arXiv:2105.01109v1 [quant-ph] 3 May 2021

Distributed Quantum Computing with QMPI

Thomas Héner
Microsoft Quantum
Switzerland

Torsten Hoefler
ETH Zirich
Switzerland

ABSTRACT

Practical applications of quantum computers require millions of
physical qubits and it will be challenging for individual quantum
processors to reach such qubit numbers. It is therefore timely to
investigate the resource requirements of quantum algorithms in a
distributed setting, where multiple quantum processors are inter-
connected by a coherent network. We introduce an extension of
the Message Passing Interface (MPI) to enable high-performance
implementations of distributed quantum algorithms. In turn, these
implementations can be used for testing, debugging, and resource
estimation. In addition to a prototype implementation of quantum
MPI, we present a performance model for distributed quantum com-
puting, SENDQ. The model is inspired by the classical LogP model,
making it useful to inform algorithmic decisions when program-
ming distributed quantum computers. Specifically, we consider
several optimizations of two quantum algorithms for problems in
physics and chemistry, and we detail their effects on performance
in the SENDQ model.

1 INTRODUCTION

Quantum computing promises to solve certain computational tasks
exponentially faster than classical computers, with application do-
mains ranging from cryptography [48] to chemistry and mate-
rial science [33]. A host of case studies investigate the minimal
requirements for quantum computers to yield a practical advan-
tage [20, 29, 44, 47, 57]. While the resource requirements seem
generally feasible, e.g., for applications in computational cataly-
sis [57] and for breaking RSA [20], such applications require mil-
lions of physical qubits. Given current projections [19, 39], it will
be challenging for individual quantum processors to achieve such
qubit numbers. Consequently, these applications may require that
computations are distributed across multiple entangled quantum
processors.

In a distributed setting, multiple smaller quantum chips are con-
nected coherently, allowing for inter-node communication of quan-
tum information. For example, IBM’s roadmap for large scale de-
vices containing more than 1 million qubit is planned as a set of
individual systems with quantum interconnects linking many dilu-
tion refrigerators [19] and Google Quantum Al have communicated
plans to connect 100 tiles of 10,000 physical qubits each to reach a
million physical qubits [39]. For an overview of possible paths to
distributed quantum computing, we refer the reader to reviews on
the topic [2, 55].

Related Work. There exists a host of software frameworks, pro-
gramming languages, and compilers for quantum computing [1,

Damian S. Steiger
Microsoft Quantum
Switzerland

Matthias Troyer
Microsoft Quantum
USA

6, 21, 26, 50, 52]. However, to the best of our knowledge, no exist-
ing framework for quantum computing allows for development of
distributed algorithms.

Moreover, progress has been made on simulations and appli-
cations of a quantum internet [12, 13, 60]. Yet, as with today’s
classical internet applications, these works do not aim to provide
a framework for high-performance distributed quantum comput-
ing. Instead, typical use cases of a quantum internet are secure
communication, clock synchronization and leader election [43, 60].

There exists a large body of theoretical work to estimate the re-
source requirements of non-local operations [10, 17], of distributed
quantum algorithm primitives such as distributed arithmetic [35]
and the quantum Fourier transform [64], and of entire applications
in cryptography [20, 36, 63] and computational chemistry [15].

Finally, there is related work on theoretical models of distributed
quantum computing. Beals et al. [3] introduce the Q PRAM model,
the shared quantum memory equivalent of the PRAM model with
global load/store access as a model for distributed quantum com-
puting. They analyze several quantum algorithms in the Q PRAM
model. In contrast to our work, however, their focus is on asymp-
totic runtimes, and not on performance.

While we consider systems where each node has a sufficient
number of physical qubits to encode several logical qubits, we
note that there are alternative approaches. For example, Nickerson
et al. [40] propose a protocol for distributed quantum computing
in which small cells of only 5 to 50 physical qubits are connected.
In this setting, even a single logical qubit is spread over different
nodes, and the distribution is a hardware implementation detail not
exposed to the user.

Contributions. In order to bridge the gap between theoretical
distributed quantum algorithms and software frameworks for quan-
tum computing, we propose Quantum MPI (QMPI), an extension of
the classical MPI standard [58] to quantum computing. The focus of
QMPI is to provide the primitives that are necessary to implement
high-performance distributed quantum algorithms. To reason about
the performance of distributed quantum algorithms, we develop
the SENDQ model and we present examples that illustrate how this
model may be leveraged to inform algorithmic decisions.

Specifically, our contributions are as follows:

o We define Quantum MPI (QMPI) as an extension to classical
MPL QMPI supports all classical MPI functionality on com-
putational basis states (including their inverses to enable
reversibility) as well as general-purpose point-to-point and
collective functions that entangle and move qubits between
nodes.

e We present a quantum communication model (SENDQ) that
is inspired by the classical LogP model [11] to model the
performance of distributed quantum algorithms and foster
algorithmic optimizations.

o We implement quantum-specific optimizations, such as using
asynchronously pre-established entangled quantum states
to optimize point-to-point and collective quantum communi-
cation with zero quantum communication depth and purely
classical communication.

e We discuss potential applications of quantum MPI to prob-
lems from physics and chemistry, and we show how such
applications can be optimized using the SENDQ model.

QMPI adds support for quantum message passing to existing
quantum programming languages, thus enabling programmers to
implement distributed quantum algorithms. In combination with
SENDQ), the resulting implementations can be used to investigate
typical workloads at application scale. The results of such inves-
tigations are crucial for making informed architectural decisions
along the road to practical distributed quantum computing.

2 QUANTUM COMPUTING

This section serves as a brief introduction to quantum computing
and our notation. For a more detailed treatment of this subject, we
refer the reader to the textbook by Nielsen and Chuang [41].

Quantum States and Dirac Notation. A quantum computer
consists of multiple quantum bits (qubits) whose quantum state
may be represented as a complex superposition over all classical
bitstrings. Specifically, the state |/) (“ket ¢/”) of an n-qubit quantum
computer may be written as

2m-1
ly) = Z @ lin-1---ip),
i=0

where i; denotes the kth bit of the integer i, and ; € C such that
> lai]? = 1. When measuring all qubits at once, the probability of
observing the integer i is given by |a;|2. This also explains the nor-
malization condition, since the probability of observing any integer
should be equal to 1. The “ket” notation |-) denotes column vectors,
whereas row vectors are denoted by “bra”: (-|. Therefore, the dot-
product between two state vectors |/), |#) can be written as (/|¢)
and the projector onto |¢) is P|yy := [/) (¢|. By identifying each of
the computational basis states |ip—1 - - - i) with the corresponding
standard basis vector ¢; € C2", i.e., (e;)j = 6;j where 6;; denotes
the Kronecker delta, |/) can be written as a column vector with
entries (/)i = a;.

Quantum Gates. A computation can be performed by applying
a sequence of quantum instructions to the qubits. Such quantum
instructions consist of a list of qubit indices that the instruction acts
upon, and a so-called quantum gate, akin to classical gates such
as AND, XOR, etc.. In the same way that quantum states can be
represented as column vectors, quantum gates may be represented
as (complex) unitary matrices U of dimension 2" x 2". A matrix is
said to be unitary iff UTU = UUT = 1, where UT denotes the Her-
mitian conjugate of U. Then, matrix-vector multiplication models
the application of a quantum gate.

We will be using the following gates in this paper. The Hadamard

gate H = \/LE(% 1), the S gate S = (}9), the Pauli gates X =

(2) (b)

Ez

Figure 1: (a) A CNOT may be written in terms of a CZ using
Hadamard gates. (b) If the target qubit is known to be re-
set to |0) by the CNOT, then this reset may be implemented
more efficiently using only single-qubit gates and classical
control.

((1) (1)), Y = (? ?)i),Z = ((1] _01), the controlled Pauli gates, e.g.,
controlled X (or controlled NOT, CNOT)

1000
cx=|o><0|®112+|1><1l®X=(858?),
0010

(where ® denotes the Kronecker product), and Pauli rotation gates
RP(G) — e—O.5i9P’

where P is a single-qubit Pauli gate P € {X, Y, Z}.

Quantum Circuits. To illustrate a sequence of quantum gates
acting on qubits, we use circuit diagrams such as the one in Fig. 1.
Each horizontal line corresponds to a qubit and boxes/symbols
on these lines represent gates, with time advancing from left to
right. We use double-lines to denote classical information such as
measurement outcomes. Controlled gates (such as CNOT) are drawn
with as a filled circle o on the control qubit and a line connecting
the control qubit to the target qubit gate. Moreover, the Pauli X
gate (or NOT gate) is drawn as a ®-symbol, since it corresponds to
addition modulo two, and the controlled Z gate is sometimes drawn
as two e-symbols connected by a line (to illustrate its symmetry
with respect to control and target qubit).

We will be using a circuit primitive called fanout, which can
be viewed as copying in a quantum superposition. Let us assume
a qubit g = a|0) + |1) in a superposition of classical values 0
and 1. Fanout adds auxiliary qubits and transforms the state to
«0...0) + f1...1)., thus it is now in a superposition of multiple
copies of the classical values 0 and 1. Note that this is not the same
as cloning the qubit. One application of fanout is to to parallelize
computations [25] by fanning out control qubits so that gates can be
executed in parallel even when they are executed conditionally on
the same control qubit(s). Gates that are controlled on g, and that
act on distinct qubits may now be applied in parallel by choosing
qubit g, or any of the auxiliary qubits as a control qubit. After
completion of the controlled gates, all auxiliary qubits need to
reverted back to 0 by reverse fanout. Locally, this is again done by
a simple CNOT gate, see Fig. 2.

