
1

Work-stealing prefix scan: Addressing load
imbalance in large-scale image registration

Marcin Copik1, Tobias Grosser2, Member, IEEE, Torsten Hoefler1, Senior Member, IEEE,
Paolo Bientinesi3, Benjamin Berkels4,5

1Department of Computer Science, ETH Zurich; 2School of Informatics, University of Edinburgh;
3Department of Computing Science, Umeå University; 4AICES Graduate School, RWTH Aachen

University; 5Institute for Geometry and Practical Mathematics, RWTH Aachen University

Abstract—Parallelism patterns (e.g., map or reduce) have proven to be effective tools for parallelizing high-performance applications.
In this paper, we study the recursive registration of a series of electron microscopy images – a time consuming and imbalanced
computation necessary for nano-scale microscopy analysis. We show that by translating the image registration into a specific instance
of the prefix scan, we can convert this seemingly sequential problem into a parallel computation that scales to over thousand of cores.
We analyze a variety of scan algorithms that behave similarly for common low-compute operators and propose a novel work-stealing
procedure for a hierarchical prefix scan. Our evaluation shows that by identifying a suitable and well-optimized prefix scan algorithm,
we reduce time-to-solution on a series of 4,096 images spanning ten seconds of microscopy acquisition from over 10 hours to less than
3 minutes (using 1024 Intel Haswell cores), enabling derivation of material properties at nanoscale for long microscopy image series.

Index Terms—prefix sum, parallel algorithms, work stealing, load balancing, image registration

F

1 INTRODUCTION

Many seemingly sequential algorithms in which the
computation of an element yi+1 depends on the preceding
element yi can be parallelized with a prefix scan operation.
Such an operation takes a binary and associative operator �
and an input array x0, x1, . . . , xn and produces the output
array y0, y1, . . . , yn. Every element yi in the output array
is the result of the binary and inclusive combination of
all “previous” elements and the current one in the input
array: yi = x0 � x1 � · · · � xi. An exclusive prefix scan
computes an output array where the combination does
not include the current element. One can show that, if a
sequentially-dependent transformation consuming yi and
producing yi+1 can be expressed as such assocative and
binary operator, then the problem can be parallelized using
a prefix scan.

This powerful construct has numerous uses in paral-
lel computing. It enables parallelization of multiple non-
trivial problems that might seem to be inherently sequential,
including finite state machines, solving linear tridiagonal
systems, parallelization of many sequential loops with de-
pendencies, or sequential chains of computations that can
be modeled as a function composition [1], [2], [3], [4].
However, the sequentiality in the original problem causes
some overheads—the resulting parallel algorithm is either
highly parallel or work efficient but not both at the same
time. The more processes can be used effectively, the more
additional work (i.e., applications of �) has to be performed
in parallel. If the workload is balanced and all processes run
at the same speed, then the additional work does not delay
the processing. In this scenario, a prefix scan is as fast as a
simple reduction albeit with a higher energy consumption
due to additional computation.

In this work, we parallelize an application in the area

64 128 256 512 1024
Allocated CPU cores

50

100

150

200

250

Sp
ee

du
p 

to
 se

ria
l e

xe
cu

tio
n

Diss.
1.91xL-F.

1.51x
MPI

1.83x

Ideal Speedup
Distributed, Dissemination
Distributed, Ladner-Fischer
Distributed, MPI_Scan
Work-stealing, Dissemination
Work-stealing, Ladner-Fischer
Work-stealing, MPI_Scan

Fig. 1: The strong scaling of distributed prefix scan (Sec-
tion 4) on the scan image registration for three variants of
prefix scan algorithms (Section 2.1). Experimental results
(solid lines) were obtained on the Piz Daint [5] system
for 4,096 images. Theoretical bound (3) is discussed in
Section 5.2.

of large-scale image registration in electron microscopy.
Given the importance of microscopy data for analysis of
material properties and temporal changes at nanoscale, a
critical objective is to enable the processing of very long
sequences of microscopy images by a domain specialist
without running days long computations. We look at the
grand scheme of registration and represent this seemingly
sequential procedure as a composition of two steps, a mas-
sively parallel preprocessing phase and a prefix scan. In
contrast to most other applications of prefix scans, our appli-



2

cation requires expensive and highly load-imbalanced operators
with nearly trivial communication. We are first to show (1)
how the communication pattern in near-optimal circuits by
Ladner and Fischer can be tuned for MPI execution on large-
scale compute clusters and (2) we develop a novel node-
local work-stealing algorithm for general prefix scans, found
in a large variety of recursive and seemingly sequential
computations. The load balancing scan enables the paral-
lelization of problems that would otherwise be considered
inefficient given imbalanced computation, sparse iteration
space, and a tightly constrained form of prefix scan.

We apply the load balancing prefix scan to the regis-
tration procedure and we show that the performance of
distributed prefix scans can be significantly improved even
for a highly imbalanced application. In the strong scaling
experiment (Section 5.2), our hierarchical dynamic approach
achieves speedups of up to 1.51x, 1.83x, and 1.91x for differ-
ent scan algorithms, as presented in Figure 1, while decreas-
ing the CPU allocation time and overall energy consumption
up to 1.87x and 2.23x times, respectively (Section 5.4).

Our paper makes the following contributions:

• A novel node-local, work-stealing prefix scan that
exploits the hierarchy of parallel workers and mem-
ories to (1) decrease performance and energy costs
of a distributed prefix scan and (2) exploit the ad-
ditional levels of a shared-memory parallelization to
construct an efficient load balancing step. To the best
of our knowledge, this is the first scan algorithm
designed for problems with unbalanced workloads,
and we offer an open-source implementation 1.

• A scalable and efficient parallelization strategy for
recursive image registration that enables analysis of
temporal changes in long microscopy acquisitions.
With our dynamic prefix scan, the performance of
image registration is improved up to two times while
decreasing energy costs by over two times.

• A novel example of a parallel scan problem, which
performance challenges have not been addressed by
research on parallel algorithms and MPI collectives,
and a generic solution for expensive and unbalanced
scan operators to fill this important gap in the quality
of MPI collectives.

2 BACKGROUND AND MOTIVATION

Recent advances in transmission electron microscopy have
allowed for a more precise visualization of materials and
physical processes, such as metal oxidation, at nanometer
resolution. Yet, many environmental factors negatively af-
fect the quality of microscopy images. A novel registration
method [6] has been proposed to mitigate these limitations
by acquiring a series of low dose microscopy frames and
aligning each frame to the first frame with an image reg-
istration procedure (Section 2.3). With this strategy, the in-
creased amount of reliable information extracted from noisy
microscopy data is paid for by a computationally intensive
and sequential process that becomes a bottleneck of the
analysis. By phrasing the task of registering an image series
as a special instance of the prefix scan (Section 2.1), we can

1. https://github.com/berkels/match-series

x0 x1 x2 x3 x4 x5 x6 x7

x0,1 x0,2 x0,3 x0,4 x0,5 x0,6 x0,7 x0,8

Input

Output

xjxi

xi � xj

xi

xi

Fl
ow

Fig. 2: The dissemination prefix scan. Black dots represent
an application of the operator while a white dot indicates a
communication that does not involve any computation on
the receiver. An optimal logarithmic depth is achieved by
performingN−2i operations in i-th iteration. For input data
of size 8, 17 operator applications are necessary to obtain
results in 3 iterations.

use the universal parallel pattern to propose parallelization
strategies for this recursive computation. We show that are
no known prefix scans that can handle very well problems
incorporating a high computation to communication ratio
and an unpredictable and variable execution time (2.2).

