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Abstract—The shift towards high-bandwidth networks driven
by AI workloads in data centers and HPC clusters has unin-
tentionally aggravated network latency, adversely affecting the
performance of communication-intensive HPC applications. As
large-scale applications often exhibit significant differences in
their network latency tolerance, it is crucial to determine the
extent of network latency an application can withstand without
significant performance degradation. Current approaches often
rely on specialized hardware or simulators, which can be inflexi-
ble and time-consuming. We introduce LLAMP, a novel toolchain
that offers an efficient analytical approach to evaluating HPC
applications’ network latency tolerance using the LogGPS model
and linear programming. Through our validation on a variety of
MPI applications such as LULESH and MILC, we demonstrate
our tool’s high accuracy, with relative prediction errors below
2%. Additionally, we include a case study of the ICON weather
and climate model to illustrate LLAMP’s broad applicability in
evaluating collective algorithms and network topologies.

Index Terms—Network latency tolerance, linear programming,
MPI applications, high-performance computing

I. INTRODUCTION

The growing demand for training large deep learning models
has spurred the construction of advanced AI-focused data cen-
ters and supercomputing clusters, such as Meta’s $800 million
data center [1] and the upcoming Alps cluster at the Swiss
National Supercomputing Center [2]. Driven by the needs of
the AI industry, there have been notable improvements in cloud
hardware, which makes cloud platforms increasingly appealing
for running high-performance computing (HPC) applications
due to the potential cost benefits over traditional on-premise
HPC clusters [3], [4]. However, numerous studies [5]–[9] have
shown, executing large HPC applications, particularly those
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Fig. 1: An example demonstrating varying degrees of network
latency tolerance among traditional HPC applications, namely
MILC, LULESH, and ICON. The green, orange, and red
zones correspond to the maximum network latencies before
observing a performance degradation of 1%, 2%, and 5%,
respectively. The comparison between measured and predicted
runtime showcases the predictive accuracy of our toolchain.
The tolerance intervals are calculated directly by our tool.

that are communication-intensive, can result in a suboptimal
cost-performance ratio when migrated to the cloud, primarily
due to increased network latency that often exceeds 10µs [5].

Moreover, parallel training of large deep learning models,
which relies more on bandwidth than latency [9]–[13], has
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Fig. 2: High-level overview of the LLAMP toolchain.

prompted a rapid increase in network bandwidth. To accom-
modate this need, the network bandwidth has been growing
exponentially in recent years [14]. This growth, accelerated
by the adoption of higher frequencies and intricate signaling
techniques like PAM4, has simultaneously led to higher bit
error rates (BER) in transceivers. Consequently, this requires
the implementation of complex forward error correction (FEC)
mechanisms, as seen with the upcoming 800G and 1.6T IEEE
P802.3df standards [15]. While existing fast FEC manages to
keep latency around 50ns, more complex FEC schemes in the
future are expected to increase the decoding latency by more
than 100 ns [16], [17], subsequently adding several hundred
nanoseconds to the per-link latency.

With data centers and HPC clusters evolving towards high-
bandwidth networks to conform with the need of the AI
sector [18], [19], the trade-off between bandwidth and latency
becomes more pronounced, and the implications of FEC-
induced latency become a concern for the design and optimiza-
tion of both HPC systems and applications. Addressing this
latency issue is especially important in fields where the time to
solution is crucial, such as weather forecasting simulations for
climate change analysis or molecular dynamics simulations for
in-depth exploration of COVID-19 at the molecular level [14].

In large-scale MPI applications, unique communication and
computation patterns inherent in each application lead to
significant variations in their network latency tolerance. For
instance, in Fig. 1, we present the differences in network
latency tolerance across three traditional HPC applications:
MIMD Lattice Computation (MILC) [20], LULESH [21],
and Icosahedral Nonhydrostatic Weather and Climate Model
(ICON) [22]. The plots illustrate the impact of increasing net-
work latency on each application’s runtime. MILC exhibits the
lowest tolerance to network latency, indicating that as little as
20µs can adversely affect its performance. Conversely, ICON
demonstrates the highest latency tolerance, able to withstand
more than 650 µs of network latency before performance
degradation becomes apparent. These differences emphasize
the importance of network configurations to suit the specific
latency tolerance profiles of each application.

Given these considerations, it is imperative to determine the
extent of network latency an application can withstand with-
out significant performance degradation. Understanding this

threshold is key to designing applications that are both resilient
and efficient, even under suboptimal network conditions.

However, existing methods for evaluating network latency
tolerance have notable limitations. These strategies typically
rely on one of three approaches, each with inherent drawbacks.
The first method involves constructing elaborate performance
models, demanding an in-depth understanding of the applica-
tions’ communication and computation behaviors [23], [24].
This requires extensive knowledge and expertise, making it
inaccessible to many practitioners. The second strategy hinges
on artificially injecting latency into network communication to
observe its impact on application performance. To achieve this,
one can exploit specialized hardware, which is often difficult
to procure and also suffers from inflexibility [25], [26]. The
third option is to rely on packet-level network simulators to
predict the behaviors of applications under various condi-
tions without the need for physical hardware. However, these
simulators often require intricate configurations and can be
time-consuming to execute, especially when simulating large-
scale workloads [27]–[30]. A fundamental issue with the last
two methods is the need for exhaustive parameter sweeps to
ascertain an application’s latency tolerance.

In response to these challenges, we introduce LLAMP
(LogGPS and Linear Programming based Analyzer for MPI
Programs), a toolchain designed for efficient analysis and
quantification of network latency sensitivity and tolerance
in HPC applications. An overview of LLAMP is presented
in Fig. 2. By leveraging the LogGOPSim framework [31],
LLAMP records MPI traces of MPI programs and transforms
them into execution graphs. These graphs, through the use of
the LogGPS model, are then converted into linear programs.
They can be solved rapidly by modern linear solvers, allowing
us to efficiently gather valuable metrics, such as the predicted
runtime of programs, and critical path metrics. These insights
are crucial for identifying an application’s network latency
tolerance and its performance variability under diverse network
configurations. LLAMP’s versatility is further demonstrated
through a case study of the ICON climate model, exploring
the effects of collective algorithms and network structures.