Fanout is just one example of classical computation applied to
a superpositions of states. More generally, any reversible classical
computation can be applied in superposition, and this includes
many MPI operations to be discussed later, including reductions.

EPR Pairs and Quantum Teleportation. When distributing
a quantum algorithm to multiple nodes, some multi-qubit gates
act on qubits that are located on different nodes. This situation
can be resolved through either gate or qubit teleportation. We will
briefly review the latter and we refer the reader to the work by
Yimsiriwattana and Lomonaco Jr [64] for a more detailed discussion.

fany
A\

0)

10y —& *
&

Figure 2: Fanout of control qubit g, to apply the controlled
gates U1 and Uy in parallel.

(a) Fanout(1l — 2) (b) Unfanout(l — 2)

¥)

Node 1 |¢> *

Node 2

R 2% —H :
| | | |
s ;|
: B :
|
Node 2 ! I m, |
| I |
: X — 2

Figure 3: Quantum circuits illustrating fanout/unfanout and
teleportation of a qubit in state |/) from node 1 to node 2
using an EPR pair. Quantum teleportation can be seen as a
fanout to node 2, followed by an unfanout from node 2 to
node 1. For teleportation, 1 EPR pair is used and 2 bits of
classical information are sent to node 2.

The fundamental resource to enable communication of quantum
data are Einstein-Podolsky-Rosen (EPR) pairs [16], which consist
of two qubits in the state

1
V2
In a circuit diagram, we depict EPR pairs as two filled circles that
are interconnected with a serpentine line e™_e.

When two nodes share a EPR pair, another qubit may be moved
from one node to the other using the EPR pair and classical com-
munication. The basic idea is to first fan out the qubit to the other
node and to then remove (using measurement) the qubit from the
first node. Fanout may be achieved using a parity measurement
between the local EPR pair qubit and the qubit to send, followed by
a conditional fix-up operation, as shown in Fig. 3(a). We compute
the parity using a CNOT gate between the qubit to send and the
local share of the EPR pair, and then we measure the parity. If the
outcome is 0, no further action is required. However, if the parity
is 1, the other node must fix its "fanout" qubit (its share of the EPR
pair) by flipping the qubit using an X gate.

(]00) +[11)).

At this point, the qubit has been fanned out successfully to the
second node. If both qubits were located on the same node, we
could use a CNOT to reset the first qubit to |0), resulting in the
qubit having moved from the original position to where the second
qubit of the EPR pair was located. It turns out that the same is
true in the remote setting: Because the CNOT resets the qubit
to |0), we may use the principle of deferred measurement [41]
to implement this uncomputing CNOT using just local gates and
classical communication, as illustrated in Fig. 1 and Fig. 3(b): All
that is needed is a measurement in the X-basis (apply Hadamard,
then measure) and, if the outcome is 1, we apply a Z gate to the qubit
on the second node. This completes the Unfanout(2—1) section of
the quantum circuit for teleportation in Fig. 3(c). Note that only
classical communication and no quantum communication is needed
for the unfanout, see Fig. 3(b).

3 DISTRIBUTED QUANTUM COMPUTING

In order to run practical quantum applications, a fault tolerant
quantum computer is necessary as current error rates for physical
two-qubit gates are on the order of 1072~ 1074 [30], while practical
applications in chemistry and cryptography require around 109
Toffoli (or doubly-controlled NOT) gates [20, 22, 29, 57].

Overhead from Fault Tolerance. In order to store quantum
information for the duration of computation without any errors,
quantum error correction (QEC) uses many physical qubits to en-
code each logical qubit such that the error rates are low enough.
Additionally, we require to implement quantum gates in a fault tol-
erant way to execute the quantum program on these logical qubits.
Logical qubits and fault tolerant gates require a significant over-
head in terms of physical qubits and runtime. A modular quantum
computer design might be beneficial to handle the large number
of qubits, the cooling requirements for some technologies, and the
necessary control electronics and hence we are considering dis-
tributed quantum computing in this work. The logical clock cycle
is optimistically assumed to be 10us for midterm quantum com-
puters in the paper by von Burg et al. [57]. This number heavily
depends on the choice of qubit technology and the physical error
rates. For example state-of-the-art ion trap physical two-qubit gates
take already 1.6us [46] so the logical gate times for this technology
will be slower than the estimated 10pus. Lekitsch et al. [30] estimate
a logical gate time of 235us for ion traps which results in a run-
time of 110 days to factor a 2048-bit number. Such slow logical
gate times at least initially allow us to hide the latency of classical
communication in a distributed setting.

A standard set of universal quantum fault-tolerant gates are
the single-qubit Pauli, Hadamard, and S gates, the single-qubit
T := VS gate, and the two-qubit CNOT gate. Only the CNOT
gates will require communication by either teleporting the involved
qubits onto the same quantum node or by fanout of the control
qubit to the other node. Both of which can be achieved by sharing
logical EPR pairs. When using the surface code, which is currently
viewed to be the most promising approach to enable fault-tolerant
quantum computing, the most costly (local) operation is the T gate.
In contrast to other gates, T gates require distillation, which is
performed in so-called magic state factories [8]. The overhead due
to these factories limits the parallelism on a fixed-size chip, since

such factories are expected to require tens of thousands of physical
qubits when assuming physical error rates of 1072 [31].

Quantum-Coherent Interconnects. The physical implemen-
tation of connecting different quantum nodes by, e.g., creating a
distributed EPR pair, depends on the underlying technology. Using
optical photons is a natural choice given their property to travel
long distance with little perturbation. There is a large number of
theoretical proposals [38, 53, 62] and also first experimental pro-
totypes: optical photons have been used to demonstrate entangle-
ment sharing between ion traps 20m apart from each other [24]
or between atomic qubits [37]. In superconducting transmon qubit
architectures, it is necessary to convert microwave photons, which
are are used to perform two-qubit operations locally, to optical
photons [18]. However, such transducers are still challenging to
build. Therefore, alternative approaches are also being pursued, e.g.,
directly coupling two quantum nodes with microwave photons in
a cryogenic waveguide [32, 65].

In addition to the physical implementation for entanglement
sharing between nodes, a protocol for fault tolerance is required [5,
14, 54, 56].

Inter-Node Communication. With entanglement sharing in
place, it is possible to establish EPR pairs between nodes through
the quantum-coherent interconnect. In turn, this enables quan-
tum teleportation between nodes, thus allowing for sending and
receiving quantum information with move semantics.

However, we note that an additional mode of operation is pos-
sible: Instead of fully moving a qubit from one node to the other,
the qubit may also be fanned out to the other node, thus exposing
its value on multiple nodes at once. This is also referred to as an
entangled copy, which may be used, e.g., to reduce the delay of
certain quantum circuits, see Fig. 2 for an example.

In this second mode of operation, one may support all function-
ality of classical MPL. However, due to reversibility constraints, the
inverse of each function must be available as well [4]. For exam-
ple, reductions must be performed in a reversible manner. To this
end, depending on the reduction operation, additional work qubits
may be required. These must be stored and managed by the imple-
mentation until the inverse of the reduction is applied, allowing to
uncompute these work qubits.

4 QUANTUM MPI

To allow programmers to express distributed algorithms in their
quantum programming language of choice, we propose Quantum
MPI (QMPI) - a quantum extension of the classical message-passing
interface (MPI) standard.

4.1 Communicators and Interaction with MPI

QMPI leverages MPI for classical communication. As such, the com-
munication of classical and quantum data is completely separated:
The first is handled by MPI, whereas QMPI handles the latter.
While some nodes in MPI_COMM_WORLD may be purely classical,
such nodes must not be part of any communicator that is passed
to a QMPI function. QMPI_COMM_WORLD, which is of type MPI_Comm,
contains all quantum (i.e., not purely classical) nodes. All quantum
nodes must support classical MPI since otherwise, teleportation
would not be possible, as it requires communicating classical bits.

4.2 Datatypes

Qubits may be allocated using QMPI_Alloc_gmem(n), where n de-
notes the number of qubits to allocate. QMPI_Alloc_qgmem returns a
QMPI_QUBIT_PTR gptr, which points to the first qubit. Qubits may
be deallocated using QMPI_Free_gmem.

QMPI defines one basic quantum-specific datatype, QMPI_QUBIT,
which represents a single quantum bit. Given that qubits will be
a scarce resource initially, we leave the construction of more com-
plex data types such as quantum integers and quantum floating-
point numbers to the programmer: Such data types may be con-
structed from QMPI_QUBIT using QMPI_Type_#* functions such as
QMPI_Type_contiguous, as in classical MPIL

As we do not expect classical communication to be a bottleneck in
the near term and in order to keep classical communication separate
from quantum communication (the first using MPI, the second
using QMPI), we do not allow for mixing of quantum and classical
datatypes in the first version of QMPI. However, as protocols for
quantum error correction and entanglement sharing are optimized,
a tighter integration of QMPI with MPI may become critical to
performance, and this restriction could thus be dropped if needed
in a future version.

