]: Modeling and
prediction

Keywords parallel programming; tasking; isoefficiency;
performance modeling; performance analysis; co-design

1. Introduction
Task-based programming models, such as Cilk [7] or
OpenMP [28], are well known and as the number of cores
per node continues to increase, they gain more and more at-
tention. One major advantage of task-based programming is
that it allows parallelism to be expressed in terms of tasks,
which are units of computation that can be either indepen-
dent, dependent on a previous task, or a prerequisite to a
subsequent task. Explicitly expressing parts of the code as
tasks allows the compiler to take care of all the thread man-
agement intricacies, thereby sparing the user from tedious
low-level details. Good task delineation also helps the sched-
uler better exploit the inherent parallelism and can lead to
improved load balance. For these reasons, task-based pro-
gramming will play an even more prominent role in exascale
systems.

Normally, when the user receives an allocation of com-
puting resources, the nodes are not shared. This means the
user has to use all of the cores on each node efficiently, oth-
erwise, computing resources are wasted. In an exascale sys-
tem this problem will be even more pronounced because the
available node concurrency is predicted to be larger by at
least one order of magnitude compared to the systems avail-
able today [34].

Although the optimization of task-based algorithms has
been studied extensively in the past [12, 14, 21, 27, 33],

the size of the input in these studies usually remained fixed.
Since the critical path length in a task dependency graph lim-
its the speedup of the algorithm [8], fixed input size means
that no matter how well the algorithm is optimized, the
speedup, and thus the efficiency, is limited. Starting from a
certain core count the speedup will stop increasing unless the
input size increases as well. Moreover, scaling is often not
perfect, meaning that the speedup rate is too slow to main-
tain constant efficiency. Figure 1 is an example of this phe-
nomenon. It shows the speedup and efficiency for the appli-
cations Sort and Strassen from the Barcelona OpenMP Tasks
Suite (BOTS) [14]. Although the inputs for these applica-
tions are 128M integers and 8,192× 8,192 doubles, respec-
tively, their speedup does not increase fast enough, leading
to a sharp drop in efficiency. Even if we try to optimize the
code and achieve better speedups, the effect will not last at
higher scales, as an optimized version will still be limited
by the length of the critical path. The only way to ensure
that efficiency remains constant, as the number of cores in-
creases, is to increase the input size as well. This concept is
embodied in the isoefficiency relation [20], which binds the
number of processing elements (PEs) the application uses
to the input size. It specifies by which factor the input size
has to increase, with respect to the increase in the number
of PEs, to maintain constant efficiency. Isoefficiency can be
generalized to a two-parameter efficiency function that pro-
vides efficiency values as a function of both the PE count and
the input size. The contour lines of this function are exactly
isoefficiency lines (cf. Section 3).

Although isoefficiency analysis is useful in understand-
ing the scalability behavior of algorithms, it is not straight-
forward to apply and requires deep knowledge of the algo-
rithm. Moreover, it only provides theoretical insight, much
like traditional complexity analysis. In practice, however,
task-based algorithms experience hardware limitations in the
form of resource contention in general and memory con-
tention in particular. Resources such as cache and memory
controllers are limited and can negatively impact application
scalability [35]. These might render theoretical isoefficiency
functions not accurate enough to be used in practice. To be
able to make informed decisions as to how big the input size
should be in order to use all of the allocated cores efficiently,
the user not only has to have a realistic isoefficiency model
but also needs to understand the severity of resource con-
tention at higher scales.

In this study, we propose a novel practical method to au-
tomatically model the empirical efficiency functions of task-
based applications and their contention-free replay runs.
Modeling the efficiency function allows us to easily derive
an isoefficiency relation for any realistic target efficiency. To
this end, we developed a task replay engine that executes
empty task skeletons, thereby emulating execution without
resource contention. Resource contention includes cache ac-
cesses, memory bandwidth, coherence traffic, network com-

5 10 15 20 25 30

5

10

15

20

25

30

Cores

Sp
ee

du
p

0.4

0.5

0.6

0.7

0.8

0.9

1

E
ffi

ci
en

cy

Sort (speedup) Strassen (speedup)
Sort (efficiency) Strassen (efficiency)

Figure 1: Speedup and efficiency for Sort and Strassen ap-
plications from BOTS benchmark.

munication, and disk I/O. After performing the replay runs
we derive the efficiency function from the results and com-
pare the models we obtain with the models of normal runs.
A big discrepancy suggests that resource contention over-
head is a major scalability bottleneck. We also analyze the
task dependency graph (TDG) and model an upper bound
efficiency based on TDG metrics. A discrepancy between
the upper bound efficiency and the contention-free efficiency
suggests that there is still room to improve either the algo-
rithm itself or the scheduler. Our approach is applicable to
both pure shared memory applications, as well as to task-
based parts of hybrid applications (e.g., OpenMP parallel re-
gions in hybrid MPI / OpenMP applications). Our approach
helps users, application developers, and hardware designers
answer the following important questions, related to both ap-
plication analysis and deployment:

1. Are there any fundamental scalability limitations in the
algorithm or the implementation of a task-based applica-
tion? This is helpful to compare implementation alterna-
tives independently of the target system.

2. Is poor scaling of a task-based application a result of re-
source contention overhead? The answer helps applica-
tion developers analyze the causes of bottlenecks in their
applications and system designers to respond to pressure
on shared resources.

3. Is there any optimization potential, in terms of task de-
pendencies, scheduling, and granularity in a task-based
application? The answer helps application developers op-
timize their applications on the level of the task graph and
its execution.

4. What is the required input size for a given core count such
that we maintain a constant, given efficiency? The answer
helps users efficiently utilize all the computing resources
they have. They can aim for the right problem sizes based
on the number of available cores.

5. What is the required core count for a given input size such
that we maintain a constant, given efficiency? Which
efficiency can we expect for a given number of cores and
input size? Both questions are related to the co-design
process when hardware designers have to understand how
to make future systems suitable for both existing and
future applications.

The remainder of this paper is organized as follows. In
Section 2, we describe the task dependency graph analysis in
greater detail. In Section 3 we describe the efficiency mod-
eling approach and present the task replay engine. Section 4
evaluates our technique, analyzes the results, and, at the end,
shows examples of deriving application input sizes for a tar-
get machine. Finally, we review related work in Section 5,
before drawing our conclusion in Section 6.

2. Task Dependency Graphs and Efficiency
Analysis

There is an important difference between tasks and threads: a
task is a work package containing a collection of instructions
to be executed, whereas a thread is a light-weight process
that executes given instructions in an independent context.
A task-based code can be executed by one or more threads
running on one or more cores. Each instance of a task is
executed at any given time by only one thread. For the
purpose of our discussion, we will assume that the number of
threads is equal to the number of cores, and that each thread
runs on a separate core.

A task dependency graph (TDG) is a directed acyclic
graph (DAG) that represents the execution of a task-based
application. The nodes of this graph are tasks, and the edges
represent dependencies between tasks, meaning that a task
cannot begin execution before the tasks connected to it via
incoming edges have been completed. Except for some triv-
ial cases, most of the interesting and useful problems have
dependencies in their algorithm flow, thereby producing
complex TDGs.