2.1 Prefix Scan
The importance and complexity of prefix scans make it one
of the most studied basic patterns in parallel computing.
Numerous algorithms exist that trade-off additional work
and lower parallel depth. The work–depth relation of prefix
scans was an open research problem for many decades [7],
[8]. The sketch of the dissemination prefix sum in Figure 2
depicts the main idea applied to parallelize the prefix scan:
a decrease in depth is obtained by performing multiple
computations on a single data element. Depth–optimal algo-
rithms cannot be zero–deficient [8], i.e., an increase in work
must be larger than the decrease in depth. Although depth
minimization is the primary goal when designing scalable
algorithms, a huge work intensity usually implies an exces-
sive communication. Work–inefficient algorithms are more
sensitive to deviations in execution time since they require
more applications of the binary operator. Imbalanced oper-
ators will affect differently various scan algorithms due to
differences in propagation of dependencies.

A tree–based prefix scan is one of the classical parallel
prefix scan strategies, as presented by Blelloch [9] and Brent
et al. [10]. For both algorithms, the depth is bounded by a
double traversal of a binary tree. The dissemination prefix
scan, also known as the recursive doubling [11], was pre-
sented by Kogge et al. [12] and Hillis et al. [13]. The recursive
family of prefix circuits presented by Ladner et al. [14]
achieve an asymptotically smaller work overhead at optimal
time but are rarely used in practice due to a less favorable
communication pattern. For most of the well-known parallel
prefix circuits, the depth is given as C1 log2N + C2, where
C1 are C2 are integer constants. The constant C2 is non-zero
for algorithms such as a tree-based inclusive scan presented
by Brent et al., which has one layer less than the exclusive
Blelloch scan. The Ladner-Fischer scan is designed with a
constant C2 that controls the depth–work balance.



3

Name Type Depth Work

Sequential I N − 1 N − 1
Blelloch E 2 log2N 2(N − 1)
Dissemination I log2N N log2N −N + 1
Ladner–Fischer I log2N < 4N − 5

TABLE 1: Major I-nclusive and E-xclusive parallel prefix
scan algorithms. The exact work for the Ladner–Fischer scan
is given by a recursive equation in N .

Table 1 presents a comparison of the discussed parallel
prefix scan algorithms. Exclusive and inclusive variants
are specified in the Message Passing Interface standard as
the collective operations MPI_Exscan and MPI_Scan [15],
respectively. They are implemented using either simple al-
gorithms that achieve the optimal runtime of log2 P rounds
on P processes or tree-based algorithms that optimize the
communication latency [16]. Most scan implementations are
optimized for the common case that communication time
dominates computation time and that computation is balanced.

2.2 Related Work

Standard strategies for a prefix scan when data size signif-
icantly exceeds the number of parallel workers have been
frequently presented by other authors. Kruskal et. al [17]
presented such algorithm on an EREW model [17]. It was
later applied on a binary tree network of processors by
Meijer [18] and to solving a tridiagonal linear system on
a hypercube architecture by Eǧecioǧlu et al. [11]. There, the
authors define the algorithm with a fixed choice of the dis-
semination as a global scan algorithm, whereas we present
in Section 4 a generic distributed prefix sum and consider
various scan algorithms in the global phase. Eǧecioǧlu et.
al [19] introduced a recursive algorithm for a distributed
prefix scan, where it was found to have better efficiency than
the previous approaches when the discrepancy between
computation and communication cost is significant. This
work was the first one to introduce more complex data dis-
tribution for prefix scan and to design a prefix scan strategy
for computationally intensive operators. Data segments are
distributed according to the number of arithmetical steps
performed by each processor, an information that cannot
be either estimated or predicted in problems such as image
registration. Thus, designing a prefix scan for applications
with an unknown load balance is an open problem. Chatter-
jee et. al. [1] defined for the vectorization of prefix scan on
CRAY-MP a strategy known as the reduce–then–scan. Maleki
et al. [20] present a hierchical prefix sum implementation for
GPU architectures. Although we use the same strategies as
a basic for hierarchical and work–stealing scan, we extend it
extensively with a dynamic accumulation of partial results
and load balancing between neighboring threads.

Research on tuning MPI_Scan and MPI_Exscan col-
lectives is focused on reducing the communication cost
and improving bandwidth on memory–bound operators
with computation being far cheaper than communication.
Sanders et al. [16] used pipelined binary trees and improved
later the performance of the prefix scan in message-passing
systems by exploiting a bidirectional communication [21],
[22]. The improvements are limited to prefix operators

bounded by network latency, which is not the case for the
image registration.

2.2.1 Specific prefix scan operators
Although the prefix scan research has been dominated by
optimizations dedicated to trivial operators, there has been
few examples of prefix scans with computationally intensive
operators. Maleki et al. [23] consider prefix scan solution to
the linear-tropical dynamic programming problem where
the operation is a matrix-matrix multiplication. Gradl et
al. [24] presented a parallel prefix algorithm for accumula-
tion of matrix multiplications in quantum control. Waldherr
et al. [25] and Auckenthaler [26] showed later that prefix
scan parallelization of this operation is outperformed by a
sequential prefix scan with parallel matrix multiplication
operator. These applications of prefix scan resulted in nei-
ther tuning nor designing a scan algorithm for operators
where computation time is significantly larger than com-
munication.

In addition to performance improvements shown on
the image registration problem, our work–stealing scan be
applied to improve the efficiency of other imbalanced scans
as well, and excellent examples of imbalanced operators are
sparse linear algebra operations, found in the scan paral-
lelization of neural network backpropagation with sparse
matrix operations [27]. Prefix scans are essential for the
automatic parallelization of loop-carried dependencies [28].
While polyhedral techniques allow for approximating a
balanced distribution of non-uniform loop nests, a dy-
namic work-stealing would improve the performance when
static scheduling is not possible due to dynamic and data-
dependent control-flow.

(a) Frame 26 (b) Deformed Frame 26, top left

Fig. 3: Frame 26 of the acquisition (left) and magnified after
alignment to Frame 25 (right). The movement of the frame
along vertical axis is visible as white stripe on the top. We
observe a low variability between images acquired in a short
timespan. TEM data courtesy of Sarah Haigh, University of
Manchester.

2.3 Image Registration
We consider a series of two-dimensional, noisy atomic-scale
electron microscopy images f0, f1, . . . , fN that are used
instead of a single, high quality frame acquired with a high-
dose electron beam. Short-exposure image series are used
since they allow to obtain a higher precision than a single
image in the electron microscopy setting [29]. This replace-
ment requires an aggregation of the information contained
in the entire image series, usually done by averaging the
images. However, the images cannot be averaged directly,



4

since they are affected by environmental noise of the ob-
served sample during acquisition. Considering that electron
microscopy allows for a magnification by more than 10
million, even movements of the sample by just half of the
width of an atom result in shifts of the observed images
by several pixels. To mitigate the effects of sample drift,
each frame is registered to the first image. Since the images
are showing atomic grids, they have a high degree of self
similarity in the form of (nearly) periodic structures, cf.
Fig. 3. This periodicity makes the registration much more
difficult: Given a pair of (nearly) periodic images without
any prior information on their relative shift, registration can
only determine the shift up to a multiple of the period of
the images, which is not sufficient for the reconstruction.
If the estimated shifts are off by a multiple of the period,
unrelated positions will be averaged, which will blur and
duplicate deviations, but this deviations are what is actually
interesting for the applications, since they can significantly
influence the material properties. The shift between non-
consecutive images can be large, which prevents directly
registering non-consecutive images in this setting.