The source code of LLAMP is available at https://github.
com/spcl/llamp, and an extended technical report can be
accessed at https://arxiv.org/abs/2404.14193.

https://github.com/spcl/llamp
https://github.com/spcl/llamp
https://arxiv.org/abs/2404.14193


The primary contributions of this work are as follows:
1) We derive a novel analytical model that quantifies the net-

work latency sensitivity and tolerance of MPI applications.
This model leverages linear programming, execution graphs
generated from application traces, and the LogGPS model,
providing a mathematical foundation for our analysis.

2) We develop LLAMP, an open-source toolchain that allows
us to efficiently forecast the performance of MPI appli-
cations and compute their network latency sensitivity and
tolerance. This empowers architects to tailor infrastructure
designs to application needs and enables software devel-
opers to make informed decisions regarding application
deployment and optimization for reduced latency sensitivity.

3) We built a software-based latency injector capable of em-
ulating flow-level network latency with high portability,
facilitating large-scale latency injection experiments without
specialized hardware or administrative privileges. Using this
latency injector, we validate our model on a number of
MPI applications from various domains, such as LULESH,
HPCG, and MILC, among others. Furthermore, we demon-
strate LLAMP’s broad applicability by conducting a case
study on ICON, examining how collective algorithms and
network topologies influence its performance.

II. LLAMP TOOLCHAIN

A. MPI Execution Graphs

In parallel computing, analyzing MPI programs through the
lens of graphs proves to be a natural and insightful method-
ology. As MPI facilitates parallel execution by decomposing
computational tasks into distinct units, dependency graphs
provide a suitable representation of the relationships and
communication patterns between these tasks. As exemplified
in various other works [31]–[35], this approach has been
validated and employed successfully.

We chose to base LLAMP on the work of Hoefler et al. [31],
[35] and the reason is twofold. Firstly, the tracer and schedule
generator included in the LogGOPSim toolchain allows us
to easily generate execution schedules of MPI programs.
Secondly, LogGOPSim stands out as a well-tested open-source
framework with an accessible codebase [36], [37], facilitating
extensibility and customization to suit our specific needs.

To elaborate, the schedule generator, Schedgen, parses the
traces collected from the light-weight tracing library, liball-
prof, and converts them into execution graphs that capture
the precedence of events and task dependencies in GOAL
format [38]. An MPI execution graph is a directed acyclic
graph (DAG) that contains three vertex types, namely send,
recv, and calc, which denote point-to-point (p2p) sends and
receives and computations, respectively. Edges connecting
send and recv pairs are termed communication edges. By
exploiting the difference in timestamps of consecutive MPI
operations, Schedgen infers the amount of computation that
occurred. In addition, Schedgen is able to substitute collective
operations with p2p algorithms based on user specifications.

The LogGOPS model, a derivative of the LogP family [39],
[40], serves to quantify the communication costs in parallel
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Fig. 3: An example illustrating the transformation of blocking
p2p operations into an execution graph, assuming that the
eager protocol is used. A lists collected traces with only
the start and end timestamps. B shows the corresponding
space-time diagram. In C , calc vertices are marked in green
while send and recv vertices are in red.

applications. In this model, L denotes the maximum latency
between two processors, which is the network latency we will
focus on in this work. Parameter o represents the overhead
on the CPU per message, and g is the gap between two
consecutive messages. G, as introduced by Alexandrov et
al. [41], models the gap per byte of a message, and it is
equivalent to the inverse of bandwidth. Additionally, O is
the CPU overhead per byte, and P represents the number
of processes. The parameter S sets the size threshold for
employing the rendezvous protocol, where messages smaller
than S are sent immediately (i.e., the eager protocol), whereas
larger messages require synchronization between sender and
receiver before transmission. As highlighted by Hoefler et
al. [35], O is commonly negligible due to high overlap.
Therefore, we adopted the LogGPS model for our analysis.

In panel A of Fig. 3, we present the trace of a simple MPI
program. Moving to panel B , the cost of calc vertices are
inferred from the start and end timestamps for each operation
in the trace. For instance, the interval c0 = t0 − t1 on
rank 1 indicates a computation period of c0 before initiating
MPI_Send. Through this process, Schedgen determines the
computational workload and the operational dependencies
within the application. Subsequently, by assigning specific
LogGPS parameters to the sends and receives, we can effec-
tively model an application’s behavior across different network
configurations.

B. Sensitivity Analysis

In this work, we explore the concept of network latency
sensitivity. To frame our discussion, we will begin with an
overview of sensitivity analysis (SA) formally. SA examines
how a set of N input variables x = {x1, . . . xN} influences
the output y = {y1, . . . , yD} of y = g(x) where g : RN →
RD [42], [43]. When g is differentiable, derivative-based local
SA can be performed by computing the partial derivative of y
w.r.t. the i-th value in the input, xi, denoted as λi =

∂y
∂xi

∣∣∣
x0

,
where λi is the sensitivity measure of xi, and x0 ∈ Rn is the
fixed point for evaluating the derivative [44], [45].

We start by exploring the impact of network latency, L, on
the runtime of MPI programs. According to derivative-based
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Fig. 4: An example demonstrating that the network latency sensitivity of a program is determined by the number of messages
along the critical path of the graph and is also dependent on the value of parameter L itself.

local SA, we can express the network latency sensitivity as

λL(G, θ) = ∂T (G, θ)/∂L (1)

where G represents an execution graph, θ denotes a specific
configuration (i.e., a vector defining each parameter’s value in
LogGPS), and T (G, θ) computes the program runtime given
G and under the configuration θ. G and θ are omitted if they
are unambiguous. Intuitively, λL characterizes the variation in
a program’s runtime if L is increased by 1 unit.

In a parallel program, its runtime is determined by the
critical path [32], [33], [46]. Therefore, to compute λL, it is
crucial to derive an expression for the critical path as a function
of L. To illustrate this, we refer to Fig. 4. Fig. 4a contains
the execution graph for two ranks, where rank 0 executes
MPI_Send while rank 1 executes MPI_Recv. Both ranks
perform computation before and after the MPI operations,
indicated by the green vertices connected to nodes S and R
with costs c0 through c3, respectively. There are in total three
possible paths through the DAG, and without assigning values
to the costs and the LogGPS parameters, the critical path can
be any of them. Hence, T can be expressed formally as

T (θ) = max( t0 + o+ t1 , t2 + t3 + o ,

t0 + o+ L+ (s− 1)G+ t3 + o )
(2)

C0 → S → C1

C0 → S → R → C3

C2 → R → C3

where each term in the max operator represents a distinct
path. In Fig. 4b, we show that after substituting c0 = c1 =
c3 = 1 µs, c2 = 0.5 µs, s = 4, o = 0 s, and G = 5 ns
into Equation 2, it can be simplified to T = L + 2.015 µs,
which leads to the result λL = ∂(L + 2.015)/∂L = 1. This
is designed to highlight that depending on vertices’ costs and
their precedence in the graph, some communication edges will
stay on the critical path regardless of the value of L. In this
scenario, due to a late sender, the edge S → R remains on
the critical path, making λL independent of the L’s value.

Nonetheless, if c0 is changed from 1µs to 0.1µs while all
other variables stay the same, Equation 2 will evaluate to:
T = max(L + 1.115 µs, 1.5 µs), in which case the result
yielded by the max operator, and consequently, the critical
path, will be dependent on L. After plotting T = 1.5 µs and

T = L + 1.115 µs as shown in Fig. 4c, we notice that when
L ≤ 0.385 µs, T stays constant as the communication cost is
overlapped. Once L is larger than this threshold, T starts to
increase linearly. We refer to this point at which the critical
path changes the critical latency, denoted as Lc. The same
overlapping effect can also be observed within a rank when
non-blocking operations are executed.

To generalize, the runtime T of an MPI program under the
LogGPS model can be expressed as:

T (G, θ) = max(a0L+ C0, a1L+ C1, . . . , anL+ Cn) (3)

where the i-th term in max is the cost of a distinct path after
simplification, ai is the number of communication edges along
the path and Ci is a constant representing all other costs. If
two paths share the same ai, the one with larger Ci will be
kept. From Equation 3, we know that n is bounded by the
length of the longest chain of messages in the graph.

We gained two insights from the formulation of T . Firstly,
the number of messages along the critical path dictates λL.
Secondly, the value of L has a second-order effect on the net-
work latency sensitivity. As L increases, more communication
edges that cannot be overlapped will lead to an increase in
λL, and less latency tolerant a program will be. Therefore,
it is crucial for network engineers to understand both the
critical latencies and λL of MPI programs within an interval
of interest. With this knowledge, they can make informed de-
cisions regarding network configurations, improving program
performance and resilience to varying levels of L.

1) Generalization: Extending our sensitivity analysis be-
yond network latency, L, we can apply similar principles to
assess the impact of other parameters, such as G in LogGPS.
For this purpose, consider the following expression:

T (θ) = max(s0G+ C0, s1G+ C1, . . . , smG+ Cm) (4)

Similar to Equation 2, each term in max represents the cost
of a path after simplification. In this case, si is approximately
the number of bytes contained in messages along each path.
Therefore, after evaluation, the bandwidth sensitivity measure
λG(G, θ) = ∂T (G,θ)

∂G can be seen as reflecting the total message
size along the critical path. In essence, since T is determined
by the critical path, as long as we can express the cost of each



path as a function of a parameter, we can derive the sensitivity
measure for that parameter. Despite this generalization, our
investigation will focus on exploring the impact of L.

C. Linear Programming in LLAMP

Sensitivity measures of parameters can be computed through
two conventional graph analysis approaches. The first ap-
proach involves traversing the graph twice: first to assign
timestamps to all vertices for a specific θ, and second to obtain
the critical path and relevant metrics. Despite its linear time
complexity (i.e., O(|E|+|V |)), it requires parameter sweeps to
identify critical latencies. The second approach aims to find
the general expression for T directly, such as Equations 3
and 4, enabling us to determine all critical latencies at once.
Yet, since this requires iterating over all possible paths, it is
generally intractable. An alternative would be using dynamic
programming (DP) to store path-related information as a
map for each vertex. For λL, the time complexity would be
O(n|E|+ |V |), where n is the length of the longest message
chain in the graph. While DP seems effective, when we tested
it on a graph of LULESH with around 500K vertices, it took
more than 4 hours to finish, which indicates that DP is also
not scalable, even for graphs of moderate sizes.

1) Linear Program Formulation: While conventional graph
analysis approaches for computing sensitivity measures exhibit
inherent limitations, we present an alternative methodology
that employs linear programming (LP). LP is a technique
that maximizes or minimizes a linear function known as the
objective function subject to a set of linear constraints [47]:

Maximize: z = cTx z ∈ R, c ∈ Rn,x ∈ Rn

subject to: Ax ≤ b,x ≥ 0 A ∈ Rm×n,b ∈ Rm

The canonical formulation of an LP, as illustrated above,
involves A, b, and c, which all contain constants defined by
the restrictions of the given problem. A solution x is feasible
if it satisfies all the constraints. The goal of solving an LP is
to determine the values of decision variables in vector x that
lead to the optimal solution in the feasible region. A basis is
a subset of Ax ≤ b, x ≥ 0 containing n linearly independent
constraints. Geometrically, it uniquely determines a vertex on
the polyhedron shaped by the feasible region. After solving
an LP, a constraint is considered tight if the solution satisfies
the constraint with equality, essentially defining a boundary of
the polyhedron where the optimal solution is located.

