

To Push or To Pull: On Reducing Communication and Synchronization in Graph Computations

Used in...

Used in...

Used in...

[1] A. Lumsdaine et al. Challenges in Parallel Graph Processing. Parallel Processing Letters. 2007.

[1] A. Lumsdaine et al. Challenges in Parallel Graph Processing. Parallel Processing Letters. 2007.

[1] A. Lumsdaine et al. Challenges in Parallel Graph Processing. Parallel Processing Letters. 2007.

[1] A. Lumsdaine et al. Challenges in Parallel Graph Processing. Parallel Processing Letters. 2007.

P threads are used

P threads are used

P threads are used

Pushing

P threads are used

Pushing

P threads are used

Pushing

P threads are used

Pulling

P threads are used

Pulling

P threads are used

Pulling

BFS Top-Down vs. Bottom-Up [1]

BFS Top-Down vs. Bottom-Up [1]

Pushing or pulling when expanding a frontier

Pushing or pulling when expanding a frontier

Pushing or pulling when expanding a frontier

Pushing or pulling when expanding a frontier

Pushing or pulling when expanding a frontier

Pushing or pulling when expanding a frontier

Pushing or pulling when expanding a frontier

Pushing or pulling when expanding a frontier

Pushing or pulling when expanding a frontier

Pushing or pulling when expanding a frontier

Pushing or pulling when expanding a frontier

Pushing or pulling when expanding a frontier

Pushing or pulling when expanding a frontier

Pushing or pulling when expanding a frontier

Pushing or pulling when expanding a frontier

Pushing or pulling when expanding a frontier

Pushing or pulling when expanding a frontier

Pushing or pulling when expanding a frontier

Pushing or pulling when expanding a frontier

Pushing or pulling when expanding a frontier

Pushing or pulling when expanding a frontier

Pushing or pulling when expanding a frontier

Pushing or pulling when expanding a frontier

Pushing or pulling when expanding a frontier

Pushing or pulling when expanding a frontier

Pushing or pulling when expanding a frontier

Pushing or pulling when expanding a frontier

Pushing vs. Pulling **RESEARCH QUESTIONS**

Can we apply the push-pull dichotomy to other graph algorithms?

Can we apply the push-pull dichotomy to other graph algorithms?

What are push-pull formulations of other algorithms?

Can we apply the push-pull dichotomy to other graph algorithms?

What are push-pull formulations of other algorithms?

What pushing vs. pulling *really* is?

Can we apply the push-pull dichotomy to other graph algorithms?

How do they differ in complexity?

What are push-pull formulations of other algorithms?

What pushing vs. pulling *really* is?

Can we apply the push-pull dichotomy to other graph algorithms?

What are push-pull formulations of other algorithms?

What pushing vs. pulling *really* is?

How do they differ in complexity?

?

What is performance?

Can we apply the push-pull dichotomy to other graph algorithms?

How do they differ in complexity?

What are push-pull formulations of other algorithms?

What pushing vs. pulling *really* is?

What is performance?

TRIANGLE COUNTING

Vertex importance (#triangles)


```
1 / * Input: a graph G. Output: An array of triangle counts
   * tc[1..n] that each vertex belongs to. */
4 function TC(G) {
5
9
10
11
12
13
14
```


Vertex importance (#triangles)


```
1 /* Input: a graph G. Output: An array of triangle counts
2 * tc[1..n] that each vertex belongs to. */
3
4 function TC(G) {
5
6
7
8
9 }
10
11
12
13
14
```


Vertex importance (#triangles)

: a write conflict: a read conflict

i : integer

14


```
1 /* Input: a graph G. Output: An array of triangle counts
2 * tc[1..n] that each vertex belongs to. */
3
4 function TC(G) {
5
6
7
8
9 }
10
11
12
13
```


Vertex importance (#triangles)

: a write conflict R: a read conflict

i : integer


```
1 /* Input: a graph G. Output: An array of triangle counts
   * tc[1..n] that each vertex belongs to. */
3
4 function TC(G) {tc[1..n] = [0..0]
5
6
9
10
11
12
13
14
```


Vertex importance (#triangles)

: a write conflict: a read conflict

i : integer

14


```
1 /* Input: a graph G. Output: An array of triangle counts 2 * tc[1..n] that each vertex belongs to. */

3 4 function TC(G) {tc[1..n] = [0..0] 5 for v \in V do in par

6 7 8 9 }
```


Vertex importance (#triangles)

: a write conflict: a read conflict

i : integer

1314

of triangle counts

```
1 /* Input: a graph G. Output: An array of triangle counts 2 * tc[1..n] that each vertex belongs to. */

3 
4 function TC(G) {tc[1..n] = [0..0]

5 for v \in V do in par

6 
7 
8 
9 }
10 
11 
12
```


Vertex importance (#triangles)

: a write conflict: a read conflict

i : integer

1314

of triangle counts

```
1 /* Input: a graph G. Output: An array of triangle counts 2 * tc[1..n] that each vertex belongs to. */

3 
4 function TC(G) {tc[1..n] = [0..0]

5 for v \in V do in par

6 
7 
8 
9 }
10 
11 
12
```


Vertex importance (#triangles)

: a write conflict: a read conflict

i : integer

14

of triangle counts

```
1 /* Input: a graph G. Output: An array of triangle counts 2 * tc[1..n] that each vertex belongs to. */

3 
4 function TC(G) {tc[1..n] = [0..0] Set of vertices for v \in V do in par for w_1 \in N(v) do [in par] for w_2 \in N(v) do [in par] 

8 
9 } 
10 
11 
12 
13
```


Vertex importance (#triangles)

: a write conflict
: a read conflict

i : integer

14

```
1 /* Input: a graph G. Output: An array of triangle counts 2 * tc[1..n] that each vertex belongs to. */

3 
4 function TC(G) {tc[1..n] = [0..0] Set of vertices  
5 for v \in V do in par  
6 for w_1 \in N(v) do [in par]  
7  for w_2 \in N(v) do [in par]  
8 
9 } 
10 
11 
12 
13
```


Vertex importance (#triangles)

: a write conflict
: a read conflict

i : integer

14

```
1 /* Input: a graph G. Output: An array of triangle counts 2 * tc[1..n] that each vertex belongs to. */

3 
4 function TC(G) {tc[1..n] = [0..0] Set of vertices  
5 for v \in V do in par  
6 for w_1 \in N(v) do [in par]  
7  for w_2 \in N(v) do [in par]  
8 
9 } 
10 
11 
12 
13
```


Vertex importance (#triangles)

: a write conflict R: a read conflict

i : integer

```
1 /* Input: a graph G. Output: An array of triangle counts
   * tc[1..n] that each vertex belongs to. */
3
                                           Set of vertices
  function TC(G) {tc[1..n] = [0..0]
                                                v's neighbors
     for v \in V do in par
       for w_1 \in N(v) do [in par]
         for w_2 \in N(v) do [in par]
           if adj(w_1, w_2) R update_tc();
9
10
11
12
13
14
```


Vertex importance (#triangles)

: a write conflict: a read conflict

i : integer

of triangle counts

```
1 /* Input: a graph G. Output: An array of triangle counts
   * tc[1..n] that each vertex belongs to. */
3
                                           Set of vertices
  function TC(G) {tc[1..n] = [0..0]
                                                v's neighbors
     for v \in V do in par
       for w_1 \in N(v) do [in par]
         for w_2 \in N(v) do [in par]
           if adj(w_1, w_2) R update_tc();
9
10 function update_tc() {
11
12
13
14 }
```


Vertex importance (#triangles)

: a write conflict : a read conflict

i : integer

es es

```
1 /* Input: a graph G. Output: An array of triangle counts
   * tc[1..n] that each vertex belongs to. */
3
                                           Set of vertices
  function TC(G) {tc[1..n] = [0..0]
                                               v's neighbors
    for v \in V do in par
       for w_1 \in N(v) do [in par]
         for w_2 \in N(v) do [in par]
           if adj(w_1, w_2) R update_tc();
10 function update_tc() {
     \{++tc[w_1]; /* or ++tc[w_2]. */\}
11
                                                               PUSHING
12
                                                               PULLING
13l
    {++tc[v];}
14 }
```


Vertex importance (#triangles)

: a write conflict : a read conflict : integer

____#vertices

```
of triangle counts
```

```
1 /* Input: a graph G. Output: An array of triangle counts
   * tc[1..n] that each vertex belongs to. */
3
                                           Set of vertices
  function TC(G) {tc[1..n] = [0..0]
                                               v's neighbors
    for v \in V do in par
       for w_1 \in N(v) do [in par]
         for w_2 \in N(v) do [in par]
           if adj(w_1, w_2) R update_tc();
10 function update_tc() {
     \{++tc[w_1]; /* or ++tc[w_2]. */\}
11
                                                              PUSHING
12
                                                               PULLING
13l
    {++tc[v];}
14 }
```


Vertex importance (#triangles)

: a write conflict : a read conflict : integer

- #vertices

```
of triangle counts
```

```
1 /* Input: a graph G. Output: An array of triangle counts
   * tc[1..n] that each vertex belongs to. */
3
                                           Set of vertices
  function TC(G) {tc[1..n] = [0..0]
                                                v's neighbors
    for v \in V do in par
       for w_1 \in N(v) do [in par]
         for w_2 \in N(v) do [in par]
           if adj(w_1, w_2) R update_tc();
10 function update_tc() {
     \{++tc[w_1]; /* or ++tc[w_2]. */\}
11
                                                               PUSHING
12
                                                               PULLING
13l
    {++tc[v];}
14 }
```


Vertex importance (#triangles)