The need for HPC arises when the temporal behavior of
the observed sample needs to be studied. In this setting,
a series can consist of hundred thousand or more high
resolution images that are still subject to the problem of
periodicity. As of now, such series are simply not analyzed
as a whole but only manually selected subsets. Being able to
analyze such series in their entirety has a large potential to
lead to new insights in materials science that are otherwise
inaccessible.

3 PREFIX SCAN IMAGE PROCESSING

To enable parallelization and large-scale processing of long
electron microscopy sequences, we represent this problem
as a specific and unique case of the prefix scan. To this end,
we explore the recursive nature of image series registration
and define the prefix scan operator that inherits all proper-
ties of the computationally-intensive and iterative registra-
tion method. The resulting scan operator has three distinct
features that set it apart from most of the other problems
analyzed in the context of prefix scan parallelization: (1)
non-trivial characteristics of the operator’s associativity, (2)
an unusually large ratio of computation to communication
cost, and (3) unpredictable execution time causing load
imbalance issues.

3.1 Image Registration

We define the problem of image registration for two–
dimensional images R, T ∈ I , known as reference and
template images, respectively.

Definition 3.1. Image registration problem Given a dis-
tance measure D : I × I −→ R and two images R, T ∈ I ,
find a transformation φ : R2 −→ R2 such that

D(R, T ◦ φ)

is minimized. φ(x) = R(α) · x + t is a rigid transformation
with angle α, rotation matrix R(α) ∈ R2×2 and translation
t ∈ R2.

Intuitively, we want to find φ such that the deformed
template image is aligned to the reference: T ◦ φ ≈ R. We
use the image registration procedure proposed by Berkels et.
al. [6]. The approach defines a normalized cross-correlation
functional as the distance measure and proposes a combina-
tion of a multilevel scheme with a gradient flow minimiza-
tion process to solve the registration problem. The objective
functional is characterized by the presence of multiple local
minima. The computed deformation may vary not only
between different starting points for the minimization but
also among various implementations of the same algorithm,
resulting in unpredictable computation time. We refer to
an implementation of this technique as the function A. It

f0 f1 f2 f3 f4 f5
φ0,1 φ1,2 φ2,3 φ3,4 φ4,5

φ0,2
φ0,3

φ0,4
φ0,5

Fig. 4: The image registration process for a series of 6 frames.
For an image fi, the result from its predecessor φ0,i−1 is
combined with a neighboring deformation φi−1,i.

Deformed image: 𝑓2 ∘ ∅0,2 Deformed image: 𝑓32 ∘ ∅0,32

Fig. 5: The comparison of frames f2 and f32 after applying
the registration to f0. Red circles indicate points of interest
used for verification of correct alignment.

accepts two images R and T , and an initial guess for the
deformation φ′, and estimates a deformation φR,T with the
proposed algorithm:

φR,T = A(R, T , φ′),

3.2 Series Registration

The alignment problem requires a dedicated approach when
the images are (nearly) periodic and that is the case for



5

0 500 1000 1500 2000 2500 3000 3500 4000
Index of operator application

0

5

10

15

20

25
Ex

ec
ut

ion
 ti

m
e [

s]

(a) Execution times of the image registration operator.

1 500 1000 1500 2000
Data segment size

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Re
lat

ive
 di

ffe
re

nc
e.

(b) Relative comparison of maximum and mean segment execution time.

Fig. 6: The computationally intensive image registration operator: (a) execution times t1, . . . , tN of the operator in the first
local phase of the prefix scan and (b) load imbalance for a static distribution with segment size S = N

P , where we estimate
a relative difference between the mean (µ = S

N

∑
Ts) and maximum execution time (maxs Ts) across all segments. The

measurements were obtained on an Intel E5-2690 v3 CPU with 2.60 GHz base frequency.

electron micrographs. A correct registration of two frames
is possible using the identity mapping as initial guess if
the shift between them is smaller than half of the period.
The validity of this assumption can be guaranteed only for
neighboring frames fi and fi+1. For the generic registration
of f0 and any frame fi, this limitation can be bypassed
by taking into account all neighboring frames in between
where the procedure is deemed to be accurate.

Given deformations φ0,1 and φ1,2 estimating f1 ◦ φ0,1 ≈
f0 and f2 ◦ φ1,2 ≈ f1, respectively, we can safely assume
that the composition of deformations φ1,2 ◦ φ0,1 is a decent
initial guess to register f0 and f2, since

f2 ◦ (φ1,2 ◦ φ0,1) = (f2 ◦ φ1,2) ◦ φ0,1 ≈ f1 ◦ φ0,1 ≈ f0.

First, we define the registration procedure for two con-
secutive frames using the function A. We use the identity
transformation Iφ since it is a suitable initial guess for
consecutive images:

∀i ∈ N φi,i+1 = A(fi, fi+1, Iφ),

Then, we approximate the deformation for two non–
consecutive frames by using the composition of two defor-
mations as an initial guess. We reuse the previous function
to define a new function B to handle the non–consecutive
indices. It accepts two deformations φj,k and φi,j with the
images fi and fk, and it estimates the deformation φi,k:

∀i, k ∈ N, k > i+ 1

∀j ∈ N, i < j < k

φi,k = B(φi,j , φj,k) = A(fi, fk, φj,k ◦ φi,j).

In particular, if we iterate consecutively from the first to i-th
image (Figure 4):

∀i ∈ N, i > 1 φ0,i = B(φ0,i−1, φi−1,i).

In the formulation of the series registration problem
above, the recursive nature is immediately seen: for any
image fi, the task of aligning to f0 requires solving the

registration problem for f0 and fi−1 first. Each final de-
formation φ0,i can be obtained by consecutively apply-
ing the registration algorithm to neighboring deformations
φ0,1, φ1,2, . . . , φi−1,i. The accumulation of partial solutions
can be represented as a prefix scan with the operator �B
defined as follows:

φi,j �B φj,k = B(φi,j , φj,k)

φ0,j = φ0,1 �B φ1,2 �B · · · �B φi−2,i−1
Clearly, this operator is neither commutative nor has an
inverse.

3.3 Associativity
As we have already seen above, image registration is a non-
convex optimization problem with multiple local minima.
Thus, it may seem that the corresponding prefix scan op-
erator is not associative. The special precautions we had
to take for our specific setting with periodic structures are
the key to get associativity in practice. This is due to our
assumption that the shift between two consecutive images
is smaller than half of the period and the way we construct
initial guesses for the deformation for non-consecutive im-
ages, which should ensure that we start the minimization
sufficiently close to the global minimum. The registration
process converges to correct results as long as deformations
accumulate between adjacent images, ensuring that the shift
between images is sufficiently small. Prefix scan preserves
the guarantee, and thanks to the iterative optimization pro-
cess, each operator application will converge to the best local
solution even if changes in computation produce slightly
different partial results.

The integrity of the data was verified with a manual
inspection on small scale experiments, which included ex-
amples where various deformations provide equally suit-
able matches. To compare two frames, we locate points
of interest such as groups of atoms, and verify that their
absolute position inside frames is the same. An example
of the manual verification process is presented in Figure 5.



6

A numerical comparison of cost function scores between
sequential and parallel runs is not possible because the
optimization process deals with a high level of noise in the
input data and there, a different score does not necessarily
indicate a worse or better match.

3.4 Computation Cost
The simplest case of a prefix scan operator found in the
literature, which happens to be the one most frequently
evaluated, is integer addition. More complex examples still
involve relatively cheap operations, such as polynomial
evaluation and addition of summed area tables with mul-
tiple integer and floating–point multiplications. As a result,
parallel prefix scan algorithms tend to be optimized for
memory–bound operators with a low execution time. Image
registration does not fit into this category, as it can be seen
in Figure 6a. A single operator application usually takes
up to 10 seconds, with noticeable outliers going for up
to 30 seconds. The resulting deformation stores only three
floating–point values and the cost of sharing such data is
dominated by the latency. The computation time is much
larger than latency introduced by network communication
and this discrepancy will not change even with significant
serial optimizations of the operator.

3.5 Load Imbalance
Another particular feature of prefix scan operators that is
commonly seen in the literature, is a deterministic execution
time that does not change between applications. In contrast
to operations with a predictable and constant runtime, here
the actual computation cost is not only unpredictable but
highly variant. Due to the iterative nature of the registration
algorithm, we can not foresee for a given input data how
many iterations are necessary to reach a stopping criterion.
The time measurements presented in Figure 6a show that
significant outliers do not form any regular distribution
and estimation of an efficient distribution is not possible.
For the same dataset, we studied the load imbalance of
a static data distribution to learn how the distributed run
might be affected when the increase in computing resources
leads to smaller data chunks available to each rank. We look
at the difference between mean and maximum execution
time across data segments. Intuitively, if the imbalance of
computational effort between segments is large, then the
larger is the difference between mean completion time and
the slowest worker. The results in Figure 6b show how the
increase in execution time raises from roughly 5% for large
data segments to over 20% when each segment contains less
than 100 deformations. These results indicate how speedups
of our parallel image registration are going to change when
we scale the problem to the point where only a few dozens
of images are available per MPI rank. The performance is
going to decrease not only because of the raising cost of
a global scan but also due to increasing influence of load
imbalance. Since we want our configuration to be located
on the part of the plot with a low imbalance factor, we
have to choose a sufficiently large segment size. To that
end, we present a hierarchical decomposition of prefix scan
in Section 4.2 to group parallel workers and increasing the
segment size on certain levels of hierarchy.

4 DISTRIBUTED SCAN STRATEGIES

Prefix scan has been successfully applied in distributed
and accelerated computations and many of these attempts
rediscovered the same standard strategies, scan–then–map
and reduce–then–scan, when data size significantly exceeds
the number of workers (Section 4.1). We show how these
strategies can be extended to a hierarchy of parallel workers
(Section 4.2), such as the one used in a hybrid computation
with multiple threads per each distributed worker, with
neither a loss of generality nor an increase of algorithm
depth. We exploit the additional level of a shared-memory
parallelization (Section 4.3) to provide a load balancing
step, improving performance of scan operators with an
unbalanced and unpredictable execution time, such as the
one introduced in the previous section.

6

4 5 6 7

22

8 9 10 11

38

6 22 38

6 28 60

6 28 66

+

0 1 3 6 10 15 21 28 36 45 55 66

Local Phase
Prefix Scan

1

Global Phase
Prefix Scan

2

Local Phase
Map

3

M
P

I

MPI rank 0 MPI rank 1 MPI rank 2 Input Data

Prefix Scan
Operator

0 1 2 3

0 1 3 6 4 9 15 22 8 17 27 38

+

6 28 6628

4 9 15 8 17 27

(a) scan–then–map prefix scan.

0 1 2 3

6

4 5 6 7

22

8 9 10 11

38

+ + +

6 22 38

6 28 60

6 28 66

0 1 2 6 10 5 6 28 36 9 10 66

+
6 28 66

0 1 3 6 10 15 21 28 36 45 55 66

+

Local Phase
Reduce

1

Global Phase
Prefix Scan

2

Local Phase
Prefix Scan

3

M
P

I

MPI rank 0 MPI rank 1 MPI rank 2 Input Data

Prefix Scan
Operator

(b) reduce–then–scan prefix scan.

Fig. 7: Examples of distributed prefix scan strategies for
integer addition on three MPI ranks. Operations local to
MPI rank are shown with whereas indicates
global communication.

4.1 Distributed Prefix Scan
The classical parallel prefix scan algorithms were designed
to minimize the depth when the number of processing



7

elements is equal to the number of data elements. Although
such case is common in circuit design, it is not well-suited
as a general solution since the length of input sequence
x0, x1, . . . , xN−1 is usually larger than the number of work-
ers P . For simplicity, we limit the analysis to the case of
even data distribution, and each worker is assigned K = N

P
input elements with boundary indices lI and rI .

The main strategy for a distributed scan follows a prin-
ciple of splitting the work to local-global-local sequence of
computations, as presented in Figure 7. First, each rank
is assigned a data segment to process independently in
the local phase 1 , computing a sum of all elements in
the local segment xlI ,rI . The result is passed to a global
prefix scan of size P , computing an accumulated result
x0,rI on each rank 2 . The computation is finalized with
an update of local data segments with an accumulated
sum of x0,rI−1

3 . As global phase 2 , one can use any
distributed scan implementation, such as MPI_Scan. The
local phases 1 and 3 can be defined in two ways, either
as a scan that updates local data and requires only adding
global result in the end or as a reduction that leaves the
segment intact and finishes the computation with a prefix
scan. The scan–then–map procedure is usually preferred over
the reduce–then–scan approach since the former exhibits a
slightly lower depth and decreased workload due to the
first parallel worker inactivity in last phase. We use the
former approach for evaluation of a standard, distributed
prefix scan. While in the scan–then–map algorithm the work
distribution has to be defined before execution, a dynamic
determination of workload per thread is possible when the
first phase is a reduction. Such property is desirable for
imbalanced computations to allow work-stealing and de-
crease disproportions in workload. In next two paragraphs
we discuss advantages and disadvantages of each approach
in detail.

4.1.1 Scan–then–map
In this approach, presented in Figure 7a, a scan is computed
initially in the first phase LP1, creating a new sequence
of partial results that requires only an application of global
scan result in the last phase. Depth of the first phase is
straightforward: NP − 1.

The last element computed by the local scan xlI ,rI is
the sum needed for a global scan. In the second local
phase, each local result xlI ,j is combined with the exclusive
value x0,lI−1. An exception is the data segment assigned to
worker 0 which is already finished. This requires exactly K
applications of the operator. However, since the prefix scan
is inclusive, the last value x0,rI is already computed in the
global phase which saves one application of the operator
and requires N

P − 1 steps.
The depth of the algorithm is given as follows:

DDS(N,P ) = 2
N

P
− 2 +DGS(N,P ) (1)

The analysis of critical path is possible for an even dis-
tribution of data. Otherwise, critical paths of local phases
might be provided by different workers and simple sum-
mation would yield an incorrect result. The last phase can
be parallel and balanced since each element is updated
independently. Yet, there’s no possibility to decrease load
imbalance before global phase.

4.1.2 Reduce–then–scan
As depicted in Figure 7b, each worker computes sequen-
tially a reduction in the first phase, leaving local data ele-
ments untouched until the scan in the second local phase.
There, the global result x0,lI−1 is added to the first local
element xlI and the scan updates each value with x0,lI−1.
For the first phase, workload and depth does not change
since the very first element xlI can be used as an initial
value of the sum. There’s a difference in last phase, however.
Although we can still use the trick with inclusive result, one
needs first to apply the global result to the first element and
the first worker is no longer idle in that phase, requiring N

P
operator applications. The depth of the algorithm is given
as follows:

DDS(N,P ) = 2
N

P
− 1 +DGS(N,P ) (2)

Contrary to the other approach, here the first phase al-
lows for further parallelization due to less strict nature
of reduction. The strictly sequential last phase is a minor
disadvantage.

4.2 Hierarchical Prefix Scan
We now present the strategy for a distributed scan that
includes a hierarchical distribution of work and data, similar
to the decomposition techniques applied for prefix scans on
GPU devices [20]. We show that such redistribution can be
performed with a constant increase in the algorithmic depth
in the worst case. Even though we do not achieve reduc-
tion in depth, the hierarchization decreases the number of
ranks participating in the global scan. This change reduces
negative performance effects of an unbalanced global scan
on many ranks and decreases the pressure and dependence
on network communication by performing more computa-
tion intra-node. Moreover, applying the hierarchical scan
to distributed computation introduces a lower hierarchy
layer with shared–memory environment that allows for an
efficient implementation of work stealing, as discussed in
Section 4.3. Although we consider here the most common
case of a hybrid MPI application with local threads assigned
to each rank, the general principle extends to an arbitrary
number of levels.

For a multithreaded implementation, we assume that an
allocation of P MPI ranks is replaced with P ′ ranks and T
threads such that P ′ · T = P .

1) Local Phase on P ′ · T workers.
For both scan and reduce, there is no change in
either depth or work performed since each segment
of size N

P is replaced with a new one of length N
P ′·T .

2) Local Scan on T local segments.
We assume that internally each rank uses the same
parallel prefix scan algorithm as in the global scan,
with D′ = C1 log2 T + C2.

3) Global Scan on P ′ ranks.
In each scan iteration, the result received from other
rank is applied by T threads to T scan results corre-
sponding to inclusive prefix scan over all segments.
Only the last result is used for communication.



8

4) Second Local Phase on P ′ · T workers.
The entire computation proceeds without major
changes since each thread owns the scan result
continuously updated in the global phase.

We observe that the composition of local and global
parallel scans does not change the asymptotic performance
since C1 log2 T +C1 log2 P

′ = C1 log2 P and only change is
visible in constants C2. Nevertheless, this increase in depth
does not apply to depth–optimal scans, where C2 = 0,
which are of special interest.

2 21 2 5 53 2 2 12 1

0 0 0

2 21 5 2 12 1

5 5 6

2 21 2 5 5 2 12 1

7 5 6

2 21 2 5 5 2 12 1

10 10 8

2

3 2

T = 0
Threads begin
with an initial

data chunk.

T = 6
Thread 3 finished 
its work, it takes a 

segment from 
Thread 2.

T = 10
All threads 

finished work.

ThreadsLocal Result Input Data

2

3

2 53

T = 7
Thread 1 takes 

another segment 
from Thread 2.

Fig. 8: An example of work-stealing in the computing re-
duction over three data segments. Data values indicate the
computation time. Compared to the static data distribution,
where the result of middle segment arrives after t = 15 units
of time, the computation is more balanced due to additional
redistribution and the global phase is started earlier.

4.3 Dynamic Hierarchical Prefix Sum

We now move away from one of the core assumptions
that has been always made for a prefix scan operator -
the computational cost is constant and easily predictable.
Although this assumption is valid in many applications, it
does not always hold as it is the case of image registration.
If a static data distribution does not provide a balanced
workload, the performance of the entire application is af-
fected: not only it will take more time to process a single
segment but the disparity will be later propagated due to a
synchronous nature of the prefix scan. The ideally balanced
data distribution can be estimated if each operator cost is
known a priori which is not feasible for iterative computa-
tions with data-dependent stopping conditions. A fine-grain
work distribution is inefficient due to the increased depth of
the global scan phase.

Therefore, we focus on techniques that can react to
ongoing changes in workload balance. Well-known load
balancing solutions do not apply directly to prefix scan
due to the sequential nature of the scan computation and
its limited ability to redistribute work chunks. We use the
hierarchical prefix scan representation and introduce the
shared–memory parallelism with threads. We attempt to
detect when a certain thread is processing its workload

faster and let it steal work from its neighbors to balance the
computation effort. Thus, we improve the performance of
global scan, a main bottleneck in large scale computations,
by (1) decreasing the work imbalance in first phase of
computation and (2) restricting the global phase only to
parallel workers on the highest hierarchy levels, in our
case MPI ranks. The scan–then–map approach imposes a
strict evaluation order from left to right since otherwise
the new sequence would not contain a correct prefix scan.
Fortunately, this requirement does not exist in the reduce–
then–scan strategy where the first phase computes only a
sum of the entire segment xlI ,rI . Given the associativity of
the operator, there shall be no change in result if elements
are processed from left to the right as in a prefix scan, from
right to the left or from the middle of data segment in both
directions. This observations allows us to consider flexible
segment boundaries.

An example of such problem is presented in Figure 8.
The static data distribution leads to an unbalanced work-
load and effectively slows down the prefix scan to the
slowest thread. By changing the order of evaluation to
left-to-right in the lowest-numbered segment, right-to-left
in the highest-numbered segment, and to middle-outward
for other segments, we leave an option for each thread to
acquire more work in case its neighbor is processing slower.
We note that there is no cost associated with changing
segment boundaries since for the entire hierarchy it is only
relevant that segment boundaries are aligned with each
other. Any load balancing procedure will be restricted to
exchanges between neighboring threads, due to the require-
ment that a sum must be computed across consecutive
data elements. We focus on intra-node work-stealing due to
diminishing returns of inter-node synchronization between
logically adjacent threads. The main point of an efficient
heuristic is to decide in which direction to accumulate data
after starting on the middle element. Since the imbalance
between neighbors cannot be predicted, the most sensible
option is a greedy approach where threads always move
in the direction of whichever adjacent thread is slower. Let
plI and prI be the boundaries of processed elements for
thread I . For each neighbor, we define the processing rate
tI±1 as the ratio of computation time to the number of
operator applications. Let sI correspond to the number of
data elements left unprocessed between threads I and I+1.
The Algorithm 1 presents the heuristic. For simplicity, we
omit the initial step where threads always move to the right.

5 EVALUATION

For evaluation we use two supercomputing system: the Piz
Daint supercomputer and a local cluster with Ivy Bridge
CPUs, summarized in Table 2. We use 12 and 20 threads
per rank on Piz Daint and IvyBridge, respectively, without
hyper-threading and with each thread pined to a physical
core. All prefix scan algorithms were implemented in C++
as a part of the quocmesh library [30]. The work–stealing
implementation splits the work across OpenMP threads and
performs a local scan over partial results with the dissem-
ination pattern since its implementation is simpler than a
Ladner–Fischer scan and the difference in work performed
is negligible when only a dozen or so threads participate in



9

Algorithm 1 Load balancing on threads 1, . . . , T

1: while sI−1 > 0 ∨ sI+1 > 0 do
2: if sI−1 > 0 ∧ sI+1 > 0 then
3: if tI−1 > tI+1 then
4: d← LEFT
5: else
6: d← RIGHT
7: end if
8: else
9: if sI−1 > 0 then d← LEFT else d← RIGHT

10: end if
11: if d == LEFT then
12: plI ← plI − 1, resI ← xplI � resI
13: else
14: prI ← prI + 1, resI ← resI � xprI
15: end if
16: end while

the scan. Images are available to all ranks through the high-
performance filesystem and the communication is limited
to 20 bytes of deformation data and indices. Algorithms
use point-to-point communication with the exception of the
Ladner-Fischer that uses MPI_Broadcast in certain iter-
ations. For each experiment, measurements were repeated
five times and we show on plots mean value with 95%
confidence interval.

As image series, we consider data from an experi-
ment where ultrahigh vacuum high–resolution TEM (UVH
HRTEM) has been applied to capture the process of alu-
minum oxidation [31]. The images have been acquired at
a resolution of 1,920 × 1,856 and a rate of 400 frames per
second. An example of a single frame is presented in the
Figure 3a.