To illustrate the relationship between execution graphs and
LP, we will examine the running example presented in Fig. 4c.
By substituting the values of the parameters into Equation 3
and re-organizing it, we gain the following formula:

T = max( 1.1 ,max( L+ 0.115 , 0.5 ) + 1 ) (5)

C0 → S → C1 C0 → S → R C2 → R C3

In Equation 5, the costs of paths or vertices associated with
the terms are labeled accordingly. To convert this expression
to an LP problem, each max operator can be interpreted as two

constraints where each constraint corresponds to one term, and
the latency L needs to be replaced with a decision variable.
The linear program, after conversion, is shown as follows:

min
l,y1,t

t

s.t. (1) y1 ≥ l + 0.115, (2) y1 ≥ 0.5, (3) t ≥ 1.1, (4) t ≥ y1 + 1
(6)

where y1 corresponds to the outcome of the inner max whereas
t represents the result of the outer max and serves as the
variable to be minimized in the objective function. Note that
the LP is not formulated in its canonical form for easier
understanding. To obtain T for a given L, one only needs to
add the constraint l ≥ L, and solve for the objective value. To
distinguish between the decision variables denoting different
LogGPS parameters and the constants that are assigned as their
lower bounds, we use the lowercase letter in mathematical font
to indicate the decision variables (e.g., l, g, o).

0.5 0.6 0.7 0.8
Latency,  [μs]

1.5
2.0
2.5

Ru
nt

im
e,

 t 
[μ

s]

t >= l + 1.115

t >= 1.5
t >= 1.1

 >= 0.5

(0.5, 1.615)

Feasible regionObjective :  min t

Fig. 5: Visualization of Equation 6. Dotted green lines define
the linear constraints. Shaded areas mark the infeasible region.
Blue lines highlight the borders of the feasible region.

Fig. 5 visualizes the LP in Equation 6. By adding l ≥ 0.5,
we aim to calculate the runtime when L = 0.5 µs. While
the LP originally includes three decision variables, we have
integrated the value of y1 into (4), reducing the problem to two
dimensions for easier visualization. The visualization clearly
pinpoints the result at the coordinate (0.5, 1.615), demonstrat-
ing that when L = 0.5 µs, the runtime T = 1.615 µs.

To generalize, we consider the start and finish times of a
vertex v as ts(v) and te(v). While traversing the graph in
topological order, te(v) = ts(v) + cost(v), where cost(v)
returns the execution time of v. If v has only one predecessor,
u, then ts(v) = te(u). Conversely, if v has more than one
predecessor, we introduce a new decision variable yv and add
the following set of constraints {yv ≥ ts(u)+cost(u, v)|∀u ∈
V, (u, v) ∈ E}. Since we only traverse the graph once,
the time complexity of this method is O(|V | + |E|). The
space complexity is also O(|V | + |E|) as the number of
variables and constraints in the LP are bounded by |V | and |E|,
respectively. The complexity of solving the LP is discussed in
Section II-D3.

D. Performance Metrics

1) Sensitivity Measures: After converting the execution
graph into an LP, we gain the ability not only to estimate
an application’s runtime but also to leverage the concept of
reduced cost (RC) for assessing network latency sensitivity.
The RC of a decision variable quantifies the amount at which



the objective value will change if the value of the variable
varies by 1 unit. As illustrated in Fig. 5, the reduced cost for
l equals 1, indicating a direct correlation where an increase
in l by 1 µs results in an increase in t by 1 µs. Thus, the
RC of l directly reflects λL. Since by solving an LP, we
automatically calculate the RC for all decision variables, we
can obtain sensitivity measures of parameters such as L and G
much more efficiently, unlike graph analysis, which requires
two separate traversals of the graph to deduce the same metric.

Constraints in LP problems can be viewed as an alternative
representation of edges in graphs. Intuitively, if a set of
constraints are tight after optimization, their corresponding
edges are on the critical path. For instance, when we introduce
l ≥ 0.5 to Equation 6 and solve for t, we observe that
constraints (1) and (4) are tight, indicating that the path
they represent, C0 → S → R → C3 in Fig.4a, is the critical
path. As a basis closely correlates with constraints, if the
optimal basis of an LP remains constant, the critical path of
its corresponding execution graph will be unchanged. Given
any L as the lower bound of l, we can compute its range
of feasibility, Lfl ≤ L ≤ Lfu , where Lfl and Lfu are the
feasibility lower bound and upper bound respectively. Within
this range, both the critical path and λL would remain the
same. Note that a linear solver produces the range of feasibility
of all variables after optimization. The difference between
our approach and graph analysis is that every time the LP
is solved, it provides us with information about the region
around the optimal basis. Thus, we can explore an interval
more efficiently.

Derived from λL, which indicates the number of messages
along the critical path as discussed in Section II-B, the product
L · λL reveals the total time consumed by network latency on
the critical path. Consequently, we define ρL = (L · λL)/T ,
termed as the L ratio. ρL highlights what fraction of the
critical path’s execution time is due to network latency. By
calculating this ratio, we gain insight into the overall impact
of network latency on the performance of the application.

2) Network Latency Tolerance: Beyond assessing network
latency sensitivity, a significant benefit of LP lies in its ability
to directly calculate the network latency tolerance of applica-
tions. Importantly, in Fig. 1, different tolerance values were
not derived from iterating over predicted or actual application
runtimes; instead, they were directly computed by solving LPs.

To achieve this, it requires two simple adjustments to the
original LP. Firstly, we change the objective function from
minimizing t to maximizing l. Following this, an additional
constraint is introduced to set the maximum allowable execu-
tion time t. Solving the LP under these conditions yields the
precise maximum tolerable L, beyond which the application’s
runtime exceeds a predefined threshold. We thus define the
x%L tolerance of an application as the highest L tolerable be-
fore experiencing more than x% degradation in performance.

Fig. 6 showcases the modified LP applied to our running
example. Our goal here is to determine the maximum network
latency, L, that keeps the application’s runtime below 2 µs.
Hence, the model incorporates a constraint t ≤ 2 µs and
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Fig. 6: The alternative optimization problem that tries to
maximize l given an upper bound of the decision variable
t. The shaded regions are infeasible. t ≥ 1.1 is not shown.

optimizes for l. As illustrated, the LP efficiently identifies
the optimal solution as 0.885 µs. This underscores LP’s
effectiveness as a tool for network architects and software
engineers, providing a direct measure of network latency
tolerance without the need for exhaustive parameter sweeps.

3) Advantages of Linear Programming: While transform-
ing an execution graph into a linear program has linear time
and space complexities, some doubts might be raised regarding
the efficiency of this approach considering that solving a linear
program is known to have exponential time complexity in the
worst case with the simplex algorithm [48], [49]. In theory, one
might expect traditional simulation or graph analysis methods
to be more scalable. However, the reality is different.
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Fig. 7: Runtime of the linear solver used by LLAMP vs.
LogGOPSim across various applications. The number in the
brackets lists the number of events in the execution graph.

The runtime comparison between LLAMP utilizing
Gurobi [51], a state-of-the-art linear solver, and LogGOP-
Sim is presented in Fig.7. Our choice of LogGOPSim for
comparison is based on two key factors. Firstly, LogGOPSim
stands out as one of the most efficient and scalable simula-
tors currently available [28], [31]. Secondly, the graphs used
to generate the LP models in our analysis are created by
Schedgen, a component also utilized by LogGOPSim, ensuring
a fair comparison. Despite LogGOPSim’s notable speed and
scalability, it is consistently outperformed by the linear solver,
often by a factor of more than 6×, regardless of the problem
size. This discrepancy arises mainly because the presolve
phase of the linear solver efficiently eliminates all redundant
constraints with advanced heuristics [52], [53]. This drastically
reduces the solve time. Moreover, the barrier algorithm, also
referred to as the interior point method [48], [54], employed
by the solver allows the problems to be easily parallelized.
Consequently, in practice, employing LP for performance
forecasting is more efficient.
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Fig. 8: A shows the expected result when ∆L is added to the network latency in a scenario where the sender (R0) performs
two consecutive eager MPI_Sends while the receiver (R1) posts two MPI_Recvs prior to the sends. tR0

and tR1
represent

runtime of the ranks, respectively. The orange vertical lines indicate the time at which each send starts. The arrows denote
the transmission of entire messages. L0 represents the network’s base latency. For brevity, the bandwidth cost for message
transmission, (s − 1)G, is simplified to B. Subsequent panels depict various network latency injector implementations and
their effects. Expressions in each panel that match those in A are marked in green, while those that differ are in red.

III. VALIDATION

As LLAMP forecasts application performance, we can ar-
tificially introduce latency to network communication so as
to compare its actual impact with LLAMP’s predictions. In
this section, we present two major contributions: a software-
based latency injector for precise, scalable flow-level latency
injection without specialized hardware or admin privileges,
and a demonstration of LLAMP’s predictive accuracy.

A. Network Latency Injector
Emulating network latency accurately is a complex task.

For instance, take the situation shown in Fig. 8, where our
goal is to inject an extra delay, ∆L, into the network. We
expect R0 to complete sending messages by timestamp 2o,
and R1 to receive them at 3o + L0 + B + ∆L, assuming
both start at timestamp 0. The simplest method to add latency
is to delay the send operation by ∆L. As seen in B ,
this unintentionally delays both R0 and R1. Note that even
with an additional progress thread to handle the sending, one
MPI_Send would still have to wait until o + ∆L before
returning, delaying the next send. Underwood et al.’s work [50]
exploited this basic approach by hooking their latency injector
into the post_send function in libibverbs library. However,
as we have shown here, it would introduce unwanted delays
to consecutive send operations.

The approach in C adds a progress thread to the receiver to
process the delay, freeing the sender from the wait. Nonethe-
less, this method faces issues when ∆L exceeds o, which is
often the case in practice. The progress thread is still handling
the first message’s delay when the second arrives. This leads
to the second message being delayed to o+ L0 + B + 2∆L,
not the expected 2o+L0 +B+∆L. To concurrently process
delays for multiple messages, the progress thread would need
to track release times while polling the receive queue, which
can greatly reduce the accuracy and resolution of ∆L.

Our solution, depicted in D , utilizes a delay thread to
precisely manage ∆L for each receive. When the progress

thread receives a message, it marks it with a timestamp, tm,
and passes it to the delay thread. This thread queues the
message, releasing it to the application only when the current
time matches tm +∆L. This enables us to precisely emulate
network latency, achieving the intended delay effect.

We implemented our solution in MPICH and UCX. MPICH
was chosen since it already has asynchronous progress threads,
unlike Open MPI. UCX was favored over libfabric for its
simpler API, allowing easier customization. While one can
place the delay queue on the sender side, this would require
capturing send requests and manipulating data buffers. This
would introduce overhead from memory copies and demand
extensive modifications to the MPICH source code, potentially
compromising its integrity. In conclusion, our solution stands
out among other methods for its portability across all UCX
transports. Moreover, it allows users to conduct cluster-wide
experiments without requiring special privileges or changes to
existing infrastructure.

B. Experimental Setup

All the experiments detailed in this section were con-
ducted on a 188-node test-bed cluster maintained by the
Swiss National Supercomputing Center (CSCS). The cluster
features a fat-tree topology built on 18 Mellanox SX6036
switches. Each node is powered by a 20-core Intel Xeon
CPU E5-2660 v2, equipped with 32 GB DDR3 RAM and
a ConnectX-3 56 Gbit/s NIC, running CentOS 7.3. We used
MPICH 4.1.2, UCX 1.16.0. The stack and all applications were
compiled with GCC 11.4.0. To precisely measure the network
parameters critical for the LogGPS model, we employed
Netgauge 2.4.6 [55]. Aggregating measurements across the
cluster yielded network parameters: L = 3.0µs, G = 0.018ns,
and S = 256 KB. Observing that o > g across all data
sizes, we opted to omit g from the analysis. To enhance
the accuracy of runtime predictions, we computed average
packet sizes for each application from the traces and matched
the o value using Netgauge’s outputs. The applications were
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Fig. 9: Results for 4 selected applications, detailing the analysis across varying node and process counts. The upper section
of each subplot compares actual runtimes against LLAMP predictions, with different colors and labels indicating 1%, 2%,
and 5% L tolerance. RRMSE values highlight LLAMP’s prediction accuracy relative to measured runtimes. The lower section
illustrates the variation in latency sensitivity, λL, and the latency ratio, ρL, against changes in ∆L.

executed in a hybrid MPI+OpenMP mode in which every
node runs one MPI rank and 16 OpenMP threads. For each
variation in network latency, ∆L, we conducted 10 runs per
application, averaging the runtimes to produce the final results.
The LLAMP toolchain was executed on a machine with an
AMD EPYC 9654 96-Core 3.7 GHz and 375 GB of memory.

C. Validation Results

Validation experiments were conducted on seven HPC ap-
plications across diverse domains, employing a variety of node
configurations. Collecting runtime data required over 45 hours
of cluster compute time. LLAMP demonstrated its efficiency
by generating equivalent results, along with additional metrics,
in 4 to 5 hours, which included time for tracing and gener-
ating LP models. Under the same condition, LogGOPSim is
projected to need over 12 hours for simulation, an estimation
that does not take into account LogGOPSim’s inability to
evaluate λL. Due to space limits, we showcase the outcomes
graphically from the four applications that best represent our
findings in Fig. 9. Detailed results for all evaluated applications
are listed in Table I.

The plots demonstrate LLAMP’s capability to accurately
forecast the runtime of applications across various ∆L, ev-
idenced by the fact that relative root mean square errors

(RRMSE) [56] are consistently below 2%. A noticeable varia-
tion in the measured runtimes for HPCG suggests that it might
be inherently more susceptible to system and network noise.
Additionally, a slight bias is observed for MILC on setups
involving 32 and 64 nodes, particularly within the 0 to 20 µs
∆L range. This bias may stem from MILC’s extensive use
of persistent operations, in contrast to the MPI_Send and
MPI_Recv operations utilized by Netgauge for measuring
LogGP parameters. The differing overheads associated with
persistent operations could contribute to this discrepancy.

Based on the definition of λL (i.e., ∂T/∂L), the bottom
plots allow us to assess how sensitive an application is to
network latency for any given ∆L. The visualizations clearly
mark the intervals where λL increases most rapidly and where
it reaches a plateau, indicating a convergence of the number of
messages along the critical path toward the longest message
chain in the execution graph. For example, the top right plot
illustrates that LULESH, when executed on 64 nodes, has
a λL that is stable between 0 µs and 20 µs. This shows
that LULESH’s performance remains relatively unaffected by
variations in L within this interval. Developers are encouraged
to optimize their applications to improve communication-
computation overlap, aiming for a flatter λL curve.

LULESH and HPCG were evaluated under weak scaling,
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the ring algorithm for MPI_Allreduce. The top plots illustrate ICON’s performance prediction with recursive doubling for
allreduce The corresponding bottom series showcases performance outcomes utilizing the ring algorithm for the same operation.

showing that their network latency tolerance remained rel-
atively stable as the number of nodes increased. Interest-
ingly, HPCG’s latency tolerance improved, likely due to the
optimized overlap between communication and computation.
On the other hand, MILC (su3 rmd) and ICON were sub-
jected to strong scaling, revealing a substantial decrease in
latency tolerance as the applications scaled up. This decline
is attributed to the diminishing computational workload per
node in strong scaling scenarios, reducing the amount of
computation that may be overlapped. MILC, in particular,
showed a significantly lower tolerance, highlighting its great
reliance on communication.

IV. ICON CASE STUDY

Having validated LLAMP, we now turn our attention to
applying it to a real-world application. For this purpose, we
selected the Icosahedral Nonhydrostatic Weather and Climate
Model (ICON) as our case study. ICON is a global atmo-
spheric simulation framework designed for weather forecast-
ing and climate studies, leveraging a novel icosahedral grid
for higher precision and computational efficiency. Central to
ICON is its dynamical core that solves the nonhydrostatic
equations of motion. Our choice of ICON is motivated by
its widespread adoption among prominent European weather
services, including MeteoSwiss [57] and the German Weather
Service (DWD) [58]. Given the importance of climate studies,
ICON stood out as a perfect candidate to showcase the
versatile functionalities of our toolchain.

The case study was conducted on the Piz Daint super-
computer, operated by CSCS. For this study, we deployed
ICON version 2.6.7, compiled with Cray MPICH 12.0.3. The
LogGPS parameters measured for the cluster were L = 1.4µs,
G = 0.013ns, and S = 256KB. ICON was executed in hybrid
mode, utilizing 16 OpenMP threads per node. The experiments
were conducted across three different scales: 32, 64, and 256
nodes. The values of o for these configurations were measured
as 8.5 µs, 7.4 µs, and 6.03 µs, respectively.

Application # Proc /
# Nodes

Time
[min]

Size
[MB]

# Trace
Events

RMSE
[s]

RRMSE
[%]

LULESH
128/8 3 28 895 K 0.031 0.54

432/27 12 137 4.55 M 0.038 0.61
1024/64 40 353 13.5 M 0.037 0.58

HPCG
128/8 2.5 21 738 K 0.053 1.02

512/32 15 133 4.83 M 0.099 1.42
1024/64 35 333 12.2 M 0.095 1.10

MILC
[su3 rmd]

128/8 10 69 2.79 M 0.052 0.60
512/32 45 280 12.1 M 0.050 1.05
1024/64 120 539 23.6 M 0.068 1.69

ICON
128/8 1.5 9.7 362 K 0.074 0.34

512/32 4.5 51 1.89 M 0.051 0.52
1024/64 12 102 3.82 M 0.053 0.75

LAMMPS
128/8 0.5 3.9 155 K 0.083 1.40

512/32 2 16 596 K 0.102 1.46
1024/64 3 32 1.21 M 0.128 1.65

OpenMX 128/8 0.6 4.6 271 K 0.204 0.88
512/32 4.3 64 1.78 M 0.097 0.55

CloverLeaf 128/8 4.1 6.1 162 K 0.037 0.70

TABLE I: Validation results across all chosen applications.
The third column shows the total time overhead required to
produce the λL results as ∆L varies from 0µs to 100µs. The
fourth column displays the trace size produced by liballprof,
while the fifth column lists the number of trace events in
the execution graphs generated by Schedgen. The RMSE and
RRMSE columns indicate the Root Mean Square Error and
Relative Root Mean Square Error, respectively, between the
predicted and measured runtimes.

1) Impact of Collective Algorithms: Firstly, we demonstrate
LLAMP’s ability to analyze how different implementations
of collective algorithms impact ICON’s performance. Given
ICON’s reliance on allreduce for data exchange in its dy-
namical core, we explored the effect of changing its allreduce
from recursive doubling to the ring algorithm. As discussed in
Section II-A, this can be achieved by altering the scheduling
for allreduce in Schedgen. The results are presented in Fig. 10,



where ICON was traced once per node configuration.
Our observations reveal that ICON’s performance becomes

increasingly sensitive to L when employing the ring allreduce,
a consequence of dependent sends and receives in this algo-
rithm. This effect intensifies with the scaling of the applica-
tion. Notably, at 256 nodes, ICON’s 5% L tolerance using
ring allreduce stands at 11.4 µs, in contrast to its recursive
doubling counterpart, which exhibits a 4× latency tolerance.
Furthermore, despite similar trends in their λL curves across
varying scales, the magnitude of λL for the ring allreduce
significantly exceeds that of recursive doubling, indicating
a significant increase in latency sensitivity. At 256 nodes,
ICON’s ρL surpasses 25% for a ∆L = 100 µs, doubling
the ρL observed with recursive doubling. This suggests that
ring allreduce should be used cautiously, especially when
bandwidth and network congestion are less critical.

Through LLAMP, we highlight how software engineers can
assess the impacts of collective algorithms. This approach en-
ables a more informed decision-making process in optimizing
collective communications for HPC applications.

2) Impact of Network Topology: LLAMP’s utility extends
beyond the evaluation of collective algorithms, it can also an-
alyze various network topologies. This capability is illustrated
in an example in Fig. 11. The core concept revolves around
substituting the latency of all wires with a decision variable
lwire. Given a constant switch latency, denoted as dlatency,
the cost to transmit a message between two nodes can be
formulated as (h+1)·lwire+h·dlatency, where h represents the
number of hops. This allows us to model the communication
cost between any two nodes as a function of lwire and the
number of hops as defined by the network topology. By setting
lwire ≥ L, we effectively focus on wire latency instead of the
end-to-end latency between nodes. Consequently, by calculat-
ing ∂T/∂L, we can determine how sensitive an application is
to changes in wire latency. This adjustment shifts the focus of
analysis toward understanding the influence of the topology
and the wire latency on application performance.
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Fig. 11: An example demonstrating that by replacing the
cost of communication edges of the execution graph with
appropriate decision variables, we can investigate the impact
of the wire latency as well as the network topology on the
overall performance of an application.

In this case study, we leverage LLAMP to assess the impact
of two predominant network topologies, namely Fat Tree [59]
and Dragonfly [60], on ICON’s performance. Based on the

work of Zambre et al. [61], we set initial lwire to 274 ns and
dswitch to 108ns. For the Fat Tree topology, we chose a three-
tier design where each switch has a radix of 16 (k = 16). The
selected dragonfly topology configuration is characterized by
g = 8, a = 4, and p = 8. We disregard h in our calculations,
assuming that routing is always minimal. Moreover, in our
analysis, we assume nodes are densely packed within both
topologies. For example, nodes 0 to 7 are clustered within the
same pod in the Fat Tree configuration and under a single
switch for the Dragonfly topology.
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Fig. 12: Comparison of the impact of the Fat Tree and
Dragonfly topologies on the performance of ICON.

We evaluate the performance impact of these two topologies
by using the execution graph of the 256-node setup (with
recursive doubling allreduce) and present the result in Fig. 12.
Considering the potential for a more complex FEC to increase
the latency per wire by over 100 ns as mentioned in the
introduction, we selected an interval ranging from the base
latency of 274ns to 424ns. Our results show that ICON under
Dragonfly exhibits a marginally higher network latency toler-
ance compared to the Fat Tree. This advantage is attributed
to Dragonfly’s lower average number of hops between nodes
under our configurations. The key takeaway is that despite
Dragonfly’s slightly superior network latency tolerance, the
performance of ICON under both topologies remains largely
unaffected by the anticipated latency increases from more
complex FEC. This is demonstrated by the requirement for the
per-link latency to exceed 3000ns before ICON’s performance
degrades by 1%.

This study, while hypothetical, showcases LLAMP’s adapt-
ability in assessing the impact of network topologies. It high-
lights its utility for architects aiming to refine their systems
for optimal performance with specific HPC applications.

V. RELATED WORK

a) Trace Replay: Numerous tools exist for forecasting
MPI applications’ performance based on collected traces.
PHANTOM [62], [63] and LogGOPSim [31] utilize communi-
cation models from the LogP family, offering fast simulation
times. PSINS [64] presents a choice among three communica-
tion models of varying complexity, with the PMaC model [65]
standing out for its accuracy. Hermanns et al. [66] aim at reen-
acting communication operations from traces to identify load
imbalances. SMPI [67] and the work of Desprez et al. [68],
rely on SimGrid [69], a discrete event simulator, for more
precise performance predictions during online simulations.



Kenny et al. [70] incorporate SST [71] and PISCES, a packet-
level model, for architectural simulations, employing Bayesian
inference for simulator validation. Eyerman et al. [72] propose
integrating profiling, node simulation, and high-level network
simulation with SST. Despite their capabilities, these simu-
lators often rely on complex discrete event and packet-level
simulators that are usually time-consuming to execute. One
significant limitation they share, when compared to LLAMP,
is the necessity for extensive parameter sweeps to ascertain
each application’s network latency tolerance.

b) Critical Path Analysis: Graph-based analysis of MPI
applications is a well-established approach. Schulz [32] and
Böhme et al. [33] have contributed to identifying wait-states
and load imbalances by employing critical path analysis and
trace replay. Chen et al. [46] further refined this approach by
introducing the concept of critical-path candidates, identifying
potential critical paths through profiling-based instruction and
communication counts. Schmitt et al. [73] expanded these
mostly rely on traditional graph analysis, LLAMP introduces
a completely new and unique perspective on viewing graphs
and extracting information from the critical path.

c) Network Latency Sensitivity and Tolerance: Numer-
ous studies have investigated how network latency affects
application performance. Efforts by Underwood et al. [50],
Gao et al. [74], Patke et al. [25], Link Gradients [75], and
Richar Paul Martin’s thesis [76] have predominantly involved
manually injecting latency to networks and conducting ex-
tensive trials with varied latency levels to identify patterns.
Kerbyson et al. [23] utilized performance models of three
specific applications for similar analyses. While insightful, it
demands considerable effort and deep application knowledge,
limiting their generality. Our work stands out by mathe-
matically defining network latency sensitivity/tolerance and
offering a scalable, analytical method to compute these metrics
across a broad spectrum of MPI applications.

VI. EXTENSIONS AND DISCUSSION

Beyond the capabilities we have shown, LLAMP holds
extensive potential for a broad spectrum of analyses, offering
users a flexible framework to explore a variety of perfor-
mance metrics. LLAMP’s versatility extends to examining the
sensitivity and tolerance of additional critical LogGPS model
parameters, such as bandwidth G. We demonstrate LLAMP’s
ability to perform bandwidth sensitivity analysis in Fig. 13 by
setting L at 3µs and varying the lower bound of the decision
variable that represents G from 0.02ns (50 GB/s) to 0.1ns (10
GB/s). The result shows that λG exhibits a notable increase
from 14.52×106 to 14.61×106 when G reached approximately
0.07 ns (13.8 GB/s). Beyond this point, G remained stable.
This suggests that reducing network bandwidth below 13.8
GB/s causes the data volume on the critical path to rise from
14.52 MB to 14.61 MB. LLAMP showed that this change had
a minimal impact on the overall runtime of LULESH.

Moreover, LLAMP’s support for heterogeneous network
models, such as HLogGP, unlocks the potential to assess
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Fig. 13: Bandwidth sensitivity analysis of LULESH.

pairwise network latency sensitivities across MPI ranks. Lever-
aging this, we devised a new process placement algorithm to
optimize the mapping of MPI ranks onto physical processors.
These functionalities exemplify LLAMP’s versatility and how
it empowers users to tailor the toolchain to their specific needs.

There are aspects of LLAMP that can still be improved.
Firstly, the trace-based nature of our analysis means that
LLAMP relies on a static snapshot of application behavior
to produce the performance metrics, which may not capture
the variability of live execution. As exemplified by the works
of Nikitenko et al. [77] and Hoefler et al. [35], an application’s
performance during tracing might be influenced by system
noise and network congestion. To overcome this, we can
incorporate a more detailed model, such as LogGOPSC [78],
to account for network contention or statistics to account for
the variability of network behavior and system noise, allowing
LLAMP to predict a range of outcomes and their probabilities.

0 20 40 60 80 100
ΔL [μs]

7.5

8.0

8.5

9.0

Ru
nt

im
e 

[s
] 1% L tolerance: 13.9 μs

1% L tolerance: 34.7 μs
1% L tolerance: 57.2 μs

NAMD 128 procs [8 nodes]Measured
LLAMP [ΔL = 0] 
LLAMP [ΔL = 50] 
LLAMP [ΔL = 100]

Fig. 14: Runtime of NAMD, a molecular dynamics simulation
built on charm++, showing measured vs. predicted runtimes.
The legend indicates ∆L at which the traces were recorded.

Currently, LLAMP’s is not fully equipped to handle the
intricacies of dynamically scheduled operations seen in frame-
works like charm++ [79], which dynamically adjust based on
runtime conditions. However, LLAMP still manages to reveal
the inherent latency tolerance within these frameworks. As
illustrated in Fig. 14, LLAMP demonstrates how charm++
proactively adjusts its communication schedule to enhance
resilience to increased network latency. In the future, we plan
to explore a general strategy that can analyze and quantify
network latency sensitivity and tolerance across a variety of
parallel programming models. This includes not only those that
use dynamic scheduling, but also models that diverge from the
MPI standard, such as Legion [80].

VII. CONCLUSION

In this work, we introduce LLAMP, an innovative toolchain
that integrates the LogGPS model with linear programming



to analyze network latency sensitivity and tolerance in HPC
applications. By uncovering the intricate connection between
the critical paths in a program’s execution graphs and LP, we
provide a new method for efficiently gathering performance
metrics. LLAMP’s flexibility allows users to utilize metrics
such as λL and ρL in ways tailored to their specific needs.

Moreover, the development of a specialized latency in-
jector that accurately emulates flow-level latency enables us
to validate LLAMP’s predictions across a variety of HPC
applications, demonstrating an error margin of less than 2%.
To illustrate LLAMP’s practicality, we conducted a case study
with ICON, a leading climate modeling tool in Europe, demon-
strating its utility in addressing the needs of both software
engineers and network architects.
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