4.3 EPR pairs

The basic building block and most time consuming part for all
quantum communication is the creation of EPR pairs between qubits
on the sending and receiving ranks. Established EPR pairs allow for
higher-level communication primitives such as entangled copying
(fanout) or moving (teleportation) of qubits between two nodes that
share an EPR pair.

In order to request that an EPR pair be created between two
nodes, each node invokes

QMPI_Prepare_EPR(qubit, dest, tag, comm),

where qubit is a fresh qubit in |0), dest refers to the rank of a QMPI
process running on the other node, tag is the message tag, and comm
is the communicator (e.g., QMPI_COMM_WORLD). Upon completion,
the quantum state of the two qubits (located on different nodes) is
%000) +]11)).

As is the case for other communication primitives, asynchro-
nous versions (e.g., QMPI_Iprepare_EPR) are available to allow for
requesting EPR pairs ahead of time.

4.4 General Point to Point Communication

As discussed in Section 3, QMPI supports communication in two
modes, one with copy semantics, the other with move semantics.
Both modes rely on EPR pairs to move and to fan out qubits to other
nodes. Qubits are moved from one node to another using quantum
teleportation, whereas fanout exposes their values on multiple
nodes simultaneously. QMPI provides functionality for fanning out
and sending/receiving qubit (the latter with move semantics) via the
two pairs of functions QMPI_Send / Recv and QMPI_Send_move
/ Recv_move. In addition, there are the inverses of QMPI_Send /
Recv, denoted by QMPI_Unsend / Unrecv, respectively. The reason
for this addition is that the uncomputation can be performed more
efficiently: The qubit can simply be measured after applying a
Hadamard gate and, if the outcome is nonzero, the other node must

Table 1: Classical and quantum resources required for entangled copy, move, reduce, scan, and their respective inverse opera-
tions (or uncomputation) in brackets. Stated are the resources required per qubit in the message and for N nodes (reduce/scan).

copy [uncopy]

move [unmove]

reduce [unreduce] scan [unscan]

Quantum
comm. (EPR 1[0] 1[1]
pairs)
Classical
comm. (bits)

1[1] 2[2]

N —110] N-1[0]

N-1[N-1 N-1[N-1]

Table 2: Point to point communication primitives in QMPIL
In addition to blocking, also non-blocking variants are avail-
able, as in classical MPI. Resource requirements are given in
terms of entangled copy and move from Table 1. (a): Same as
Sendrecv with move semantics, (b): Resources may already
have been used.

Operation Reverse operation Resources

QMPI_Unsend,
QMPI_Bunsend
QMPI_Sunsend, copy
QMPI_Runsend

QMPI_Unrecv,

QMPI_Send, QMPI_Bsend,
QMPI_Ssend,
QMPI_Rsend

QMPI_Recv, QMPI_Mrecv OMPI_Munrecy copy
QMPI_Sendrecv QMPI_Unsendrecv copy

MPI_Sendrecv_replace(® QMPI_Unsendrecv_replace move
QMPL _rep QMPL | _rep
QOMPI_Cancel®) —
QMPI_Send_move, QMPI_Unsend_move,
QMPI_Bsend_move, QMPI_Bunsend_move, n
QMPI_Ssend_move, QMPI_Sunsend_move, ove
QMPI_Rsend_move QMPI_Runsend_move
QMPI_Recv_move, QMPI_Unrecv_move,

move

QMPI_Mrecv_move QMPI_Munrecv_move

apply a Pauli Z gate to its qubit, as shown in Fig. 1(b). Therefore,
uncomputing a fanned-out qubit can be achieved by communicating
only a single bit of classical information without needing an EPR
pair. The resource requirements for entangled copy/fanout, move,
and their respective inverses can also be found in Table 1. Table 2
lists all point-to-point primitives and the required resources in
terms of the costs for entangled copy and move from Table 1.

4.5 Collective Operations

In addition to general point-to-point communication, QMPI pro-
vides collective operations. QMPI_Bcast is an example of a simple
QMPI collective implementing fanout. Its main purpose is to expose
the value of a qubit on multiple nodes (and then uncomputing that
value again with its inverse, QMPI_Unbcast), similar to copying a
classical value with the corresponding MPI routine. In the quantum
case, collective communications allow even more optimizations
beyond what is possible classically. In particular QMPI_Bcast can
be implemented with constant quantum time. As discussed by Watts

Table 3: Collective communication in QMPI. In addition to
the blocking calls, also non-blocking variants [23] are avail-
able, as in classical MPI. Resource requirements are given
in terms of entangled copy, move, reduce, and scan from Ta-
ble 1. (a): For in-place: Move resources, (b): Operation must
be reversible.

Operation Reverse operation Resources
QMPI_Bcast QMPI_Unbcast copy
QMPI_Gather, QMPI_Ungather, o
QMPL_Gatherv QMPI_Ungatherv 4
QMPI_Scatter, QMPI_Unscatter,

copy

QMPI_Scatterv

QMPI_Allgather,
QMPI_Allgatherv

QMPI_Alltoall,
QMPI_Alltoallv,
QMPI_Alltoallw

QMPI_Reduce
QMPI_Allreduce
QMPI_Reduce_scatter,

QMPI_Unscatterv

QMPI_Unallgather, o
QMPI_Unallgatherv 124

QMPI_Unalltoall,
QMPI_Unalltoallv,
QMPI_Unalltoallw

QMPI_Unreduce
QMPI_Unallreduce
QMPI_Unreduce_scatter,

copy/move(®)

reduce(®)

reduce(®) + copy

QMPI_Reduce_scatter- QMPI_Unreduce_scatter- reduce (&)
_block _block

QMPI_Scan, QMPI_Unscan, L@
QMPI_Exscan QMPI_Unexscan sca
QMPI_Gather_move, QMPI_Ungather_move,
QMPI_Gatherv_move QMPI_Ungatherv_move move
QMPI_Scatter_move, QMPI_Unscatter_move, move
QMPI_Scatterv_move QMPI_Unscatterv_move
QMPI_Alltoall_move, QMPI_Unalltoall_move,
QMPI_Alltoallv_move, QMPI_Unalltoallv_move, move

QMPI_Alltoallw_move QMPI_Unalltoallw_move

et al. [59, Theorem 17], this can be done by first creating EPR pairs
on all edges of a spanning tree of the nodes in the communicator
as the only quantum communication step, which can be done in
parallel in constant time. This is followed by local parity measure-
ments among the entangled qubits at each node, the time for which
is logarithmic in the maximum degree of a node in the spanning
tree, which is typically a small constant. The last step consists of
collective classical communication and computation to identify
which qubits need to be changed by a Pauli X gate. The logarithmic

complexity of QMPI_Bcast is thus due to (fast) classical commu-
nication, while the (slow) quantum communication is of constant
time.

Another collective operation, QMPI_Scatter_move /
QMPI_Gather_move is an example of a QMPI collective with
move semantics. A typical use case for this function is a section in
the quantum algorithm where multiple rotation gates are applied
to distinct qubits, all of which are located on the same node. In
order to increase the number of local rotation factories per rotation
qubit, the rotation qubits may be scatter-moved to separate nodes.
After all rotations have been applied in parallel, the qubits may
be gathered on the original node, allowing the computation to
advance.

A QMPI collective with entangled copy semantics that is also
worth a quick discussion is QMPI_Reduce (and its inverse QMPI_Un-
reduce). It differs from a classical MPI reduction only in that the
reduction operation is reversible and that it must be uncomputed
eventually (to free scratch space and to allow for interference in the
quantum algorithm). In this first version, the QMPI implementation
leaves all memory management to the user and QMPI_Reduce only
accepts reversible operations!.

An example operation is QMPI_PARITY, which computes the
parity of all qubits in the reduction. We note that there is a host
of different methods that the QMPI implementation may choose
from, depending on the situation (available scratch space, size of
reduction, etc.). We refer to Section 7 for a selection of different
algorithms for computing the parity.

Table 3 shows a complete list of all QMPI collectives and the
required resources in terms of entangled copy, move, reduce, and
scan from Table 1.

4.6 Communication Resources

The tables with all point-to-point and collective operations give
the resource requirements in terms of four basic primitives (and
their inverses for uncomputing communicated data): entangled
copy, move, reduce, and scan. Table 1 can be used to translate from
these basic primitives to the number of EPR pairs to be established,
and the number of classical bits to be communicated. We note that
the stated numbers for reduce and scan are representative of one
particular implementation, and there are a host of different tradeoffs
to consider in practice.

In particular, the stated numbers for reduce and scan are valid if
sufficient logical qubits are available to store intermediate results.
Using a linear communication schedule, both reduce and scan can
be performed using a single output register per node and a total
of N — 1 EPR pairs per qubit to send, and uncomputation only re-
quires classical communication. In contrast, a binary-tree reduction
either requires more local storage, or intermediate results must be
uncomputed, and later recomputed during QUPI_Unreduce, which
also increases EPR pair usage. Similar considerations apply for the
scan primitive.

For a more detailed discussion of the tradeoffs involved in opti-
mizing collectives such as QMPI_Bcast and QMPI_Reduce, we refer
the reader to Section 7.1.

!Future versions may support automatic compilation from a non-reversible
implementation.