Piz Daint Ivy Bridge

CPU Intel Xeon E5-2690 CPU 2.60GHz Intel Xeon E5-2680 v2 2.80GHz
Cores 12 with 12 hardware threads 20 with 20 hardware threads
Memory 64 GB 64 GB
Interconnect Cray Aries, Dragonfly FDR Infiniband
Build CMake 3.5.2, GCC 7.3.0 CMake 3.6.0, GCC 8.2.0
MPI Cray MPICH 7.7.2 IntelMPI 2018.3

TABLE 2: Evaluation systems: Piz Daint with Cray XC50
nodes and Ivy Bridge cluster with two deca-core CPUs.

5.1 Microbenchmarks
We first evaluate the prefix scan algorithms with a set of mi-
crobenchmarks. We use an artificial operator with (1) a static
execution time, where each operator application takes the
same amount of time and (2) a dynamic configuration where
the execution time is a random variable and for each time t,
we use an exponential distribution with rate λ = 1

t to obtain
a similar average running time. We use std::mt19937,
a 32-bit Mersenne Twister PRNG from the C++ standard
library, with a constant seed 1410 to ensure reproducible
results. We scale it up on Piz Daint with varying number
of data elements per CPU core. Whenever we compare
static and work–stealing implementations, both solutions
use random number generators in the same deterministic
fashion to ensure that the comparison is scientifically valid.
We evaluate (1) the scalability of prefix scan algorithms

and (2) effectiveness of work-stealing on large and generic
problems with an unbalanced workload.

256 512 1024
Nodes

0

5

10

E
xe

cu
ti

on
ti

m
e

[s
]

Time 50 [ms]

Dissemination

Ladner-Fischer

MPI Scan

256 512 1024
Nodes

Time 150 [ms]

256 512 1024
Nodes

Time 250 [ms]

(a) Prefix operator with constant runtime.

256 512 1024
Nodes

0

5

10

15

20

E
xe

cu
ti

on
ti

m
e

[s
]

λ = 0.02

Dissemination

Ladner-Fischer

MPI Scan

256 512 1024
Nodes

λ = 0.006̄

256 512 1024
Nodes

λ = 0.004

(b) Prefix operator with exponentially distributed time with rate λ.

768 1536 3072 6144
CPU Cores

0

20

40

E
xe

cu
ti

on
ti

m
e

[s
]

λ = 0.02

768 1536 3072 6144
CPU Cores

0

25

50

75

100

λ = 0.1

768 1536 3072 6144
CPU Cores

0

200

400

λ = 0.002

Distributed, Dissemination

Distributed, Ladner-Fischer

Work-stealing, Dissemination

Work-stealing, Ladner-Fischer

(c) Work–stealing prefix scan with a dynamic execution time.

Fig. 9: Prefix scan algorithms on mock operators with a static
and dynamic running time.

64 128 256 512 1024
Allocated CPU cores

50

100

150

200

250

300

350

400

Sp
ee

du
p 

to
 se

ria
l e

xe
cu

tio
n

Diss.
2.78x

L-F.
1.69x

MPI
1.7x

Ideal Speedup
Distributed, Dissemination
Distributed, Ladner-Fischer
Distributed, MPI_Scan
Work-stealing, MPI_Scan
Work-stealing, Dissemination
Work-stealing, Ladner-Fischer

Fig. 10: The strong scaling of full image registration. Ex-
perimental results are indicated with solid lines whereas
theoretical bound (4) discussed in Section 5.2 is dashed.
Experiments conducted on Piz Daint for 4,096 images.

5.1.1 Inter-Node Scan
We test sensitivity of scan algorithms to unbalanced work-
loads and network congestion. We estimate the performance
loss on different implementations of global scan by using a
static, hierarchical prefix scan with one MPI rank and 12
threads per node. Figures 9a, 9b present results for static



10

and dynamic execution with 98304 data elements. Results
show that scan algorithms perform differently on an ideally
constant workload if the computation time plays a more
important role than communication. Not surprisingly, the
MPI_Scan performs worse than other prefix scan algo-
rithms since it might be optimized for communication la-
tency. Adding a controlled imbalance causes a performance
drop and all prefix scan algorithms take on average twice
more time. We can expect such slowdown in the image
registration and other problems where load balance is an
issue.

5.1.2 Work-stealing Scan

We evaluate the impact of our work–stealing on a generic
prefix scan problem with an unbalanced workload. Fig-
ure 9c presents results for dynamic execution with 98304
data elements. Results show that our work–stealing pro-
vides substantial improvements when applied with the
Ladner–Fischer scan whereas the performance of scan with
the dissemination can be improved up to three times. The
result is explained by chains of dependencies in task graphs
of both algorithms. Dissemination and Ladner–Fischer scans
represent distinct sequences of parallel computations, and
the critical path is different in both algorithms as well,
resulting in different impact of workload imbalance. The
performance seems to be consistent across operators with
varying execution time, and we see that work-stealing prefix
scan improves the performance on a larger number of cores
even if the distributed version stops to scale, as it is in the
case of Ladner–Fischer from 3072 to 6144 cores.

5.2 Strong Scaling

We evaluate the strong scaling of the image registration on
the Piz Daint system. As a baseline we choose the serial
execution of a prefix scan that requires N − 1 operator
applications for N deformations φi,j . On a single core, this
step takes on average 18422 seconds. Combined with the
depth of a distributed prefix scan (Section 4.1, Eq. (2)), we
obtain the upper performance bound for scan registration

N − 1

DDS(N,P )
=

N − 1

2 · NP − 1 + C1 log2 P
(3)

Figure 1 and Table 3 present parallel speedups and effi-
ciency. In addition, in the Figure we compare with the upper
performance bound although this can be achieved only on
perfectly balanced workloads. For the scan computation,
we observe that our work-stealing prefix scan up to 1.98x,
1.83x and 1.51x times over the dissemination, MPI_Scan
and the Ladner–Fischer scan, respectively. Applying our
load balancing brings the performance closer to the upper
bound and prevents the MPI_Scan algorithm from stopping
to scale on 1024 cores. The work–efficient Ladner–Fischer
exhibits a substantial performance improvement on 1024
cores. This is explained by the fact that scan algorithms
are differently affected by various workload imbalances and
the scan hits the sweet-spot for this configuration. We don’t
observe any significant performance improvements over 512
cores on dissemination and MPI_Scan whereas the work–
stealing version provides further improvements. In turn, the

dynamic prefix scan allows further scaling of long image
series registration.

Minor slowdowns observed for some algorithms on 64
or 128 ranks can be an effect of measurement noise that is
noticeably larger for the dynamic execution. At the same
time, we observe significant performance improvements
from 512 cores onwards. Both results align with the analysis
presented in Section 3.5 where it has been shown that
negative effects of an imbalanced operator have the highest
impact when the local segment size is small. When the
number of allocated cores is relatively small, and the data
segment is in turn large, applying work-stealing on lower
levels of hierarchical prefix scan cannot prevent all effects
of unbalanced workload on the highest level, which is the
entire node in our setup. Furthermore, in such setup, the
computation is not dominated by the global scan which is
especially sensitive to imbalanced workloads.

In addition, we study the performance of a full reg-
istration that includes the initial step of generating input
deformations for the prefix scan (Section 2.3, function A).
A full serial registration requires on average 37567 seconds
of computation. The upper performance bound Eq. (3) is
changed by adding N initial registration steps that are
massively parallel, adding depth N

P on P processes.

N+N − 1
N
P +DDS(N,P )

=
2N − 1

3 · NP − 1 + C1 log2 P
(4)

Figure 10 and Table 3 present results for the full registration.
We observe that our work-stealing prefix scan improves
the performance up to 2.78x, 1.7x and 1.69x times over
the dissemination, MPI_Scan and the Ladner–Fischer scan,
respectively. Similar to the scan registration, the work–
stealing scan prevents stopping to scale over 512 cores when
using dissemination and MPI_Scan. We observe a substan-
tial improvement on dissemination prefix scan. Although
more work is performed in first phase, the time spent in
global scan phase decreases due to lower waiting times.
Such result is not surprising since different scan algorithms
are affected differently by load imbalance. Furthermore,
our work-stealing performs better when more work is per-
formed by each thread.

5.3 Hierarchical Prefix Scan

We study the performance effects of the introduction of a
hierarchy of parallel workers, replacing the standard set-up
of P MPI ranks with P ′ ranks equipped with T threads each,
such that P ′ · T = P and present in Table 4 a comparison
against serial execution and the distributed execution. We
observe a significant difference in performance for both the
dissemination and MPI_Scan. On the other hand, we ob-
serve performance degradation with the Ladner–Fischer in
the sweet spot on 1024 cores. Hierarchical prefix scan leads
to performance improvements thanks to a decreased cost
of the inter-node synchronization in global phase, except
of a single outlier with Ladner–Fischer scan on 1024 cores.
There, the efficiency of a pure MPI solution suddenly in-
creases to the point where it outperforms the dissemination
prefix scan by over 60% and introducing hierarchy leads
to performance degradation. We conclude that this specific
setup is a sweetspot for the Ladner–Fischer scan where the



11

Scan Registration
Distributed Work–stealing

Dissemination Ladner–Fischer MPI_Scan Dissemination Ladner–Fischer MPI_Scan

Cores Time S E Time S E Time S E T S E Time S E Time S E

64 979.26 18.81 0.29 765.61 24.06 0.38 779.82 23.62 0.37 780.89 23.59 0.37 805.37 22.87 0.36 800.13 23.02 0.36
128 677.38 27.20 0.21 404.00 45.60 0.36 552.22 33.36 0.26 455.43 40.45 0.32 473.43 38.91 0.30 466.09 39.53 0.31
256 550.90 33.44 0.13 338.42 54.44 0.21 398.26 46.26 0.18 286.52 64.30 0.25 260.95 70.60 0.28 288.25 63.91 0.25
512 340.76 54.06 0.11 283.56 64.97 0.13 298.32 61.75 0.12 171.60 107.35 0.21 186.88 98.58 0.19 193.11 95.40 0.19

1024 274.45 67.12 0.07 166.11 110.91 0.11 308.27 59.76 0.06 143.58 128.31 0.13 153.06 120.36 0.12 167.94 109.70 0.11

Full Registration
Distributed Work–stealing

Dissemination Ladner–Fischer MPI_Scan Dissemination Ladner–Fischer MPI_Scan

Cores Time S E Time S E Time S E Time S E Time S E Time S E

64 1,345.51 27.92 0.44 1,203.96 31.20 0.49 1,088.50 34.51 0.54 1,247.10 30.12 0.47 1,222.26 30.74 0.48 1,215.46 30.91 0.48
128 864.01 43.48 0.34 826.54 45.45 0.36 745.69 50.38 0.39 648.47 57.93 0.45 657.33 57.15 0.45 674.24 55.72 0.44
256 655.41 57.32 0.22 529.13 71.00 0.28 518.36 72.47 0.28 336.08 111.78 0.44 338.54 110.97 0.43 355.21 105.76 0.41
512 400.27 93.86 0.18 333.43 112.67 0.22 320.10 117.36 0.23 202.59 185.43 0.36 196.81 190.88 0.37 211.14 177.93 0.35

1024 350.44 107.20 0.10 211.03 178.02 0.17 271.90 138.17 0.13 125.84 298.54 0.29 133.55 281.30 0.27 160.09 234.67 0.23

TABLE 3: Execution times, parallel speedups S and efficiency E for (a) the standard, MPI-only distributed prefix scan, (b)
ours hierarchical prefix scan with MPI ranks and work-stealing on OpenMP threads. Speedups are computed relative to
the serial scan and full registration lasting 18422.17 and 37567.7, respectively.

Hierarchical Scan Registration
Dissemination Ladner–Fischer MPI_Scan

Cores Time S S′ Time S S′ Time S S′

64 683.43 26.96 1.43 682.80 26.98 1.12 729.21 25.26 1.07
128 403.26 45.68 1.68 402.62 45.76 1.00 437.83 42.08 1.26
256 274.51 67.11 2.01 329.98 55.83 1.03 300.60 61.29 1.32
512 202.39 91.02 1.68 244.73 75.28 1.16 243.27 75.73 1.23

1024 162.53 113.35 1.69 215.74 85.39 0.77 175.55 104.94 1.76

TABLE 4: Execution times, parallel speedups S ′ and S ′ with
respect to serial and distributed execution for hierarchical
prefix scan without work–stealing.

Distributed
Dissemination Ladner–Fischer

Cores Corehours Energy [MJ] Corehours Energy [MJ]

64 2.29x 1.34±0.12 1.89x 2.05x 1.18±0.14 1.66x
128 2.94x 1.76±0.1 2.49x 2.82x 1.16±0.13 1.64x
256 4.67x 2.34±0.19 3.3x 3.61x 1.74±0.13 2.45x
512 5.46x 3.3±0.36 4.65x 4.54x 2.85±0.13 4.01x

1024 9.55x 4.92±0.21 6.94x 5.75x 3.5±0.22 4.94x

Work–stealing
Dissemination Ladner–Fischer

Cores Corehours Energy [MJ] Corehours Energy [MJ]

64 1.98x 1.09±0.04 1.53x 1.99x 1.11±0.02 1.57x
128 2.18x 1.17±0.05 1.64x 2.2x 1.19±0.03 1.68x
256 2.5x 1.29±0.06 1.81x 2.67x 1.34±0.13 1.89x
512 3.88x 1.54±0.06 2.17x 2.93x 1.48±0.16 2.08x

1024 7.1x 2.21±0.1 3.12x 4.69x 2.28±0.15 3.22x

TABLE 5: The increase in computing time and energy cost
for a full registration of 4,096 images on Piz Daint. Results
are presented with sample standard deviation and com-
pared against serial execution with 10.43 corehours and
0.71MJ consumed.

global scan phase performs very well without significant
delays.

5.4 Work and Energy

A prefix scan has to compensate for a reduction in depth by
an increase in work. When combined with the load imbal-
ance that further decreases parallel efficiency, the question
has to be asked: how many resources are required to reduce
the time of processing microscopy images? Precisely, we
want to find answers to two research questions: (1) by how
much does the imbalanced parallelization increase resource
consumption, (2) does the work-stealing scan provide en-
ergy and compute time reduction in addition to improved
performance?

To find answers, we design an experiment evaluating the
resource and energy consumption of the full image registra-
tion. To obtain energy measurements on the Piz Daint, we
use the Cray Resource Utilization Reporting (RUR) [32], a
reliable source of job-wide energy measurements on Cray
supercomputers [33]. The tool reports aggregated measure-
ments of hardware energy counters for the entire node,
including the node’s energy consumption for the batch job
duration (CPU cores, memory, other hardware) [34]. It does
not include the interconnect shared between nodes, which
is not a limitation because computation costs dominate
communication costs in our problem. As a baseline, we
select the energy consumption of the sequential registra-
tion procedure, similarly to the previous strong scaling
experiment. Because the Cray RUR supports node-wide
measurements only, we cannot use the value reported for
the serial procedure straight away as it would include the
energy consumption for the entire node where one core
is allocated, and eleven are idle. Instead, we execute the
same sequential registration on each of the twelve cores,
we use the measured value as a summarized cost of twelve
repetitions of the same problem and compute the average to
represent the total energy cost of the serial version.

We measure the hardware resource consumption as the
time required to obtain the result multiplied by the number
of CPU cores allocated (corehours). As a baseline, we use
the sequential execution with 8191 operator applications
and 10.43 corehours consumed. Results based on the strong
scaling experiment data are presented in Table 5.

Load Imbalance The presence of an imbalance leads to a
significantly higher cost of parallel computations, with up to
9.55x and 5.75x more CPU allocation needed to finish the
computations with the dissemination and Ladner–Fischer
scans, respectively. The energy consumption increases by
a factor of 6.94x and 4.94x, respectively, suggesting that a
significant fraction of CPU time is spent on idle waiting that
consumes little energy.

Work–stealing Applying our hierarchical and dynamic
parallelization decreases the energy consumption up to
2.23x and 1.93x times when using the dissemination and
Ladner–Fischer prefix scan, respectively. Additionally, our
prefix scan requires up to 1.87x and 1.55x times less com-
puting time. The decrease in energy consumption is higher
than for hardware allocation time, as the work–stealing scan



12

still includes idle waiting times that cannot be eradicated
entirely due to coarse-grained work chunks of image regis-
tration.

Distributed
Dissemination

Distributed
Ladner-Fischer

Distributed
MPI_Scan

Work-stealing
Dissemination

Work-stealing
Ladner-Fischer

Work-stealing
MPI_Scan

CPU cores

150

175

200

225

250

275

300

325

Tim
e [

s]

64
128
256
512
620

(a) The weak scaling of prefix scan image registration.

Distributed
Dissemination

Distributed
Ladner-Fischer

Distributed
MPI_Scan

Work-stealing
Dissemination

Work-stealing
Ladner-Fischer

Work-stealing
MPI_Scan

CPU cores

150

200

250

300

350

Tim
e [

s]

64
128
256
512
620

(b) The weak scaling of full image registration with preprocessing.

Fig. 11: The weak scaling of image registration on Ivy
Bridge. Figures begin at value 150 for better readability.

5.5 Weak Scaling

An efficient weak scaling is an important goal since it allows
to utilize additional hardware to process longer sequences
of microscopy frames while keeping the analysis time prac-
tical. When increasing compute resources by the same factor
as the problem size, the execution time cannot stay constant
due to the logarithmic factor associated with prefix scan:
DDS(k ·N, k · P ) = DDS(N,P ) + C1 log2 k.

We analyze the weak scaling for the scenario of 8 images
per rank and scale it from 64 to 620 ranks on the Ivy
Bridge system. Figures 11a and 11b present results for the
prefix scan and the full registration procedure, respectively.
While we observe an increased execution time for static
prefix scan algorithms, the work-stealing procedure helps to
mitigate the effects of a logarithmic increase in depth. This
benefit is especially visible in the full registration, where
for both dissemination and Ladner–Fischer prefix scan the
dynamically balanced version scales to a larger number of
cores with a minor change in execution time.

6 CONCLUSIONS

In this paper, we proposed a prefix scan parallelization
strategy for the registration of a long series of electron
microscopy images. This work is first to consider a prefix
scan problem where the optimization focus moves from
communication latency to a computationally expensive and

highly load-imbalanced operator. To overcome scaling dif-
ficulties and slowdowns of prefix scans on imbalanced
computations, we apply the work–efficient Ladner–Fischer
prefix scan and provide a novel node-local work-stealing
procedure that can be applied to any prefix scan parallel
computation. We show that work–stealing improves the
performance of prefix scan on imbalanced workloads up
to 2.1x times while decreasing CPU allocations and energy
consumption up to 1.87x and 2.23x times, respectively. As
a result, an analysis of arbitrarily long microscopy series
is now possible thanks to a dynamic prefix scan strategy
that keeps scaling with increasing hardware resources. We
identified a performance gap in the MPI collectives, and
with our dynamic and work–stealing scan algorithm, we
provide a generic solution that enables efficient distributed
parallelization of imbalanced scan computations.

ACKNOWLEDGMENTS

The authors would like to thank Professor Sarah Haigh,
University of Manchester, for providing the TEM data. We
would also like to acknowledge the following organizations
for providing us with access to their supercomputers: the
Swiss National Supercomputing Centre (CSCS), and the
Aachen Institute for Advanced Study in Computational
Engineering Science (AICES). This work was in parts sup-
ported by the Schweizerische Nationalfonds zur Förderung
der wissenschaftlichen Forschung (SNF, Swiss National Sci-
ence Foundation) through Project 170415 and programme
Ambizione (grant PZ00P2168016). B. Berkels was funded in
part by the Excellence Initiative of the German Federal and
State Governments through grant GSC 111.

REFERENCES

[1] S. Chatterjee, G. E. Blelloch, and M. Zagha, “Scan primitives for
vector computers,” in Proceedings of the 1990 ACM/IEEE Conference
on Supercomputing, ser. Supercomputing ’90. IEEE Computer
Society Press, 1990, pp. 666–675.

[2] G. E. Blelloch, “Prefix sums and their applications,” School of
Computer Science, Carnegie Mellon University, Tech. Rep. CMU-
CS-90-190, Nov. 1990.

[3] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Intro-
duction to Algorithms, 2nd ed. McGraw-Hill Higher Education,
2001.

[4] G. E. Blelloch, Vector Models for Data-parallel Computing. Cam-
bridge, MA, USA: MIT Press, 1990.

[5] (2019) Piz daint. [Online]. Available: https://www.cscs.ch/
computers/piz-daint/

[6] B. Berkels, P. Binev, D. A. Blom, W. Dahmen, R. C. Sharpley,
and T. Vogt, “Optimized imaging using non-rigid registration,”
Ultramicroscopy, vol. 138, pp. 46 – 56, 2014.

[7] M. Snir, “Depth-size trade-offs for parallel prefix computation,” J.
Algorithms, vol. 7, no. 2, pp. 185–201, Jun. 1986.

[8] H. Zhu, C.-K. Cheng, and R. Graham, “On the construction
of zero-deficiency parallel prefix circuits with minimum depth,”
ACM Trans. Des. Autom. Electron. Syst., vol. 11, no. 2, pp. 387–409,
Apr. 2006.

[9] G. E. Blelloch, “Scans as primitive parallel operations,” IEEE Trans.
Comput., vol. 38, no. 11, pp. 1526–1538, Nov. 1989.

[10] R. P. Brent and H. T. Kung, “The chip complexity of binary
arithmetic,” in Proceedings of the Twelfth Annual ACM Symposium on
Theory of Computing, ser. STOC ’80. New York, NY, USA: ACM,
1980, pp. 190–200.

[11] Ömer Eǧecioǧlu, C. K. Koc, and A. J. Laub, “A recursive dou-
bling algorithm for solution of tridiagonal systems on hypercube
multiprocessors,” Journal of Computational and Applied Mathematics,
vol. 27, no. 1, pp. 95 – 108, 1989, special Issue on Parallel Algo-
rithms for Numerical Linear Algebra.



13

[12] P. M. Kogge and H. S. Stone, “A parallel algorithm for the efficient
solution of a general class of recurrence equations,” IEEE Trans.
Comput., vol. 22, no. 8, pp. 786–793, Aug. 1973.

[13] W. D. Hillis and G. L. Steele, Jr., “Data parallel algorithms,”
Commun. ACM, vol. 29, no. 12, pp. 1170–1183, Dec. 1986.

[14] R. E. Ladner and M. J. Fischer, “Parallel prefix computation,” J.
ACM, vol. 27, no. 4, pp. 831–838, Oct. 1980.

[15] M. P. I. Forum, “MPI: A Message-Passing Interface Standard
Version 3.0,” 09 2012.

[16] P. Sanders and J. L. Träff, