To Push or To Pull: On Reducing Communication and Synchronization in Graph Computations

Maciej Besta, Michal Podstawski, Linus Groner, Edgar Solomonik, Torsten Hoefler

NA HPCL
$\tan \rightarrow \Gamma=L$

Used in...

Used in...

[1] A. Lumsdaine et al. Challenges in Parallel Graph Processing. Parallel Processing Letters. 2007.

[1] A. Lumsdaine et al. Challenges in Parallel Graph Processing. Parallel Processing Letters. 2007.

[1] A. Lumsdaine et al. Challenges in Parallel Graph Processing. Parallel Processing Letters. 2007.

[1] A. Lumsdaine et al. Challenges in Parallel Graph Processing. Parallel Processing Letters. 2007.

PageRank

PageRank

PageRank

PageRank

PageRank

P threads are used

PageRank

[1] J. J. Whang et al. Scalable Data-Driven PageRank: Algorithms, System Issues, and Lessons Learned. Euro-Par 2015.

PageRank

Pushing

[1] J. J. Whang et al. Scalable Data-Driven PageRank: Algorithms, System Issues, and Lessons Learned. Euro-Par 2015.

PageRank

Pushing

[1] J. J. Whang et al. Scalable Data-Driven PageRank: Algorithms, System Issues, and Lessons Learned. Euro-Par 2015.

PageRank

P threads are used

Pushing

PageRank

Pushing

PageRank

Pulling

[1] J. J. Whang et al. Scalable Data-Driven PageRank: Algorithms, System Issues, and Lessons Learned. Euro-Par 2015.

PageRank

P threads are used

Pulling

[1] J. J. Whang et al. Scalable Data-Driven PageRank: Algorithms, System Issues, and Lessons Learned. Euro-Par 2015.

PageRank

P threads are used

Pulling

[1] J. J. Whang et al. Scalable Data-Driven PageRank: Algorithms, System Issues, and Lessons Learned. Euro-Par 2015.

BFS
Top-Down vs. Воttom-Up [1]

BFS
Top-Down vs. Воttom-Up [1]

BFS
 Top-Down vs. Вотtom-Up [1]

GRAPH 500

BFS
Top-Down vs. Воттом-Up [1]

Root r

GRAPH 500

BFS
 TOP-Down vs. Bottom-Up [1]

Root r

GRAPH 500

BFS
 TOP-Down vs. Bottom-Up [1]

Root r

GRAPH 500

BFS
Top-Down vs. Вотtom-Up [1]

Root r

GRAPH 500

BFS
 Top-Down vs. Вотtom-Up [1]

GRAPH 500

BFS
 Top-Down vs. Вотtom-Up [1]

GRAPH 500

BFS
 Top-Down vs. Вотtom-Up [1]

GRAPH 500

BFS
 Top-Down vs. Вотtom-Up [1]

GRAPH 500

BFS

Top-Down vs. Bottom-Up [1]

GRAPH 500

BFS

Top-Down vs. Bottom-Up [1]

GRAPH 500

BFS
 Top-Down vs. Вотtom-Up [1]

GRAPH 500

BFS
 TOP-Down vs. BOttom-Up [1]

BFS
 Top-Down vs. Вотtom-Up [1]

Pushing or pulling when expanding a frontier

GRAPH 500
[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. SC12.

BFS
 Top-Down vs. Вотtom-Up [1]

Pushing or pulling when expanding a frontier

BFS
 Top-Down vs. Вотtom-Up [1]

Pushing or pulling when expanding a frontier

BFS
 TOP-Down vs. Bottom-Up [1]

Pushing

BFS
 TOP-Down vs. Bottom-Up [1]

BFS
 Top-Down vs. Вотtom-Up [1]

Pushing or pulling when expanding a frontier

GRAPH 500
[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. SC12.

BFS
 Top-Down vs. Вотtom-Up [1]

Pushing or pulling when expanding a frontier

Pulling
[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. SC12.

BFS
 Top-Down vs. Вотtom-Up [1]

Pushing or pulling when expanding a frontier

GRAPH 500

BFS

Top-Down vs. Вотtom-Up [1]

Pushing or pulling when expanding a frontier

GRAPH 500

BFS

Top-Down vs. Вотtom-Up [1]

Pushing or pulling when expanding a frontier

GRAPH 500

BFS
 Top-Down vs. Вотtom-Up [1]

Pushing or pulling when expanding a frontier

GRAPH 500

BFS
 Top-Down vs. Вотtom-Up [1]

Pushing or pulling when expanding a frontier

GRAPH 500
[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. SC12.

BFS
 Top-Down vs. Вотtom-Up [1]

Pushing or pulling when expanding a frontier

GRAPH 500
[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. SC12.

BFS
 Top-Down vs. Вотtom-Up [1]

Pushing or pulling when expanding a frontier

GRAPH 500

BFS
 Top-Down vs. Вотtom-Up [1]

Pushing or pulling when expanding a frontier

GRAPH 500

BFS
 Top-Down vs. Вотtom-Up [1]

Pushing or pulling when expanding a frontier

GRAPH 500

BFS
 Top-Down vs. Вотtom-Up [1]

Pushing or pulling when expanding a frontier

GRAPH 500

BFS
 Top-Down vs. Вотtom-Up [1]

Pushing or pulling when expanding a frontier

GRAPH 500

BFS
 Top-Down vs. Вотtom-Up [1]

Pushing or pulling when expanding a frontier

GRAPH 500

BFS
 Top-Down vs. Вотtom-Up [1]

Pushing or pulling when expanding a frontier

GRAPH 500

BFS
 Top-Down vs. Вотtom-Up [1]

Pushing or pulling when expanding a frontier

GRAPH 500

BFS
 Top-Down vs. Вотtom-Up [1]

Pushing or pulling when expanding a frontier

GRAPH 500

BFS
 Top-Down vs. Вотtom-Up [1]

Pushing or pulling when expanding a frontier

GRAPH 500

BFS
 Top-Down vs. Вотtom-Up [1]

Pushing or pulling when expanding a frontier

GRAPH 500

BFS
 Top-Down vs. Вотtom-Up [1]

Pushing or pulling when expanding a frontier

GRAPH 500

BFS
 Top-Down vs. Вотtom-Up [1]

Pushing or pulling when expanding a frontier

GRAPH 500

Pushing vs. Pulling Research Questions

 formulations of other algorithms?

What pushing vs. pulling really is?

Pushing vs. Pulling Research Questions

 formulations of other algorithms?

What pushing vs. pulling really is?

Pushing vs. Pulling Research Questions

Can we apply the
 formulations of other algorithms?
> push-pull dichotomy to other graph algorithms?

What pushing vs. pulling really is?

How do they differ in complexity?

What is performance?

Pushing vs. Pulling Research Questions

How do they differ in complexity?

Triangle Counting

Vertex importance
(\#triangles)

Triangle Counting

Vertex importance (\#triangles)

Triangle Counting

Vertex importance (\#triangles)

Triangle Counting

Vertex importance (\#triangles)

Triangle Counting

Vertex importance (\#triangles)

Triangle Counting

Vertex importance (\#triangles)

Triangle Counting

Vertex importance (\#triangles)

Triangle Counting

Vertex importance (\#triangles)

/* Input: a graph G. Output: An array of triangle counts
2 * tc[1..n] that each vertex belongs to. */
3
function TC $(G)\{$
5
6
7
\}

Triangle Counting

Triangle Counting

Triangle Counting

Triangle Counting

Vertex importan
(\#triangles)

(W) : a write conflict
R : a read conflict
iv : integer

| |
| :--- | :--- |

Triangle Counting

Vertex importan
(\#triangles)

W. : a write conflict
R : a read conflict
i. : integer

	\#vertices	
$1 / *$ Input:	a graph G. Output: An array of triangle counts	
2 * tc $[1 . . n]$ that each vertex belongs to. */		

3
4 function $\operatorname{TC}(G)\{t c[1 . . n]=[0 . .0]$
Set of vertices
5 for $v \in V$ do in par

Triangle Counting

Vertex importance (\#triangles)
 (1) : a write conflict R : a read conflict ii : integer

	\#vertices
1/* Input:	a graph G. Output: An array of triangle
2 * tc[1..	n] that each vertex belongs to. */
3	Set of vertice
4 function	$C(G)\{t c[1 . . n]=[0.0]$
5 for $v \in$	do in par

Triangle Counting

Vertex importance (\#triangles)
 ® : a read conflict
 I : integer

Triangle Counting

Vertex importance (\#triangles)
 ® : a read conflict
 il : integer

Triangle Counting

Vertex importance (\#triangles)
 ® : a read conflict
 il : integer

Triangle Counting

Vertex importance (\#triangles)
 ® : a read conflict
 il : integer

\#vertices

Triangle Counting

Vertex importance (\#triangles)
 ® : a read conflict
 il : integer

\#vertices

Triangle Counting

Vertex importan
(\#triangles)

(1) : a write conflict
R : a read conflict
ii : integer
\#vertices
$1 / *$ Input:
2 a graph G. Output: An array of triangle counts
2 * th..n] that each vertex belongs to. */
3
4 function TC $(G)\{t c[1 . . n]=[0 . .0]$
Set of vertices
for $v \in V$ do in par v 's neighbors
for $w_{1} \in N(v)$ do [in par]
for $w_{2} \in N(v)$ do [in par]
if $\operatorname{adj}\left(w_{1}, w_{2}\right) R$ update_tc ();
\}
0 function update_tc() \{

Triangle Counting

2 * tc[1..n] that each vertex belongs to. */
for $v \in V$ do in par v 's neighbors
for $w_{1} \in N(v)$ do [in par]
for $w_{2} \in N(v)$ do [in par]
if $\operatorname{adj}\left(w_{1}, w_{2}\right)$ R update_tc ();

Triangle Counting

\#vertices

$1 / *$ Input:	a graph G. Output: An array of triangle counts
2 * tc $[1 . . n]$ that each vertex belongs to. */	

3
4 function TC $(G)\{\operatorname{tc}[1 \ldots n]=[0 . .0]$
Set of vertices
for $v \in V$ do in par v 's neighbors
for $w_{1} \in N(v)$ do [in par]
for $w_{2} \in N(v)$ do [in par]
if $\operatorname{adj}\left(w_{1}, w_{2}\right) \mathbb{R}$ update_tc();
Pushing

Triangle Counting

\#vertices
$1 / *$ Input:
2 a graph G. Output: An array of triangle counts
2 * tc $[1 . . n]$ that each vertex belongs to. */

4 function TC $(G)\{\operatorname{tc}[1 \ldots n]=[0 . .0]$
Set of vertices
for $v \in V$ do in par v 's neighbors
for $w_{1} \in N(v)$ do [in par]
for $w_{2} \in N(v)$ do [in par]
if $\operatorname{adj}\left(w_{1}, w_{2}\right) R$ update_tc ();
Pushing

Triangle Counting

2 * tc[1..n] that each vertex belongs to. */

4 function TC $(G)\{\operatorname{tc}[1 . . n]=[0 . .0]$
Set of vertices
for $v \in V$ do in par
for $w_{1} \in N(v)$ do [in par]
for $w_{2} \in N(v)$ do [in par]
if $\operatorname{adj}\left(w_{1}, w_{2}\right)$ R update_tc ();
Pushing

Triangle Counting

2 * tc[1..n] that each vertex belongs to. */
for $v \in V$ do in par v 's neighbors
for $w_{1} \in N(v)$ do [in par]
for $w_{2} \in N(v)$ do [in par]
if $\operatorname{adj}\left(w_{1}, w_{2}\right)$ R update_tc ();

Triangle Counting

2 * tc[1..n] that each vertex belongs to. */
for $v \in V$ do in par
v 's neighbors
for $w_{1} \in N(v)$ do [in par]
for $w_{2} \in N(v)$ do [in par]
if adj $\left(w_{1}, w_{2}\right) R$ update_tc ();
Pushing

14 \}

Triangle Counting

2 * tc[1..n] that each vertex belongs to. */

0 function update_tc() \{

Triangle Counting

2 * tc[1..n] that each vertex belongs to. */

0 function update_tc() \{

Triangle Counting

2 * tc[1..n] that each vertex belongs to. */
for $v \in V$ do in par
v 's neighbors
for $w_{1} \in N(v)$ do [in par]
for $w_{2} \in N(v)$ do [in par]
if adj $\left(w_{1}, w_{2}\right) R$ update_tc ();
Pushing

14 \}

Betweenness Centrality Brandes [1]

Betweenness Centrality Brandes [1]

Vertex importance (\#shortest paths)

Betweenness Centrality Brandes [1]

Vertex importance (\#shortest paths)

Betweenness Centrality Brandes [1]

At least two paths (this one is relevant)

Vertex importance (\#shortest paths)

This poor one has 0

Betweenness Centrality Brandes [1]

Vertex importance (\#shortest paths)

Betweenness Centrality Brandes [1]

Vertex importance (\#shortest paths)

Betweenness Centrality Brandes [1]

Vertex importance (\#shortest paths)

Betweenness Centrality Brandes [1]

Vertex importance (\#shortest paths)

1. Forward traversals

Betweenness Centrality Brandes [1]

Vertex importance (\#shortest paths)

1. Forward traversals

Betweenness Centrality Brandes [1]

Vertex importance (\#shortest paths)

1. Forward traversals

Betweenness Centrality Brandes [1]

Vertex importance (\#shortest paths)

1. Forward traversals

Betweenness Centrality Brandes [1]

Root

Vertex importance (\#shortest paths)

1. Forward traversals

Betweenness Centrality Brandes [1]

Vertex importance (\#shortest paths)

1. Forward traversals

Root

Betweenness Centrality Brandes [1]

Vertex importance (\#shortest paths)

1. Forward traversals

Betweenness Centrality Brandes [1]

Vertex importance (\#shortest paths)

1. Forward traversals

Compute immediate predecessors of each vertex in the shortest paths from other vertices.

Compute \#shortest paths between any two vertices

Betweenness Centrality Brandes [1]

Vertex importance (\#shortest paths)

1. Forward traversals

Compute immediate predecessors of each vertex in the shortest paths from other vertices.

Compute \#shortest paths between any two vertices

Betweenness Centrality Brandes [1]

Vertex importance (\#shortest paths)

1. Forward traversals

Compute immediate predecessors of each vertex in the shortest paths from other vertices.

Compute \#shortest paths between any two vertices

Betweenness Centrality Brandes [1]

Vertex importance (\#shortest paths)

1. Forward traversals

Compute immediate predecessors of each
 vertex in the shortest paths from other vertices.

Compute \#shortest paths between any two vertices

Betweenness Centrality Brandes [1]

Vertex importance (\#shortest paths)

1. Forward traversals

Compute immediate predecessors of each vertex in the shortest paths from other vertices.

Compute \#shortest paths between any two vertices

Betweenness Centrality Brandes [1]

Vertex importance (\#shortest paths)

1. Forward traversals

Compute immediate predecessors of each vertex in the shortest paths from other vertices.

Compute \#shortest paths between any two vertices

Betweenness Centrality Brandes [1]

Vertex importance (\#shortest paths)

1. Forward traversals

Compute immediate predecessors of each vertex in the shortest paths from other vertices.

2. Backward traversals

Compute \#shortest paths between any two vertices

Betweenness Centrality Brandes [1]

Vertex importance (\#shortest paths)

1. Forward traversals

Compute immediate predecessors of each vertex in the shortest paths from other vertices.

Compute \#shortest paths between any two vertices

2. Backward traversals

Accumulate centrality scores during backward traversals [1].

Betweenness Centrality Brandes [1]

Vertex importance (\#shortest paths)

1. Forward traversals

Compute immediate predecessors of each vertex in the shortest paths from other vertices.

2. Backward traversals

Accumulate centrality scores during backward traversals [1].

Betweenness Centrality Brandes [1]

Vertex importance (\#shortest paths)

1. Forward traversals

Compute immediate predecessors of each vertex in the shortest paths from other vertices.

2. Backward traversals

Accumulate centrality scores during backward traversals [1].
[1] U. Brandes. A faster algorithm for betweenness
centrality. J. of Math. Sociology. 2001.

Betweenness Centrality Brandes [1]

Vertex importance (\#shortest paths)

1. Forward traversals

Compute immediate predecessors of each vertex in the shortest paths from other vertices.

2. Backward traversals

Accumulate centrality scores during backward traversals [1].

[1] U. Brandes. A faster algorithm for betweenness
centrality. J. of Math. Sociology. 2001.

Pushing... like before

Pushing... like before

Pulling... lower complexity (more performance!)

Pushing... like before

> Pulling... lower complexity (more performance!)

Pushing... like before

Pulling... lower complexity (more performance!)

Graph Coloring

Graph Coloring

Graph Coloring

2l-d?

Schedule

Graph Coloring Boman et AL. [1]

[1] E. G. Boman et al. A scalable parallel graph coloring algorithm for distributed memory computers. Euro-Par 2005.

Graph Coloring Boman et Al. [1]

[1] E. G. Boman et al. A scalable parallel graph coloring algorithm for distributed memory computers. Euro-Par 2005.

Graph Coloring Boman et AL. [1]

[1] E. G. Boman et al. A scalable parallel graph coloring algorithm for distributed memory computers. Euro-Par 2005.

Graph Coloring BOMAN ET AL. [1]

[1] E. G. Boman et al. A scalable parallel graph coloring algorithm for distributed memory computers. Euro-Par 2005.

Graph Coloring Boman et Al. [1]

[1] E. G. Boman et al. A scalable parallel graph coloring algorithm for distributed memory computers. Euro-Par 2005.

Graph Coloring BOMAN ET AL. [1]

Iterate until converge (convergence == no color conflicts)

[1] E. G. Boman et al. A scalable parallel graph coloring algorithm for distributed memory computers. Euro-Par 2005.

Graph Coloring BOMAN ET AL. [1]

Iterate until converge (convergence == no color conflicts)

In each iteration:

Graph Coloring Boman et AL. [1]

Iterate until converge (convergence == no color conflicts)

In each iteration:

1 Color each partition independently

Graph Coloring Boman et Al. [1]

Iterate until converge (convergence == no color conflicts)

In each iteration:

1 Color each partition independently

Graph Coloring Boman et Al. [1]

Iterate until converge (convergence == no color conflicts)

> In each iteration:

1 Color each partition independently

Graph Coloring Boman et AL. [1]

Iterate until converge (convergence == no color conflicts)

Oh no!

1 Color each partition independently

Graph Coloring Boman et Al. [1]

Iterate until converge (convergence == no color conflicts)

Oh no!

Fix the conflicts

Graph Coloring BOMAN ET AL. [1]

Iterate until converge (convergence == no color conflicts)

Oh no!

In each iteration:

Fix the conflicts

Graph Coloring BOMAN ET AL. [1]

Iterate until converge (convergence == no color conflicts)

Oh no!

In each iteration:

Fix the conflicts

Graph Coloring Boman et AL. [1]

Iterate until converge (convergence == no color conflicts)

Oh no!

> In each iteration:

Graph Coloring BOMAN ET AL. [1]

Iterate until converge (convergence == no color conflicts)

In each iteration:

Fix the conflicts

Graph Coloring BOMAN ET AL. [1]

Iterate until converge (convergence == no color conflicts)

In each iteration:

Fix the conflicts
[1] E. G. Boman et al. A scalable parallel graph coloring algorithm for distributed memory computers. Euro-Par 2005.

Graph Coloring Boman et Al. [1]

Iterate until converge (convergence == no color conflicts)

Oh no!

Fix the conflicts

Graph Coloring BOMAN ET AL. [1]

Iterate until converge (convergence == no color conflicts)

Oh no!

In each iteration:

Pulling

[1] E. G. Boman et al. A scalable parallel graph coloring algorithm for distributed memory computers. Euro-Par 2005.

Graph Coloring Boman et Al. [1]

Iterate until converge (convergence == no color conflicts)

Oh no!

In each iteration:

Pulling

[1] E. G. Boman et al. A scalable parallel graph coloring algorithm for distributed memory computers. Euro-Par 2005.

Graph Coloring Boman et Al. [1]

Iterate until converge (convergence == no color conflicts)

Oh no!

In each iteration:

Pulling

[1] E. G. Boman et al. A scalable parallel graph coloring algorithm for distributed memory computers. Euro-Par 2005.

Graph Coloring Boman et AL. [1]

Iterate until converge (convergence == no color conflicts)

In each iteration:

Fix the conflicts

Pulling

Other Algorithms \& Formulations

Other Algorithms \& Formulations

Triangle Counting
1/* Input: a graph G. Output: An arra

Δ-Stepping

 each vertex belongs
1/* Input: a graph G, a vertex r, the Δ parameter

Output: An array of distances d */
function Δ-Stepping (G, r, Δ) \{
bckt $=[\infty \ldots \infty]$; $d=[\infty \ldots \infty]$; active=[false..false]; bckt_set $=\{0\}$; bckt $[r]=0 ; \mathrm{d}[r]=0$; active $[r]=t r u e ; ~ i t r=0$
for $b \in$ bckt_set do \{ //For every bucket do do \{bckt_empty $=$ false; //Process b until it is empty process_buckets();\} while(!bckt_empty); \} \}

2 function process_buckets() \{
for $v \in$ bckt_set[b] do in par
if (bckt $[\mathrm{v}]==\mathrm{b}$ \&\& (intr $==0$ or active[$v]$)) \{ PUSHING
active $[v]=$ false; //Now, expand v 's neighbors
for $w \in N(v)\left\{\right.$ weight $=\mathrm{d}[v]+\mathcal{W}_{(v, w)}$;
if(weight < d $[w]$) \{ $\mathbb{R} / /$ Proceed to
new_b $=$ weight $/ \Delta ;$ bckt $[v]=$ new_b;
new_b $=$ weight $/ \Delta$; bckt $[v]=$ new_b;
bckt_set[new_b] = bckt_set[new_b] $U\{w\} ;\}$
$\mathrm{d}[w]=$ weight; (i) I;
if $(\mathrm{bckt}[w]==\mathrm{b}) 尺\{$ active $[w]=$ true; bckt_empt
for $v \in V$ do in par
if $(d[v]>b)$ for $w \in N(v)$ do $\{$
if (bc)
wig
PageRank

if bc

$\begin{array}{r}\text { bc } \\ \text { if } \\ \hline\end{array}$

BES

BC (algebra
Betweenness Centrality (BC)
$1 / *$ Input: a graph G. Qu
2 function $\mathrm{BC}(G)$ \& bc [1..
3 (Define Π so that any
 Define Π so that any
Define $u \Leftarrow$ pred v with Define $u=$
$u=$
Define
$u=$
for $s \in$ ready
$R=B$ $R=B f$
Define Define
Let $r e$ Let r
$R=B$ for (i
$b c[i$ bc [${ }_{[v]}^{0}{ }^{p}$ $\in N(v)$ do [in par] \{ , $\in \mathrm{FB}$

Graph Coloring

1 // Input: a graph G. Output: An array of vertex colors c[1..n]. // In the code, the details of functions seq_color_partition and // init are omitted due to space constrains
function Boman-GC(G) \{
done = false; c[1..n] = [Ø..Ø]; //No vertex is colored yet //avail[i][j]=1 means that color j can be used for vertex i avail $[1 \ldots n][1 \ldots C]=[1 \ldots 1][1 \ldots 1] ;$ init $(\mathcal{B}, \mathscr{P})$; while (!done) \{


```
function MST_Boruvka(G)
    sv_flag=[1..v]; sv=[{1}..{v}]; MST=[0..0];
    avail_svs={1..n}; max_e_wgt=\mp@subsup{max}{v,w\inV}{}(\mp@subsup{\mathscr{W}}{(v,w)}{}+1);
    while avail_svs.size() > 0 do {avail_svs_new = 0;
    for flag \epsilon avail_svs do in par {min_e_wgt[flag] = max_e_wgt ;
        for flag \in avail_svs do in par {
        for v\in sv[flag] do 
            for w\inN(v) do [in par] {
```

```
                f (sv_flag[w] \not= flag) ^
```

 f (sv_flag[w] \not= flag) ^
 (W)
 (\mp@subsup{W}{(v,w)}{*}<min_e_wgt[sv_flag[w]]) R {
 min_e_wgt[sv_flag[w]] = W}\mp@subsup{\mathscr{W}}{(v,w)}{(w)
 min_e_v[sv_flag[w]] = w; min_e_w[sv_flag[w]]=v (W) [i;
 new_flag[sv_flag[w]] = flag (W) i|; }
 if (sv_flag[w] f flag) ^('W\mp@subsup{W}{(v,w)}{*}<<min_e_wgt[flag]) &
 min_e_wgt[flag] = W. W(v,w); min_e_v[flag] = v; PULLING
 min_e_w[flag] = w; new_flag[flag] = sv_flag[w]; YR
 while flag = merge_order.pop() do {
 neigh_flag = sv_flag[min_e_w[flag]];
 for v\in sv[flag] do sv_flag[flag] = sv_flag[neigh_flag];
 sv[neigh_flag] = sv[flag] U sv[neigh_flag];
 MST[neigh_flag] = MST[flag] U MST[neigh_flag]
 U { (min_e_v[flag], min_e_w[flag]) }; } }
    ```

\section*{Other Algorithms \& Formulations}

Triangle Counting
1/* Input: a graph G. Output: An arra

\section*{\(\Delta\)-Stepping} each vertex belongs
```

1/* Input: a graph G, a vertex r, the \Delta parameter
Output: An array of distances d */
function \Delta-Stepping(G,r,\Delta){
bckt=[\infty..)]; d=[\infty..\infty]; active=[false..false];
bckt_set={0}; bckt[r]=0; d[r]=0; active[r]=true; itr=0
for b\in bckt_set do {//For every bucket do.
do {bckt_empty = false; //Process b until it is empty
process_buckets();} while(!bckt_empty); } }
for b\in bckt_set do { //For every bucket do
s empty

```
2 function process_buckets() \{
\(\sqrt[3]{\text { for } v \in \text { bckt_set }[b] \text { do in par }}\)

    active \([v]=\) false; \(/ /\) Now, expand \(v\) 's neighbors
for \(w \in N(v)\left\{w e i g h t=d[v]+W^{2}, w\right)\)
    for \(w \in N(v)\) \{weight \(=d[v]+\mathcal{W}_{(v, w)}\);

        if(weight <d[w]) \{ © \(\mathbb{B} / /\) Proceed to
neww \(=\) weight \(/ \Delta \Delta ;\) bckt \([v]=\) new_b;
        \(\left.\begin{array}{l}\text { new_b }=\text { weight } / \Delta ; \text { bckt }[v]=\text { new_b; } \\ \text { bckt_set }[\text { new_b] }=\text { bckt_set }[\text { new_b }]\end{array}\{w\} ;\right\}\)
        \(d[w]=w e i g h t ;\)
if \((\) bckt \([w]=b)\)
    if (bckt \([w]==\mathrm{b}) \boldsymbol{B}\{\) active \([w]=\) true; bckt_empt
    for \(v \in V\) do in par
    for \(v \in V\) do in par
if \((d[v]>\) b) for \(w \in N(v)\) do \(\{\)
        if (bc)
weig
if
            PageRank neow-bene
                    1/* Input: a graph \(G\), a numbe
    Output: An array of ranks
        BFS

        \(2 * \begin{gathered}\text { Retput: R[1. } n] \\ \text { contains acd }\end{gathered}\)
        \(t c[1 . . n]=[0 \ldots 0]\)
            if ( \(w\)
if
bc
if
                Boruvka MST
        \(\frac{1}{2}_{1 / \star}\) Input: a graph G. Ou
        \(1 / *\) Input: a graph \(G .04\)
2 function \(\mathrm{BC}(G)\) \{ bc [1..
        Define \(\Pi\) so that any
        Define \(\Pi\) so that any
Define \(u \approx\) pred \(v\) with

        Define \({ }_{u}^{u=}=\) Grap
        for \(s \in\)
        ready
        \(\mathrm{R}=\mathrm{B}\)
        Defing
        et re
        \(=\mathrm{B}\) :
        for (i)
be \([2\)
        0 in \(p, ~\)
\([v]>\)
        \((G\), rea
\(=10\).
\([v]=0\)
        ( C [ v\(]=0\),


        1ore_m


        \begin{tabular}{c}
\(d y[w]\) \\
\(\in R_{r}\) \\
\(\substack{d}\) \\
\hline
\end{tabular}
        \(\stackrel{R}{\leftarrow} \frac{R L}{}\)
        Betweenness Centrality (BC)

            Graph Coloring
        1 // Input: a graph \(G\). Output: An array of vertex colors c[1..n].
\(2 / /\) In the code, the details of functions seq_color_partition and
        // In the code, the details of functions seq
// init are omitted due to space constrains.
        function Boman- \(\mathrm{GC}(G)\) \{
        done = false; c[1..n] = [0..0]; //No vertex is colored yet
        //avail[i][j]=1 means that color \(j\) can be used for vertex
        avail[1..n][1..C] \(=[1 . .1][1 . .1] ;\) init( \(\mathcal{B}, \mathscr{P})\);
        while (! done) \{
        for \(\mathcal{P} \in \mathscr{P}\) do in par \{seq_color_partition \((\mathcal{P})\); \}
        fix_conflicts(); \} \}
    1 function MST_Boruvka(G) \{ \(\quad\) svalag \(=[1 . . v] ; \quad s v=[\{1\} \ldots\{v\}] ; \quad M S T=[0 . .0]\),
    \(s v \_f l a g=[1 \ldots v] ; \quad s v=[\{1\} \ldots\{v\}] ; \quad\) MST \(=[0 \ldots 0] ;\)
avail_svs \(=\{1 \ldots n\} ; \max\) e_wgt \(=\max _{v, w \in V}\left(\mathcal{W}_{(v, w)}+1\right) ;\)
    while avail_svs.size() > 0 do \{avail_svs_new \(=0\);
    for flag \(\in\) avail_svs do in par \{min_e_wgt[flag] = max_e_wgt;
    for flag \(\epsilon\) avail_svs do in par \{

\section*{Check out the paper ©}

            while flag = merge_order. pop() do \(\{\)
    neigh_flag = sv_flag[min_ew[flag]];
for \(v \in \operatorname{sv[flag]}\) do sv_flag[flag] = sv_flag[neigh_flag];
    for \(v \in \operatorname{sv[flag}]\) do \(s v \_f l a g[f l a g]=s v \_f l a g\)
sv[neigh_flag] \(=\operatorname{sv[flag]~} \cup \operatorname{sv}^{2}[\) neigh_flag];
    sv[neigh_flag] \(=s v[f l a g] \cup \operatorname{sv[neigh\_ flag];}\)
MST[neigh_flag] \(=\) MST[flag] \(U\) MST[neigh_flag]

\begin{tabular}{lr}
13 & for \(u \in N(v)\) do [in par] \(\{\) \\
14 & \(\{\) new_pr \([u]+=(f \cdot \operatorname{pr}[v]) / a\) \\
16 & \(\{\) new_pr \([v]+=(f \cdot \operatorname{pr}[u]) / \sigma\) \\
\(17\}\) &
\end{tabular}
        \(\cup\left\{\left(m i n \_e \_v[f l a g]\right.\right.\), min_e_w[flag]) \(\left.\left.\} ;\right\}\right\}\)
    MST[neigh_flag] \(=\) MST[flag] U MST[neigh_flag]
\(\cup\{\) (min_e_v[flag], min_e_w[flag]) \}; \} \}

\section*{Pushing vs. Pulling Research Questions}


\section*{How do they differ in complexity?}

Pushing vs. Pulling Research Questions

Yes (developed 7 algorithms and the total algorithms and 11 variants)
of 1 and

How do they differ in
What is performance? complexity?

\section*{Pushing vs. Pulling Research Questions}

Check the paper

Yes (developed 7 algorithms and the total

What pushing vs. pulling really is?

\section*{Pushing vs. Pulling Generic Differences}

\section*{Pushing vs. Pulling Generic Differences}

What pushing vs. pulling really is?

\section*{Pushing vs. Pulling Generic Differences}
- Vertices: \(v \in V\)
- \(t \leadsto v \Leftrightarrow t\) modifies \(v\)
- \(t[v]\) : a thread that owns \(v\)

What pushing vs. pulling really is?

\section*{Pushing vs. Pulling Generic Differences}
- Vertices: \(v \in V\)
- \(t \leadsto v \Leftrightarrow t\) modifies \(v\)
- \(t[v]\) : a thread that owns \(v\)

\section*{What pushing vs. pulling really is?}

Algorithm uses pushing \(\Leftrightarrow\)
\((\exists t \exists v \in V: t \sim v \wedge t \neq t[v])\)

\section*{Pushing vs. Pulling Generic Differences}

\section*{What pushing vs. pulling really is?}

Algorithm uses pushing \(\Leftrightarrow\) \((\exists t \exists v \in V: t \sim v \wedge t \neq t[v])\)

Algorithm uses pulling \(\Leftrightarrow\)
\((\forall t \forall v \in V: t \leadsto v \Rightarrow t=t[v])\)

\section*{Pushing vs. Pulling Generic Differences}

\section*{What pushing vs. pulling really is?}

Algorithm uses pushing \(\Leftrightarrow\) \((\exists t \exists v \in V: t \sim v \wedge t \neq t[v])\)
- Vertices: \(v \in V\)
- \(t \leadsto v \Leftrightarrow t\) modifies \(v\)
- \(t[v]\) : a thread that owns \(v\)

\section*{Pushing vs. Pulling Generic Differences}
- Vertices: \(v \in V\)
- \(t \leadsto v \Leftrightarrow t\) modifies \(v\)
- \(t[v]\) : a thread that owns \(v\)

What pushing vs. pulling really is?

Algorithm uses pushing \(\Leftrightarrow\)
\(\sim[(\exists t \exists v \in V: t \leadsto v \wedge t \neq t[v])]\)

\section*{This is the actual dichotomy}

Algorithm uses pulling \(\Leftrightarrow\)
\((\forall t \forall v \in V: t \sim v \Rightarrow t=t[v])\)

\section*{Pushing vs. Pulling Generic Differences}
- Vertices: \(v \in V\)
- \(t \leadsto v \Leftrightarrow t\) modifies \(v\)
- \(t[v]\) : a thread that owns \(v\)

What pushing vs. pulling really is?

Algorithm uses pushing \(\Leftrightarrow\)
\(\sim\left[\begin{array}{c}\text { Algorithm uses pushing } \Leftrightarrow \\ (\exists t \exists v \in V: t \sim v \wedge t \neq t[v])\end{array}\right]\)
This is the actual dichotomy

Algorithm uses pulling \(\Leftrightarrow\) \((\forall t \forall v \in V: t \leadsto v \Rightarrow t=t[v])\)

\section*{Pushing vs. Pulling Research Questions}

check the paper (-)

What pushing vs. pulling really is?

Pushing vs. Pulling Research Questions

Yes (developed 7 algorithms and the total of 11 variants)

Can be described with the actual dichotomy

How do they differ in
What is periormance? complexity?

\section*{Pushing vs. Pulling Research Questions}

Yes (developed 7 algorithms and the total
can be described with the actual dichotomy

How do they differ in complexity?

NA \(\operatorname{HPCL}\)

Before we move to the complexity analysis...

Before we move to the complexity analysis...
...a brief recap on PRAM models.

NA \(\operatorname{HPCL}\)

PRAM (Parallel Random Access Machine): a model used to reason about the performance of parallel algorithms

PRAM (Parallel Random Access Machine): a model used to reason about the performance of parallel algorithms

All processes process in lock-steps, communicate by reading from \& writing to a shared memory.

PRAM (Parallel Random Access Machine): a model used to reason about the performance of parallel algorithms

All processes process in lock-steps, communicate by reading from \& writing to a shared memory.
\[
\sum \sum \quad \cdots \quad \sum
\]

PRAM (Parallel Random Access Machine): a model used to reason about the performance of parallel algorithms

All processes process in lock-steps, communicate by reading from \& writing to a shared memory.


PRAM (Parallel Random Access Machine): a model used to reason about the performance of parallel algorithms

Some data in shared memory (e.g., a vertex © )


All processes process in lock-steps, communicate by reading from \& writing to a shared memory.

PRAM (Parallel Random Access Machine): a model used to reason about the performance of parallel algorithms

All processes process in lock-steps, communicate by reading from \& writing to a shared memory.

PRAM (Parallel Random Access Machine): a model used to reason about the performance of parallel algorithms

All processes process in lock-steps, communicate by reading from \& writing to a shared memory.

PRAM (Parallel Random Access Machine): a model used to reason about the performance of parallel algorithms

All processes process in lock-steps, communicate by reading from \& writing to a shared memory.

PRAM (Parallel Random Access Machine): a model used to reason about the performance of parallel algorithms

All processes process in lock-steps, communicate by reading from \& writing to a shared memory.

PRAM (Parallel Random Access Machine): a model used to reason about the performance of parallel algorithms

All processes process in lock-steps, communicate by reading from \& writing to a shared memory.

PRAM (Parallel Random Access Machine): a model used to reason about the performance of parallel algorithms

All processes process in lock-steps, communicate by reading from \& writing to a shared memory.

CRCW PRAM: concurrent reads and concurrent writes to the same cell take \(\mathrm{O}(1)\) time.

PRAM (Parallel Random Access Machine): a model used to reason about the performance of parallel algorithms

All processes process in lock-steps, communicate by reading from \& writing to a shared memory.

CRCW PRAM: concurrent reads and concurrent writes to the same cell take \(\mathrm{O}(1)\) time.
\[
\text { \{ \{ } \sum \cdots
\]

PRAM (Parallel Random Access Machine): a model used to reason about the performance of parallel algorithms

All processes process in lock-steps, communicate by reading from \& writing to a shared memory.

CRCW PRAM: concurrent reads and concurrent writes to the same cell take \(\mathrm{O}(1)\) time.
\(\sum \sum \sum_{1} \cdots\)

PRAM (Parallel Random Access Machine): a model used to reason about the performance of parallel algorithms

All processes process in lock-steps, communicate by reading from \& writing to a shared memory.

CRCW PRAM: concurrent reads and concurrent writes to the same cell take \(\mathrm{O}(1)\) time.

CREW PRAM: concurrent writes to the same cell are forbidden

PRAM (Parallel Random Access Machine): a model used to reason about the performance of parallel algorithms

All processes process in lock-steps, communicate by reading from \& writing to a shared memory.

CRCW PRAM: concurrent reads and concurrent writes to the same cell take \(\mathrm{O}(1)\) time.
\(\sum \sum \sum_{1} \cdots\)

CREW PRAM: concurrent writes to the same cell are forbidden
\[
\text { \{ \{ } \sum \cdots
\]

PRAM (Parallel Random Access Machine): a model used to reason about the performance of parallel algorithms

All processes process in lock-steps, communicate by reading from \& writing to a shared memory.

CRCW PRAM: concurrent reads and concurrent writes to the same cell take \(O(1)\) time.
\(\{\varepsilon \leqslant \cdots\)

CREW PRAM: concurrent writes to the same cell are forbidden
\(\sum \sum_{i} \ldots \sum_{i}\)

\title{
Basic Primitives \\ \(k\)-relaxation and \(k\)-Filter
}


\section*{Basic Primitives \\ \(k\)-relaxation and \(k\)-Filter}


\section*{k-RELAXATION}

Simultaneous propagation of updates: (pushing) from \(k\) vertices to one of their neighbors, and (pulling) to \(k\) vertices from one of their neighbors

\section*{Basic Primitives \\ \(k\)-RELAXATION AND \(k\)-Filter}


\section*{k-RELAXATION}

Simultaneous propagation of updates: (pushing) from \(k\) vertices to one of their neighbors, and (pulling) to \(k\) vertices from one of their neighbors

\section*{Basic Primitives \\ \(k\)-relaxation and \(\boldsymbol{k}\)-Filter}


\section*{k-RELAXATION}

Simultaneous propagation of updates: (pushing) from \(k\) vertices to one of their neighbors, and (pulling) to \(k\) vertices from one of their neighbors

\section*{Basic Primitives \\ \(k\)-relaxation and \(k\)-Filter}


\section*{k-RELAXATION}

Simultaneous propagation of updates: (pushing) from \(k\) vertices to one of their neighbors, and (pulling) to \(k\) vertices from one of their neighbors

Can be thought of a binary tree reduction

\section*{Basic Primitives \\ \(k\)-relaxation and \(k\)-Filter}


\section*{k-RELAXATION}

Simultaneous propagation of updates: (pushing) from \(k\) vertices to one of their neighbors, and (pulling) to \(k\) vertices from one of their neighbors

Can be thought of a binary tree reduction

\section*{\(k\)-FILTER}

Extract vertices updated in one or more \(k\)-RELAXATIONs

\section*{Basic Primitives \\ \(\boldsymbol{k}\)-relaxation and \(\boldsymbol{k}\)-Filter}


\section*{k-RELAXATION}

Simultaneous propagation of updates: (pushing) from \(k\) vertices to one of their neighbors, and (pulling) to \(k\) vertices from one of their neighbors

Can be thought of a binary tree reduction

\section*{Basic Primitives \\ \(\boldsymbol{k}\)-relaxation and \(\boldsymbol{k}\)-Filter}


\section*{k-RELAXATION}

Simultaneous propagation of updates: (pushing) from \(k\) vertices to one of their neighbors, and (pulling) to \(k\) vertices from one of their neighbors

Can be thought of a binary tree reduction

\section*{Basic Primitives \\ \(\boldsymbol{k}\)-relaxation and \(\boldsymbol{k}\)-Filter}


\section*{k-RELAXATION}

Simultaneous propagation of updates: (pushing) from \(k\) vertices to one of their neighbors, and (pulling) to \(k\) vertices from one of their neighbors

Can be thought of a binary tree reduction


Can be thought of a prefix sum
We can use \(k\) RELAXATIONs and \(k\) FILTERs to derive all the complexities

\section*{Basic Primitives \\ \(k\)-relaxation and \(k\)-Filter}

Extract vertices updated in one
or more \(k\)-RELAXATIONs

Simultaneous propagation of updates: (pushing) from \(k\) vertices to one of their neighbors, and (pulling) to \(k\) vertices from one of their

We can use \(k\) -
FELAXATIONs and F-LERs to derive al

\section*{Basic Primitives \\ \(k\)-relaxation and \(k\)-Filter}

We want complexities for (the Cartesian product of):

\section*{Basic Primitives \\ \(k\)-relaxation and \(k\)-Filter}

We want complexities for (the Cartesian product of):
> work

\section*{Basic Primitives \\ \(k\)-relaxation and \(k\)-Filter}

We want complexities for (the Cartesian product of):
\(>\) Time
\(>\) work
\(>\)

\section*{Basic Primitives \\ \(k\)-relaxation and \(k\)-Filter}

We want complexities for (the Cartesian product of):
\[
\begin{aligned}
& >\text { Time } \\
& >\text { work }
\end{aligned} \text { > Pushing }
\]

\section*{Basic Primitives \\ \(k\)-relaxation and \(k\)-Filter}

We want complexities for (the Cartesian product of):
\(>\) Time
> work
\[
X>\text { Pushing }
\]

\section*{Basic Primitives \\ \(k\)-relaxation and \(k\)-Filter}

We want complexities for (the Cartesian product of):
\(>\) Time
\(>\) work \(X \underset{\text { Pushing }}{>} \boldsymbol{>}\) Pulling \(\quad X \quad>\) CRCW PRAM

\section*{Basic Primitives \\ \(k\)-relaxation and \(\boldsymbol{k}\)-Filter}

We want complexities for (the Cartesian product of):
\(>\) Time
> work
\(X>\) Pushing
\(X>\) CRCW PRAM
X

\section*{Basic Primitives \\ \(k\)-relaxation and \(k\)-Filter}

We want complexities for (the Cartesian product of):
\(>\) Time
\(>\) work
\(\gg\) Pushing
\(>\) Pulling \(X \underset{\substack{\text { CRCW PRAM } \\>\text { CREW PRAM }}}{>} X\)
\(>\) BFS
> PageRank
> Triangle
Counting
> Betweenness
Centrality
> Graph
Coloring
\(>\Delta\)-Stepping
> MST Boruvka

\section*{Basic Primitives \\ \(k\)-relaxation and \(k\)-Filter}

We want complexities for (the Cartesian product of):
\(>\) Time
\(>\) work
\(\gg\) Pushing
\(>\) Pulling \(X \underset{\substack{>\\>\text { CRCWEW PRAM } \\>}}{>} X\)
+ some others ©
\(>\mathrm{BFS}\)
> PageRank
> Triangle
Counting
> Betweenness
Centrality
> Graph
Coloring
\(>\Delta\)-Stepping
> MST Boruvka

\section*{Complexity Analyses}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{} & PageRank & Triangle Counting & \multicolumn{2}{|l|}{BFS} \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { 을 } \\
& \overline{\overline{1}}
\end{aligned}
\]} & Time & \(O(L(m / P+\hat{d}))\) & \(O\left(\hat{d} m / P+\hat{d}^{2}\right)\) & \multicolumn{2}{|l|}{\(O(D m / P+D \hat{d})\)} \\
\hline & Work & \(O(L m)\) & \(O(m \hat{d})\) & \multicolumn{2}{|l|}{\(O(\mathrm{Dm})\)} \\
\hline \multirow{4}{*}{\[
\begin{aligned}
& \frac{0}{2} \\
& \frac{1}{5} \\
& \hline 2
\end{aligned}
\]} & Time (CRCW) & \(O(L(m / P+\hat{d}))\) & \(O\left(\hat{d} m / P+\hat{d}^{2}\right)\) & \multicolumn{2}{|l|}{\(O(D m / P+D \hat{d}+D \log P)\)} \\
\hline & Work (CRCW) & \(O(L m)\) & \(O(m \hat{d})\) & \multicolumn{2}{|l|}{\(O(m)\)} \\
\hline & Time (CREW) & \(O(L \log (\hat{d})(m / P+\hat{d}))\) & \(O\left(\log \hat{d}\left(\hat{d} m / P+\hat{d}^{2}\right)\right)\) & \multicolumn{2}{|l|}{\(O(\log \hat{d}(D m / P+D \hat{d}))\)} \\
\hline & Work (CREW) & \(O(L m \log \hat{d})\) & \(O(m \widehat{d} \log \hat{d})\) & \multicolumn{2}{|l|}{\(O(m \log \hat{d})\)} \\
\hline & & \(\Delta\)-Stepping & Boman Graph Coloring & MST & BC \\
\hline 을 & Time & \(O\left((L / \Delta) l_{\Delta}(m / P+\hat{d})\right)\) & \(O(L m / P+L \hat{d})\) & \(O\left(n^{2} / P\right)\) & \multirow[t]{6}{*}{} \\
\hline \(\bigcirc\) & Work & \(O\left((L / \Delta) m l_{\Delta}\right)\) & \(O(\mathrm{Lm})\) & \(O\left(n^{2}\right)\) & \\
\hline \multirow{4}{*}{\[
\begin{aligned}
& \text { O } \\
& \frac{.}{6} \\
& \frac{9}{2} \\
& 0
\end{aligned}
\]} & Time (CRCW) & \(O\left((L / \Delta) l_{\Delta} \hat{d}+m l_{\Delta} / P\right)\) & \(O(\log \hat{d}(L m / P+L \hat{d}))\) & \(O\left(n^{2} / P\right)\) & \\
\hline & Work (CRCW) & \(O\left(m l_{\Delta}\right)\) & \(O(\mathrm{Lm})\) & \(O\left(n^{2}\right)\) & \\
\hline & Time (CREW) & \[
O\left(\log (\hat{d})\left((L / \Delta) l_{\Delta} \hat{d}+m l_{\Delta} / P\right)\right)
\] & \(O(\log \hat{d}(L m / P+L \hat{d}))\) & \(O\left(\log (n) n^{2} / P\right)\) & \\
\hline & Work (CREW) & \(O\left(\log (\hat{d}) m l_{\Delta}\right)\) & \(O(L m \log \hat{d})\) & \(O\left(\log (n) n^{2}\right)\) & \\
\hline
\end{tabular}

\section*{Complexity Analyses}

No worries, we won't go over all these details here ©

\section*{Complexity Analyses}

Let's only see the PageRank comparisons (others are similar)

No worries, we won't go over all these details here ©

\footnotetext{
아 Time

아 Work (CRCW) \(\qquad\)
}

\section*{Complexity Analyses}

Let's only see the PageRank comparisons (others are similar)

No worries, we won't go over all these details here ©

\section*{PageRank}
\(O(L(m / P+\hat{d}))\)
Work
O(Lm)
Time (CRCW) \(\quad o(L(m / P+\hat{d}))\)
Work (CRCW) O(Lm)
Time (CREW) \(\quad O(L \log (\hat{d})(m / P+\hat{d}))\)
Work (CREW) \(\quad O(L m \log d)\)

\section*{Complexity Analyses}

> Let's only see the PageRank comparisons (others are similar)

No worries, we won't go over all these details here ©
\begin{tabular}{|c|c|c|}
\hline & \#ierations & PageRank \#processes \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { 은 } \\
& \text { 言 }
\end{aligned}
\]} & Time & \(o(L(m / P+d))\) \\
\hline & Work & \(O(L m)\) \#edges \\
\hline \multirow{4}{*}{} & Time (CRCW) & \(o(L(m / P+\hat{d}))\) \\
\hline & Work (CRCW) & O(Lm) \\
\hline & Time (CREW) & \(o(L \log (\hat{d})(m / P+\hat{d}))\) \\
\hline & Work (CREW) & \(O(L m \log d)\) \\
\hline
\end{tabular}

\section*{Complexity Analyses}

\section*{Let's only see the PageRank comparisons (others are similar)}

No worries, we won't go over all these details here ©


\section*{Complexity Analyses} Highlights

\section*{Complexity Analyses} highlights

Write conflicts \(W\)
Pushing entails more write conflicts (must be resolved with locks or atomics.

\section*{Complexity Analyses} highlights

Write conflicts W
Pushing entails more write conflicts (must be resolved with locks or atomics.

\section*{Atomics/Locks}

Pulling removes atomics or locks completely (TC, PR, BFS, \(\Delta\)-Stepping, MST) or it changes the type of conflicts from \(f\) to \(i(B C)\).

\section*{Complexity Analyses}

\section*{Highlights}

Write conflicts (W)
Pushing entails more write conflicts (must be resolved with locks or atomics.

\section*{Atomics/Locks}

Memory accesses
Pulling in traversals (BFS, BC, SSSP- \(\Delta\) ) entails more time and work.

Pulling removes atomics or locks completely (TC, PR, BFS, \(\Delta\)-Stepping, MST) or it changes the type of conflicts from \(f\) to \(i(B C)\).

\section*{Pushing vs. Pulling Research Questions}

Yes (developed 7 algorithms and the total
can be described with the actual dichotomy

How do they differ in complexity?

Pushing vs. Pulling
Research Questions
 algorithms and the total

Answered
Can be described with the actual dichotomy

\section*{Pushing vs. Pulling} Research Questions

Check the paper ()

Yes (developed 7 algorithms and the total of 11 variants)

can be described with the actual dichotomy

\section*{What is performance?}

How effective are the incorporated strategies?

Is pushing or pulling faster? When and why?

What is the impact of the programming model? environment?

\section*{Performance Analysis} Types of machines

CSCS Cray Piz Daint \& Dora

\section*{Performance Analysis} Types of machines


CSCS Cray Piz Daint \& Dora

\section*{Performance Analysis Types of machines}


\section*{Performance Analysis Types of graphs}

\section*{Performance Analysis Types of graphs}

Synthetic graphs

\section*{Performance Analysis Types of graphs}

Synthetic graphs

Kronecker [1]


\section*{Performance Analysis TYPES OF GRAPHS}

[1] J. Leskovec et al. Kronecker Graphs: An Approach to Modeling Networks. J. Mach. Learn. Research. 2010.
[2] P. Erdos and A. Renyi. On the evolution of random graphs. Pub. Math. Inst. Hun. A. Science. 1960.

\section*{Performance Analysis TYPES OF GRAPHS}

\section*{Real-world SNAP graphs [3]}


\section*{Performance Analysis Types of graphs}


\section*{Real-world SNAP graphs [3]}


Road networks


Comm. graphs
Citation graphs


Social networks


Web graphs


Purchase networks
[1] J. Leskovec et al. Kronecker Graphs: An Approach to Modeling Networks. J. Mach. Learn. Research. 2010.
[2] P. Erdos and A. Renyi. On the evolution of random graphs. Pub. Math. Inst. Hun. A. Science. 1960.
[3] https://snap.stanford.edu

\section*{Performance Analysis Counted Events}

\section*{Performance Analysis Counted Events}

Counted PAPI events
Cache misses (L1, L2, L3)
Reads, writes
Branches (conditional, unconditional)
TLB misses (data, instruction)

\section*{Performance Analysis Counted Events}

\section*{Counted PAPI events}

Cache misses (L1, L2, L3)
Reads, writes
Branches (conditional, unconditional)
TLB misses (data, instruction)

\section*{Other counted events}

Issued atomics
Acquired locks
Messages (sent, received)
RMA accesses (reads, writes, atomics)

\section*{Performance Analysis Boman Graph Coloring}
orc, ljn: social networks SNAP. rca: road network

SharedMemory




\section*{Performance Analysis Boman Graph Coloring}
orc, ljn: social networks SNAP. rca: road network

SharedMemory



\section*{Performance Analysis Boman Graph Coloring}

\section*{Pushing faster}

Fewer reads/writes

Fewer cache/TLB misses


ljn
Iterations


Performance Analysis Boman Graph Coloring



\section*{Frontier-Exploit (FE)}


\section*{Frontier-Exploit (FE)}


\section*{Frontier-Exploit (FE)}


\section*{Frontier-Exploit (FE)}


\section*{Performance Analysis Boman Graph Coloring + FE}
orc, ljn: social networks SNAP. rca: road network

> Shared- Memory

FE: Frontier-Exploit (+ more, check the paper(e))


\section*{Performance Analysis Boman Graph Coloring + FE}

Performance improvements

Fewer iterations
orc, ljn: social networks
rca: road network

\section*{Shared-} Memory

\section*{}

FE: Frontier-Exploit (+ more, check the paper(-)

Fewer reads/writes



NA \(\operatorname{HPCL}\)

\section*{Before we move to} Distributed-Memory analyses...

Before we move to Distributed-Memory analyses...

\section*{...a brief recap on} Remote Memory Access (RMA)

Remote Memory Access (RMA) Programming

\section*{Remote Memory Access (RMA) Programming}

\author{
Process p \\ Memory \\ A
}

\section*{Remote Memory Access (RMA) Programming}
\(\underset{\substack{\text { Memory } \\ \text { Process } p}}{ }<\)


\section*{Remote Memory Access (RMA) Programming}


Cray
BlueWaters

\section*{Remote Memory Access (RMA) Programming}


Cray
BlueWaters

\section*{Remote Memory Access (RMA) Programming}


\section*{Remote Memory Access (RMA) Programming}


Cray
BlueWaters

\section*{Remote Memory Access (RMA) Programming}


\section*{Performance Analysis PageRank}

\section*{Kronecker graphs}

Distributed -Memory



\section*{Performance Analysis PageRank}

\section*{Kronecker graphs}

Distributed -Memory

\[
n=2^{27}, m=2^{29}
\]


\section*{Performance Analysis}

\section*{PageRank}

Msg-Passing fastest

\section*{Kronecker graphs}

\section*{Distributed} -Memory

\section*{[lllytll}
\[
n=2^{25}, m=2^{27}
\]


\section*{Performance Analysis}

\section*{PageRank}

\section*{Kronecker graphs}

Distributed -Memory

> Pulling incurs more
> communication while pushing expensive underlying locking
\[
n=2^{25}, m=2^{27}
\]


\section*{Performance Analysis PageRank}

\section*{Kronecker graphs}

\section*{Distributed -Memory}
\[
n=2^{27}, m=2^{29}
\]
more
communication while pushing expensive underlying locking



\title{
Performance Analysis Triangle Counting
}
sNAP.. orc, ljn: social networks

Distributed
-Memory


\section*{Performance Analysis} Triangle Counting
sNAP.• orc, ljn: social networks

Distributed -Memory

\section*{RMA fastest}


\section*{Performance Analysis}

\section*{Triangle Counting}

Msg-Passing now incurs more communication
sNAP.• orc, ljn: social networks

Distributed -Memory

\section*{[1HENI}

RMA fastest



\section*{Performance Analysis}

\section*{Triangle Counting}

Msg-Passing now incurs more communication
s.sap.- orc, ljn: social networks

\section*{Distributed} -Memory


\section*{RMA fastest}

Pushing does not require the expensive locking protocol (Cray offers fast remote atomics for integers)



\section*{Pushing vs. Pulling} Research Questions

Check the paper ()

Yes (developed 7 algorithms and the total of 11 variants)

can be described with the actual dichotomy

\section*{What is performance?}

How effective are the incorporated strategies?

Is pushing or pulling faster? When and why?

What is the impact of the programming model? environment?

Pushing vs. Pulling Research Questions

Pushing faster if its complexity lower

Pulling faster when their complexities match.

\section*{What is performance?}

How effective are the incorporated strategies?

Is pushing or pulling faster? When and why?

What is the impact of the programming model? environment?

\section*{Pushing vs. Pulling Research Questions}

Message \(P\) assing varies (collectives vs simple messages)

RMA: depends on what the hardware offers

How effective are the incorporated strategies?

\section*{What is performance?}

Is pushing or pulling faster? When and why?

What is the impact of the programming model? environment?

\section*{Pushing vs. Pulling}

\section*{Research Questions}

Frontier-Exploit significantly reduces memory accesses
The switching schemes of iterations. the number of

Message Passing varies (collectives vs simple messages)

RMA: depends on what the hardware offers

Pushing faster if its Pulling faster when their complexities match.

\section*{What is performance?}

How effective are the incorporated strategies?

Is pushing or pulling faster? When and why?

What is the impact of the programming model? environment?

\section*{Pushing vs. Pulling Research Questions}


\section*{Pushing vs. Pulling \\ Research Questions}


\section*{Pushing vs. Pulling \\ Research Questions}


\section*{Otherwise: push}

\section*{Pushing vs. Pulling}

\section*{Research Questions}


\section*{If the complexities match: pull}
+ check your hardware ©

\section*{Otherwise: push}

NA \(\operatorname{HPCL}\)


\section*{Conclusions}

\section*{Conclusions}

Push vs. Pull: Applicability


\section*{Conclusions}

Push vs. Pull: Applicability


Push vs. Pull: Dichotomy


\section*{Conclusions}

\section*{Push vs. Pull: Applicability}


Push vs. Pull: Formulations


\section*{Conclusions}

\section*{Push vs. Pull: Applicability}


Push vs. Pull:
Complexity


Push vs. Pull: Formulations


\section*{Conclusions}

\section*{Push vs. Pull: Applicability}


Push vs. Pull: Dichotomy


Push vs. Pull:
Complexity


Push vs. Pull: Formulations


\section*{Performance} \& space analysis + guidelines


\section*{Conclusions}

\section*{Push vs. Pull: Applicability}


Push vs. Pull:
Complexity


\section*{Thank you for your attention}


Push vs. Pull: Dichotomy


Performance \& space analysis + guidelines


NA \(\operatorname{HPCL}\)

\section*{Backup slides}

\section*{Graph Coloring Boman et Al. [1]}
```

// Input: a graph G. Output: An array of vertex colors c[1..n].
function Boman-GC(G) {
}

```
[1] E. G. Boman et al. A scalable parallel graph coloring algorithm for distributed memory computers. Euro-Par 2005.

\section*{Graph Coloring Boman et Al. [1]}
```

// Input: a graph G. Output: An array of vertex colors c[1..n].
\#vertices
function Boman-GC(G) {
}

```
[1] E. G. Boman et al. A scalable parallel graph coloring algorithm for distributed memory computers. Euro-Par 2005.

\section*{Graph Coloring Boman et Al. [1]}
```

// Input: a graph G. Output: An array of vertex colors c[1..n].
\#vertices
function Boman-GC(G) {
}

```
[1] E. G. Boman et al. A scalable parallel graph coloring algorithm for distributed memory computers. Euro-Par 2005.

\section*{Graph Coloring Boman et Al. [1]}
\begin{tabular}{ll}
\hline \(1 / /\) Input: a graph \(G\). Output: An array of vertex colors c[1.n]. \\
2 & \\
3 & \\
4 & \\
5 & \\
6 & \\
7 & \\
8 & \\
9 & \\
10 & \\
11 & \\
12 & \\
13 & \\
14 & \\
15 & \\
16 & \\
17 & \\
18 & \\
19 & \\
\hline
\end{tabular}

[1] E. G. Boman et al. A scalable parallel graph coloring algorithm for distributed memory computers. Euro-Par 2005.

\section*{Graph Coloring Boman et AL. [1]}
\begin{tabular}{ll}
\hline \(1 / /\) Input: a graph \(G\). Output: An array of vertex colors c[1.n]. \\
2 & \\
3 & \\
4 & \\
5 & \\
6 & \\
7 & \\
8 & \\
9 & \\
10 & \\
11 & \\
12 & \\
13 & \\
14 & \\
15 & \\
16 & \\
17 & \\
18 & \\
19 & \\
\hline
\end{tabular}

We care explicitly about partitioning now
[1] E. G. Boman et al. A scalable parallel graph coloring algorithm for distributed memory computers. Euro-Par 2005.

\section*{Graph Coloring Boman et Al. [1]}
\begin{tabular}{ll}
\hline 1 // Input: a graph \(G\). Output: An array of vertex colors c[1..n]. \\
2 & \\
3 & \\
4 & \\
5 & \\
6 & \\
7 & \\
8 & \\
9 & \\
10 & \\
11 & \\
12 & \\
13 & \\
14 & \\
15 & \\
16 & \\
17 & \\
18 & \\
19 & \\
\hline
\end{tabular}

We care explicitly about partitioning now
[1] E. G. Boman et al. A scalable parallel graph coloring algorithm for distributed memory computers. Euro-Par 2005.

\section*{Graph Coloring Boman et AL. [1]}
\begin{tabular}{ll}
\hline 1 // Input: a graph \(G\). Output: An array of vertex colors c[1..n]. \\
2 & \\
3 & \\
4 & \\
5 & \\
6 & \\
7 & \\
8 & \\
9 & \\
10 & \\
11 & \\
12 & \\
13 & \\
14 & \\
15 & \\
16 & \\
17 & \\
18 & \\
19 & \\
\hline
\end{tabular}
[1] E. G. Boman et al. A scalable parallel graph coloring algorithm for distributed memory computers. Euro-Par 2005.

\section*{Graph Coloring Boman et AL. [1]}

\author{
(V) : a write conflict \\ R : a read conflict \\ i : integer
}
\begin{tabular}{ll}
\hline \(1 / /\) Input: a graph \(G\). Output: An array of vertex colors c[1.n]. \\
2 & \\
3 & \\
4 & \\
5 & \\
6 & \\
7 & \\
8 & \\
9 & \\
10 & \\
11 & \\
12 & \\
13 & \\
14 & \\
15 & \\
16 & \\
17 & \\
18 & \\
19 & \\
\hline
\end{tabular}

We care explicitly about partitioning now
[1] E. G. Boman et al. A scalable parallel graph coloring algorithm for distributed memory computers. Euro-Par 2005.

\section*{Graph Coloring Boman et AL. [1]}

\author{
(1) : a write conflict \\ ® : a read conflict \\ i : integer
}
```

// Input: a graph G. Output: An array of vertex colors c[1..n].
2
3
4
function Boman-GC(G) {
done = false; c[1..n] = [\emptyset..\emptyset]; //No vertex is colored yet
7
8
9
10
1 1
12
1 3
14
15
16
1 7
18
19

```
[1] E. G. Boman et al. A scalable parallel graph coloring algorithm for distributed memory computers. Euro-Par 2005.

\section*{Graph Coloring Boman et AL. [1]}

[1] E. G. Boman et al. A scalable parallel graph coloring algorithm for distributed memory computers. Euro-Par 2005.

\section*{Graph Coloring Boman et AL. [1]}

\}
[1] E. G. Boman et al. A scalable parallel graph coloring algorithm for distributed memory computers. Euro-Par 2005.

\section*{Graph Coloring Boman et AL. [1]}

\}
[1] E. G. Boman et al. A scalable parallel graph coloring algorithm for distributed memory computers. Euro-Par 2005.

\section*{Graph Coloring Boman et AL. [1]}

\}
[1] E. G. Boman et al. A scalable parallel graph coloring algorithm for distributed memory computers. Euro-Par 2005.

\section*{Graph Coloring Boman et AL. [1]}

\} \}
[1] E. G. Boman et al. A scalable parallel graph coloring algorithm for distributed memory computers. Euro-Par 2005.

\section*{Graph Coloring Boman et AL. [1]}

```

// Input: a graph G. Output: An array of vertex colors c[1..n].
2
3
4
function Boman-GC(G) {
done = false; c[1..n]/= [\emptyset..\emptyset]; //No vertex is colored yet
//avail[i][j]=1 mezhs that color j can be used for vertex i.
avail[1..n][1..C]= [1..1][1..1]; init(\mathcal{B,OP});
while (!done) {
for }\mathcal{P}\in\mathscr{P}\mathrm{ do in par {seq_color_partition(P);}
} }

```
[1] E. G. Boman et al. A scalable parallel graph coloring algorithm for distributed memory computers. Euro-Par 2005.

\section*{Graph Coloring Boman et AL. [1]}

```

// Input: a graph G. Output: An array of vertex colors c[1..n].
2
3
4
function Boman-GC(G) {
done = false; c[1..n]/= [\emptyset..\emptyset]; //No vertex is colored yet
//avail[i][j]=1 mezhs that color j can be used for vertex i.
avail[1..n][1..C]= [1..1][1..1]; init(\mathcal{B,QP});
while (!done) {
for }\mathcal{P}\in\mathscr{P}\mathrm{ do in par {seq_color_partition(P);}
} }

```
[1] E. G. Boman et al. A scalable parallel graph coloring algorithm for distributed memory computers. Euro-Par 2005.

\section*{Graph Coloring Boman et AL. [1]}

```

// Input: a graph G. Output: An array of vertex colors c[1..n].
2
3
4
function Boman-GC(G) {
done = false; c[1..n]/= [\emptyset..\emptyset]; //No vertex is colored yet
//avail[i][j]=1 mezhs that color j can be used for vertex i.
avail[1..n][1..C]= [1..1][1..1]; init(\mathcal{B,QP});
while (!done) {
for }\mathcal{P}\in\mathscr{P}\mathrm{ do in par {seq_color_partition(P);}
} }

```
[1] E. G. Boman et al. A scalable parallel graph coloring algorithm for distributed memory computers. Euro-Par 2005.

\section*{Graph Coloring Boman et AL. [1]}


[1] E. G. Boman et al. A scalable parallel graph coloring algorithm for distributed memory computers. Euro-Par 2005.

\section*{Graph Coloring Boman et AL. [1]}

```

// Input: a graph G. Output: An array of vertex colors c[1..n].
2
3
4
function Boman-GC(G) {
done = false; c[1..n]/= [\emptyset..\emptyset]; //No vertex is colored yet
//avail[i][j]=1 mezhs that color j can be used for vertex i.
avail[1..n][1..C]= [1..1][1..1]; init(\mathcal{B,OP});
while (!done) {
for }\mathcal{P}\in\mathscr{P}\mathrm{ do in par {seq_color_partition(P);}
fix_conflicts(); } }

```
[1] E. G. Boman et al. A scalable parallel graph coloring algorithm for distributed memory computers. Euro-Par 2005.

\section*{Graph Coloring Boman et AL. [1]}

```

// Input: a graph G. Output: An array of vertex colors c[1..n].
maximum
\#colors
function Boman-GC(G) {
done = false; c[1..n] = [0..\emptyset]; //No vertex is colored yet
//avail[i][j]=1 mezhs that color j can be used for vertex i.
avail[1..n][1..C] = [1..1][1..1]; init(\mathcal{B},\mathscr{P});
while (!done) {
for }\mathcal{P}\in\mathscr{P}\mathrm{ do in par {seq_color_partition(P);}
fix_conflicts(); } }
function fix_conflicts() {
}

```
[1] E. G. Boman et al. A scalable parallel graph coloring algorithm for distributed memory computers. Euro-Par 2005.

\section*{Graph Coloring Boman et AL. [1]}

```

// Input: a graph G. Output: An array of vertex colors c[1..n].
maximum
\#colors
function Boman-GC(G) {
done = false; c[1..n] = [0..\emptyset]; //No vertex is colored yet
//avail[i][j]=1 mezhs that color j can be used for vertex i.
avail[1..n][1..C] = [1..1][1..1]; init(\mathcal{B},\mathscr{P});
while (!done) {
for }\mathcal{P}\in\mathscr{P}\mathrm{ do in par {seq_color_partition(P);}
fix_conflicts(); } }
function fix_conflicts() {
for v\in\mathcal{B}}\mathrm{ in par do {
}}

```
[1] E. G. Boman et al. A scalable parallel graph coloring algorithm for distributed memory computers. Euro-Par 2005.

\section*{Graph Coloring Boman et AL. [1]}

```

// Input: a graph G. Output: An array of vertex colors c[1..n].
maximum
\#colors
function Boman-GC(G) {
done = false; c[1..n]= [\emptyset..\emptyset]; //No vertex is colored yet
//avail[i][j]=1 meahs that color j can be used for vertex i.
avail[1..n][1..C] = [1..1][1..1]; init(\mathcal{B},\mathscr{P});
while (!done) {
for }\mathcal{P}\in\mathscr{P}\mathrm{ do in par {seq_color_partition(P);}
fix_conflicts(); } }
function fix_conflicts() {
for v\in\mathcal{B}\mathrm{ in par do {for }u\inN(v) do
}}

```
[1] E. G. Boman et al. A scalable parallel graph coloring algorithm for distributed memory computers. Euro-Par 2005.

\section*{Graph Coloring Boman et AL. [1]}

```

// Input: a graph G. Output: An array of vertex colors c[1..n].
maximum
\#colors
function Boman-GC(G) {
done = false; c[1..n]= [0..\emptyset]; //No vertex is colored yet
//avail[i][j]=1 meahs that color j can be used for vertex i.
avail[1..n][1..C] = [1..1][1..1]; init(\mathcal{B},\mathscr{P});
while (!done) {
for }\mathcal{P}\in\mathscr{P}\mathrm{ do in par {seq_color_partition(P);}
fix_conflicts(); } }
function fix_conflicts() {
for v\in\mathcal{B}\mathrm{ in par do {for }u\inN(v) do
}}

```
[1] E. G. Boman et al. A scalable parallel graph coloring algorithm for distributed memory computers. Euro-Par 2005.

\section*{Graph Coloring Boman et AL. [1]}

```

// Input: a graph G. Output: An array of vertex colors c[1..n].
maximum
\#colors
function Boman-GC(G) {
done = false; c[1..n]= [0..\emptyset]; //No vertex is colored yet
//avail[i][j]=1 mezhs that color j can be used for vertex i.
avail[1..n][1..C] = [1..1][1..1]; init(\mathcal{B},\mathscr{P});
while (!done) {
for }\mathcal{P}\in\mathscr{P}\mathrm{ do in par {seq_color_partition(P);}
fix_conflicts(); } } v's neighbors
function fix_conflicts() {
for v\in\mathcal{B}\mathrm{ in par do {for }u\inN(v) do
if (c[u] == c[v]) {
}}

```
[1] E. G. Boman et al. A scalable parallel graph coloring algorithm for distributed memory computers. Euro-Par 2005.

\section*{Graph Coloring Boman et AL. [1]}
(W) : a write conflict

R : a read conflict
i : integer
```

 for }\mathcal{P}\in\mathscr{P}\mathrm{ do in par {seq_color_partition(P);}
    ```
            for }\mathcal{P}\in\mathscr{P}\mathrm{ do in par {seq_color_partition(P);}
            fix_conflicts(); } }
            fix_conflicts(); } }
    function fix_conflicts() {
    function fix_conflicts() {
    for v\in\mathcal{B}\mathrm{ in par do {for }u\inN(v) do
    for v\in\mathcal{B}\mathrm{ in par do {for }u\inN(v) do
        if (c[u] == c[v]) {
        if (c[u] == c[v]) {
            {avail[v][c[v]]=\emptysetR目;} PULLING
            {avail[v][c[v]]=\emptysetR目;} PULLING
                maximum
                maximum
                        #vertices
                        #vertices
// Input: a graph G. Output: An array of vertex colors c[1..n].
// Input: a graph G. Output: An array of vertex colors c[1..n].
                    #colors
                    #colors
    function Boman-GC(G) {
    function Boman-GC(G) {
    done = false; c[1..n]= [\emptyset..\emptyset]; //No vertex is colored yet
    done = false; c[1..n]= [\emptyset..\emptyset]; //No vertex is colored yet
    //avail[i][j]=1 mezhs that color j can be used for vertex i.
    //avail[i][j]=1 mezhs that color j can be used for vertex i.
        avail[1..n][1..C] = [1..1][1..1]; init(\mathcal{B},\mathscr{P});
        avail[1..n][1..C] = [1..1][1..1]; init(\mathcal{B},\mathscr{P});
        while (!done) {
        while (!done) {
        {avail[u][c[v]] =
        {avail[u][c[v]] =
            v's neighbors
            v's neighbors
            }}
            }}

[1] E. G. Boman et al. A scalable parallel graph coloring algorithm for distributed memory computers. Euro-Par 2005.

\section*{Graph Coloring Boman et AL. [1]}
(W) : a write conflict

R : a read conflict
i) : integer

```

// Input: a graph G. Output: An array of vertex colors c[1..n].
maximum
\#colors
function Boman-GC(G) {
done = false; c[1..n]= [0..\emptyset]; //No vertex is colored yet
//avail[i][j]=1 mezhs that color j can be used for vertex i.
avail[1..n][1..C]= [1..1][1..1]; init(\mathcal{B},\mathscr{P});
while (!done) {
for }\mathscr{P}\in\mathscr{P}\mathrm{ do in par {seq_color_partition(P);}
fix_conflicts(); } }}
function fix_conflicts() {
for v\in\mathcal{B}\mathrm{ in par do {for }u\inN(v) do
if (c[u] == c[v]) {
{avail[v][c[v]]=\emptysetR目;} PULLING
}}

```
[1] E. G. Boman et al. A scalable parallel graph coloring algorithm for distributed memory computers. Euro-Par 2005.

\section*{Graph Coloring Boman et AL. [1]}
(W) : a write conflict

R : a read conflict
i) : integer

```

// Input: a graph G. Output: An array of vertex colors c[1..n].
maximum
\#vertices
\#colors
function Boman-GC(G) {
done = false; c[1..n]/= [\emptyset..\emptyset]; //No vertex is colored yet
//avail[i][j]=1 mezhs that color j can be used for vertex i.
avail[1..n][1..C]= [1..1][1..1]; init(\mathcal{B},\mathscr{P});
while (!done) {
for }\mathcal{P}\in\mathscr{P}\mathrm{ do in par {seq_color_partition(P);}
fix_conflicts(); } }}
function fix_conflicts() {
for v\in\mathcal{B}\mathrm{ in par do {for }u\inN(v) do
if (c[u] == c[v]) {
{avail[v][c[v]]=\emptyset R I; }

```
    Pushing
[1] E. G. Boman et al. A scalable parallel graph coloring algorithm for distributed memory computers. Euro-Par 2005.

\section*{Graph Coloring Boman et AL. [1]}
(W) : a write conflict

R : a read conflict
i) : integer
```

 for }\mathcal{P}\in\mathscr{P}\mathrm{ do in par {seq_color_partition(P);}
    ```
            for }\mathcal{P}\in\mathscr{P}\mathrm{ do in par {seq_color_partition(P);}
            fix_conflicts(); } }
            fix_conflicts(); } }
    function fix_conflicts() {
    function fix_conflicts() {
    for v\in\mathcal{B}\mathrm{ in par do {for }u\inN(v) do
    for v\in\mathcal{B}\mathrm{ in par do {for }u\inN(v) do
        if (c[u] == c[v]) {
        if (c[u] == c[v]) {
            {avail[v][c[v]]=\emptyset R |i;} PULLING
            {avail[v][c[v]]=\emptyset R |i;} PULLING
                maximum
                maximum
                        #vertices
                        #vertices
// Input: a graph G. Output: An array of vertex colors c[1..n].
// Input: a graph G. Output: An array of vertex colors c[1..n].
                    #colors
                    #colors
    function Boman-GC(G) {
    function Boman-GC(G) {
    done = false; c[1..n]= [\emptyset..\emptyset]; //No vertex is colored yet
    done = false; c[1..n]= [\emptyset..\emptyset]; //No vertex is colored yet
    //avail[i][j]=1 mezhs that color j can be used for vertex i.
    //avail[i][j]=1 mezhs that color j can be used for vertex i.
        avail[1..n][1..C] = [1..1][1..1]; init(\mathcal{B, \mathscr{P}})\mathrm{ ;}
        avail[1..n][1..C] = [1..1][1..1]; init(\mathcal{B, \mathscr{P}})\mathrm{ ;}
        while (!done) {
        while (!done) {
        {avail[u][c[v]] =
        {avail[u][c[v]] =
            v's neighbors
            v's neighbors
            }}
            }}

[1] E. G. Boman et al. A scalable parallel graph coloring algorithm for distributed memory computers. Euro-Par 2005.

\section*{Graph Coloring Boman et AL. [1]}
(W) : a write conflict

R : a read conflict
i) : integer


[1] E. G. Boman et al. A scalable parallel graph coloring algorithm for distributed memory computers. Euro-Par 2005.

\section*{Graph Coloring Boman et AL. [1]}
(W) : a write conflict

R : a read conflict
i) : integer
                    maximum
                    maximum
                    #colors
                    #colors
function Boman-GC(G) {
function Boman-GC(G) {
    done = false; c[1..n] = [0..0]; //No vertex is colored yet
    done = false; c[1..n] = [0..0]; //No vertex is colored yet
    //avail[i][j]=1 mezhs that color j can be used for vertex i.
    //avail[i][j]=1 mezhs that color j can be used for vertex i.
        avail[1..n][1..C] = [1..1][1..1]; init(\mathcal{B, }P}\mathrm{ );
        avail[1..n][1..C] = [1..1][1..1]; init(\mathcal{B, }P}\mathrm{ );
        while (!done) {
        while (!done) {
            for }\mathscr{P}\in\mathscr{P}\mathrm{ do in par {seq_color_partition(P);}
            for }\mathscr{P}\in\mathscr{P}\mathrm{ do in par {seq_color_partition(P);}
            fix_conflicts(); } }
            fix_conflicts(); } }
    function fix_conflicts() {
    function fix_conflicts() {
    for v\in\mathcal{B}\mathrm{ in par do {for }u\inN(v) do
    for v\in\mathcal{B}\mathrm{ in par do {for }u\inN(v) do
        if (c[u] == c[v]) {
        if (c[u] == c[v]) {
            {avail[v][c[v]]=\emptyset R 变;} PULLING
            {avail[v][c[v]]=\emptyset R 变;} PULLING
    }}
    }}

[1] E. G. Boman et al. A scalable parallel graph coloring algorithm for distributed memory computers. Euro-Par 2005.

\section*{Graph Coloring Boman et AL. [1]}
(W) : a write conflict

R : a read conflict
i : integer
```

 for }\mathcal{P}\in\mathscr{P}\mathrm{ do in par {seq_color_partition(P);}
    ```
            for }\mathcal{P}\in\mathscr{P}\mathrm{ do in par {seq_color_partition(P);}
            fix_conflicts(); } }
            fix_conflicts(); } }
    function fix_conflicts() {
    function fix_conflicts() {
    for v\in\mathcal{B}\mathrm{ in par do {for }u\inN(v) do
    for v\in\mathcal{B}\mathrm{ in par do {for }u\inN(v) do
        if (c[u] == c[v]) {
        if (c[u] == c[v]) {
            {avail[v][c[v]]=\emptysetR目;} PULLING
            {avail[v][c[v]]=\emptysetR目;} PULLING
                maximum
                maximum
                        #vertices
                        #vertices
// Input: a graph G. Output: An array of vertex colors c[1..n].
// Input: a graph G. Output: An array of vertex colors c[1..n].
                    #colors
                    #colors
    function Boman-GC(G) {
    function Boman-GC(G) {
    done = false; c[1..n]= [\emptyset..\emptyset]; //No vertex is colored yet
    done = false; c[1..n]= [\emptyset..\emptyset]; //No vertex is colored yet
    //avail[i][j]=1 mezhs that color j can be used for vertex i.
    //avail[i][j]=1 mezhs that color j can be used for vertex i.
        avail[1..n][1..C] = [1..1][1..1]; init(\mathcal{B},\mathscr{P});
        avail[1..n][1..C] = [1..1][1..1]; init(\mathcal{B},\mathscr{P});
        while (!done) {
        while (!done) {
        {avail[u][c[v]] =
        {avail[u][c[v]] =
            v's neighbors
            v's neighbors
            }}
            }}

[1] E. G. Boman et al. A scalable parallel graph coloring algorithm for distributed memory computers. Euro-Par 2005.

\section*{Graph Coloring Boman et AL. [1]}
(W) : a write conflict

R : a read conflict
i) : integer
```

// Input: a graph G. Output: An array of vertex colors c[1..n].
maximum
\#colors
function Boman-GC(G) {
done = false; c[1..n]= [0..\emptyset]; //No vertex is colored yet
//avail[i][j]=1 mezhs that color j can be used for vertex i.
avail[1..n][1..C]= [1..1][1..1]; init(\mathcal{B},\mathscr{P});
while (!done) {
for }\mathscr{P}\in\mathscr{P}\mathrm{ do in par {seq_color_partition(P);}
fix_conflicts(); } }
function fix_conflicts() {
for v\in\mathcal{B}\mathrm{ in par do {for }u\inN(v) do
if (c[u] == c[v]) {
{avail[u][c[v]]=\emptyset@ (i;}
19 }}

```

\section*{Graph Coloring Boman et AL. [1]}
(W) : a write conflict

R : a read conflict
i) : integer

```

// Input: a graph G. Output: An array of vertex colors c[1..n].
maximum
\#vertices
\#colors
function Boman-GC(G) {
done = false; c[1..n]= [0..0]; //No vertex is colored yet
//avail[i][j]=1 mezhs that color j can be used for vertex i.
avail[1..n][1..C] = [1..1][1..1]; init(\mathcal{B, }P}\mathrm{);
while (!done) {
for }\mathcal{P}\in\mathscr{P}\mathrm{ do in par {seq_color_partition(P);}
fix_conflicts(); } }
function fix_conflicts() {
for v\in\mathcal{B}\mathrm{ in par do {for }u\inN(v) do
if (c[u] == c[v]) {
{avail[u][c[v]] = \emptyset (\mathbb{i;}}
v's neighbors

```
[1] E. G. Boman et al. A scalable parallel graph coloring algorithm for distributed memory computers. Euro-Par 2005.

\section*{Graph Coloring Boman et AL. [1]}
(W) : a write conflict

R : a read conflict
i) : integer

```

// Input: a graph G. Output: An array of vertex colors c[1..n].
maximum
\#vertices
\#colors
function Boman-GC(G) {
done = false; c[1..n]= [0..0]; //No vertex is colored yet
//avail[i][j]=1 mezhs that color j can be used for vertex i.
avail[1..n][1..C] = [1..1][1..1]; init(\mathcal{B, }P}\mathrm{);
while (!done) {
for }\mathcal{P}\in\mathscr{P}\mathrm{ do in par {seq_color_partition(P);}
fix_conflicts(); } }
function fix_conflicts() {
for v\in\mathcal{B}\mathrm{ in par do {for }u\inN(v) do
if (c[u] == c[v]) {
{avail[u][c[v]] = \emptyset (\mathbb{i;}}
v's neighbors

```
    Pulling
[1] E. G. Boman et al. A scalable parallel graph coloring algorithm for distributed memory computers. Euro-Par 2005.

\section*{Graph Coloring Boman et AL. [1]}
(W) : a write conflict

R : a read conflict
i) : integer

```

// Input: a graph G. Output: An array of vertex colors c[1..n].
maximum
\#vertices
\#colors
function Boman-GC(G) {
done = false; c[1..n]= [0..0]; //No vertex is colored yet
//avail[i][j]=1 mezhs that color j can be used for vertex i.
avail[1..n][1..C] = [1..1][1..1]; init(\mathcal{B, }P}\mathrm{);
while (!done) {
for }\mathcal{P}\in\mathscr{P}\mathrm{ do in par {seq_color_partition(P);}
fix_conflicts(); } }
function fix_conflicts() {
for v\in\mathcal{B}\mathrm{ in par do {for }u\inN(v) do
if (c[u] == c[v]) {
{avail[u][c[v]] = \emptyset (\mathbb{i;}}
v's neighbors

```
    Pulling
[1] E. G. Boman et al. A scalable parallel graph coloring algorithm for distributed memory computers. Euro-Par 2005.

\section*{Performance Analysis Triangle Counting}

\section*{Performance Analysis}

\section*{Triangle Counting}
\begin{tabular}{l|lllll} 
& \multicolumn{5}{c}{ Triangle Counting [s] } \\
& orc & pok & ljn & am & rca \\
\hline Pushing & 11.78 k & 139.9 & 803.5 & 0.092 & 0.014 \\
Pulling & 11.37 k & 135.3 & 769.9 & 0.083 & 0.014 \\
\hline
\end{tabular}

\section*{Performance Analysis Triangle Counting}
orc, pok, ljn: social networks
rca: road network
am: amazon graph
\begin{tabular}{l|lllll} 
& \multicolumn{5}{c}{ Triangle Counting [s] } \\
& orc & pok & ljn & am & rca \\
\hline Pushing & 11.78 k & 139.9 & 803.5 & 0.092 & 0.014 \\
Pulling & 11.37 k & 135.3 & 769.9 & 0.083 & 0.014
\end{tabular}

\title{
Performance Analysis Triangle Counting
}
orc, pok, ljn: social networks rca: road network am: amazon graph

SharedMemory

Triangle Counting [s] orc pok ljn am rca
Pushing \(\mid 11.78 \mathrm{k} 139.9803 .50 .0920 .014\)
\begin{tabular}{l|llllll} 
Pulling & 11.37 k & 135.3 & 769.9 & 0.083 & 0.014
\end{tabular}

\title{
Performance Analysis Triangle Counting
}
orc, pok, ljn: social networks rca: road network am: amazon graph

\section*{Pulling faster}

\section*{Performance Analysis Triangle Counting}
orc, pok, ljn: social networks rca: road network am: amazon graph

\begin{tabular}{l|lllll} 
& \multicolumn{5}{c}{ Triangle Counting [s] } \\
& orc & pok & ljn & am & rca \\
\hline Pushing & 11.78 k & 139.9 & 803.5 & 0.092 & 0.014 \\
Pulling & 11.37 k & 135.3 & 769.9 & 0.083 & 0.014 \\
\hline
\end{tabular}

\section*{Performance Analysis Boman Graph Coloring + GrS + FE}

orc, ljn: social networks rca: road network

SharedMemory

GrS+FE: Greedy-Switch + Frontier-Exploit GS: Generic-Switch
\begin{tabular}{l|llll}
\hline\(G\) & Push \(+\mathbf{F E}+\mathbf{G S}+\mathbf{G r S}\) \\
\hline orc & 49 & 173 & 49 & 49 \\
pok & 49 & 48 & 49 & 47 \\
ljn & 49 & 334 & 49 & 49 \\
am & 49 & 10 & 10 & 9 \\
rca & 49 & 5 & 5 & 5 \\
\hline
\end{tabular}

\title{
Performance Analysis \\ \(\Delta\)-Stepping
}
orc: social network am: Amazon graph

Shared-
Memory


\section*{Performance Analysis \\ \(\Delta\)-Stepping}
orc: social network am: Amazon graph

Shared-
Memory


\section*{Performance Analysis \(\Delta\)-Stepping}
orc: social network am: Amazon graph

Shared-
Memory




\section*{Performance Analysis \\ \(\Delta\)-Stepping}
orc: social network am: Amazon graph

Shared-
Memory




\section*{Performance Analysis \\ \(\Delta\)-Stepping}

\section*{SNAP。 \(\therefore \quad a m\) : Amazon graph \\ Shared- \\ Memory \\ orc: social network}

Fewer reads/writes

The larger \(\Delta\), the smaller the difference between pushing and pulling




\section*{Performance Analysis Boruvka MST}

SNAP. orc: social network

Shared-
Memory
lll木男




\section*{Performance Analysis Boruvka MST}
sNAP.. orc: social network

Shared-
Memory

\section*{[1HENI}
"Build merge tree"

"Merge"


\section*{Performance Analysis Boruvka MST}
s.NAP.. orc: social network

Shared-
Memory

\section*{Lll木男}

Pushing \(\approx\) pulling
"Merge"


\section*{Performance Analysis Boruvka MST}

SNAP.. orc: social network

SharedMemory
Pulling is cumulatively faster


\section*{Performance Analysis Boruvka MST}

No expensive write conflicts

Pulling is cumulatively faster


\section*{Performance Analysis PageRank}
orc, pok, ljn: social networks rca: road network am: amazon graph

SharedMemory
\begin{tabular}{l|llllll}
\hline & \multicolumn{5}{|c}{ PageRank [ms] } \\
\(G\) & orc & pok & ljn & am & rca \\
\hline Pushing & 572 & 129 & 264 & 4.62 & 6.68 \\
Pulling & 557 & 103 & 240 & 2.46 & 5.42 \\
\hline
\end{tabular}

\section*{Performance Analysis PageRank}
orc, pok, ljn: social networks rca: road network am: amazon graph

SharedMemory

Pulling faster in sparse graphs by \(\approx 3 \%\)

Many cache misses dominate performance
\begin{tabular}{l|lllll}
\hline & \multicolumn{5}{|c}{ PageRank [ms] } \\
\(G\) & orc & pok & ljn & am & rca \\
\hline Pushing & 572 & 129 & 264 & 4.62 & 6.68 \\
Pulling & 557 & 103 & 240 & 2.46 & 5.42 \\
\hline
\end{tabular}

\section*{Performance Analysis PageRank}
orc, pok, ljn: social networks rca: road network am: amazon graph


Pulling faster in sparse graphs by \(\approx 3 \%\)

Many cache misses dominate performance


SharedMemory
\begin{tabular}{l|lllll}
\hline & \multicolumn{5}{|c}{ PageRank [ms] } \\
\(G\) & orc & pok & ljn & am & rca \\
\hline Pushing & 572 & 129 & 264 & 4.62 & 6.68 \\
Pulling & 557 & 103 & 240 & 2.46 & 5.42 \\
\hline
\end{tabular}

\section*{Performance Analysis PageRank}
orc, pok, ljn: social networks rca: road network am: amazon graph


Pulling faster in sparse graphs by \(\approx 3 \%\)

Many cache misses dominate performance


Shared-

\section*{No atomics}
\begin{tabular}{l|lllll}
\hline & \multicolumn{5}{|c}{ PageRank [ms] } \\
\(G\) & orc & pok & ljn & am & rca \\
\hline Pushing & 572 & 129 & 264 & 4.62 & 6.68 \\
Pulling & 557 & 103 & 240 & 2.46 & 5.42 \\
\hline
\end{tabular}

\section*{Performance Analysis PageRank + PA}
orc, pok, ljn: social networks rca: road network am: amazon graph

PA: Partition-Awareness
\begin{tabular}{l|ll}
\hline\(G\) & Push & +PA \\
\hline orc & 557.985 & 425.928 \\
pok & 103.907 & 87.577 \\
ljn & 240.943 & 145.475 \\
am & 2.467 & 5.193 \\
rca & 5.422 & 13.705 \\
\hline
\end{tabular}

\section*{Performance Analysis PageRank + PA}
orc, pok, ljn: social networks SNAP. rca: road network am: amazon graph

Pushing now faster in dense graphs by ~24\%

SharedMemory

Fewer atomics (thanks to PA) and still fewer cache misses
\begin{tabular}{l|ll}
\hline\(G\) & Push & \(+\mathbf{P A}\) \\
\hline orc & 557.985 & 425.928 \\
pok & 103.907 & 87.577 \\
ljn & 240.943 & 145.475 \\
am & 2.467 & 5.193 \\
rca & 5.422 & 13.705 \\
\hline
\end{tabular}

\section*{Performance Analysis PageRank + PA}
orc, pok, ljn: social networks SNAP. rca: road network am: amazon graph

Pushing now faster in dense graphs by ~24\%

SharedMemory

PA: Partition-Awareness

Fewer atomics (thanks to PA) and still fewer cache misses
\begin{tabular}{l|ll}
\hline\(G\) & Push & +PA \\
\hline orc & 557.985 & 425.928 \\
pok & 103.907 & 87.577 \\
ljn & 240.943 & 145.475 \\
am & 2.467 & 5.193 \\
rca & 5.422 & 13.705 \\
\hline
\end{tabular}

\section*{Performance Analysis PageRank + PA}
orc, pok, ljn: social networks

\section*{SNAP.} rca: road network am: amazon graph

\section*{Pushing now faster} in dense graphs by ~24\%

SharedMemory

PA: Partition-Awareness

Fewer atomics (thanks to PA) and still fewer cache misses

\section*{- Pushing+PA the slowest for sparse graphs}

Fewer atomics dominated by more branches
\begin{tabular}{l|ll}
\hline\(G\) & Push & +PA \\
\hline orc & 557.985 & 425.928 \\
pok & 103.907 & 87.577 \\
ljn & 240.943 & 145.475 \\
am & 2.467 & 5.193 \\
rca & 5.422 & 13.705 \\
\hline
\end{tabular}

\section*{Performance Analysis PageRank}

\section*{Kronecker graphs}

Distributed -Memory



\section*{Performance Analysis PageRank}

\section*{Kronecker graphs}

Distributed -Memory

\[
n=2^{27}, m=2^{29}
\]


\section*{Performance Analysis}

\section*{PageRank}

Msg-Passing fastest

\section*{Kronecker graphs}

\section*{Distributed} -Memory

\section*{[lllytll}
\[
n=2^{25}, m=2^{27}
\]


\section*{Performance Analysis}

\section*{PageRank}

\section*{Kronecker graphs}

Distributed -Memory

\section*{Lllytill}

Overheads from buffer preparation
\[
n=2^{25}, m=2^{27}
\]
\[
n=2^{27}, m=2^{29}
\]



\section*{Performance Analysis}

\section*{PageRank}

Kronecker graphs
Distributed
-Memory

Overheads from buffer preparation
...but pulling incurs more communication while pushing expensive underlying locking
\[
n=2^{25}, m=2^{27} \quad n=2^{27}, m=2^{29}
\]



\section*{Performance Analysis}

\section*{PageRank}

\section*{Kronecker graphs}
Distributed
-Memory

Overheads from buffer preparation
...but pulling incurs more communication while pushing expensive underlying locking
\[
n=2^{25}, m=2^{27} \quad n=2^{27}, m=2^{29}
\]



\section*{Performance Analysis}

\section*{PageRank}

\section*{Kronecker graphs}

\section*{Distributed -Memory \\ Llly}

Overheads from buffer preparation
...but pulling incurs more communication while pushing expensive underlying locking
\[
n=2^{25}, m=2^{27} \quad n=2^{27}, m=2^{29}
\]


Collectives: combines pushing and pulling

02505007501000 Processes (P)


\title{
Performance Analysis Triangle Counting
}
sNAP.. orc, ljn: social networks

Distributed
-Memory


\section*{Performance Analysis} Triangle Counting
sNAP.• orc, ljn: social networks

Distributed -Memory

\section*{RMA fastest}


\section*{Performance Analysis}

\section*{Triangle Counting}

Msg-Passing incurs now more communication
sNAP. orc, ljn: social networks

Distributed -Memory

\section*{[1HN\#}

RMA fastest



\section*{Performance Analysis}

\section*{Triangle Counting}
sNAP.• orc, ljn: social networks

Distributed -Memory

RMA fastest
Pushing does not require the expensive locking protocol (Cray offers fast remote atomics for integers)



\section*{Performance Analysis}

\section*{Triangle Counting}

\section*{Msg-Passing incurs now more communication}
s.NAP.• orc, ljn: social networks

Distributed -Memory


RMA fastest
Pushing does not require the expensive locking protocol (Cray offers fast remote atomics for integers)

```