4.7 Future Extension: Persistent Requests

Persistent communication requests allow further optimization be-
yond what is possible classically. All required EPR pairs can be
prepared before starting communication and, in particular, before
the data to be sent is available. Point-to-point or collective quan-
tum communication can then be performed with purely classical
communication. This allows for overlaying quantum communica-
tion with computation performed prior to the communication start,
which once more is impossible classically. Of course, this optimiza-
tion is possible only if sufficient qubits are available to store the
established EPR pairs and if there is sufficient time to establish all
EPR pairs before the communication is started.

5 THE SENDQ MODEL

Analogously to classical performance models such as the LogP
model [11], whose parameters characterize the performance of the
network interconnecting classical nodes, our SENDQ model cap-
tures the features of a distributed quantum computer that are most
essential to performance. We envision an architecture where multi-
ple nodes are interconnected with both a classical and a quantum-
coherent network, the latter of which may be used to send and
receive quantum information. In particular, the quantum-coherent
network is used to establish EPR pairs between two nodes.

We anticipate a relatively low logical clock speed for quantum
computers due to the overhead introduced by the quantum error
correction (QEC) protocol (cf. Section 3). As a consequence, we
do not expect that classical communication will have a significant
effect on performance and we thus choose to ignore classical com-
munication in our model.

To account for optimizations that overlay communication with
local computation, it is crucial to model the performance of both
local and nonlocal operations. Our proposed model thus consists of
two sets of parameters — one to model (coherent) communication,
and the other to model local computation.

In order to model the communication performance, we choose
the following parameters.

e S: The number of qubits used to store EPR pairs (per node).

e E: (Upper bound on) the time it takes for a node to establish
an EPR pair with any other node. Any node can be involved
in at most one EPR pair creation at any point. We assume
latencies are negligible.

e N: The number of nodes.

The local computation can be modeled using an abstract quantum
circuit model that only considers width and depth of the circuit.
The parameters are thus

e D: The delay incurred due to local computation
e O: The number of logical qubits available for computation (per
node)

5.1 Discussion of parameters

We now briefly discuss the parameters that make up our perfor-
mance model for distributed quantum computing.

Parameter S. Our model of quantum communication includes
a parameter for local storage, namely the number of logical qubits

S dedicated to buffering of EPR pairs. This is different from classi-
cal performance models such as the LogP model [11], which does
not contain such parameters. This parameter is important because
performance models with unlimited local storage allow for a sim-
ple and unrealistic exploit. Namely, all required EPR pairs may be
shared and stored locally ahead of time. As a consequence, all quan-
tum communication could then be implemented in constant time
(ignoring the delay of classical communication), see Section 7.1 for
an in-depth explanation for the example of QMPI_Bcast.

Parameter E. E specifies the upper bound on the time it takes to
establish a logical EPR pair with any other node, assuming exclusive
communication. A logical EPR pair may be established by sharing
many physical EPR pairs, followed by a distillation protocol. As we
ignore latency, E~! can be seen as the EPR pair injection bandwidth
per node into the quantum network.

Parameter N. The number of quantum nodes in the distributed
quantum computer is denoted by N.

Parameters D and Q. Our model also includes parameters to
model local compute as an integral part because logical qubits for
computation can also be used for storing EPR pairs when unused.
In general, only the total number of qubits Q + S is constant on
each node. Depending on the algorithm, one may choose Q and S
to be fixed to a constant value in order to simplify the model even
further. The delay D can be specified in more detail if desired. For
example, a common choice for a fault tolerant quantum computer
is to ignore the delays of all gates and measurements except for
the most costly rotation gates (arbitrary rotations and T gates), as
discussed in Section 3. Note that we consider the number of logical
qubits per node Q equivalent to the number of compute elements,
i.e., the number of qubits onto which operations can be applied
in parallel. This is due to the fact that current schemes for fault
tolerance require full parallelism on all qubits in order to just store
information and this parallelism can be used to apply gates.

For the applications presented in this paper, we assume that
all parameters are constant throughout the execution of a given
quantum algorithm.

6 PROTOTYPE IMPLEMENTATION OF QMPI

We have implemented a QMPI prototype in C++ using MPI and
multi-threading leveraging the C++ standard library. Our prototype
supports a variety of standard quantum gates and the point-to-point
as well as collective functions described in the previous section.
The current implementation only supports qubit types, and no
higher-level datatypes that may be constructed from qubits.

At the core of the library is a full state simulator that allows users
to test and debug their distributed quantum algorithms. To ensure
that the state vector faithfully represents the quantum state of the
distributed quantum computer at any point throughout the com-
putation, all ranks forward quantum operations to rank 0, which
then applies the operation to the state vector. Qubit allocations,
deallocations, and measurements are handled similarly. Rank 0
runs a separate thread that waits to receive gate operations to exe-
cute. Consequently, all ranks (including rank 0) may be used in a
quantum computation.

The following example shows how to establish an EPR pair
between two QMPI ranks. The simulation output is as expected:

. Z -
o
=gl S—
node 2: CE
_______gi___ E
) =
=
=3
3
node 3: S
§:§
node 4: —
W_/

2F time

Figure 4: Quantum circuit for establishing a cat state on
n = 4nodes in constant quantum depth and classical O (log n)
depth. A reduction of measurement outcomes is required for
computing the fixup operation for each node (see text).

Both ranks observe the same value when measuring their share of
the EPR pair.

#include "qmpi.hpp"
#include <iostream>

using namespace QMPI;
int main() {

QMPI_Init (@, 0);
auto qubit = QMPI_Alloc_qgmem(1); // allocate 1 qubit

int rank;
QMPI_Comm_rank (QMPI_COMM_WORLD, &rank);
int dest = rank == 0 ? 1 : 0;

// prepare EPR pair between rank and dest
QMPI_Prepare_EPR(qubit, dest, @, QMPI_COMM_WORLD);
// measure the local qubit

bool res = Measure(qubit);

std::cout << rank << ": " << res << std::endl;
QMPI_Free_qgmem(qubit, 1); // free 1 qubit
QMPI_Finalize();

return 0;

3

In the next section, we describe more examples and we present
the corresponding implementation based on our QMPI prototype.

7 APPLICATIONS

In this section, we show how quantum algorithms for applications
from physics and chemistry may be implemented in QMPI and how
the SENDQ model can be used to inform algorithmic decisions.

7.1 Optimizing Collectives

Collective operations allow hardware vendors to optimize these
operations by taking into account their hardware parameters. In this
section, we describe how to optimize QMPI_Bcast. In Section 7.3,
we show an example of how to optimize QMPI_Reduce for systems
with either one qubit per node dedicated to storing EPR paris (S = 1)
or systems with S > 2.

Optimizing QMPI_Bcast. This first example presents a simple
implementation of QMPI_Bcast in terms of QMPI_Send / Recv

and shows how it can be analyzed and optimized using SENDQ.
For simplicity, we assume that only one qubit is sent.

A log-depth implementation of broadcast can be achieved by
constructing a binary tree of calls to QMPI_Send / Recv: In the k-th
step (starting with k = 0), 2k nodes send the broadcast message to
1 other node, thus doubling the number of nodes that have received
the message at every step. Since each node communicates with (at
most) one node at every step, only one EPR pair must be established
between each pair of nodes that communicates. As a result, S = 1
is sufficient and the runtime of a broadcast is E[logy N1.

This implementation may be optimized by realizing that a cat
state, which is an n-qubit generalization of an EPR pair, that is,

L
V2

|cat(n)) :== —=(10---0) +[L---1)),

n n

can be prepared in constant depth [25]. In QMPI, |cat(n)) can be
prepared by first connecting all n nodes with EPR pairs along the
edges of a spanning tree, and then combining the individual EPR
pairs using a parity-measurement of the different EPR pair qubits
on each node (no parity-measurement is performed on leaf nodes),
see Fig. 4 for a simplified diagram of this process. The measure-
ment outcomes are used to compute whether or not a given node
must apply a Pauli X correction. Specifically, each node k applies
X"1® " ®k-1 to the qubit that will be part of the cat state, where r;
denotes the outcome of the (in-place) parity measurement on node
i, and @{;—11 ri can be computed with a classical MPI_Exscan.

This procedure can be extended to an implementation of QMPI_B-
cast by also performing a parity measurement between the qubit
to broadcast and the one EPR pair qubit on the root node. This
implementation runs in quantum time

2E + Dy + D,

where Dy and Df denotes the time it takes to perform a local
two-qubit parity measurement and to apply an X gate (the fixup
operation), respectively. The classical QMPI_Exscan, which is used
to determine whether or not a local X gate correction is needed,
can be performed in O(log N) classical communication steps [45].

7.2 Transverse-field Ising model

In this second example, we show how to simulate the time evolu-
tion of a transverse-field Ising model (TFIM) with n spins, whose
Hamiltonian is given by

n-1
Hrrim = Z Jijot" o) - Z Loy,
(i.j) i=0
where U,(Ci), O’;i) denotes a Pauli X and Z, respectively, acting on
spin index i < n, J;; denotes the coupling constant, and I; is the
(local) strength of the transverse field. The first sum runs over all
connected spins i, j, which we denote by (i, j).

Time evolution under this Hamiltonian can be used as a build-
ing block to solve optimization problems leveraging the adiabatic
theorem [7]: One first maps the optimization problem to a classical
Ising model (thus defining the connectivity and the parameters J;;).
Then, starting with J;; = 0,I; = 1 and in the ground state of the
corresponding Hamiltonian (which is |+)®"), one slowly changes

the parameters to I; = 0 and J;; equal to the computed values, aim-
ing to remain in the groundstate of all intermediate Hamiltonians.
Upon success, a final measurement of all qubits yields the solution
of the optimization problem.

In the following, we assume linear nearest-neighbor connectivity
for the spins and J;; = J,I; =T for simplicity. The time evolution
operator for the Hamiltonian H is given by U(t) = e "*H, where
t is the time to evolve and i2 = —1. One possible approach to
implement a TFIM simulation on a quantum computer is to first
map each spin to a qubit. U(t) may then be implemented by first
decomposing it using a Trotter-Suzuki expansion. For example, a
first-order approximation is

t
U(t) ~ (ei5tH1 ei5tH2) 5t ,

for small 6t and Hy := —] X(; j) Uéi)cz(j), Hy :=T%; O',(ci)v The
individual terms in H; commute, and so do the terms within Hs.
Therefore,

o—iStH1 _ l_[e—iét]aé")aéj)’ and e—i9tHz — 1_[ei5tl"o‘,(ci) .
(L) i
Each term in the first product can be implemented by computing
the parity between spin i and j using a CNOT gate, followed by a
rotation gate R, (0) = ¢70-5199= and another CNOT gate to uncom-
pute the parity. The terms in the second product are just rotation
gates Ry (0) = e~0-5199x acting on qubit i.

The complete code for the simulation can be found in the ap-
pendix, see Listing 1. While the prototype implementation uses
blocking send/receive calls, we note that one would use an asyn-
chronous version in practice: The EPR pairs could be established
while applying the local operations.

Analysis with SENDQ. Each Trotter step requires N EPR pairs,
where N denotes the number of nodes, and each node prepares an
EPR pair with the two nodes that contain adjacent spins. We assume
that rotation gates cannot be executed in parallel due to the cost
(in space) of T-state factories. Since the delay of each rotation gate
Dr, is much larger than the logical gate time, we ignore the cost of
CNOTs. As a result, the delay of one Trotter step is approximately

n
Drrotter = 2NDR =2QDg,

assuming that n is divisible by N.

To ensure that communication is not a bottleneck (assuming
asynchronous send/receive implementations), the time spent on
local gates should be at least as large as the time it takes to establish
two EPR pairs. For § > 2, this means that

Drrotter = 2E.

In turn, this allows us to inform our choice of the number of
nodes N if sufficient space is available per node to temporarily store
the two EPR pairs: N should be chosen such that

E~'nDg > N.
If, on the other hand, space per node is a limiting factor and S = 1
while Q > 2, then one may return to the S > 2 case by increasing
the number of nodes to N > [&]

We now address the case where increasing the number of nodes
is not an option. Specifically, we show that our model correctly

predicts an overhead for S = 1 compared to S > 2 even with an
optimized communication schedule that allows for halting local
computations at any point, e.g., during execution of a local rotation
gate. With S = 1, a request for EPR pair creation can only be initi-
ated once the buffer qubit has been cleared. As a result, there is an
additional delay Dy between EPR pair creation requests because the
rotation must be applied before the remote qubit can be unreceived.
The delay per Trotter step with an optimized schedule for initiating
EPR pair creation requests is thus

max (Drrotter, 2E + 2DR),

in contrast to the S > 2 case, where the delay per Trotter step is
max (Dryotter» 2E)-

This TFIM example shows that SENDQ can be used to model
various tradeoffs in the implementation of a distributed quantum
algorithm. Crucially, smaller S results in longer runtimes, even if
the communication schedule is optimized.

7.3 Chemistry

Simulation of molecules is currently one of the most promising
applications to first show a quantum advantage for a practical prob-
lem compared to classical supercomputers. The goal is to determine
the energy eigenstates of molecules described by a Hamiltonian H.
This then allows, for example, to investigate and optimize chemical
catalysis [57].

For large molecules the best quantum algorithms to find ground
state energies are based on phase estimation of a unitary operator
which depends only on the Hamiltonian of the molecule H. For a
given molecule, the full quantum circuit is known at circuit compi-
lation time, i.e., there are no branches in the program depending
to measurements during runtime which influence performance.
Hence, one can use expensive quantum circuit optimization tech-
niques to reduce the quantum resources and increase performance
ahead of time. We will highlight a few optimization possibilities for
a distributed quantum computer.

We consider the algorithm of expressing the Hamiltonian H
of a molecule of interest in second quantization, expressed in a
basis of n spin-orbitals. This algorithm requires at least n data
qubits which might be distributed onto different nodes. We perform
phase estimation on the time evolution operator of the system,
e *H which we implement using a Trotter-Suzuki expansion from
Section 7.2. The majority of the algorithm is only one primitive
operation, namely, a time evolution operator of the form:

e ZnZizZie (i) iy {0,...,n—1}LteR. (1)

The qubit indices and parameter ¢ involved in each of these opera-
tors depend on the molecule and on the choices of how to represent
its Hamiltonian.

Analysis with SENDQ. For a given molecule to be simulated,
there are several choices to be made when mapping the problem to
a quantum computer. In particular, different choices lead to differ-
ent Hamiltonians, even if they all describe the same molecule. For
example, the fermionic Hamiltonian needs to be transformed into
a Hamiltonian that acts on qubits. This can be achieved using the
Jordan-Wigner transformation [27, 42, 49], the Bravyi-Kitaev en-
coding [9], or by using more than n data qubits [61]. For example, a
Jordan-Wigner transformation will result in operations as in Eq. (1),

B Jordan-Wigner

10°
Bravyi-Kitaev

T BRI BT

104

10

102

Number of terms

10t

PRRRTTTT EEETTTT ER T |

10°

(AR I bt |HI‘|

0 10 20 30 40 5
Number of qubits per term

Figure 5: Mapping of the Hamiltonian representing a hydro-
gen ring with 32 atoms in the STO-3G basis set to a Hamil-
tonian acting on 64 qubits. The number of qubits involved
in each term of the form defined by Eq. (1) is plotted as a
histrogram for two different encoding methods.

which may act on all data qubits. In contrast, the operators resulting
from a Bravyi-Kitaev encoding only act on at most O(log n) qubits,
which may lead to savings in a distributed setting, at least without
considering further optimizations to the Jordan-Wigner approach.
The mapping differences are illustrated in Fig. 5 for the example of
a hydrogen ring (data was generated using Refs. [34, 50, 51]).

Once the encoding has been fixed, the individual operators must
be implemented in terms of quantum gates. Here, we discuss the
tradeoffs of three different approaches to implementing operators
of the form given by Eq. (1). For simplicity, we assume that each of
the qubits involved is on a different node and that rotation gates
take much longer to execute than measurements and other (local)
quantum gates, allowing us to ignore the latter. Fig. 6 illustrates
the three approaches for an operator acting on k = 4 qubits. Each
of these circuits consists of the same three subroutines: a parity
computation of all involved qubits into a target qubit, a single qubit
rotation R, (2t) on that target qubit, and a final uncomputation of
the parity.

The circuit in Fig. 6(a) computes the parity in place using a
binary tree of distributed CNOT gates. Consequently, the full circuit
requires 2(k — 1) EPR pairs and has a runtime of

2E[logy k1 + Dg,

where Dy, is the delay to execute one rotation gate.

The circuit in Fig. 6(b) computes the parity into an auxiliary
qubit. The downside is that the distributed CNOT gates now must
be performed serially (unless more auxiliary qubits are available),
but the uncomputation can be performed using only classical com-
munication (see Fig. 1). As a result, only k EPR pairs are required,
but the circuit delay is

Ek + Dg.

The parity computation of both Fig. 6(a) and (b) can be expressed
as a reduction in QMP], i.e., with a call to QMPI_Reduce.

In contrast to the first two circuits, Fig. 6(c) illustrates that a
constant-depth implementation is possible in quantum computing

q0
a1 —& D
92 - p—b— R, (2t) —D>—P
q3
(a) In-place
q0
q1
q2
q3
0) b——b—

o2 {11 2
o {11 -
10y A —
(c) Constant-depth
Figure 6: Three different methods to implement

e itZoZ1Zk-1 for k = 4.

using a parallel implementation of the multi-target CNOT. Specifi-
cally, this involves fanning out the control qubit using QMPI_Bcast
to each node, which requires k EPR pairs to establish a cat state,
see Section 7.1, and, thus, S > 2 is needed [25, 28]. The delay of
this constant-depth implementation is

2F + Dg.

As the full quantum circuit is known at circuit generation time,
a compiler may choose the optimal method for each term, given
the available resources at that point in the program. See Fig. 7
for an example of a straight forward implementation without any
advanced optimization applied to it.

8 CONCLUSIONS AND OUTLOOK

We introduce QMPI, an extension of MPI to distibuted quantum
computing. This enables the development of portable high-per-
formance distributed quantum programs. Complementary, we in-
troduce the machine-independent SENDQ performance model for
distributed quantum computing. The model is motivated by tech-
nological trends in building large-scale fault-tolerant quantum ma-
chines. These considerations allowed us to simplify the model by,
e.g., not modeling the overhead due to classical communication as
the clock cycle rate of logical quantum operations is expected to be
significantly lower. As a consequence, we end up with a deliberately
simple model with only a small set of general parameters.

x107

1.50 4 =@ BK (in-place)
|4 BK (const.-depth)
-~ 5 -
g 1.25 JW (in-place)
E 1.00 JW (const.-depth)
€3]
5 0.75 - 8
5]
< 0.50
£
Z o4 &~
0.00 4 ¢

T T T T T
124 8 16 32 64
Number of nodes

Figure 7: Number of EPR pairs required for communication
to simulate one first-order Trotter step for a hydrogen ring
of 32 atoms in the STO-3G basis set as a function of the
number of nodes. We used either the Bravyi-Kitaev (BK) or
the Jordan-Wigner (JW) encoding, see also Fig. 5. One im-
plementation uses the in-place circuit of Fig. 6(a) which we
compare to the circuit in Fig. 6(c). The constant-depth cir-
cuit requires more local resources such as S > 2 and we addi-
tionally assumed that the rotation can be performed on an
auxiliary qubit on one of the nodes already storing one of
the involved orbitals. We did not consider advanced optimi-
sations and the spin-orbitals are fixed in our example to a
specific node for the full duration.

The SENDQ model thus allows us to expose different tradeoffs
of distributed quantum algorithms in a machine-agnostic fashion
and without having to deal with unnecessary details. We illustrate
use cases from quantum chemistry and from condensed matter
physics. Our model encourages algorithm designers to start think-
ing about qubit placement in a distributed setting, and overlaying
communication with local computation.

The high-level modeling of the quantum network without speci-
fying details allows hardware developers to explore implementation
choices such as different quantum network topologies, and to quan-
tify their impact in terms of the effect on the runtime of large-scale
quantum computing applications.

ACKNOWLEDGMENTS

We thank Vadym Kliuchnikov for helpful discussions. This project
received support from the Microsoft Swiss Joint Research Center.

REFERENCES

[1] Gadi Aleksandrowicz, Thomas Alexander, Panagiotis Barkoutsos, Luciano Bello,
Yael Ben-Haim, D Bucher, FJ Cabrera-Hernandez, J Carballo-Franquis, A Chen,
CF Chen, et al. 2019. Qiskit: An open-source framework for quantum computing.
Accessed on: Mar 16 (2019).

David Awschalom, Karl K. Berggren, Hannes Bernien, Sunil Bhave, Lincoln D.
Carr, Paul Davids, Sophia E. Economou, Dirk Englund, Andrei Faraon, Martin
Fejer, Saikat Guha, Martin V. Gustafsson, Evelyn Hu, Liang Jiang, Jungsang
Kim, Boris Korzh, Prem Kumar, Paul G. Kwiat, Marko Lonéar, Mikhail D. Lukin,
David A.B. Miller, Christopher Monroe, Sae Woo Nam, Prineha Narang, Jason S.
Orcutt, Michael G. Raymer, Amir H. Safavi-Naeini, Maria Spiropulu, Kartik Srini-
vasan, Shuo Sun, Jelena Vuckovié¢, Edo Waks, Ronald Walsworth, Andrew M.

5

Weiner, and Zheshen Zhang. 2021. Development of Quantum Interconnects
(QuICs) for Next-Generation Information Technologies. PRX Quantum 2 (Feb
2021), 017002. Issue 1. https://doi.org/10.1103/PRXQuantum.2.017002

Robert Beals, Stephen Brierley, Oliver Gray, Aram W Harrow, Samuel Kutin,
Noah Linden, Dan Shepherd, and Mark Stather. 2013. Efficient distributed quan-
tum computing. Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences 469, 2153 (2013), 20120686.

Charles H Bennett. 1973. Logical reversibility of computation. IBM journal of
Research and Development 17, 6 (1973), 525-532.

Charles H. Bennett, Gilles Brassard, Sandu Popescu, Benjamin Schumacher,
John A. Smolin, and William K. Wootters. 1996. Purification of Noisy Entangle-
ment and Faithful Teleportation via Noisy Channels. Phys. Rev. Lett. 76 (Jan 1996),
722-725. Issue 5. https://doi.org/10.1103/PhysRevLett.76.722

Benjamin Bichsel, Maximilian Baader, Timon Gehr, and Martin Vechev. 2020. Silq:
A high-level quantum language with safe uncomputation and intuitive semantics.
In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation. 286—300.

Max Born and Vladimir Fock. 1928. Beweis des adiabatensatzes. Zeitschrift fiir
Physik 51, 3-4 (1928), 165-180.

Sergey Bravyi and Alexei Kitaev. 2005. Universal quantum computation with
ideal Clifford gates and noisy ancillas. Physical Review A 71, 2 (2005), 022316.
Sergey B. Bravyi and Alexei Yu. Kitaev. 2002. Fermionic Quantum Computation.
Annals of Physics 298, 1 (2002), 210-226. https://doi.org/10.1006/aphy.2002.6254
Daniel Collins, Noah Linden, and Sandu Popescu. 2001. Nonlocal content of
quantum operations. Phys. Rev. A 64 (Aug 2001), 032302. Issue 3. https://doi.org/
10.1103/PhysRevA.64.032302

David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik Schauser,
Eunice Santos, Ramesh Subramonian, and Thorsten Von Eicken. 1993. LogP:
Towards a realistic model of parallel computation. In Proceedings of the fourth
ACM SIGPLAN symposium on Principles and practice of parallel programming.
1-12.

Axel Dahlberg, Matthew Skrzypczyk, Tim Coopmans, Leon Wubben, Filip
Rozpedek, Matteo Pompili, Arian Stolk, Przemystaw Pawelczak, Robert Knegjens,
Julio de Oliveira Filho, et al. 2019. A link layer protocol for quantum networks. In
Proceedings of the ACM Special Interest Group on Data Communication. 159-173.
Axel Dahlberg and Stephanie Wehner. 2018. SimulaQron—a simulator for devel-
oping quantum internet software. Quantum Science and Technology 4, 1 (2018),
015001.

Sebastian Debone, Runsheng Ouyang, Kenneth Goodenough, and David Elkouss.
2020. Protocols for creating and distilling multipartite GHZ states with Bell pairs.
IEEE Transactions on Quantum Engineering (2020).

Stephen DiAdamo, Marco Ghibaudi, and James Cruise. 2021. Dis-
tributed Quantum Computing and Network Control for Accelerated VQE.
arXiv:2101.02504 [quant-ph]

A. Einstein, B. Podolsky, and N. Rosen. 1935. Can Quantum-Mechanical De-
scription of Physical Reality Be Considered Complete? Phys. Rev. 47 (May 1935),
777-780. Issue 10. https://doi.org/10.1103/PhysRev.47.777

J. Eisert, K. Jacobs, P. Papadopoulos, and M. B. Plenio. 2000. Optimal local
implementation of nonlocal quantum gates. Phys. Rev. A 62 (Oct 2000), 052317.
Issue 5. https://doi.org/10.1103/PhysRevA.62.052317

Moritz Forsch, Robert Stockill, Andreas Wallucks, Igor Marinkovi¢, Claus Gértner,
Richard A Norte, Frank van Otten, Andrea Fiore, Kartik Srinivasan, and Simon
Groblacher. 2020. Microwave-to-optics conversion using a mechanical oscillator
in its quantum ground state. Nature Physics 16, 1 (2020), 69-74.

Jay Gambetta. 2020. IBM’s Roadmap For Scaling Quantum Technology. https:
//www.ibm.com/blogs/research/2020/09/ibm-quantum-roadmap/. ~Accessed:
16.03.2021.

Craig Gidney and Martin Ekera. 2019. How to factor 2048 bit rsa integers in 8
hours using 20 million noisy qubits. arXiv preprint arXiv:1905.09749 (2019).
Alexander S Green, Peter LeFanu Lumsdaine, Neil J Ross, Peter Selinger, and
Benoit Valiron. 2013. Quipper: a scalable quantum programming language. In
Proceedings of the 34th ACM SIGPLAN conference on Programming language design
and implementation. 333-342.

Thomas Héner, Samuel Jaques, Michael Naehrig, Martin Roetteler, and Mathias
Soeken. 2020. Improved quantum circuits for elliptic curve discrete logarithms.
In International Conference on Post-Quantum Cryptography. Springer, 425-444.
Torsten Hoefler, Prabhanjan Kambadur, Richard L Graham, Galen Shipman,
and Andrew Lumsdaine. 2007. A case for standard non-blocking collective

[26] AliJavadiAbhari, Shruti Patil, Daniel Kudrow, Jeff Heckey, Alexey Lvov, Frederic T

Chong, and Margaret Martonosi. 2015. ScaffCC: Scalable compilation and analysis
of quantum programs. Parallel Comput. 45 (2015), 2-17.

P. Jordan and E. Wigner. 1928. Uber das Paulische Aquivalenzverbot. Zeitschrift
fiir Physik 47, 9 (1928), 631-651. https://doi.org/10.1007/BF01331938

Vadym Kliuchnikov and Alexander Vaschillo. 2021. Layout based on cat states.
In preparation (2021).

[29] Joonho Lee, Dominic Berry, Craig Gidney, William J Huggins, Jarrod R Mc-

Clean, Nathan Wiebe, and Ryan Babbush. 2020. Even more efficient quantum
computations of chemistry through tensor hypercontraction. arXiv preprint
arXiv:2011.03494 (2020).

Bjoern Lekitsch, Sebastian Weidt, Austin G Fowler, Klaus Mglmer, Simon J Devitt,
Christof Wunderlich, and Winfried K Hensinger. 2017. Blueprint for a microwave
trapped ion quantum computer. Science Advances 3, 2 (2017), e1601540.

Daniel Litinski. 2019. Magic state distillation: Not as costly as you think. Quantum
3(2019), 205.

Paul Magnard, Simon Storz, Philipp Kurpiers, Josua Schér, Fabian Marxer, Janis
Liitolf, T Walter, J-C Besse, M Gabureac, K Reuer, et al. 2020. Microwave quantum
link between superconducting circuits housed in spatially separated cryogenic
systems. Physical Review Letters 125, 26 (2020), 260502.

Sam McArdle, Suguru Endo, Alan Aspuru-Guzik, Simon C. Benjamin, and Xiao
Yuan. 2020. Quantum computational chemistry. Rev. Mod. Phys. 92 (Mar 2020),
015003. Issue 1. https://doi.org/10.1103/RevModPhys.92.015003

Jarrod R McClean, Nicholas C Rubin, Kevin J Sung, Ian D Kivlichan, Xavier Bonet-
Monroig, Yudong Cao, Chengyu Dai, E Schuyler Fried, Craig Gidney, Brendan
Gimby, et al. 2020. OpenFermion: the electronic structure package for quantum
computers. Quantum Science and Technology 5, 3 (2020), 034014.

Rodney Van Meter, WJ Munro, Kae Nemoto, and Kohei M Itoh. 2008. Arithmetic
on a distributed-memory quantum multicomputer. ACM Journal on Emerging
Technologies in Computing Systems (JETC) 3, 4 (2008), 1-23.

Rodney Doyle Van Meter III. 2006. Architecture of a quantum multicomputer
optimized for shor’s factoring algorithm. arXiv preprint quant-ph/0607065 (2006).
David L Moehring, Peter Maunz, Steve Olmschenk, Kelly C Younge, Dzmitry N
Matsukevich, L-M Duan, and Christopher Monroe. 2007. Entanglement of single-
atom quantum bits at a distance. Nature 449, 7158 (2007), 68-71.

C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M. Duan, and
J. Kim. 2014. Large-scale modular quantum-computer architecture with atomic
memory and photonic interconnects. Phys. Rev. A 89 (Feb 2014), 022317. Issue 2.
https://doi.org/10.1103/PhysRevA.89.022317

Hartmut Neven. 2020. Google Quantum Al updates at Quantum Summer Sympo-
sium 2020. https://www.youtube.com/watch?v=TJ6vBNEQReU Online; posted
3-September-2020, accessed 25-March-2021.

Naomi H. Nickerson, Joseph F. Fitzsimons, and Simon C. Benjamin. 2014. Freely
Scalable Quantum Technologies Using Cells of 5-to-50 Qubits with Very Lossy
and Noisy Photonic Links. Phys. Rev. X 4 (Dec 2014), 041041. Issue 4. https:
//doi.org/10.1103/PhysRevX.4.041041

Michael A Nielsen and Isaac Chuang. 2002. Quantum computation and quantum
information.

Gerardo Ortiz, James E Gubernatis, Emanuel Knill, and Raymond Laflamme. 2001.
Quantum algorithms for fermionic simulations. Physical Review A 64, 2 (2001),
022319.

Stefano Pirandola, Ulrik L Andersen, Leonardo Banchi, Mario Berta, Darius
Bunandar, Roger Colbeck, Dirk Englund, Tobias Gehring, Cosmo Lupo, Carlo
Ottaviani, et al. 2020. Advances in quantum cryptography. Advances in Optics
and Photonics 12, 4 (2020), 1012-1236.

Markus Reiher, Nathan Wiebe, Krysta M Svore, Dave Wecker, and Matthias Troyer.
2017. Elucidating reaction mechanisms on quantum computers. Proceedings of
the National Academy of Sciences 114, 29 (2017), 7555-7560.

Peter Sanders and Jesper Larsson Traff. 2006. Parallel prefix (scan) algorithms for
MPL In European Parallel Virtual Machine/Message Passing Interface Users’ Group
Meeting. Springer, 49-57.

VM Schifer, CJ Ballance, K Thirumalai, L] Stephenson, TG Ballance, AM Steane,
and DM Lucas. 2018. Fast quantum logic gates with trapped-ion qubits. Nature
555, 7694 (2018), 75-78.

Artur Scherer, Benoit Valiron, Siun-Chuon Mau, Scott Alexander, Eric Van den
Berg, and Thomas E Chapuran. 2017. Concrete resource analysis of the quantum
linear-system algorithm used to compute the electromagnetic scattering cross
section of a 2D target. Quantum Information Processing 16, 3 (2017), 1-65.

operations. In European Parallel Virtual Machine/Message Passing Interface Users’ [48
Group Meeting. Springer, 125-134.

[24] Julian Hofmann, Michael Krug, Norbert Ortegel, Lea Gérard, Markus
Weber, Wenjamin Rosenfeld, and Harald Weinfurter. 2012. Her- [49
alded Entanglement Between Widely Separated Atoms. Science

Peter W Shor. 1994. Algorithms for quantum computation: discrete logarithms
and factoring. In Proceedings 35th annual symposium on foundations of computer
science. leee, 124-134.

Rolando Somma, Gerardo Ortiz, James E Gubernatis, Emanuel Knill, and Raymond
Laflamme. 2002. Simulating physical phenomena by quantum networks. Physical

337, 6090 (2012), 72-75. https://doi.org/10.1126/science.1221856 Review A 65, 4 (2002), 042323.

arXiv:https://science.sciencemag.org/content/337/6090/72.full pdf [50] Damian S Steiger, Thomas Héner, and Matthias Troyer. 2018. ProjectQ: an open
[25] Peter Hoyer and Robert Spalek. 2005. Quantum fan-out is powerful. Theory of source software framework for quantum computing. Quantum 2 (2018), 49.

computing 1, 1 (2005), 81-103. [51] Qiming Sun, Timothy C. Berkelbach, Nick S. Blunt, George H. Booth, Sheng

Guo, Zhendong Li, Junzi Liu, James D. McClain, Elvira R. Sayfutyarova, Sandeep

https://doi.org/10.1103/PRXQuantum.2.017002
https://doi.org/10.1103/PhysRevLett.76.722
https://doi.org/10.1006/aphy.2002.6254
https://doi.org/10.1103/PhysRevA.64.032302
https://doi.org/10.1103/PhysRevA.64.032302
https://arxiv.org/abs/2101.02504
https://doi.org/10.1103/PhysRev.47.777
https://doi.org/10.1103/PhysRevA.62.052317
https://www.ibm.com/blogs/research/2020/09/ibm-quantum-roadmap/
https://www.ibm.com/blogs/research/2020/09/ibm-quantum-roadmap/
https://doi.org/10.1126/science.1221856
https://arxiv.org/abs/https://science.sciencemag.org/content/337/6090/72.full.pdf
https://doi.org/10.1007/BF01331938
https://doi.org/10.1103/RevModPhys.92.015003
https://doi.org/10.1103/PhysRevA.89.022317
https://www.youtube.com/watch?v=TJ6vBNEQReU
https://doi.org/10.1103/PhysRevX.4.041041
https://doi.org/10.1103/PhysRevX.4.041041

Sharma, Sebastian Wouters, and Garnet Kin-Lic Chan. 2017. PySCF: the Python-
based simulations of chemistry framework. , 1340 pages. https://doi.org/10.1002/
wems.1340 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/wcms.1340
Krysta Svore, Alan Geller, Matthias Troyer, John Azariah, Christopher Granade,
Bettina Heim, Vadym Kliuchnikov, Mariia Mykhailova, Andres Paz, and Martin
Roetteler. 2018. Q# enabling scalable quantum computing and development
with a high-level dsl. In Proceedings of the Real World Domain Specific Languages
Workshop 2018. 1-10.

Yuta Tsuchimoto, Patrick Kniippel, Aymeric Delteil, Zhe Sun, Martin Kroner,
and Ata ¢ Imamoglu. 2017. Proposal for a quantum interface between photonic
and superconducting qubits. Phys. Rev. B 96 (Oct 2017), 165312. Issue 16. https:
//doi.org/10.1103/PhysRevB.96.165312

S.J. van Enk, J. I Cirac, and P. Zoller. 1997. Ideal Quantum Communication over
Noisy Channels: A Quantum Optical Implementation. Phys. Rev. Lett. 78 (Jun
1997), 4293-4296. Issue 22. https://doi.org/10.1103/PhysRevLett.78.4293
Rodney Van Meter and Simon J Devitt. 2016. The path to scalable distributed
quantum computing. Computer 49, 9 (2016), 31-42.

Rod Van Meter, Kae Nemoto, and W Munro. 2007. Communication links for
distributed quantum computation. IEEE Trans. Comput. 56, 12 (2007), 1643-1653.
Vera von Burg, Guang Hao Low, Thomas Haner, Damian S Steiger, Markus Reiher,
Martin Roetteler, and Matthias Troyer. 2020. Quantum computing enhanced
computational catalysis. arXiv preprint arXiv:2007.14460 (2020).

David W Walker and Jack J Dongarra. 1996. MPI: a standard message passing
interface. Supercomputer 12 (1996), 56-68.

Adam Bene Watts, Robin Kothari, Luke Schaeffer, and Avishay Tal. 2019. Ex-
ponential Separation between Shallow Quantum Circuits and Unbounded Fan-
in Shallow Classical Circuits. In Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing (Phoenix, AZ, USA) (STOC 2019). As-
sociation for Computing Machinery, New York, NY, USA, 515-526. https:
//doi.org/10.1145/3313276.3316404

Stephanie Wehner, David Elkouss, and Ronald Hanson. 2018. Quantum internet:
A vision for the road ahead. Science 362, 6412 (2018).

[61] James D. Whitfield, Vojt éch Havli¢ek, and Matthias Troyer. 2016. Local spin
operators for fermion simulations. Phys. Rev. A 94 (Sep 2016), 030301. Issue 3.
https://doi.org/10.1103/PhysRevA.94.030301

Ze-Liang Xiang, Mengzhen Zhang, Liang Jiang, and Peter Rabl. 2017. Intracity
quantum communication via thermal microwave networks. Physical Review X 7,
1(2017), 011035

Anocha Yimsiriwattana and Samuel J Lomonaco Jr. 2004. Distributed quantum
computing: A distributed Shor algorithm. In Quantum Information and Computa-
tion II, Vol. 5436. International Society for Optics and Photonics, 360-372.
Anocha Yimsiriwattana and Samuel J Lomonaco Jr. 2004. Generalized GHZ states
and distributed quantum computing. arXiv preprint quant-ph/0402148 (2004).
Youpeng Zhong, Hung-Shen Chang, Audrey Bienfait, Etienne Dumur, Ming-Han
Chou, Christopher R Conner, Joel Grebel, Rhys G Povey, Haoxiong Yan, David I
Schuster, et al. 2021. Deterministic multi-qubit entanglement in a quantum
network. Nature 590, 7847 (2021), 571-575.

[52

[53

o
=t

[55]

[56

[57

[58

[59]

[60]

[62]

[63]

[64

[65]

A EXAMPLE IMPLEMENTATIONS
A.1 Moving Qubits

Here, we give an example implementation of QMPI_Send_move
and QMPI_Recv_move in our QMPI prototype. The sender executes
QMPI_Send_move, which sends a qubit (with move semantics), and
the receiver calls the corresponding QMPI_Recv_move. Both of these
functions can be implemented using EPR-pair preparation and local
quantum operations as follows:

void QMPI_Send_move (QMPI_QUBIT_PTR qubit, int dest, int
tag, MPI_Comm comm) {
auto epr_qubit = QMPI_Alloc_qgmem(1);
QMPI_Prepare_EPR(epr_qubit, dest, tag, comm);
CNOT (qubit, epr_qubit);
int r=0;
r = Measure(epr_qubit);
H(qubit);
r |= 2 x Measure(qubit);
QMPI_Free_gmem(epr_qubit, 1);
MPI_Send(&r, 1, MPI_INT, dest, tag, comm);
}
void QMPI_Recv_move (QMPI_QUBIT_PTR qubit, int src, int
tag, MPI_Comm comm) {
QMPI_Prepare_EPR(qubit, src, tag, comm);

int r;
MPI_Recv (&r, 1, MPI_INT,
MPI_STATUS_IGNORE);
if (r&1)
X(qubit);
if (r&2)
Z(qubit);

src, tag, comm,

}

We note that these functions may also be implemented by rely-
ing on QMPI_Send / Recv and their inverses: Once the value of a
qubit is shared between two nodes, it is no longer possible to distin-
guish sender from receiver. Therefore, the two involved nodes may
exchange roles when calling the inverses of QUPI_Send / Recv,
resulting in a slightly less efficient implementation of teleportation
(since measurement results are communicated using two one-bit
messages instead of one two-bit message).

A.2 Transverse-field Ising Model (TFIM).

As a second code example, we provide an implementation of time
evolution under a TFIM Hamiltonian below. Note that the code
also includes annealing from a fully transverse-field model to a
fully classical Ising model. We note that the code can be signifi-
cantly optimized by using asynchronous communication primitives.
However, we use blocking calls only to simplify the presentation.

#include "qgmpi.hpp"
#include <iostream>

using namespace QMPI;

void tfim_time_evolution(double const& J, double const&
g, double const& time, QMPI_QUBIT_PTR qubits,
unsigned num_spins, unsigned num_trotter) {
int rank, size;
QMPI_Comm_size (QMPI_COMM_WORLD,
QMPI_Comm_rank (QMPI_COMM_WORLD,

&size);
&rank);

auto dt = time/num_trotter;
for (unsigned step=0; step < num_trotter; ++step) {
for (unsigned site = @; site < num_spins-1; ++site)
{
CNOT (qubits+site, qubits+site+1);
Rz(qubits+site+1, 2.0 * J % dt);
CNOT (qubits+site, qubits+site+1);
3
if (size == 1) { // single rank: no communication
required
CNOT (qubits+num_spins-1, qubits);
Rz (qubits, 2.0 * J * dt);
CNOT (qubits+num_spins-1, qubits);
3
else {
for (unsigned odd = 0; odd < 2; ++odd) {

if ((rank&1) == odd) {
QMPI_Send(qubits, (rank-1+size)%size, 0,
QMPI_COMM_WORLD);
QMPI_Unsend(qubits,
QMPI_COMM_WORLD);
3}
else {
auto tmpqubit = QMPI_Alloc_qmem(1);
QMPI_Recv (tmpqubit, (rank+1)%size, 0,
QMPI_COMM_WORLD);

(rank-1+size)%size, 0,

CNOT (qubits+num_spins-1, tmpqubit);
Rz (tmpqubit, 2.0 *x J x dt);
CNOT (qubits+num_spins-1, tmpqubit);

https://doi.org/10.1002/wcms.1340
https://doi.org/10.1002/wcms.1340
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/wcms.1340
https://doi.org/10.1103/PhysRevB.96.165312
https://doi.org/10.1103/PhysRevB.96.165312
https://doi.org/10.1103/PhysRevLett.78.4293
https://doi.org/10.1145/3313276.3316404
https://doi.org/10.1145/3313276.3316404
https://doi.org/10.1103/PhysRevA.94.030301

}

QMPI_Unrecv (tmpqubit,
QMPI_COMM_WORLD) ;
QMPI_Free_gmem(tmpqubit, 1);

(rank+1)%size, 0,

}
for (unsigned site = 0; site < num_spins;
Rx(qubits+site, -2.0xgxdt);

++site)

int main() {

QMPI_Init (@, 0);

int rank, size;

QMPI_Comm_size (QMPI_COMM_WORLD,

QMPI_Comm_rank (QMPI_COMM_WORLD ,

// Number of spins per node:

unsigned num_local_spins = 2;

// Number of annealing steps:

double num_annealing_steps =

// Trotter number

unsigned num_trotter = 1;

double time = 1; // time to evolve per annealing step

// Parameters of transverse-field Ising model

double J = @.; // coupling strength

double g = 1.; // transverse field

// allocate spins:

auto qubits = QMPI_Alloc_gmem(num_local_spins);

// init to ground state

for (unsigned i = @; i < num_local_spins;
H(qubits+i);

&size);
&rank) ;

100;

++1i)

}

// run annealing schedule

for (unsigned step = 0;
+t+step) {

= step * 1.0/num_annealing_steps;

1.0-7;

tfim_time_evolution(J, g,

num_local_spins,

step < num_annealing_steps;

J

g =
time,
num_trotter);

qubits,

3

// Measure

std::vector<int> res(num_local_spins);

for (unsigned i = 0; i < num_local_spins;
res[i] = Measure(qubits+i);

QMPI_Free_gmem(qubits, num_local_spins);

// Gather all (classical) results and output

std::vector<int> allres(num_local_spinsxsize);

MPI_Gather (&res[@], num_local_spins, MPI_INT, &allres
[0], num_local_spins, MPI_INT, @, QMPI_COMM_WORLD)

++1)

if (rank ==

) {
std::cout << "Measurements: ";
for (auto r allres)

std::cout << r << " ",
std::cout << std::endl;
}
QMPI_Finalize();
return 0;

Listing 1: QMPI code for TFIM time evolution and annealing,.

	Abstract
	1 Introduction
	2 Quantum Computing
	3 Distributed Quantum Computing
	4 Quantum MPI
	4.1 Communicators and Interaction with MPI
	4.2 Datatypes
	4.3 EPR pairs
	4.4 General Point to Point Communication
	4.5 Collective Operations
	4.6 Communication Resources
	4.7 Future Extension: Persistent Requests

	5 The SENDQ Model
	5.1 Discussion of parameters

	6 Prototype Implementation of QMPI
	7 Applications
	7.1 Optimizing Collectives
	7.2 Transverse-field Ising model
	7.3 Chemistry

	8 Conclusions and Outlook
	Acknowledgments
	References
	A Example Implementations
	A.1 Moving Qubits
	A.2 Transverse-field Ising Model (TFIM).