In the process of execution, the scheduler assigns tasks,
which are ready to be executed, to threads. Depending on the
scheduler, tasks might be stopped (i.e., preempted) and re-
sumed later. In this regard, tasking environments, including
OpenMP, distinguish between tied and untied tasks. A tied
task can only be executed by the thread that started executing
it. This implies that if this task is preempted it can only be re-
sumed by the thread that executed it before. An untied task,
on the other hand, can be resumed by any available thread
after preemption. Both types of tasks have advantages—tied
tasks provide guarantees for private data (i.e., data on the
stack), whereas untied tasks provide more flexibility to the
scheduler. In this study we use applications with both types
of tasks.

2

78 4

19 10

6

3

Figure 2: Task dependency graph; each node contains the
task time and the highlighted tasks form the critical path.

2.1 TDG Metrics and Laws
We characterize TDGs using a set of key metrics [6, 11].
The work of the computation is the total execution time on
one core, or the sum of all the task times. The depth of the
computation (also known as span) is the total sum of all task
times on the critical path, which is the longest path, in terms
of task times, from any source node to any target node. A
source node is a node with no incoming edges, and a target
node is a node without any outgoing edges. Figure 2 shows
an example of a TDG in which work equals 50 and depth
equals 25. In the rest of the paper, we use the following
notations:

• p, n: the number of threads and the input size, respec-
tively.

• Tp(n): the execution time of a computation with p
threads with input size n.

• T1(n): the work of the computation, or the computational
effort for input size n.

• T∞(n): the depth of the computation for input size n.

• Sp(n) = T1(n)
Tp(n) : the speedup of the computation for

specific p and n.

• π(n) = T1(n)
T∞(n) : the average parallelism of the computa-

tion for n.

From these TDG metrics we can derive important
laws [11] and boundaries on speedup and efficiency.

Work law The execution cannot be faster than when we
divide the whole work T1(n) equally between cores:

Tp(n) ≥ T1(n)

p
(1)

A direct consequence of the work law is an upper bound
on the speedup: Sp(n) ≤ p. We ignore super-linear speedups
for the sake of simplicity.

Depth law Since the critical path is a chain of dependen-
cies, the tasks on this path must be executed one after the

other, giving us another lower bound on the execution:

Tp ≥ T∞ (2)

In this case we can derive another upper bound on the
speedup: Sp(n) ≤ π(n).

2.2 Efficiency and Isoefficiency
The two-parameter efficiency function is defined as effi-
ciency E(p, n) =

Sp(n)
p with two parameters p and n. The

isoefficiency, which binds together the core count and the in-
put size [19, 20] for a specific, constant efficiency, is simply
a contour line on the surface ofE(p, n). To clarify this point,
we first define the total overhead time:

To(p, n) = pTp(n)− T1(n) (3)

This is the total amount of time that all of the threads spend
without contributing to the solution of the problem, includ-
ing resource contention, idle time, and scheduling overhead.
Rearranging Eq. 3 and using the efficiency definition (i.e.,
E =

Sp(n)
p) yields the isoefficiency relation:

T1(n) =
E

1− ETo(p, n) (4)

This relation binds T1(n), p, and E. Normally, in isoeffi-
ciency analysis, the efficiency E is constant and we are able
to form an expression that relates the core count p to the
work of the computation T1(n). However, if we rearrange
Eq. 4 such that E = f(p, n), we obtain an expression that
relates the core count p and the input size n to the efficiency
E. In other words, we obtain the efficiency function. It is
easy to see now that isoefficiency is a special case of the
more general efficiency function limited to a specific, con-
stant efficiency.

Isoefficiency is a useful tool in the theoretical analysis of
parallel algorithms. It allows users and developers to com-
pare different alternatives and choose the one in which the
problem size grows more slowly in relation to the core count.
In practice, however, resource contention overhead might
overshadow other types of overheads and render a thought-
to-be-scalable algorithm unscalable. Our methodology tack-
les this problem by modeling the empirical efficiency func-
tions of both the application itself and the contention-free
replay of the application. We can identify three different ef-
ficiency functions for a task-based application:

1. Eac(p, n): The actual efficiency function of the appli-
cation, modeled after the empirical results of runtime
benchmarks. In this case the application runs as it is and
experiences contention. Therefore, this function reflects
realistic application performance including resource con-
tention and scheduling overhead.

2. Ecf (p, n): The contention-free efficiency function, mod-
eled after the results of replaying empty task skeletons

5
10

15

20

40

60

0

0.5

1

1

1
0.8

0.8 0.6

0.6 0.4

0.40.4

Cores p
Input size n

E
ffi

ci
en

cy

Figure 3: Upper-bound efficiency function Eub(p, n) =

min{1, logn
p }. The contour lines are isoefficiency functions

for the efficiency values 1.0, 0.8, 0.6, and 0.4.

according to the application’s TDG. The replay uses
the same TDG and scheduling policy as in the original
runs that were benchmarked to produce Eac(p, n). Since
the replay is free of resource contention, this efficiency
function reflects an ideal situation in which the applica-
tion does not experience resource contention caused by
threads accessing the same resource simultaneously.

3. Eub(p, n): An upper bound on the efficiency of the ap-
plication. Since efficiency is defined as Sp(n)

p , an upper
bound on the speedup also limits the efficiency. From
Section 2.1 we know that Sp(n) ≤ min{p, π(n)}, thus
we define Eub(p, n) = min{1, π(n)

p }. This function de-
scribes an ideal situation of maximum speedup that is
hardly achievable in practice.

As a concrete example for an efficiency function, con-
sider the task-based version of the Mergesort algorithm. A
theoretical analysis of its TDG, for increasing input size n,
gives us: T1(n) = Θ(n log n) and T∞(n) = Θ(n) [11].
Without loss of generality, we assume that the constant fac-
tor is 1 and get: π(n) = log n. Figure 3 depicts the upper-
limit efficiency function Eub(p, n) = min{1, logn

p } that we
obtain in this case. It is a 3D surface graph in which the X
and Y axes are the core count and the input size, respec-
tively; whereas, the Z-axis, limited to the range [0, 1], gives
us the efficiency values. The contour lines at Z-axis values
of E = 1, E = 0.8, E = 0.6, and E = 0.4 are isoefficiency
functions for these efficiencies.

By analyzing the differences between the efficiency func-
tion we can gain a number of important insights:

• ∆con = Ecf (p, n) − Eac(p, n): The contention dis-
crepancy between actual and contention-free efficiencies
characterizes how severe the resource contention over-
head is. Essentially, it tells us whether this overhead is a
significant obstacle to application scalability. A big dis-
crepancy suggests that optimization efforts should focus

#pragma omp task

...

#pragma omp task

...

#pragma omp taskwait

...

Instrument
code

Benchmark
for n, p

Benchmark
task replay

for n, p

Measurements
results

Multi-
parameter
modeling

Efficiency models

Figure 4: The modeling workflow for actual and replay efficiency models.

on reducing the resource contention either on the level of
the application or the underlying system.

• ∆str = Eub(p, n) − Ecf (p, n): The structural discrep-
ancy between upper bound and contention-free efficien-
cies characterizes the optimization potential of the ap-
plication on the level of the task graph. A big discrep-
ancy suggests that developers should explore optimiza-
tion steps beyond reducing resource contention, such as
reducing task dependencies, adjusting the task granular-
ity, or using a more efficient scheduler. A small discrep-
ancy, on the other hand, means that – disregarding con-
tention – an algorithm’s implementation is close to the
maximum efficiency that it can achieve. ∆str can only
provide insights into an observed behavior of an appli-
cation’s algorithm. However, there might be other, possi-
bly better algorithms that would produce different TDGs
with different Eub(p, n) functions, and potentially, even
a better maximum efficiency.

3. Modeling Approach
In this section we present our approach to modeling the effi-
ciency functions, and consequently, the isoefficiency func-
tions. Performance modeling, and automated performance
modeling in particular, was shown to be useful and prac-
tical for analyzing the performance of parallel applica-
tions [9, 23, 26, 31, 32]. In this work, we combine multi-
parameter performance modeling with benchmarking of real
task-based applications to automatically generate the em-
pirical efficiency functions of both the application and the
contention-free replay of the application’s TDG.

Figure 4 shows the modeling workflow. It starts with
instrumenting the code, continues with the construction of
the code’s TDG, and then proceeds with benchmarking the
code for increasing n and p. The TDG is used as an input
to the replay engine, which we will present later in this
section, and the replay is benchmarked in the same way as
the code itself. After benchmarking both the application and
the replay, we continue with producing empirical models
using the performance-modeling tool Extra-P [2].

For our study we use the OmpSs [15] threading envi-
ronment. Similar to OpenMP, OmpSs offers the ability to
annotate functions or blocks of code as tasks. Although
task dependencies were already introduced in OpenMP 4.0,
not all compilers support them in full yet. OmpSs, on the

other hand, provides a more mature task dependency sup-
port that allows experimentation with more complex TDGs.
The OmpSs runtime, Nanos++, provides an instrumentation
plugin that instruments the code, measures the task execu-
tion times, generates the TDG, and saves it as a Graphviz [3]
.dot file. We modified the instrumentation plugin to com-
pute T1 and T∞, and produce a simplified .dot file, better
suited as an input to the replay engine.

Moreover, OmpSs and OpenMP offer the same syntax for
task creation and synchronization, namely, #pragma omp

task and #pragma omp taskwait work in both environ-
ments. This allows the OmpSs compiler to compile OpenMP
task-based applications, and it also allows the Nanos++ run-
time to successfully instrument them.

OmpSs provides a number of choices for task scheduling
policies during application execution. Using the breadth first
scheduler (--schedule=bf flag) for tied tasks and the work
first scheduler (--schedule=wf flag) for untied tasks was
shown to produce good runtimes [13]. The breadth first
scheduler uses a single, FIFO-ordered global ready queue for
the tasks. Whenever a task is ready (i.e., its dependencies are
fulfilled) it is enqueued in the queue and later dequeued to be
executed by an available thread. The work first scheduler, on
the other hand, uses one ready queue per thread. Whenever
a task is created by a thread, the thread begins to execute it
immediately, preempting the current task and placing it in
the queue. If a thread becomes idle and its queue is empty, it
attempts to steal tasks from the queues of the other threads
to improve load balance. This scheduling policy is similar to
the default scheduling policy used in Cilk [7].

3.1 Task Replay Engine
The goal of the task replay engine is to emulate the execution
of a task graph without resource contention. The TDG, con-
structed by the instrumentation plugin, contains task times
when the code is executed by one thread. Since a single
thread does not have to share memory bandwidth or wait for
other threads to access shared data structures, these times are
free of resource contention overhead.

Instead of specifying the tasks implicitly using pragmas,
the replay engine uses the OmpSs runtime API to specify the
tasks and their dependencies explicitly. This API is defined
in the nanox/nanos.h file that is part of the OmpSs instal-
lation. Each task is specified as a function that receives the

5 10 15 20 25 30 35 40
0

3

6

9

12

15

18

Cores p

In
pu

ts
iz

e
n

(·1
03

)

0.2

0.4

0.6

0.8

1

Figure 5: Typical benchmark results; the color of each point
represents the measured efficiency.

task time as an argument and then busy-waits in a loop for
the duration of this time. To query the time efficiently and
with minimal overhead we use the timer of the LibSciBench
library [22]. The library provides high-resolution timers for
a number of common architectures. For the x86 architecture,
on which we tested our methodology, the timer of the library
uses the RDTSC register, and in order to prevent problems
with out-of-order execution it issues the CPUID instruction
before querying the register. The overhead in the function
that emulates task execution is minimal. It only includes
querying the time, repeating a loop counter, and accessing
one local variable to store the accumulated time.

Since we use the same OmpSs runtime for the replays as
we use for the normal runs, we ensure that the combination
of the scheduler and tied/untied tasks during the replay is the
same as it is during the normal runs.

3.2 Multi-Parameter Modeling with Extra-P
We start by selecting a range of threads p and a range of input
sizes n. The benchmark then runs the application for each
combination of p and n from these ranges. The results can
be viewed as a 2D grid of points: the X-axis is the number
of threads and the Y-axis is the input size. Figure 5 shows
an example of such a 2D grid. Each point represents a single
result and its color the measured efficiency.

After the benchmarking is done we run Extra-P [2] to pro-
duce two-parameter models of efficiency. These models are
a special case of the more general multi-parameter models
that aim to capture how a number of independent param-
eters, such as core count, problem size, and algorithmic pa-
rameters, influence a target metric, such as runtime, floating-
point operations, and so on. The performance model normal
form (PMNF) for multiple parameters [10] is defined as:

f(x1, x2, ..., xm) =

n∑
k=1

ck ·
m∏
l=1

x
ikl

l · logjkl (xl) (5)

In this form, parameters xl are represented by m combi-
nations of monomials and logarithms, which are summed

Table 1: Evaluated task-based applications.

App. Origin Description

Cholesky BAR Cholesky factorization of dense matrices
FFT BAR Fast Fourier transform of a matrix
Fibonacci BOTS Calculates Fibonacci numbers
NQueens BOTS Solution of the N-Queens problem
Sort BOTS Integer sorting with parallel Mergesort
SparseLU BAR LU decomposition over a sparse square matrix
Strassen BOTS Strassen’s matrix multiplication

up in n different terms to form the whole model. The ex-
ponents ikl and jkl are chosen from sets I, J ⊂ Q, re-
spectively. Essentially, these sets define the scope of all the
possible terms. Consider, for example, n = 3, m = 2,
and I = {0, 0.25, 0.5}, J = {0, 1}. In this case, the
search space for possible terms would be {1, log(x), x0.25,
x0.25log(x), x0.5, x0.5log(x)}, and an example model could
be: f(x1, x2) = c1 + c2 · x0.5

1 + c3 · x0.25
1 x0.25

2 log(x2).
The modeling technique is based on an iterative model-

ing refinement process that stops when R̄2, the adjusted co-
efficient of determination – a standard statistical fit factor
∈ [0, 1] such that a value of 1 indicates an optimal fit – can-
not be improved any further. In cases when n andm increase
and the search space of possible terms becomes too big, the
technique uses a heuristic that greatly reduces the number
of candidate models, while retaining a high degree of accu-
racy. This makes the multi-parameter modeling mechanism
a usable technique in practice [10].

4. Evaluation
In this section, we model the efficiency, and hence the iso-
efficiency, of a number of task-based applications using our
methodology and evaluate the results. We start with a dis-
cussion of the benchmarking setup, and then continue with
the analysis of the results, including depth and parallelism
models, isoefficiency models, and co-design use cases.

4.1 Experimental Setup
Table 1 presents the applications we evaluated. Since
the focus is on task-based OmpSs/OpenMP applications,
we selected our candidates from well known benchmark
suites that target these programming models, namely, the
Barcelona OpenMP Tasks Suite (BOTS) [14] and the
Barcelona Application Repository (BAR) [1]. We were able
to use the OmpSs compiler, which supports both the OmpSs
and the OpenMP syntax, to successfully compile BOTS.
While applications from BAR only have tied tasks, BOTS
offers both tied and untied versions of its applications. To
have a better coverage of potential use cases, we chose to
run untied versions of BOTS applications and selected the
scheduling policy accordingly.

We ran our experiments on a single NUMA node that
consists of four Xeon E7-4890 v2 processors with 15 cores

1 2 4 8 16 32 60
0.1

1

10

50

Cores p

T
p
[s
]

Actual run
CF replay

T∞

(a) Cholesky (8,400× 8,400 doubles)

1 2 4 8 16 32 60
0.1

1

10

50

Cores p

T
p
[s
]

Actual run
CF replay

T∞

(b) Fibonacci (n = 49)

1 2 4 8 16 32 60
0.01

0.1

1

10

50

Cores p

T
p
[s
]

Actual run
CF replay

T∞

(c) NQueens (14× 14 board)

1 2 4 8 16 32 60
0.1

1

10

50

Cores p

T
p
[s
]

Actual run
CF replay

T∞

(d) Strassen (4K×4K doubles)

Figure 6: Runtimes of actual runs and contention-free (CF) replays (on log scale) with constant input. The horizontal dashed
lines, labeled T∞, show the depth of the computation for the given inputs.

in each processor. Together they comprise 60 cores in one
shared-memory machine.

For measuring both the runtime of each application as
well as the task times we used the timer of the LibSciBench
library [22] (as in the task replay engine). Each execution
and replay of a particular combination of (p, n) was repeated
multiple times. To reduce the effects of noise and increase
the accuracy of the models we measured the confidence in-
tervals of our measurements and increased the number of
repetitions accordingly. As a rule of thumb, we deemed the
number of repetitions to be enough when the 95% con-
fidence interval was no larger than 5% of the mean. For
most of the benchmarked applications, five repetitions was
enough, but for some of them ten repetitions were necessary.
In the special case of p = 1, we ran both the instrumented
version of the code to produce the TDG and the uninstru-
mented version to measure a perturbation-free runtime as
input for efficiency calculations.

Some applications have more than one input parameter,
and depending on a particular combination of input parame-
ters, the TDG can increase in different ways. In some cases,
the number of tasks stays constant, while the task sizes in-
crease; in other cases, the tasks sizes stay constant, but the
number of tasks increases. Sometimes both the number of
tasks and the task sizes increase. In all these cases, both the
work (i.e., T1(n)) and n increase.

In the case of Cholesky, the smallest input was a 1,200×
1,200 matrix with 200 × 200 blocks, and the largest was a
16,000×16,000 matrix with 800×800 blocks. The inputs for
FFT ranged from 5,280×5,280 to 30,000×30,000 matrices.

The input for the Fibonacci application is the index of
the Fibonacci number. In our benchmarks, the smallest input
was 47 and the largest 53. Smaller inputs resulted in very
short runtimes, which did not serve the purposes of this
study. The input of NQueens is the board dimension, which
ranged from 10 to 15. As in the case of Fibonacci, smaller
inputs result in runtimes that are too short.

The application Sort in BOTS is a parallel variant of the
Mergesort algorithm that expects the number of elements in
the input to be a power-of-two value. Our inputs, therefore,

Table 2: Depth and parallelism models of the evaluated ap-
plications.

Application Model R̄2

T∞(n) 4.31 · 10−9 · n1.75 logn 0.99Cholesky
π(n) 2.29 + 2.35 · n 0.98

T∞(n) 0.08 + 1.33 · 10−14 · n2.75 logn 0.92
FFT

π(n) 1.19 · 10−2 · n0.67 logn 0.91

T∞(n) 0.35 ——
Fibonacci

π(n) 25.48 + 0.49 · n2.75 logn 0.99

T∞(n) 6.57 · 10−4 · n2 logn 0.99
NQueens

π(n) 2.18 · n2.875 logn 0.98

T∞(n) 3.03 · 10−6 ·
√
n 0.93

Sort
π(n) 3.53 + 3.32 · 10−2 ·

√
n 0.94

T∞(n) 5.12 · 10−5 · n0.75 logn 0.96
SparseLU

π(n) 5.8 · 10−5 · n1.75 logn 0.99

T∞(n) 1.47 · 10−9 · n2 logn 0.99
Strassen

π(n) 0.25 · n0.75 0.99

were arrays with a power-of-two number of integers, which
ranged from 1M to 512M. The application SparseLU works
on matrices and the inputs, in this case, ranged from 2,500×
2,500 to 12,500× 12,500 matrices.

The Strassen application implements a parallel version
of the sequential Strassen algorithm. Since this algorithm
recursively subdivides each side of the matrix into two, the
dimension sizes have to be powers of two. Therefore, the
smallest input in this case was a 256 × 256 matrix and the
largest a 8,192× 8,192 matrix.

4.2 Analysis of the Results
Figure 6 shows the runtimes of some of the evaluated appli-
cations and their contention-free replays for constant inputs
of medium size. In every subfigure, the horizontal dashed
line represents T∞(n) (the depth), which is a lower bound
on the execution time. Note that the Y-axis is on a logarith-
mic scale. The figure illustrates that in some cases applica-
tion runtimes reach T∞(n) quite quickly.

In the cases of Cholesky and Fibonacci, the convergence
is very quick, and by the time p equals 60, the runtime

Table 3: Efficiency models of the evaluated applications. The last column shows the required input sizes (n) for p = 60 and an
efficiency of 0.8.

Application Model rRMSE Input size for p = 60

Eac 1.09− 0.51 · √p+ 3.11 · 10−2 · √p logn 9.7% 37,718 × 37,718
Ecf 1.14− 0.54 · √p+ 3.4 · 10−2 · √p logn 7.8% 24,685 × 24,685Cholesky
Eub min{1, (2.29 + 2.35 · 10−3 · n) · p−1} 2.4% 19,500 × 19,500

Eac 0.96− 0.1 · log p+ 5.08 · 10−22n4.5 log p 19.5% 30,310 × 30,310
Ecf 1.03− 0.16 · p0.67 + 1.04 · 10−2 · p0.67 logn 4.8% 15,800 × 15,800FFT
Eub min{1, (1.19 · 10−2 · n0.67 logn) · p−1} 4.1% 5,800 × 5,800

Eac 0.98− 5.11 · 10−3 · p1.25 + 1.76 · 10−3 · p1.25 logn 3.5% 51
Ecf 0.97− 1.46 · 10−2 · p1.25 + 9.26 · 10−3 · p1.25 logn 3.0% 51Fibonacci
Eub min{1, (25.48 + 0.49 · n2.75 logn) · p−1} 1.5% 49

Eac 1.04− 0.66 · √p+ 0.17 · √p logn 13% 14
Ecf 1.0− 6.21 · 10−2 · p+ 1.61 · 10−2 · p logn 3% 13NQueens
Eub min{1, (2.18 · n2.875 logn) · p−1} 6.6% 12

Eac 0.99− 9.2 · 10−3 · p1.5 + 2.29 · 10−4 · p1.5 logn 1.9% 350G
Ecf 1.0− 4.61 · 10−2 · p0.75 + 1.62 · 10−3 · p0.75 logn 5.7% 6.6MSort
Eub min{1, (3.53 + 3.32 · 10−2 · √n) · p−1} 6.7% 1.7M

Eac 1.02− 0.46 · p0.67 + 3.28 · 10−2 · p0.67 logn 6.3% 12,000 × 12,000
Ecf 1.05− 0.48 · p0.67 + 3.49 · 10−2 · p0.67 logn 6.1% 11,000 × 11,000SparseLU
Eub min{1, (5.8 · 10−5 · n1.75 logn) · p−1} 1.7% 7,800 × 7,800

Eac 1.55− 1.02 · p0.25 + 4.59 · 10−2 · p0.25 logn 9.5% 83,600 × 83,600
Ecf 1.26− 0.65 · p0.33 + 3.89 · 10−2 · p0.33 logn 5.9% 12,680 × 12,680Strassen
Eub min{1, (0.25 · n0.75) · p−1} 2.4% 1,200 × 1,200

would have almost reached T∞(n). In other cases, how-
ever, the runtime converged more slowly or stagnated due
to prohibitive resource contention. For all of these exam-
ples, it makes no sense to continue increasing the core count
further, unless the problem size is increased as well. This
phenomenon is hardly surprising, but the difficult part is to
understand what happens to the efficiency when the prob-
lem size changes, or how severe the effects of resource con-
tention are. Even if we consider more optimized versions of
the applications, the same questions still remain. The figure
also shows that in some cases the difference between the ac-
tual run and the replay increases as the core count increases,
meaning that the resource contention becomes more severe.
In some of the benchmarked applications, we observed that
the replay time for p = 1 is slightly bigger than the exe-
cution time of the original code. This happens due to small
perturbation effects of task instrumentation [25]; the impact
of this effect, however, is minimal.

4.2.1 Scaling of Depth and Average Parallelism
Table 2 presents the models for T∞(n) and π(n) (average
parallelism) that were created using the results from the
TDG analysis. In all of the models the logarithms are bi-
nary (i.e., base 2 logarithms). The R̄2 column is the adjusted
coefficient of determination (cf. Section 3.2). Although the-
oretical analysis of the average parallelism in an algorithm
is an established practice, these results are the first success-
ful attempt to produce empirical π(n) models that are able
to uncover potential scalability bugs in real implementa-

tions. A π(n) that grows more slowly than T∞(n) indicates
that the implementation is asymptotically not scalable, and
hence, contains a scalability bug. Surprisingly, the growth
of π(n) in Cholesky, FFT, and Strassen is slow compared
to T∞(n). This suggests that there are potential scalability
bugs in these applications. Moreover, a fast growing T∞(n)
is an indication that the algorithm structure could be im-
proved so that the depth would not become the limiting fac-
tor as n increases. The π(n) models are used as the ba-
sis for the Eub(p, n) models in Table 3, since Eub(p, n) =

min{1, π(n)
p }.

The Fibonacci application implements a trivial algorithm
in which each task performs very little work. The TDG in
this case is a tree, in which the work grows exponentially
with n, and the depth linearly with n. The increase in the
depth is proportional to the size of a single task, and there-
fore very small. This is the reason why the T∞(n) model for
Fibonacci is constant. Since a constant model is essentially
an average of the measured values, the R̄2 is undefined in
this case. As an alternative, we could consider the model for
the height of the tree, which would be exactlyO(n). The par-
allelism model, however, accurately reflects the fact that Fi-
bonacci has plenty of available parallelism. Since our PMNF
does not contain exponential terms, the model in the table is
the best approximation of the exponential behavior in the
measured data.

The analysis of the models in Table 2 is an example of
how we can discover fundamental scalability limitations in

0.
9

0
.9

0.7

0.
7

0
.7

0.5

0.5 0.3

0.3

0.9

0.9

0
.9

0.7

0.7

0.
7

0.5

0.5 0.3

0.3

50 100 150 200
5

15

25

35

45

55

Cores p

M
at

ri
x

di
m

en
si

on
n

(·1
03

)

Eac

Ecf

(a) Cholesky

0.9

0.
9

0
.9

0.7

0.
7

0.
7

0.5

0.
5

0.3

0.
3

0.9

0.9

0
.9

0.7

0.
7

0
.7

0.5

0.
5

0.3

0.
3

20 40 60 80 100 120
47

48

49

50

51

52

53

Cores p

Fi
bo

na
cc

in
um

be
ri

nd
ex

n

Eac

Ecf

(b) Fibonacci

0.9

0.9

0
.9

0
.9

0.7

0.7

0
.7

0.5

0.
5

0
.5

0.3

0.
3

0.9

0.9

0
.9

0
.9

0.7

0.
7

0
.7

0.5

0.
5

0.
3

0.
3

50 100 150 200
11

12

13

14

15

Cores p

B
oa

rd
di

m
en

si
on

n

Eac

Ecf

(c) NQueens

0
.9

0
.9

0
.7

0
.7

0
.5

0
.5

0
.3

0
.3

0.9

0.9

0
.9

0.7

0.
7 0.5

0
.3

50 100 150 200 250
220

222

224

226

228

230

Cores p

A
rr

ay
si

ze
n

(l
og

sc
al

e)

Eac

Ecf

(d) Sort

0.9

0.9

0
.9

0
.9

0.7

0.7

0
.7

0.5

0.
5

0.3

0.3

0.9

0.9

0
.9

0.7

0.7

0
.7

0.5

0.
5

0.3

0.3

20 40 60 80 100 120
3

6

9

12

15

Cores p

M
at

ri
x

di
m

en
si

on
n

(·1
03

)

Eac

Ecf

(e) SparseLU

0.
9

0
.9

0.9

0
.7

0.7

0.7
0.5

0.
5

0
.5

0.3

0.3

0.9

0.9

0.
9

0.7

0.7

0
.7

0.5

0.5 0.3

20 40 60 80 100 120
210

212

214

216

218

Cores p

M
at

ri
x

di
m

en
si

on
n

(l
og

sc
al

e)

Eac

Ecf

(f) Strassen

Figure 7: Isoefficiency models of evaluated task-based applications and their replays. The label on each line denotes the
efficiency of the line. Each model identifies lower-bounds on the inputs necessary to maintain the constant efficiency underlying
the model.

task-based applications and help users answer Question 1 in
Section 1.

4.2.2 Efficiency Models
Table 3 presents the efficiency models of the evaluated ap-
plications. There are three rows for each application listing
the three efficiency models that we created (i.e., Eub(p, n),
Eac(p, n), and Ecf (p, n)). In all the models the logarithms
are binary. The rRMSE column is the relative root-mean-
square error. It is a standard statistical factor that mea-
sures the relative differences between the observed data
and the model, and is defined as: rRMSE = σ/ȳ, where:
σ =

√∑n
i=1(f(xi)− yi)2/n, yi are observed data, and ȳ

is the mean of the yi values. For two-parameter models, the
rRMSE factor reflects the accuracy of the fit better than R̄2,
which is used for the single-parameter models in Table 2.
The last column shows the input size n, derived from our
models by letting the efficiency E be 0.8 and the core count
p be 60, which is the total number of cores on our test ma-
chine. In Section 4.2.3, we discuss in greater detail how the
input sizes were calculated.

All of the Eac(p, n) and Ecf (p, n) models follow the
same pattern C − A · f(p) + B · f(p)g(n) that empirically
emerged from our measurements. The interpretation of this
pattern is that the first term, the constant C, is approximately
1 and it denotes the maximum attainable efficiency. The
second term, −A · f(p), reflects the reduction in efficiency
that occurs when we increase the core count. The last term,
B · f(p)g(n), denotes the efficiency that we gain when
we increase the input size. Together these terms reflect the
interplay between the core count and the input size, and the
effect it has on the efficiency. In the case of FFT, the constant
B in the last term of Eac(p, n) is very small, which means
that resource contention is a very significant factor and even
large increases of the input size are not enough to offset the
drop in the efficiency.

Figure 7 depicts the isoefficiency lines E = 0.9, E =
0.7, E = 0.5, and E = 0.3 for most of the evaluated
applications. The isoefficiency lines start from 0.9, because
E = 1 is an ideal situation which can hardly be achieved in
practice, and therefore has less practical value.

Figure 8 presents the ∆con and ∆str discrepancies for
Cholesky, SparseLU, and Strassen. For the sake of brevity,

0.24

0
.2
2

0.22

0.2

0.2

0.2

0.1
8

0
.1
8

0.18

0.1
6

0
.1
6

0.16

0.16

0.1
4

0
.1
4

0.14

0.14

0.
12

0
.1
2

0.12
0.12

0.
1

0
.1

0.1
0.1

0.1

0
.3

0.
2

0.
2

0.
1

0.1

0
.1

0.
1

0.1

0.1

0.1

50 100 150 200
5

15

25

35

45

55

Cores p

M
at

ri
x

di
m

en
si

on
n

(·1
03

)

∆con

∆str

(a) Cholesky

0.14

0.12

0.12

0.1

0.1

0.1

0.9

0.9

0.8

0.8

0.
8

0.7

0.7

0.
7

0.6

0.6

0.
6

0.5

0.5

0.
5

0.4

0.4

0.
4

0.3

0.3

0.
3

0.2

0.2

0.
2

0
.2

0.1

0.1

0.
1

0
.1

50 100 150 200 250
3

6

9

12

15

Cores p

M
at

ri
x

di
m

en
si

on
n

(·1
03

)

∆con

∆str

(b) SparseLU

0.4

0.4

0.3

0.3

0.3 0.3

0.2

0.2

0.2

0
.2

0
.2

0.
1

0.1

0.1

0.
1

0
.1

0
.6

0.50.
4 0.4

0.30.3

0
.3

0.2

0.2

0
.2

0.1

0.1

0.
1

20 40 60 80 100 120
210

212

214

216

218

Cores p

M
at

ri
x

di
m

en
si

on
n

(l
og

sc
al

e)

∆con

∆str

(c) Strassen

Figure 8: The ∆con and ∆str discrepancies of selected applications plotted as contour lines. The label of each line is the value
of the discrepancy along the line.

we chose only these three applications; the other applica-
tions exhibit a simpler behavior regarding ∆con and ∆str.
Similar to the efficiency functions, ∆con and ∆str are two-
parameter functions that range from 0 to 1. The figure de-
picts the contour lines of these functions at constant inter-
vals, and the label on each line specifies the value of the
discrepancy along this line.

In the case of Cholesky, Ecf scales better than Eac and,
as Figure 8a shows, ∆con exceeds 0.2. For example, con-
sider p = 100 and the 0.7 isoefficiency, in this case, Eac
yields approximately n = 36,000, whereas Ecf yields ap-
proximately n = 25,000. This is a significant difference be-
tween the input sizes required to achieve the same efficiency,
and it suggests that contention is a potential scalability bot-
tleneck.

In the cases of Fibonacci, NQueens, and SparseLU, Ecf
and Eac scale almost at the same rate, and the isoefficiency
lines with the same labels (i.e., efficiencies) are close to each
other. In Figure 8b, for example, ∆con stays well below 0.2.
Considering that Fibonacci and NQueens are not memory-
bound, this result is not surprising. It is, however, surprising
to see that SparseLU is not affected by resource contention
as one might have initially expected. We can conclude that
resource contention is not an obstacle to scalability in these
cases.

Sort is clearly affected by resource contention as the
differences between the isoefficiency lines of Ecf and Eac
are very big. In the model Eac = 0.99− 9.2 · 10−3 · p1.5 +
2.29 · 10−4 · p1.5 log n, the presence of p1.5 in the second
term means that the efficiency drops very quickly as the core
count increases. Even though p1.5 is also present in the third
term, the combination of a small coefficient 2.29 · 10−4 and
log n makes it hard to offset the efficiency drop. It is not
surprising that Sort is impaired by resource contention, but
the severity of this impact, as evident from the behavior of
Eac and Ecf , is unexpected.

Not surprisingly, Strassen, which is heavily memory-
bound, is also affected by resource contention. In some
cases, as Figure 8c shows, ∆con reaches 0.4, and if we con-
sider, for example, p = 100 and the 0.7 isoefficiency lines,
the input size n in Eac would be about four times as large
as in Ecf . The discrepancy is big when both the core count
and the input sizes are either low or high. In the former case,
the threads most likely contend for shared caches; whereas,
in the latter case, they contend for memory bandwidth.

From the ∆con analysis we can conclude that, for
Cholesky, Sort, and Strassen, poor scaling is a result of a pro-
hibitive contention overhead. This conclusion is an example
of how, using our approach, we can answer Question 2 in
Section 1.

As suggested by Figure 8a and the example input sizes for
Eub and Ecf in Table 3, the ∆str of Cholesky, Fibonacci,
and NQueens is rather small. However, Figures 8b and 8c
show, for SparseLU and Strassen, that ∆str is clearly big-
ger for certain ranges of p and n. Although this discrepancy
becomes smaller as n increases, there is still room for im-
provement of either task dependencies, scheduling, or gran-
ularity. This insight is an example of how our approach helps
to answer Question 3 in Section 1.

4.2.3 Co-Design Use Cases
We can use the efficiency models to derive a realistic ap-
proximation of the input size n that should be used to run
an application with constant efficiency on a given core count
p. For example, the actual efficiency model for Strassen is
Eac = 1.55 − 1.02 · p0.25 + 4.59 · 10−2 · p0.25 log n. For
an efficiency of 0.8 and p = 60 we can derive the equation
0.8 = 1.55−1.02 ·600.25 +4.59 ·10−2 ·600.25 log n, and af-
ter solving it we would obtain n = 83,600, which means the
application’s input in this case should be a 83,600× 83,600
matrix. This directly answers Question 4 in Section 1, and
helps users efficiently utilize all the computing resources

they have. We used the Symbolic Math Toolbox in MAT-
LAB [4] both to solve the equation in this example and to
derive the example input sizes in Table 3.

For some of the applications, such as Fibonacci,
NQueens, and SparseLU, the example input sizes in the
table are within the range of the inputs that we used for
benchmarking. This means that the efficiency scaling in
these cases is generally good. For other applications, such
as Cholesky, we validated the example input size by running
the application on all of the 60 cores of our test machine. In
the cases of Sort and Strassen, however, validating the in-
put size was impossible due to prohibitive memory require-
ments.

The inputs in Table 3 provide examples for co-design
use cases. By calculating input sizes for future core counts,
hardware designers can see whether the inputs are realistic
and feasible. The input size for Sort, for example, shows that
utilizing all of the 60 cores efficiently also requires adding a
substantial amount of memory to a future machine.

Similar to the input size case, we can calculate the re-
quired core count, given a specific input size n. In this case,
hardware designers can estimate the number of cores they
will need for a predefined input size. Unlike the previous
case, this approach can provide an answer to how many pro-
cessing elements and memory controllers in a future ma-
chine would be suitable for an existing application with
realistic inputs. We can see, for example, that Fibonacci,
NQueens, and SparseLU would be suitable for a future ma-
chine with higher core counts. This is an example of how our
approach can help hardware designers answer Question 5 in
Section 1.

Hardware designers could use the generated contention
models to design shared resources for future systems-on-
chip. For example, the sizes of shared resources such as last-
level cache, coherence networks, memory controllers, or in-
put/output channels could be tuned to a specific set of appli-
cations using scaling and contention models. We leave de-
tails of such micro-architectural discussions for future work,
as it lies outside the scope of this paper.

5. Related Work
Directed acyclic graphs, or more specifically task depen-
dency graphs, are an established model of multithread-
ing [6, 8, 11, 16, 18]. They were used in earlier work, even
before the emergence of task-based programming models,
for analyzing and understanding parallel computations. Per-
haps the biggest strengths of the TDG model are its sim-
plicity and that it allows two fundamental metrics to be
defined—work and depth–which provide important bounds
on performance and speedup.

An earlier work by Eager et al. [16] used TDGs, as well
as work and average parallelism metrics, to investigate the
tradeoffs between speedup and efficiency in parallel compu-
tations. Blelloch [6] used work and depth metrics to analyze

parallel algorithms on a PRAM machine model in the con-
text of the NESL parallel language [5].

The designers of Cilk [7, 17], an early task-based pro-
gramming model, used TDGs, as well as work and depth
metrics, to analyze and understand Cilk’s performance. The
Cilkview scalability analyzer [21] is a more recent work
for profiling and benchmarking Cilk applications. It first in-
struments the code, and then constructs the TDG once the
code has finished running. After benchmarking the code,
Cilkview visualizes the measured speedup along with both
lower and upper speedup limits (cf. Section 2.2). Although
Cilkview is a useful tool for understanding the performance
and some limitations of a task-based application, it focuses
on just one problem size, ignoring the isoefficiency concept.

Previous studies explored the problem of overheads in
task-based applications [27, 33]. The authors identified met-
rics to characterize the time spent by the threads doing either
unrelated work or no useful work at all. They then suggested
a number of techniques to improve the runtime of an appli-
cation on a given number of cores. In another study [35],
the authors created low-level models of memory bandwidth
that allow the bandwidth usage to be predicted. In our study,
in contrast, we take a more general approach to understand-
ing resource-contention effects. The multi-parameter models
that we create take both the core count and the problem size
into account, allowing the user to understand the interplay
between these two parameters.

Our task replay engine shares some similarities with
Prometheus [24] and TaskSim [30]. Both tools enable the ac-
curate simulation of task-based codes by either, in the case
of Prometheus, constructing a TDG and simulating hardware
contention, or, in the case of TaskSim, gathering execution
traces. Since our aim is not an accurate reproduction of ex-
ecution, but a contention-free execution, we used a simpler
approach for the task replay.

Although isoefficiency is a well-known concept [19, 20,
29], the empirical analysis of it has not received much at-
tention so far. To the best of our knowledge, there are no
studies that explicitly model empirical isoefficiency of task-
based applications.

6. Conclusion
In this paper, we propose a novel method that helps users,
application developers, and hardware designers identify the
causes of limited scalability in task-based applications. The
method provides insights into the effects of resource con-
tention on efficiency, and allows users to analyze how severe
this contention is. By modeling how the depth and the av-
erage parallelism change as the input increases, our method
also allows users to identify scalability bugs in task-based
applications. Average parallelism that scales poorly com-
pared to the depth indicates that the application would not
run optimally for bigger inputs.

We identify three efficiency functions that describe the
application behavior in different scenarios, namely, an ideal
upper-bound efficiency, actual efficiency reflecting the appli-
cation behavior, and contention-free efficiency based on the
replay of the TDG. By analyzing the discrepancies between
these efficiency functions, we are able to provide answers
to questions regarding co-design aspects, the connection be-
tween poor scaling and resource contention, optimization
potential, and the presence of scalability bugs.

We conclude that our methodology is a viable approach
for analyzing both the effects of resource contention on ef-
ficiency and further optimization potential. It provides users
with an insight into whether the obstacle to scaling is re-
source contention or insufficient parallelism in the structure
of the TDG. In addition, users can also calculate the required
input sizes to keep efficiency constant on a given core count.
This approach can be used in co-design analysis to under-
stand how many processing elements to put in a future ma-
chine, such that we can have high efficiency with realistic
application inputs. We envision this methodology will be
adopted for analyzing present and future task-based applica-
tions as many-core hardware becomes ever more ubiquitous.

Acknowledgments
This work was supported in part by the German Research
Foundation (DFG) and the Swiss National Science Foun-
dation (SNSF) through the DFG Priority Programme 1648
Software for Exascale Computing (SPPEXA). Additional
support was provided by the German Federal Ministry
of Education and Research (BMBF) through the Score-E
project under grant no. 01IH13001G, and by the US Depart-
ment of Energy under grant no. DE-SC0015524. We would
also like to acknowledge the University Computing Center
(Hochschulrechenzentrum) of TU Darmstadt for providing
us with access to their supercomputers. Finally, we wish to
thank the OmpSs team at Barcelona Supercomputing Center
(BSC) for their support.

References
[1] BSC Application Repository. https://pm.bsc.es/

projects/bar/wiki/Applications.

[2] Extra-P – Automated Performance-modeling Tool. http:

//www.scalasca.org/software/extra-p.

[3] Graphviz – Graph Visualization Software. http://www.

graphviz.org.

[4] MATLAB. http://www.mathworks.com.

[5] G. E. Blelloch. NESL: A Nested Data-Parallel Language.
Technical report, 1992.

[6] G. E. Blelloch. Programming Parallel Algorithms. Commun.
ACM, 39(3):85–97, 1996.

[7] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson,
K. H. Randall, and Y. Zhou. Cilk: An Efficient Multithreaded
Runtime System. Journal of Parallel and Distributed Com-
puting, 37(8):55–69, 1997.

[8] R. P. Brent. The Parallel Evaluation of General Arithmetic
Expressions. Journal of the ACM (JACM), 21(2):201–206,
April 1974.

[9] A. Calotoiu, T. Hoefler, M. Poke, and F. Wolf. Using Au-
tomated Performance Modeling to Find Scalability Bugs in
Complex Codes. In Proc. of the 2013 ACM/IEEE Conference
on Supercomputing (SC ’13), pages 45:1–45:12. ACM, 2013.

[10] A. Calotoiu, D. Beckingsale, C. W. Earl, T. Hoefler, I. Kar-
lin, M. Schulz, and F. Wolf. Fast Multi-Parameter Perfor-
mance Modeling. In Proc. of the 2016 IEEE International
Conference on Cluster Computing (CLUSTER ’16), pages 1–
10, September 2016. (to appear).

[11] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and S. Clifford.
Multithreaded Algorithms. In Introduction to Algorithms,
Third Edition, pages 772–812. The MIT Press, 3rd edition,
2009.

[12] A. Duran, J. Corbalán, and E. Ayguadé. An Adaptive Cut-
off for Task Parallelism. In Proc. of the 2008 ACM/IEEE
Conference on Supercomputing (SC ’08), pages 36:1–36:11.
IEEE Press, 2008.

[13] A. Duran, J. Corbalán, and E. Ayguadé. Evaluation of
OpenMP Task Scheduling Strategies. In Proc. of the 4th Inter-
national Conference on OpenMP in a New Era of Parallelism
(IWOMP ’08), pages 100–110. Springer-Verlag, 2008.

[14] A. Duran, X. Teruel, R. Ferrer, X. Martorell, and E. Ayguadé.
Barcelona OpenMP Tasks Suite: A Set of Benchmarks Target-
ing the Exploitation of Task Parallelism in OpenMP. In Proc.
of the 2009 International Conference on Parallel Processing
(ICPP ’09), pages 124–131. IEEE, 2009.

[15] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell,
X. Martorell, and J. Planas. OmpSs: A Proposal for Program-
ming Heterogeneous Multi-core Architectures. Parallel Pro-
cessing Letters, 21(02):173–193, 2011.

[16] D. L. Eager, J. Zahorjan, and E. D. Lazowska. Speedup
Versus Efficiency in Parallel Systems. IEEE Transactions on
Computers, 38(3):408–423, 1989.

[17] M. Frigo, C. E. Leiserson, and K. H. Randall. The Imple-
mentation of the Cilk-5 Multithreaded Language. In Proc. of
the ACM SIGPLAN 1998 Conference on Programming Lan-
guage Design and Implementation (PLDI ’98), pages 212–
223. ACM, 1998.

[18] R. L. Graham. Bounds on Multiprocessing Timing Anoma-
lies. SIAM Journal on Applied Mathematics, 17(2):416–429,
1969.

[19] A. Grama, A. Gupta, G. Karypis, and V. Kumar. Introduction
to Parallel Computing. Addison-Wesley Longman Publishing
Co., Inc., 2nd edition, 2002.

[20] A. Y. Grama, A. Gupta, and V. Kumar. Isoefficiency: Measur-
ing the Scalability of Parallel Algorithms and Architectures.
Parallel Distributed Technology: Systems Applications, 1(3):
12–21, 1993.

[21] Y. He, C. E. Leiserson, and W. M. Leiserson. The Cilkview
Scalability Analyzer. In Proc. of the 22nd ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA ’10),
pages 145–156, 2010.

[22] T. Hoefler and R. Belli. Scientific Benchmarking of Par-
allel Computing Systems: Twelve Ways to Tell the Masses
when Reporting Performance Results. In Proc. of the 2015
ACM/IEEE Conference on Supercomputing (SC ’15), pages
73:1–73:12. ACM, 2015.

[23] T. Hoefler, W. Gropp, R. Thakur, and J. L. Träff. Toward Per-
formance Models of MPI Implementations for Understanding
Application Scaling Issues. In Proc. of the European MPI
Users’ Group Meeting (EuroMPI ’10), pages 21–30. Springer-
Verlag, 2010.

[24] G. Kestor, R. Gioiosa, and D. Chavarra-Miranda. Prometheus:
scalable and accurate emulation of task-based applications on
many-core systems. In Proc. of the 2015 IEEE International
Symposium on Performance Analysis of Systems and Software
(ISPASS ’15), pages 308–317. IEEE, 2015.

[25] D. Lorenz, P. Philippen, D. Schmidl, and F. Wolf. Profiling
of OpenMP Tasks with Score-P. In Proc. of the 2012 41st
International Conference on Parallel Processing Workshops
(ICPPW ’12), pages 444–453, September 2012.

[26] M. R. Meswani, L. Carrington, D. Unat, A. Snavely, S. Baden,
and S. Poole. Modeling and Predicting Performance of High
Performance Computing Applications on Hardware Acceler-
ators. International Journal of High Performance Computing
Applications, 27(2):89–108, May 2013.

[27] S. L. Olivier, B. R. de Supinski, M. Schulz, and J. F. Prins.
Characterizing and Mitigating Work Time Inflation in Task
Parallel Programs. In Proc. of the 2012 ACM/IEEE Confer-
ence on Supercomputing (SC ’12), pages 65:1–65:12. IEEE
Computer Society Press, 2012.

[28] OpenMP Architecture Review Board. OpenMP application
programming interface, version 4.0. http://www.openmp.

org/mp-documents/OpenMP4.0.0.pdf.

[29] M. J. Quinn. Parallel Programming in C with MPI and
OpenMP. McGraw-Hill Education Group, 2003.

[30] A. Rico, F. Cabarcas, C. Villavieja, M. Pavlovic, A. Vega,
Y. Etsion, A. Ramirez, and M. Valero. On the simulation
of large-scale architectures using multiple application abstrac-
tion levels. ACM Transactions on Architecture and Code Op-
timization, 8(4):1–20, 2012.

[31] S. Shudler, A. Calotoiu, T. Hoefler, A. Strube, and F. Wolf. Ex-
ascaling Your Library: Will Your Implementation Meet Your
Expectations? In Proc. of the 29th ACM International Con-
ference on Supercomputing (ICS ’15), pages 165–175. ACM,
June 2015.

[32] N. R. Tallent and A. Hoisie. Palm: Easing the Burden of
Analytical Performance Modeling. In Proc. of the 28th ACM
International Conference on Supercomputing (ICS ’14), pages
221–230. ACM, 2014.

[33] N. R. Tallent and J. M. Mellor-Crummey. Effective Perfor-
mance Measurement and Analysis of Multithreaded Appli-
cations. In Proc. of the 14th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP
’09), pages 229–240. ACM, 2009.

[34] U.S. Department of Energy. The Opportunities and Chal-
lenges of Exascale Computing. Office of Science, Washing-
ton, D.C., 2010. http://science.energy.gov/~/media/
ascr/ascac/pdf/reports/Exascale_subcommittee_

report.pdf.

[35] W. Wang, T. Dey, J. W. Davidson, and M. L. Soffa. DraMon:
Predicting Memory Bandwidth Usage of Multi-threaded Pro-
grams With High Accuracy and Low Overhead. In Proc. of
the 2014 IEEE 20th International Symposium on High Perfor-
mance Computer Architecture (HPCA ’14), pages 380–391,
February 2014.