: a write conflict : a read conflict : integer

#vertices

```
y of triangle counts
```

```
1 /* Input: a graph G. Output: An array of triangle counts
   * tc[1..n] that each vertex belongs to. */
3
                                           Set of vertices
  function TC(G) {tc[1..n] = [0..0]
                                                v's neighbors
    for v \in V do in par
       for w_1 \in N(v) do [in par]
         for w_2 \in N(v) do [in par]
           if adj(w_1, w_2) R update_tc();
10 function update_tc() {
     \{++tc[w_1]; /* or ++tc[w_2].
11
                                                               PUSHING
12
                                                               PULLING
13l
    {++tc[v];}
14 }
```


Vertex importance (#triangles)

: a write conflict R: a read conflict i : integer

3

#vertices

function TC(G) {tc[1..n] = [0..0]

```
1 /* Input: a graph G. Output: An array of triangle counts
  * tc[1..n] that each vertex belongs to. */
                                         Set of vertices
                                              v's neighbors
                                                            PUSHING
                                                             PULLING
```

```
for v \in V do in par
       for w_1 \in N(v) do [in par]
         for w_2 \in N(v) do [in par]
            if adj(w_1, w_2) R update_tc();
10 function update_tc() {
     \{++tc[w_1]; /* or ++tc[w_2].
11
12
13l
     {++tc[v];}
14 }
```


Vertex importance (#triangles)

: a write conflict : a read conflict : integer

____#vertices

```
of triangle counts
```

```
1 /* Input: a graph G. Output: An array of triangle counts
   * tc[1..n] that each vertex belongs to. */
3
                                           Set of vertices
  function TC(G) {tc[1..n] = [0..0]
                                               v's neighbors
    for v \in V do in par
       for w_1 \in N(v) do [in par]
         for w_2 \in N(v) do [in par]
           if adj(w_1, w_2) R update_tc();
10 function update_tc() {
     \{++tc[w_1]; /* or ++tc[w_2]. */\}
11
                                                              PUSHING
12
                                                               PULLING
13l
    {++tc[v];}
14 }
```


#vertices

Vertex importance (#triangles)

: a write conflict: a read conflict

i : integer

14 }

of triangle counts

```
1 /* Input: a graph G. Output: An array of triangle counts
   * tc[1..n] that each vertex belongs to. */
3
                                           Set of vertices
  function TC(G) {tc[1..n] = [0..0]
                                               v's neighbors
    for v \in V do in par
      for w_1 \in N(v) do [in par]
         for w_2 \in N(v) do [in par]
           if adj(w_1, w_2) R update_tc();
10 function update_tc() {
    \{++tc[w_1]; /* or ++tc[w_2]. */\}
11
                                                              PUSHING
12
                                                              PULLING
13l
    {++tc[v];}
```

Pushing

Vertex importance (#triangles)

: a write conflict : a read conflict : integer

#vertices

```
y of triangle counts
```

```
1 /* Input: a graph G. Output: An array of triangle counts
   * tc[1..n] that each vertex belongs to. */
3
                                           Set of vertices
  function TC(G) {tc[1..n] = [0..0]
                                                v's neighbors
    for v \in V do in par
       for w_1 \in N(v) do [in par]
         for w_2 \in N(v) do [in par]
           if adj(w_1, w_2) R update_tc();
10 function update_tc() {
     \{++tc[w_1]; /* or ++tc[w_2]. */\}
11
                                                               PUSHING
12
                                                               PULLING
13l
    {++tc[v];}
14 }
```

Pushing

Vertex importance (#triangles)

: a write conflict : a read conflict : integer

#vertices

```
ay of triangle counts to. */
Set of vertices
```

```
1 /* Input: a graph G. Output: An array of triangle counts
   * tc[1..n] that each vertex belongs to. */
3
  function TC(G) {tc[1..n] = [0..0]
                                               v's neighbors
    for v \in V do in par
       for w_1 \in N(v) do [in par]
         for w_2 \in N(v) do [in par]
           if adj(w_1, w_2) R update_tc();
10 function update_tc() {
     \{++tc[w_1]; /* or ++tc[w_2]. */\}
11
                                                              PUSHING
12
                                                               PULLING
13l
    {++tc[v];}
14 }
```

Pushing

#vertices

Vertex importance (#triangles)

: a write conflict: a read conflict

i : integer

14 }

of triangle counts

```
1 /* Input: a graph G. Output: An array of triangle counts
   * tc[1..n] that each vertex belongs to. */
3
                                           Set of vertices
  function TC(G) {tc[1..n] = [0..0]
                                               v's neighbors
    for v \in V do in par
      for w_1 \in N(v) do [in par]
         for w_2 \in N(v) do [in par]
           if adj(w_1, w_2) R update_tc();
10 function update_tc() {
    \{++tc[w_1]; /* or ++tc[w_2]. */\}
11
                                                              PUSHING
12
                                                              PULLING
13l
    {++tc[v];}
```

Pushing

Vertex importance (#shortest paths)

At least two paths


```
1 /* Input: a graph G. Output: centrality scores bc[1..n]. */
 3 function BC(G) { bc[1..n] = [0..0]
     for s \in V do [in par] {
       for t \in V do in par {
                                                    PART 1: INITIALIZATION
          pred[t]=succ[t]=\emptyset; \sigma[t]=0; dist[t]=\infty;
       \sigma[s]=enqueued=1; dist[s]=itr=0; \delta[1..n]=[0..0]
       Q[0]=\{s\}; Q_1[1..p]=pred_1[1..p]=succ_1[1..p]=[\emptyset..\emptyset];
       while enqueued > 0 do
                                         PART 2: COUNTING SHORTEST PATHS
         count_shortest_paths();
       --itr
       while itr > 0 do
                                       PART 3: DEPENDENCY ACCUMULATION
          accumulate_dependencies();
16 function count_shortest_paths() { enqueued ■ 0;
17 #if defined PUSHING_IN_PART_2
                                                       PUSHING (IN PART 2)
     for v \in Q[itr] do in par {
       for w \in N(v) do [in par] {
         if dist[w] == \infty (R) {
            Q_1[itr + 1] = Q_1[itr + 1] \cup \{w\}
            dist[w] = dist[v] + 1  (W) i; ++enqueued;}
         \sigma[w] \leftarrow \sigma[v] \otimes \Pi; pred_1[w] = pred_1[w] \cup \{v\};
26 #if defined PULLING_IN_PART_2
                                                       PULLING (IN PART 2)
     for w \in V do in par {
       for v \in N(w) do [in par] {
         if v \in Q[itr] (R) {
           if dist[w] = \infty {
              Q_1[itr + 1] = Q_1[itr + 1] \cup \{w\}
              dist[w] = dist[v] + 1  (3; ++enqueued;)
            if dist[w] == dist[v] + 1 (3) {
              \sigma[w] + \sigma[v]  \sigma[v]  \sigma[w] = succ_1[w] \cup \{v\};
36 #endif }
38 #if defined PUSHING_IN_PART_3
                                                       PUSHING (IN PART 3)
40 #elif defined PULLING_IN_PART_3
42 #endif ++itr; }
44 function accumulate_dependencies() {
45 #if defined PUSHING_IN_PART_3
                                                       PUSHING (IN PART 3)
    for w \in Q[itr] do in par {
       for v \in \operatorname{pred}[w] do \{\delta[v] + \sigma[v]/\sigma[w](1 + \delta[w]) \{\delta[w]\}
       bc[w] += \delta[w]; }; --itr;
49 #elif defined PULLING_IN_PART_3
                                                       PULLING (IN PART 3)
     for w \in Q[itr] do in par \{\delta_{add}[w] = 0;
      for v \in \text{succ}[w] do \delta_{add}[w] + \sigma[w]/\sigma[v](1+\delta[v]) (1) (1) (1)
       \delta[w] = \delta_{add}[w]; bc[w] + \delta_{add}[w]; }
54 #endif }
```


Vertex importance (#shortest paths)

1. Forward traversals

Vertex importance (#shortest paths)

1. Forward traversals

[1] U. Brandes. A faster algorithm for betweenness centrality. J. of Math. Sociology. 2001.

Vertex importance (#shortest paths)

1. Forward traversals

Compute immediate predecessors of each vertex in the shortest paths from other vertices.

1. Forward traversals

Compute immediate predecessors of each vertex in the shortest paths from other vertices.

1. Forward traversals

Compute immediate predecessors of each vertex in the shortest paths from other vertices.

1. Forward traversals

Compute immediate predecessors of each vertex in the shortest paths from other vertices.

1. Forward traversals

Compute immediate predecessors of each vertex in the shortest paths from other vertices.

1. Forward traversals

Compute immediate predecessors of each vertex in the shortest paths from other vertices.

1. Forward traversals

Compute immediate predecessors of each vertex in the shortest paths from other vertices.

Compute #shortest paths between any two vertices

2. Backward traversals

1. Forward traversals

Compute immediate predecessors of each vertex in the shortest paths from other vertices.

Compute #shortest paths between any two vertices

2. Backward traversals

Accumulate centrality scores during backward traversals [1].

1. Forward traversals

Compute immediate predecessors of each vertex in the shortest paths from other vertices.

Compute #shortest paths between any two vertices

2. Backward traversals

Accumulate centrality scores during backward traversals [1].

BETWEENNESS CENTRALITY

BRANDES [1]

1. Forward traversals

Compute immediate predecessors of each vertex in the shortest paths from other vertices.

Compute #shortest paths between any two vertices

2. Backward traversals

Accumulate centrality scores during backward traversals [1].

BETWEENNESS CENTRALITY

BRANDES [1]

1. Forward traversals

Compute immediate predecessors of each vertex in the shortest paths from other vertices.

Compute #shortest paths between any two vertices

2. Backward traversals

Accumulate centrality scores during backward traversals [1].

We can do pushing or pulling in both phases

GRAPH COLORING

GRAPH COLORING

GRAPH COLORING

Iterate until converge (convergence == no color conflicts)

Iterate until converge (convergence == no color conflicts) Border vertices

We care explicitly about partitioning now

In each iteration:

Iterate until converge (convergence == no color conflicts)

In each iteration:

Color each partition independently

Iterate until converge (convergence == no color conflicts)

In each iteration:

Color each partition independently

Iterate until converge (convergence == no color conflicts)

partitioning now

In each iteration:

Color each partition independently

Iterate until converge (convergence == no color conflicts)

In each iteration:

Color each partition independently

Iterate until converge (convergence == no color conflicts)

We care explicitly about partitioning now

In each iteration:

Color each partition independently

Iterate until converge (convergence == no color conflicts)

We care explicitly about partitioning now

In each iteration:

Color each partition independently

Fix the conflicts

Pushing

Iterate until converge (convergence == no color conflicts) Oh no!

Border vertices

We care explicitly about partitioning now

In each iteration:

Color each partition independently

Fix the conflicts

Pushing

Iterate until converge (convergence == no color conflicts)

We care explicitly about partitioning now

In each iteration:

Color each partition independently

2

Iterate until converge (convergence == no color conflicts)

We care explicitly about partitioning now

In each iteration:

Color each partition independently

2

Iterate until converge (convergence == no color conflicts)

We care explicitly about partitioning now

In each iteration:

Color each partition independently

2

Iterate until converge (convergence == no color conflicts)

We care explicitly about partitioning now

In each iteration:

Color each partition independently

2

Iterate until converge (convergence == no color conflicts)

We care explicitly about partitioning now

In each iteration:

Color each partition independently

Fix the conflicts

Iterate until converge (convergence == no color conflicts)

We care explicitly about partitioning now

In each iteration:

Color each partition independently

Fix the conflicts

Iterate until converge (convergence == no color conflicts)

We care explicitly about partitioning now

In each iteration:

Color each partition independently

Fix the conflicts

Iterate until converge (convergence == no color conflicts)

We care explicitly about partitioning now

In each iteration:

Color each partition independently

Fix the conflicts

OTHER ALGORITHMS & FORMULATIONS

OTHER ALGORITHMS & FORMULATIONS

OTHER ALGORITHMS & FORMULATIONS

PUSHING VS. PULLING RESEARCH QUESTIONS

Can we apply the push-pull dichotomy to other graph algorithms?

How do they differ in complexity?

What are push-pull formulations of other algorithms?

What pushing vs. pulling *really* is?

What is performance?

PUSHING VS. PULLING RESEARCH QUESTIONS

Yes (developed 7 algorithms and the total of 11 variants)

PUSHING VS. PULLING RESEARCH QUESTIONS

Yes (developed 7 algorithms and the total of 11 variants)

What pushing vs. pulling *really* is?

Pushing vs. Pulling **GENERIC DIFFERENCES**

- Vertices: $v \in V$
- $t \sim v \Leftrightarrow t \text{ modifies } v$
- t[v]: a thread that owns v

• Vertices: $v \in V$

• $t \sim v \Leftrightarrow t$ modifies v

• t[v]: a thread that owns v

Algorithm uses pushing \Leftrightarrow $(\exists t \; \exists v \in V \colon t \rightsquigarrow v \land t \neq t[v])$

• Vertices: $v \in V$

• $t \sim v \Leftrightarrow t$ modifies v

• t[v]: a thread that owns v

Algorithm uses pushing \Leftrightarrow $(\exists t \; \exists v \in V \colon \; t \rightsquigarrow v \land t \neq t[v])$

• Vertices: $v \in V$

• $t \sim v \Leftrightarrow t$ modifies v

• t[v]: a thread that owns v

Algorithm uses pushing \Leftrightarrow $(\exists t \; \exists v \in V \colon t \rightsquigarrow v \land t \neq t[v])$

- Vertices: $v \in V$
- $t \sim v \Leftrightarrow t$ modifies v
- t[v]: a thread that owns v

Algorithm uses pushing
$$\Leftrightarrow$$

$$\left[(\exists t \; \exists v \in V \colon \; t \rightsquigarrow v \land t \neq t[v]) \right]$$

- Vertices: $v \in V$
- $t \sim v \Leftrightarrow t$ modifies v
- t[v]: a thread that owns v

```
Algorithm uses pushing \Leftrightarrow
 \left[ (\exists t \; \exists v \in V \colon \; t \rightsquigarrow v \land t \neq t[v]) \right]
```


PUSHING VS. PULLING RESEARCH QUESTIONS

Yes (developed 7 algorithms and the total of 11 variants)

Check the paper ⊙

What pushing vs. pulling *really* is?

Pushing vs. Pulling **RESEARCH QUESTIONS**

Yes (developed 7 algorithms and the total of 11 variants)

Can be described with the actual dichotomy

Pushing vs. Pulling **RESEARCH QUESTIONS**

Yes (developed 7 algorithms and the total of 11 variants)

How do they differ in complexity?

Can be described with the actual dichotomy

Before we move to the complexity analysis...

Before we move to the complexity analysis...

...a brief recap on PRAM models.

Some data in shared memory (e.g., a vertex ©)

Some data in shared memory (e.g., a vertex ©)

Some data in shared memory (e.g., a vertex ©)

Some data in shared memory (e.g., a vertex ©)

Some data in shared memory (e.g., a vertex ©)

All processes process in lock-steps, communicate by reading from & writing to a shared memory.

CRCW PRAM: concurrent reads and concurrent writes to the same cell take O(1) time.

All processes process in lock-steps, communicate by reading from & writing to a shared memory.

CRCW PRAM: concurrent reads and concurrent writes to the same cell take O(1) time.

All processes process in lock-steps, communicate by reading from & writing to a shared memory.

CRCW PRAM: concurrent reads and concurrent writes to the same cell take O(1) time.

All processes process in lock-steps, communicate by reading from & writing to a shared memory.

CRCW PRAM: concurrent reads and concurrent writes to the same cell take O(1) time.

CREW PRAM: concurrent writes to the same cell are forbidden

All processes process in lock-steps, communicate by reading from & writing to a shared memory.

CRCW PRAM: concurrent reads and concurrent writes to the same cell take O(1) time.

CREW PRAM: concurrent writes to the same cell are forbidden

All processes process in lock-steps, communicate by reading from & writing to a shared memory.

CRCW PRAM: concurrent reads and concurrent writes to the same cell take O(1) time.

CREW PRAM: concurrent writes to the same cell are forbidden

k-RELAXATION

Simultaneous propagation of updates: (pushing) from *k* vertices to one of their neighbors, and (pulling) to kvertices from one of their neighbors

k-RELAXATION

Simultaneous propagation of updates: (pushing) from *k* vertices to one of their neighbors, and (pulling) to kvertices from one of their neighbors

k-RELAXATION

Simultaneous propagation of updates: (pushing) from *k* vertices to one of their neighbors, and (pulling) to kvertices from one of their neighbors

k-RELAXATION

Simultaneous propagation of updates: (pushing) from *k* vertices to one of their neighbors, and (pulling) to kvertices from one of their neighbors

Can be thought of a binary tree reduction

k-RELAXATION

Simultaneous propagation of updates: (pushing) from *k* vertices to one of their neighbors, and (pulling) to k vertices from one of their neighbors

Can be thought of a binary tree reduction

k-FILTER

Extract vertices updated in one or more k-RELAXATIONs

k-RELAXATION

Simultaneous propagation of updates: (pushing) from *k* vertices to one of their neighbors, and (pulling) to k vertices from one of their neighbors

Can be thought of a binary tree reduction

k-FILTER

Extract vertices updated in one or more k-RELAXATIONs

k-RELAXATION

Simultaneous propagation of updates: (pushing) from *k* vertices to one of their neighbors, and (pulling) to k vertices from one of their neighbors

Can be thought of a binary tree reduction

k-FILTER

Extract vertices updated in one or more k-RELAXATIONs

Can be thought of a prefix sum

k-RELAXATION

Simultaneous propagation of updates: (pushing) from *k* vertices to one of their neighbors, and (pulling) to *k* vertices from one of their neighbors

Can be thought of a binary tree reduction

k-FILTER

Extract vertices updated in one or more *k*-RELAXATIONs

Can be thought of a prefix sum

We can use *k*-RELAXATIONs and *k*-FILTERs to derive all the complexities

k-RELAXATION

Simultaneous propagation of updates: (pushing) from *k* vertices to one of their neighbors, and (pulling) to *k* vertices from one of their neighbors

Can be thought of a binary tree reduction

k-FILTER

Extract vertices updated in one or more *k*-RELAXATIONs

Can be thought of a prefix sum

We can use *k*-RELAXATIONs and *k*-FILTERs to derive all the complexities

k-RELAXATION

k = 4

Simultaneous propagation of updates: (pushing) from *k*

We want complexities for (the Cartesian product of):

Can be thought of a prefix sum

k-RELAXATION

k = 4

Simultaneous propagation o updates: (pushing) from *k*

We want complexities for (the Cartesian product of):

- > Time
- > work

Can be thought of a prefix sum

k-RELAXATION

k = 4

Simultaneous propagation of updates: (pushing) from *k*

We want complexities for (the Cartesian product of):

Can be thought of a prefix sum

k = 4

We want complexities for (the Cartesian product of):

- Timework
- Pushing Pulling

k-RELAXATION

k = 4

Simultaneous propagation o updates: (pushing) from *k*

We want complexities for (the Cartesian product of):

- Timework
- X
- Pushing
- Pulling

Can be thought of a prefix sum

k = 4

We want complexities for (the Cartesian product of):

- Timework
- PushingPulling

- CRCW PRAM CREW PRAM

k = 4

We want complexities for (the Cartesian product of):

- Timework
- PushingPulling
- CRCW PRAMCREW PRAM

k = 4

We want complexities for (the Cartesian product of):

- > Time
- > work
- PushingPulling

- CRCW PRAMCREW PRAM

- > BFS
- PageRank
- Triangle Counting
- Betweenness Centrality
- Graph Coloring
- △-Stepping
- MST Boruvka

BASIC PRIMITIVES *K*-RELAXATION AND *K***-FILTER**

k = 4

We want complexities for (the Cartesian product of):

- > Time
- > work
- PushingPulling

- CRCW PRAMCREW PRAM

+ some others ©

- > BFS
- PageRank
- Triangle Counting
- Betweenness Centrality
- Graph Coloring
- △-Stepping
- MST Boruvka

FILLERS to derive all

		PageRank	Triangle Counting	BFS
Pulling	Time	$O(L(m/P+\hat{d}))$	$O(\hat{d}m/P + \hat{d}^2)$	$O(Dm/P + D\hat{d})$
Pul	Work	O(Lm)	$O(m\hat{d})$	O(Dm)
Pushing	Time (CRCW)	$O\left(L(m/P+\hat{d})\right)$	$O(\hat{d}m/P + \hat{d}^2)$	$O(Dm/P + D\hat{d} + D\log P)$
	Work (CRCW)	O(Lm)	$O(m\hat{d})$	O(m)
	Time (CREW)	$O\left(L\log(\hat{d})\left(m/P+\hat{d}\right)\right)$	$O\left(\log \hat{d}\left(\hat{d}m/P+\hat{d}^2\right)\right)$	$O\left(\log \hat{d}\left(Dm/P + D\hat{d}\right)\right)$
	Work (CREW)	$O(Lm\log\hat{d})$	$O(m\widehat{d} \log \widehat{d})$	$O(m \log \hat{d})$

		∆-Stepping	Boman Graph Coloring	MST	ВС
Pulling	Time	$O\left((L/\Delta)l_{\Delta}(m/P+\hat{d})\right)$	$O(Lm/P + L\hat{d})$	$O(n^2/P)$	dly
	Work	$Oig((L/\Delta)ml_\Deltaig)$	O(Lm)	$O(n^2)$	htforwardly 8FS
Pushing	Time (CRCW)	$O\left((L/\Delta)l_{\Delta}\hat{d}+ml_{\Delta}/P\right)$	$O\left(\log \hat{d}\left(Lm/P + L\hat{d}\right)\right)$	$O(n^2/P)$	Derived straightfor from BFS
	Work (CRCW)	$O(ml_{\Delta})$	O(Lm)	$O(n^2)$	
	Time (CREW)	$O\left(\log(\hat{d})\left((L/\Delta)l_{\Delta}\hat{d} + ml_{\Delta}/P\right)\right)$	$O\left(\log \hat{d}\left(Lm/P + L\hat{d}\right)\right)$	$O(\log(n) n^2/P)$	
	Work (CREW)	$Oig(\log(\hat{d}ig) m l_\Deltaig)$	$O(Lm \log \hat{d})$	$O(\log(n) n^2)$	

No worries, we won't go over

			Triangle Co	details here ©
ling		$O(L(m/P+\hat{d}))$	$O(\hat{d}m/P + \hat{d}^2)$	$O(Dm/P + D\hat{d})$
	Work	O(Lm)		O(Dm)
Pushing	Time (CRCW)	$O\left(L(m/P+\hat{d})\right)$	$O(\hat{d}m/P + \hat{d}^2)$	$O(Dm/P + D\hat{d} + D\log P)$
	Work (CRCW)	O(Lm)		
	Time (CREW)	$O\left(L\log(\hat{d})\left(m/P+\hat{d}\right)\right)$	$O\left(\log \hat{d}\left(\hat{d}m/P+\hat{d}^2\right)\right)$	$O\left(\log \hat{d}\left(Dm/P + D\hat{d}\right)\right)$
	Work (CREW)	$O(Lm \log \hat{d})$	$O(m\hat{d} \log \hat{d})$	$O(m \log \hat{d})$

Pulling		$O\left((L/\Delta)l_{\Delta}(m/P+\hat{d})\right)$	$O(Lm/P + L\hat{d})$	$O(n^2/P)$		
	Work	$O((L/\Delta)ml_{\Delta})$	O(Lm)			
Pushing	Time (CRCW)	$O\left((L/\Delta)l_{\Delta}\hat{d}+ml_{\Delta}/P\right)$	$O\left(\log \hat{d}\left(Lm/P + L\hat{d}\right)\right)$	$O(n^2/P)$	straightfor from BFS	
	Work (CRCW)	$O\left(ml_{\Delta} ight)$	O(Lm)			
	Time (CREW)	$O\left(\log(\hat{d})\left((L/\Delta)l_{\Delta}\hat{d} + ml_{\Delta}/P\right)\right)$	$O\left(\log \hat{d}\left(Lm/P + L\hat{d}\right)\right)$	$O(\log(n) n^2/P)$	erived	
	Work (CREW)	$O(\log(\hat{d})ml_\Delta)$	$O(Lm \log \hat{d})$	$O(\log(n) n^2)$		

Let's only see the PageRank

No worries, we won't go over all these details here ©

Pulling	Time	comparisons (others are similar) $P + \hat{d}^2$			$O(Dm/P + D\hat{d})$
	Work		O(Lm)	$O(m\hat{d})$	O(Dm)
Pushing		CW)	$O\left(L(m/P+\hat{d})\right)$	$O(\hat{d}m/P + \hat{d}^2)$	$O(Dm/P + D\hat{d} + D\log P)$
	Work (CR	CW)	O(Lm)		
		EW)	$O\left(L\log(\hat{d})\left(m/P+\hat{d}\right)\right)$	$O\left(\log \hat{d}\left(\hat{d}m/P+\hat{d}^2\right)\right)$	$O\left(\log\hat{d}\left(Dm/P+D\hat{d}\right)\right)$
	Work (CR	EW)	$O(Lm \log \hat{d})$	$O(m\widehat{d} \log \widehat{d})$	$O(m \log \hat{d})$

Pulling		$O\left((L/\Delta)l_{\Delta}(m/P+\hat{d})\right)$	$O(Lm/P + L\hat{d})$	$O(n^2/P)$		
	Work	$Oig((L/\Delta)ml_\Deltaig)$	O(Lm)			
Pushing	Time (CRCW)	$O\left((L/\Delta)l_{\Delta}\hat{d}+ml_{\Delta}/P\right)$	$O\left(\log \hat{d}\left(Lm/P + L\hat{d}\right)\right)$	$O(n^2/P)$	straightford from BFS	
	Work (CRCW)	$O\left(ml_{\Delta} ight)$	O(Lm)			
	Time (CREW)	$O\left(\log(\hat{d})\left((L/\Delta)l_{\Delta}\hat{d} + ml_{\Delta}/P\right)\right)$	$O\left(\log \hat{d}\left(Lm/P + L\hat{d}\right)\right)$	$O(\log(n) n^2/P)$	erived	
	Work (CREW)	$O(\log(\hat{d})ml_{\Delta})$	$O(Lm \log \hat{d})$	$O(\log(n) n^2)$		

Let's only see the PageRank comparisons (others are similar)

No worries, we won't go over all these details here ©

		PageRank	$P + D\hat{d} + D\log P$
Pulling	Time	$O(L(m/P + \hat{d}))$	$\hat{d}\left(Dm/P+D\hat{d}\right)$
Pul	Work	O(Lm)	
	Time (CRCW)	$O\left(L(m/P+\hat{d})\right)$	BC Sp
Pushing	Work (CRCW)	O(Lm)	ightforwardly BFS
Pus	Time (CREW)	$O\left(L\log(\hat{d})\left(m/P+\hat{d}\right)\right)$	/ed straig from E
	Work (CREW)	$O(Lm \log \hat{d})$	Deriv

Let's only see the PageRank comparisons (others are similar) No worries, we won't go over all these details here ©

			$P + \hat{d}^2$		$/P + D\hat{d}$	
	Wor	'k	$O(m\hat{d})$ $O(D_1)$			
		#iterations	PageRank #processes	max degree	$P + D\hat{d} + D \log P$	
	Pulling	Time	$O(L(m/P + \hat{d}))$	in a graph	$\hat{d}(Dm/P+D\hat{d})$	
	J I	Work	O(Lm) #edges			
3		Time (CRCW)	$O\left(L(m/P+\hat{d})\right)$			
	Pushing	Work (CRCW)	O(Lm)			Derived straightforwardly from BFS
		Time (CREW)	$O\left(L\log(\hat{d})\left(m/P+\hat{d}\right)\right)$			/ed straig from I
		Work (CREW)	$O(Lm \log \hat{d})$		2	

Work (CREW)

Let's only see the PageRank comparisons (others are similar)

No worries, we won't go over all these details here ©

	#iterations	PageRank #processes max degree	$P + Dd + D \log$
Pulling	Time	$O(L(m/P + \hat{d}))$ in a graph	$\hat{d}(Dm/P + D\hat{d})$
Pul	Work	O(Lm) #edges	
	Time (CRCW)	$O\left(L(m/P+\hat{d})\right)$	
Pushing	Work (CRCW)	O(Lm)	
Pus	Time (CREW)	$O\left(L\log(\hat{d})\left(m/P+\hat{d}\right)\right)$	

 $O(Lm\log d)$

Now, some highlights...

Write conflicts W

Pushing entails more write conflicts (must be resolved with locks or atomics.

Write conflicts W

Pushing entails more write conflicts (must be resolved with locks or atomics.

Atomics/Locks

Pulling removes atomics or locks completely (TC, PR, BFS, ∆-Stepping, MST) or it changes the type of conflicts from f to i (BC).

Write conflicts W

Pushing entails more write conflicts (must be resolved with locks or atomics.

Atomics/Locks

Pulling removes atomics or locks completely (TC, PR, BFS, ∆-Stepping, MST) or it changes the type of conflicts from f to i (BC).

Memory accesses

Pulling in traversals (BFS, BC, SSSP- Δ) entails more time and work.

PUSHING VS. PULLING RESEARCH QUESTIONS

Yes (developed 7 algorithms and the total of 11 variants)

How do they differ in complexity?

Can be described with the actual dichotomy

PUSHING VS. PULLING RESEARCH QUESTIONS

Yes (developed 7 algorithms and the total of 11 variants)

Answered ©

Can be described with the actual dichotomy

Yes (developed 7 algorithms and the total of 11 variants)

Answered ©

Can be described with the actual dichotomy

What is performance?

How effective are the incorporated strategies?

Is pushing or pulling faster? When and why?

What is the impact of the programming model? environment?

PERFORMANCE ANALYSIS **TYPES OF GRAPHS**

PERFORMANCE ANALYSIS **TYPES OF GRAPHS**

Synthetic graphs

[1] J. Leskovec et al. Kronecker Graphs: An Approach to Modeling Networks. J. Mach. Learn. Research. 2010.

- [1] J. Leskovec et al. Kronecker Graphs: An Approach to Modeling Networks. J. Mach. Learn. Research. 2010.
- [2] P. Erdos and A. Renyi. On the evolution of random graphs. Pub. Math. Inst. Hun. A. Science. 1960.

Real-world SNAP graphs [3]

- [1] J. Leskovec et al. Kronecker Graphs: An Approach to Modeling Networks. J. Mach. Learn. Research. 2010.
- [2] P. Erdos and A. Renyi. On the evolution of random graphs. Pub. Math. Inst. Hun. A. Science. 1960.
- [3] https://snap.stanford.edu

- [1] J. Leskovec et al. Kronecker Graphs: An Approach to Modeling Networks. J. Mach. Learn. Research. 2010.
- [2] P. Erdos and A. Renyi. On the evolution of random graphs. Pub. Math. Inst. Hun. A. Science. 1960.

PERFORMANCE ANALYSIS **COUNTED EVENTS**

PERFORMANCE ANALYSIS COUNTED EVENTS

Counted PAPI events

Cache misses (L1, L2, L3)

Reads, writes

Branches (conditional, unconditional)

TLB misses (data, instruction)

PERFORMANCE ANALYSIS COUNTED EVENTS

Counted PAPI events

Cache misses (L1, L2, L3)
Reads, writes
Branches (conditional, unconditional)
TLB misses (data, instruction)

Other counted events

Issued atomics
Acquired locks
Messages (sent, received)
RMA accesses (reads, writes, atomics)

Shared-Memory

orc, ljn: social networks rca: road network

Pushing faster

Fewer reads/writes

Fewer cache/TLB misses

orc, ljn: social networks rca: road network

> Shared-Memory

**SPCL

Pushing faster

Fewer reads/writes

Fewer cache/TL misses

Pushing faster

Fewer cache/TL

Fewer reads/writes

PERFORMANCE ANALYSIS BOMAN GRAPH COLORING + FE

FE: Frontier-Exploit (+ more, check the paper©)

PERFORMANCE ANALYSIS BOMAN GRAPH COLORING + FE

Pulling

30

40

20

Iterations

10

Pushing

Fewer steps thanks to GrS

Performance improvements

Time per iteration [s]

0.6

0.4

0.2

0

Fewer iterations

Fewer reads/writes

orc, ljn: social networks
rca: road network

FE: Frontier-Exploit (+ more, check the paper©)

Before we move to Distributed-Memory analyses...

Before we move to Distributed-Memory analyses...

...a brief recap on Remote Memory Access (RMA)

Cray BlueWaters

Cray **BlueWaters**

Cray BlueWaters

Kronecker graphs

Kronecker graphs

Msg-Passing fastest

Kronecker graphs

Msg-Passing fastest

Kronecker graphs

Distributed -Memory

Pulling incurs
more
communication
while pushing
expensive
underlying
locking

Msg-Passing fastest

Kronecker graphs

Distributed -Memory

Pulling incurs more communication while pushing expensive underlying locking

Collectives: combines pushing and pulling

250 500 7501000 Processes (P)

$$n = 2^{27}, m = 2^{29}$$

250 500 7501000

Processes (P)

PERFORMANCE ANALYSIS TRIANGLE COUNTING

PERFORMANCE ANALYSIS TRIANGLE COUNTING

Distributed -Memory

RMA fastest

PERFORMANCE ANALYSIS

TRIANGLE COUNTING

Msg-Passing now incurs more communication

orc, ljn: social networks

PERFORMANCE ANALYSIS

orc, ljn: social networks

TRIANGLE COUNTING

Msg-Passing now incurs more communication

Distributed -Memory

RMA fastest

Pushing does not require the expensive locking protocol (Cray offers fast remote atomics for integers)

Yes (developed 7 algorithms and the total of 11 variants)

Answered ©

Can be described with the actual dichotomy

What is performance?

How effective are the incorporated strategies?

Is pushing or pulling faster? When and why?

What is the impact of the programming model? environment?

Pushing faster if its

complexity lower

Pulling faster when their

complexities match.

Message Passing varies (collectives vs simple messages)

RMA: depends on what the hardware offers

What is performance?

How effective are the incorporated strategies?

Is pushing or pulling faster? When and why?

What is the impact of the programming model? environment?

Pushing vs. Pulling **RESEARCH QUESTIONS**

Frontier-Exploit significantly reduces memory accesses

The switching schemes reduce the number of iterations.

Pushing faster if its complexity lower

Pulling faster when their complexities match.

Message Passing varies (collectives vs simple messages)

RMA: depends on what the hardware offers

What is performance?

How effective are the incorporated strategies?

Is pushing or pulling faster? When and why?

What is the impact of the programming model? environment?

To Push or To Pull?

RMA: dependent the hardware offers

strategies?

programming model?

To Push or To Pull?

If the complexities match: pull

RMA: dependent the hardware offers

strategies?

programming model?
environment?

To Push or To Pull?

If the complexities match: pull

Otherwise: push

RMA: dependent the hardware offers

strategies?

programming model?
environment?

anificantly

To Push or To Pull?

If the complexities match: pull

Otherwise: push

+ check your hardware ©

RMA: dependent the hardware offers

strategies?

programming model?

5PCL

Push vs. Pull: Applicability

Push vs. Pull: Applicability

Push vs. Pull: Formulations

Push vs. Pull:

Complexity

Push vs. Pull: Formulations

Push vs. Pull: Dichotomy Pushing vs. Pulling Generic Differences Vhat pushing vs. pulling really is? What pushing vs. pulling really is? Algorithm uses pushing \Leftrightarrow (at $\exists v \in V$: $t \rightsquigarrow v \land t \neq t[v]$) Algorithm uses pulling \Leftrightarrow ($\forall t \forall v \in V$: $t \rightsquigarrow v \Rightarrow t = t[v]$) I this is the actual dichotomy

Push vs. Pull:

Complexity

Push vs. Pull: Formulations

Performance & space analysis + guidelines

Push vs. Pull: Dichotomy Pushing vs. Pulling Generic Differences What pushing vs. pulling really is? Algorithm uses pushing \Leftrightarrow (at $\exists v \in V$: $t \sim v \land t \neq t[v]$) Algorithm uses pulling \Leftrightarrow (vt $\forall v \in V$: $t \sim v \Rightarrow t = t[v]$) This is the actual dichotomy

Push vs. Pull:

Complexity

Thank you for your attention

Performance & space analysis + guidelines

Backup slides


```
1 // Input: a graph G. Output: An array of vertex colors c[1..n].
  function Boman-GC(G) {
11
12
13
14
15
16
17
18
19
```



```
1 // Input: a graph G. Output: An array of vertex colors c[1..n].
                                                     #vertices -
  function Boman-GC(G) {
11
12
13
14
15
16
17
18
19
```



```
1 // Input: a graph G. Output: An array of vertex colors c[1..n].
                                                     #vertices -
  function Boman-GC(G) {
11
12
13
14
15
16
17
18
19
```



```
1 // Input: a graph G. Output: An array of vertex colors c[1..n].
                                                      #vertices -
  function Boman-GC(G) {
11
12
13
14
15
16
17
18
19
```



```
rs c[1..n].
```

```
1 // Input: a graph G. Output: An array of vertex colors c[1..n].
                                                      #vertices -
  function Boman-GC(G) {
11
12
13
14
15
16
17
18
19
```



```
1 // Input: a graph G. Output: An array of vertex colors c[1..n].
                                                      #vertices -
  function Boman-GC(G) {
11
12
13
14
15
16
17
18
19
```



```
We care
explicitly about
partitioning now
```

```
1 // Input: a graph G. Output: An array of vertex colors c[1..n].
                                                      #vertices -
  function Boman-GC(G) {
11
12
13
14
15
16
17
18
19
```


: a write conflict

R: a read conflict

i : integer

```
1 // Input: a graph G. Output: An array of vertex colors c[1..n].
                                                      #vertices -
  function Boman-GC(G) {
11
12
13
14
15
16
17
18
19
```

w: a write conflict

R: a read conflict

i : integer

```
1 // Input: a graph G. Output: An array of vertex colors c[1..n].
                                                         #vertices -
  function Boman-GC(G) {
     done = false; c[1..n] = [\emptyset..\emptyset]; //No vertex is colored yet
10
11
12
13
14
15
16
17
18
19
```



```
: a write conflict
  R: a read conflict
  i : integer
1 // Input: a graph G. Output: An array of vertex colors c[1..n].
                                                      #vertices -
 5 function Boman-GC(G) {
     done = false; c[1..n] = [\emptyset..\emptyset]; //No vertex is colored yet
                                                                                     We care
     //avail[i][j]=1 means that color j can be used for vertex i.
                                                                                 explicitly about
                                                                                partitioning now
10
11
12
13
14
15
```



```
: a write conflict
  R: a read conflict
  i : integer
1 // Input: a graph G. Output: An array of vertex colors c[1..n].
                                                     #vertices -
 5 function Boman-GC(G) {
     done = false; c[1..n] = [\emptyset..\emptyset]; //No vertex is colored yet
                                                                                    We care
    //avail[i][j]=1 means that color j can be used for vertex i.
                                                                                explicitly about
     avail[1..n][1..C] = [1..1][1..1];
                                                                                partitioning now
10
11
12
13
14
15
```


: a write conflict: a read conflict

i : integer

```
1 // Input: a graph G. Output: An array of vertex colors c[1..n].
                                                   #vertices -
                               maximum
                               #colors
5 function Boman-GC(G) {
    done = false; c[1..n] = [0..0]; //No vertex is colored yet
    //avail[i][j]=1 means that color j can be used for vertex i.
    avail[1..n][1..C] = [1..1][1..1];
10
11
12
13
14
15
16
17
18
19
```


a write conflict

R : a read conflict

i : integer

```
1 // Input: a graph G. Output: An array of vertex colors c[1..n].
                                                      #vertices -
                                 maximum
                                 #colors
 5 function Boman-GC(G) {
     done = false; c[1..n] = [0..0]; //No vertex is colored yet
     //avail[i][j]=1 means that color j can be used for vertex i.
     avail[1..n][1..C] = [1..1][1..1]; init(\mathcal{B}, \mathcal{P});
10
11
12
13
14
15
16
17
18
19
```


: a write conflict: a read conflict

i : integer

```
We care
explicitly about
partitioning now
```

```
1 // Input: a graph G. Output: An array of vertex colors c[1..n].
                                                      #vertices -
                                 maximum
                                 #colors
 5 function Boman-GC(G) {
     done = false; c[1..n] = [0..0]; //No vertex is colored yet
     //avail[i][j]=1 means that color j can be used for vertex i.
     avail[1..n][1..C] = [1..1][1..1]; init(\mathcal{B}, \mathcal{P});
     while (!done) {
10
                          } }
11
12
13
14
15
16
17
18
19
```


: a write conflict: a read conflict

i : integer

```
1 // Input: a graph G. Output: An array of vertex colors c[1..n].
                                                            #vertices ·
                                    maximum
                                    #colors
 5 function Boman-GC(G) {
     done = false; c[1..n] = [\emptyset..\emptyset]; //No vertex is colored yet
     //avail[i][j]=1 means that color j can be used for vertex i.
     avail[1..n][1..C] = [1..1][1..1]; init(\mathcal{B}, \mathcal{P});
     while (!done) {
        for \mathcal{P} \in \mathcal{P} do in par {seq_color_partition(\mathcal{P});}
10
11
12
13
14
15
16
17
18
19
```


w: a write conflict

R: a read conflict

i : integer

```
We care
explicitly about
partitioning now
```

```
1 // Input: a graph G. Output: An array of vertex colors c[1..n].
                                                            #vertices -
                                    maximum
                                    #colors
 5 function Boman-GC(G) {
     done = false; c[1..n] = [\emptyset..\emptyset]; //No vertex is colored yet
     //avail[i][j]=1 means that color j can be used for vertex i.
     avail[1..n][1..C] = [1..1][1..1]; init(\mathcal{B}, \mathcal{P});
     while (!done) {
        for \mathcal{P} \in \mathcal{P} do in par {seq_color_partition(\mathcal{P});}
10
11
12
13
14
15
16
17
18
19
```


: a write conflict: a read conflict

i : integer

```
1 // Input: a graph G. Output: An array of vertex colors c[1..n].
                                                            #vertices -
                                    maximum
                                    #colors
 5 function Boman-GC(G) {
     done = false; c[1..n] = [\emptyset..\emptyset]; //No vertex is colored yet
     //avail[i][j]=1 means that color j can be used for vertex i.
     avail[1..n][1..C] = [1..1][1..1]; init(\mathcal{B}, \mathcal{P});
     while (!done) {
        for \mathcal{P} \in \mathcal{P} do in par {seq_color_partition(\mathcal{P});}
10
11
12
13
14
15
16
17
18
19
```


: a write conflict: a read conflict

i : integer

```
1 // Input: a graph G. Output: An array of vertex colors c[1..n].
                                                            #vertices -
                                    maximum
                                    #colors
 5 function Boman-GC(G) {
     done = false; c[1..n] = [\emptyset..\emptyset]; //No vertex is colored yet
     //avail[i][j]=1 means that color j can be used for vertex i.
     avail[1..n][1..C] = [1..1][1..1]; init(\mathcal{B}, \mathcal{P});
     while (!done) {
        for \mathcal{P} \in \mathcal{P} do in par {seq_color_partition(\mathcal{P});}
10
11
12
13
14
15
16
17
18
19
```

```
We care
explicitly about
partitioning now
```


: a write conflict R: a read conflict

i : integer

10

```
1 // Input: a graph G. Output: An array of vertex colors c[1..n].
                                                          #vertices -
                                  maximum
                                  #colors
5 function Boman-GC(G) {
    done = false; c[1..n] = [\emptyset..\emptyset]; //No vertex is colored yet
    //avail[i][j]=1 means that color j can be used for vertex i.
    avail[1..n][1..C] = [1..1][1..1]; init(\mathcal{B}, \mathcal{P});
    while (!done) {
      for \mathcal{P} \in \mathcal{P} do in par {seq_color_partition(\mathcal{P});}
      fix_conflicts(); } }
```


: a write conflict : a read conflict

i : integer

```
1 // Input: a graph G. Output: An array of vertex colors c[1..n].
                                                           #vertices ·
                                   maximum
                                   #colors
 5 function Boman-GC(G) {
     done = false; c[1..n] = [\emptyset..\emptyset]; //No vertex is colored yet
     //avail[i][j]=1 means that color j can be used for vertex i.
     avail[1..n][1..C] = [1..1][1..1]; init(\mathcal{B}, \mathcal{P});
     while (!done) {
       for \mathcal{P} \in \mathcal{P} do in par {seq_color_partition(\mathcal{P});}
10
       fix_conflicts(); } }
11
12
13 function fix_conflicts() {
14
15
16
17
18
19
      }
```

```
We care
explicitly about
partitioning now
```


: a write conflict: a read conflict

i : integer

```
1 // Input: a graph G. Output: An array of vertex colors c[1..n].
                                                            #vertices ·
                                    maximum
                                    #colors
 5 function Boman-GC(G) {
     done = false; c[1..n] = [\emptyset..\emptyset]; //No vertex is colored yet
     //avail[i][j]=1 means that color j can be used for vertex i.
     avail[1..n][1..C] = [1..1][1..1]; init(\mathcal{B}, \mathcal{P});
     while (!done) {
        for \mathcal{P} \in \mathcal{P} do in par {seq_color_partition(\mathcal{P});}
10
       fix_conflicts(); } }
11
12
13 function fix_conflicts() {
     for v \in \mathcal{B} in par do {
14
15
16
17
18
19
     }}
```


: a write conflict: a read conflict

i : integer

```
1 // Input: a graph G. Output: An array of vertex colors c[1..n].
                                                            #vertices ·
                                    maximum
                                    #colors
 5 function Boman-GC(G) {
     done = false; c[1..n] = [\emptyset..\emptyset]; //No vertex is colored yet
     //avail[i][j]=1 means that color j can be used for vertex i.
     avail[1..n][1..C] = [1..1][1..1]; init(\mathcal{B}, \mathcal{P});
     while (!done) {
        for \mathcal{P} \in \mathcal{P} do in par {seq_color_partition(\mathcal{P});}
10
       fix_conflicts(); } }
11
12
13 function fix_conflicts() {
     for v \in \mathcal{B} in par do {for u \in N(v) do
14
15
16
17
18
19
     }}
```


: a write conflict: a read conflict

i : integer

```
1 // Input: a graph G. Output: An array of vertex colors c[1..n].
                                                            #vertices ·
                                    maximum
                                    #colors
 5 function Boman-GC(G) {
     done = false; c[1..n] = [\emptyset..\emptyset]; //No vertex is colored yet
     //avail[i][j]=1 means that color j can be used for vertex i.
     avail[1..n][1..C] = [1..1][1..1]; init(\mathcal{B}, \mathcal{P});
     while (!done) {
        for \mathcal{P} \in \mathcal{P} do in par {seq_color_partition(\mathcal{P});}
10
       fix_conflicts(); } }
11
                                                       v's neighbors
12
13 function fix_conflicts() {
     for v \in \mathcal{B} in par do {for u \in N(v) do
14
15
16
17
18
19
     }}
```


: a write conflict : a read conflict

i : integer

```
1 // Input: a graph G. Output: An array of vertex colors c[1..n].
                                                           #vertices ·
                                    maximum
                                    #colors
 5 function Boman-GC(G) {
     done = false; c[1..n] = [\emptyset..\emptyset]; //No vertex is colored yet
     //avail[i][j]=1 means that color j can be used for vertex i.
     avail[1..n][1..C] = [1..1][1..1]; init(\mathcal{B}, \mathcal{P});
     while (!done) {
       for \mathcal{P} \in \mathcal{P} do in par {seq_color_partition(\mathcal{P});}
10
       fix_conflicts(); } }
11
                                                       v's neighbors
12
13 function fix_conflicts() {
     for v \in \mathcal{B} in par do {for u \in N(v) do
14
       if (c[u] == c[v]) {
15
16
17
18
19
     }}
```


: a write conflict: a read conflict

i : integer

```
1 // Input: a graph G. Output: An array of vertex colors c[1..n].
                                                             #vertices
                                     maximum
                                     #colors
 5 function Boman-GC(G) {
     done = false; c[1..n] = [\emptyset..\emptyset]; //No vertex is colored yet
     //avail[i][j]=1 means that color j can be used for vertex i.
     avail[1..n][1..C] = [1..1][1..1]; init(\mathcal{B}, \mathcal{P});
     while (!done) {
        for \mathcal{P} \in \mathcal{P} do in par {seq_color_partition(\mathcal{P});}
10
       fix_conflicts(); } }
11
                                                         v's neighbors
12
13 function fix_conflicts() {
     for v \in \mathcal{B} in par do {for u \in N(v) do
14
15
        if (c[u] == c[v]) {
          {avail[u][c[v]] = \emptyset \mathbb{N} \mathbb{I};}
16
                                                                       PUSHING
17
                                                                       PULLING
          {avail[v][c[v]] = \emptyset R i;}
18
19
     }}
```


: a write conflict : a read conflict

i : integer

```
1 // Input: a graph G. Output: An array of vertex colors c[1..n].
                                                           #vertices
                                    maximum
                                    #colors
 5 function Boman-GC(G) {
     done = false; c[1..n] = [\emptyset..\emptyset]; //No vertex is colored yet
     //avail[i][j]=1 means that color j can be used for vertex i.
     avail[1..n][1..C] = [1..1][1..1]; init(\mathcal{B}, \mathcal{P});
     while (!done) {
       for \mathcal{P} \in \mathcal{P} do in par {seq_color_partition(\mathcal{P});}
10
       fix_conflicts(); } }
11
                                                       v's neighbors
12
13 function fix_conflicts() {
     for v \in \mathcal{B} in par do {for u \in N(v) do
14
15
       if (c[u] == c[v]) {
          {avail[u][c[v]] = \emptyset W i;}
16
                                                                     PUSHING
17
                                                                     PULLING
          {avail[v][c[v]] = \emptyset R i;}
18
19
     }}
```

We care explicitly about partitioning now

Pushing

: a write conflict : a read conflict

i : integer

```
1 // Input: a graph G. Output: An array of vertex colors c[1..n].
                                                           #vertices
                                    maximum
                                    #colors
 5 function Boman-GC(G) {
     done = false; c[1..n] = [\emptyset..\emptyset]; //No vertex is colored yet
     //avail[i][j]=1 means that color j can be used for vertex i.
     avail[1..n][1..C] = [1..1][1..1]; init(\mathcal{B}, \mathcal{P});
     while (!done) {
       for \mathcal{P} \in \mathcal{P} do in par {seq_color_partition(\mathcal{P});}
10
       fix_conflicts(); } }
11
                                                       v's neighbors
12
13 function fix_conflicts() {
     for v \in \mathcal{B} in par do {for u \in N(v) do
14
15
       if (c[u] == c[v]) {
          {avail[u][c[v]] = \emptyset W i;}
16
                                                                     PUSHING
17
                                                                     PULLING
          {avail[v][c[v]] = \emptyset R i;}
18
19
     }}
```

We care explicitly about partitioning now

Pushing

: a write conflict: a read conflict

i : integer

```
1 // Input: a graph G. Output: An array of vertex colors c[1..n].
                                                              #vertices
                                     maximum
                                     #colors
 5 function Boman-GC(G) {
     done = false; c[1..n] = [\emptyset..\emptyset]; //No vertex is colored yet
     //avail[i][j]=1 means that color j can be used for vertex i.
     avail[1..n][1..C] = [1..1][1..1]; init(\mathcal{B}, \mathcal{P});
     while (!done) {
        for \mathcal{P} \in \mathcal{P} do in par {seq_color_partition(\mathcal{P});}
10
        fix_conflicts(); } }
11
                                                          v's neighbors
12
13 function fix_conflicts() {
     for v \in \mathcal{B} in par do {for u \in N(v) do
14
15
        if (c[u] == c[v]) {
          \{avail[u][c[v]] = \emptyset    \{avail[u][c[v]] = \emptyset \}
16
                                                                        PUSHING
17
                                                                        PULLING
          {avail[v][c[v]] = \emptyset R i;}
18
19
     }}
```

We care explicitly about partitioning now

: a write conflict : a read conflict

i : integer

```
1 // Input: a graph G. Output: An array of vertex colors c[1..n].
                                                              #vertices
                                     maximum
                                     #colors
 5 function Boman-GC(G) {
     done = false; c[1..n] = [\emptyset..\emptyset]; //No vertex is colored yet
     //avail[i][j]=1 means that color j can be used for vertex i.
     avail[1..n][1..C] = [1..1][1..1]; init(\mathcal{B}, \mathcal{P});
     while (!done) {
        for \mathcal{P} \in \mathcal{P} do in par {seq_color_partition(\mathcal{P});}
10
        fix_conflicts(); } }
11
                                                          v's neighbors
12
13 function fix_conflicts() {
     for v \in \mathcal{B} in par do {for u \in N(v) do
14
15
        if (c[u] == c[v]) {
          \{avail[u][c[v]] = \emptyset    \{avail[u][c[v]] = \emptyset \}
16
                                                                        PUSHING
17
                                                                        PULLING
          {avail[v][c[v]] = \emptyset R i;}
18
19
     }}
```

We care explicitly about partitioning now

: a write conflict: a read conflict

i : integer

```
1 // Input: a graph G. Output: An array of vertex colors c[1..n].
                                                              #vertices
                                     maximum
                                     #colors
 5 function Boman-GC(G) {
     done = false; c[1..n] = [\emptyset..\emptyset]; //No vertex is colored yet
     //avail[i][j]=1 means that color j can be used for vertex i.
     avail[1..n][1..C] = [1..1][1..1]; init(\mathcal{B}, \mathcal{P});
     while (!done) {
        for \mathcal{P} \in \mathcal{P} do in par {seq_color_partition(\mathcal{P});}
10
        fix_conflicts(); } }
11
                                                          v's neighbors
12
13 function fix_conflicts() {
     for v \in \mathcal{B} in par do {for u \in N(v) do
14
15
        if (c[u] == c[v]) {
          \{avail[u][c[v]] = \emptyset    \{avail[u][c[v]] = \emptyset \}
16
                                                                        PUSHING
17
                                                                        PULLING
          {avail[v][c[v]] = \emptyset R i;}
18
19
     }}
```

We care explicitly about partitioning now

: a write conflict: a read conflict

i : integer

```
1 // Input: a graph G. Output: An array of vertex colors c[1..n].
                                                              #vertices
                                     maximum
                                     #colors
 5 function Boman-GC(G) {
     done = false; c[1..n] = [\emptyset..\emptyset]; //No vertex is colored yet
     //avail[i][j]=1 means that color j can be used for vertex i.
     avail[1..n][1..C] = [1..1][1..1]; init(\mathcal{B}, \mathcal{P});
     while (!done) {
        for \mathcal{P} \in \mathcal{P} do in par {seq_color_partition(\mathcal{P});}
10
        fix_conflicts(); } }
11
                                                          v's neighbors
12
13 function fix_conflicts() {
     for v \in \mathcal{B} in par do {for u \in N(v) do
14
15
        if (c[u] == c[v]) {
          \{avail[u][c[v]] = \emptyset    \{avail[u][c[v]] = \emptyset \}
16
                                                                        PUSHING
17
                                                                        PULLING
          {avail[v][c[v]] = \emptyset R i;}
18
19
     }}
```


: a write conflict

```
R: a read conflict
i : integer
```

```
1 // Input: a graph G. Output: An array of vertex colors c[1..n].
                                                              #vertices
                                     maximum
                                     #colors
 5 function Boman-GC(G) {
     done = false; c[1..n] = [\emptyset..\emptyset]; //No vertex is colored yet
     //avail[i][j]=1 means that color j can be used for vertex i.
     avail[1..n][1..C] = [1..1][1..1]; init(\mathcal{B}, \mathcal{P});
     while (!done) {
        for \mathcal{P} \in \mathcal{P} do in par {seq_color_partition(\mathcal{P});}
10
        fix_conflicts(); } }
11
                                                          v's neighbors
12
13 function fix_conflicts() {
     for v \in \mathcal{B} in par do {for u \in N(v) do
14
15
        if (c[u] == c[v]) {
          \{avail[u][c[v]] = \emptyset    \{avail[u][c[v]] = \emptyset \}
16
                                                                        PUSHING
17
                                                                        PULLING
          {avail[v][c[v]] = \emptyset R i;}
18
19
     }}
```

We care explicitly about partitioning now

: a write conflict

```
R: a read conflict
i : integer
```

```
1 // Input: a graph G. Output: An array of vertex colors c[1..n].
                                                              #vertices
                                     maximum
                                     #colors
 5 function Boman-GC(G) {
     done = false; c[1..n] = [\emptyset..\emptyset]; //No vertex is colored yet
     //avail[i][j]=1 means that color j can be used for vertex i.
     avail[1..n][1..C] = [1..1][1..1]; init(\mathcal{B}, \mathcal{P});
     while (!done) {
        for \mathcal{P} \in \mathcal{P} do in par {seq_color_partition(\mathcal{P});}
10
        fix_conflicts(); } }
11
                                                          v's neighbors
12
13 function fix_conflicts() {
     for v \in \mathcal{B} in par do {for u \in N(v) do
14
15
        if (c[u] == c[v]) {
          \{avail[u][c[v]] = \emptyset    \{avail[u][c[v]] = \emptyset \}
16
                                                                        PUSHING
17
                                                                        PULLING
          {avail[v][c[v]] = \emptyset R i;}
18
19
     }}
```

We care explicitly about partitioning now

: a write conflict: a read conflict

i : integer

```
1 // Input: a graph G. Output: An array of vertex colors c[1..n].
                                                             #vertices
                                     maximum
                                     #colors
 5 function Boman-GC(G) {
     done = false; c[1..n] = [\emptyset..\emptyset]; //No vertex is colored yet
     //avail[i][j]=1 means that color j can be used for vertex i.
     avail[1..n][1..C] = [1..1][1..1]; init(\mathcal{B}, \mathcal{P});
     while (!done) {
        for \mathcal{P} \in \mathcal{P} do in par {seq_color_partition(\mathcal{P});}
10
       fix_conflicts(); } }
11
                                                         v's neighbors
12
13 function fix_conflicts() {
     for v \in \mathcal{B} in par do {for u \in N(v) do
14
15
        if (c[u] == c[v]) {
          {avail[u][c[v]] = \emptyset \mathbb{N} \mathbb{I};}
16
                                                                       PUSHING
17
                                                                       PULLING
          {avail[v][c[v]] = \emptyset R i;}
18
19
     }}
```

We care explicitly about partitioning now

: a write conflict

```
f R : a read conflict f i : integer f I // Input: a graph f G. Output: An array of vertex colors
```

```
1 // Input: a graph G. Output: An array of vertex colors c[1..n].
                                                           #vertices
                                    maximum
                                    #colors
 5 function Boman-GC(G) {
     done = false; c[1..n] = [\emptyset..\emptyset]; //No vertex is colored yet
     //avail[i][j]=1 means that color j can be used for vertex i.
     avail[1..n][1..C] = [1..1][1..1]; init(\mathcal{B}, \mathcal{P});
     while (!done) {
       for \mathcal{P} \in \mathcal{P} do in par {seq_color_partition(\mathcal{P});}
10
       fix_conflicts(); } }
11
                                                       v's neighbors
12
13 function fix_conflicts() {
     for v \in \mathcal{B} in par do {for u \in N(v) do
14
15
       if (c[u] == c[v]) {
          {avail[u][c[v]] = \emptyset W i;}
16
                                                                     PUSHING
17
                                                                     PULLING
          {avail[v][c[v]] = \emptyset R i;}
18
19
     }}
```

We care explicitly about partitioning now

	Triangle Counting [s]				
	orc	pok	ljn	am	rca
Pushing Pulling	11.78k	139.9	803.5	0.092	0.014
Pulling	11.37k	135.3	769.9	0.083	0.014

orc, pok, ljn: social networks
rca: road network
am: amazon graph

	Triangle Counting [s]				
	orc	pok	ljn	am	rca
Pushing Pulling	11.78k 11.37k	139.9 135.3	803.5 769.9	0.092 0.083	0.014 0.014

orc, pok, ljn: social networks
rca: road network
am: amazon graph

	Triangle Counting [s]				
	orc	pok	ljn	am	rca
Pushing	11.78k	139.9	803.5	0.092	0.014
Pushing Pulling	11.37k	135.3	769.9	0.083	0.014

orc, pok, ljn: social networks
rca: road network
am: amazon graph

	Triangle Counting [s]				
	orc	pok	ljn	am	rca
Pushing Pulling	11.78k	139.9	803.5	0.092	0.014
Pulling	11.3/K	135.3	/69.9	0.083	0.014

orc, pok, ljn: social networks
rca: road network
am: amazon graph

Shared-Memory

Fewer cache misses

No atomics

	Triangle Counting [s]				
	orc	pok	ljn	am	rca
Pushing	11.78k	139.9	803.5	0.092	0.014
Pushing Pulling	11.37k	135.3	769.9	0.083	0.014

PERFORMANCE ANALYSIS BOMAN GRAPH COLORING + GRS + FE

Fewer iterations

Fewer reads/writes

GrS+FE: Greedy-Switch

+ Frontier-Exploit **GS**: Generic-Switch

G	Push	+FE	+GS	+GrS
orc	49	173	49	49
pok	49	48	49	47
ljn	49	334	49	49
am	49	10	10	9
orc pok ljn am rca	49	5	5	5

PERFORMANCE ANALYSIS △-Stepping

orc: social network

am: Amazon graph

PERFORMANCE ANALYSIS Δ -STEPPING

orc: social network

am: Amazon graph

PERFORMANCE ANALYSIS Δ -STEPPING

orc: social network

am: Amazon graph

PERFORMANCE ANALYSIS

 Δ -STEPPING

orc: social network

am: Amazon graph

PERFORMANCE ANALYSIS

 Δ -STEPPING

reads/writes

SNAP

orc: social network

am: Amazon graph

Shared-Memory

The larger Δ , the smaller the difference between pushing and pulling

orc: social network

orc: social network

Shared-Memory

Pulling is cumulatively faster

SNAP

orc: social network

Shared-Memory

No expensive write conflicts

Pulling is cumulatively faster

orc, pok, ljn: social networks rca: road network am: amazon graph

	PageRank [ms]				
G	orc	pok	ljn	am	rca
Pushing	572	129	264	4.62	6.68
Pushing Pulling	557	103	240	2.46	5.42

orc, pok, ljn: social networks rca: road network am: amazon graph

> Shared-Memory

Pulling faster in sparse graphs by ≈3%

Many cache misses dominate performance

	PageRank [ms]				
G	orc	pok	ljn	am	rca
Pushing	572	129	264	4.62	6.68
Pushing Pulling	557	103	240	2.46	5.42

orc, pok, ljn: social networks rca: road network am: amazon graph

Pulling faster in dense graphs by ≈19%

Shared-Memory

Many cache misses dominate performance

	PageRank [ms]				
G	orc	pok	ljn	am	rca
Pushing	572	129	264	4.62	6.68
Pushing Pulling	557	103	240	2.46	5.42

orc, pok, ljn: social networks
rca: road network
am: amazon graph

Pulling faster in dense graphs by ≈19%

Shared-Memory

Many cache misses dominate performance

No atomics

	PageRank [ms]				
G	orc	pok	ljn	am	rca
Pushing	572	129	264	4.62	6.68
Pushing Pulling	557	103	240	2.46	5.42

orc, pok, ljn: social networks
rca: road network
am: amazon graph

Shared-Memory

PA: Partition-Awareness

G	Push	+PA
orc	557.985 103.907 240.943	425.928
pok	103.907	87.577
ljn	240.943	145.475
am	2.467	5.193
rca	2.467 5.422	13.705

SNAP.

orc, pok, ljn: social networks rca: road network

am: amazon graph

Pushing now faster in dense graphs by ≈24%

Fewer atomics (thanks to PA) and still fewer cache misses

PA: Partition-Awareness

G	Push	+PA
orc	557.985 103.907 240.943	425.928
pok	103.907	87.577
ljn	240.943	145.475
am	2.467	5.193
rca	2.467 5.422	13.705

orc, pok, ljn: social networks
rca: road network
am: amazon graph

Fewer atomics (thanks to PA) and still fewer cache misses

PA: Partition-Awareness

Pushing+PA the slowest for sparse graphs

G	Push	+PA
orc	557.985	425.928
pok	103.907	87.577
ljn	240.943	145.475
am	2.467	5.193
rca	5.422	13.705
orc pok ljn am rca	557.985 103.907 240.943 2.467 5.422	425.928 87.577 145.475 5.193 13.705

orc, pok, ljn: social networks
rca: road network
am: amazon graph

Fewer atomics (thanks to PA) and still fewer cache misses

PA: Partition-Awareness

Pushing+PA the slowest for sparse graphs

Fewer atomics dominated by more branches

G	Push	+PA
orc	557.985 103.907 240.943	425.928
pok	103.907	87.577
ljn	240.943	145.475
am	2.467	5.193
rca	2.467 5.422	13.705

Kronecker graphs

Distributed -Memory

Kronecker graphs

Distributed -Memory

Msg-Passing fastest

Kronecker graphs

Distributed -Memory

250 500 7501000

Processes (P)

9

Msg-Passing fastest

Overheads from buffer preparation

$$n=2^{25}, m=2^{27}$$

Kronecker graphs

Distributed -Memory

$$n = 2^{27}, m = 2^{29}$$

Kronecker graphs

Distributed -Memory

Msg-Passing fastest

Overheads from buffer preparation

...but pulling incurs more communication while pushing expensive underlying locking

$$n=2^{25}, m=2^{27}$$

$$n = 2^{27}, m = 2^{29}$$

9

Msg-Passing fastest

Kronecker graphs

Distributed -Memory

Overheads from buffer preparation

...but pulling incurs more communication while pushing expensive underlying locking

$$n=2^{25}, m=2^{27}$$

$$n = 2^{27}, m = 2^{29}$$

0 250 500 7501000 Processes (P)

Collectives: combines pushing and pulling

Kronecker graphs

Msg-Passing fastest

Overheads from buffer preparation

pushing and pulling

...but pulling incurs more communication while pushing expensive underlying locking

$$n=2^{25}, m=2^{27}$$

Processes (P)

$$n = 2^{27}, m = 2^{29}$$

Distributed -Memory

Distributed -Memory

RMA fastest

Msg-Passing incurs now more communication

orc, ljn: social networks

Distributed -Memory

PERFORMANCE ANALYSIS

TRIANGLE COUNTING

Msg-Passing incurs now more communication

orc, ljn: social networks

Pushing does not require the expensive locking protocol (Cray offers fast remote atomics for integers)

PERFORMANCE ANALYSIS

TRIANGLE COUNTING

Msg-Passing incurs now more communication

orc, ljn: social networks

RMA fastest

Pushing does not require the expensive locking protocol (Cray offers fast remote atomics for integers)

 $O(\hat{d})$

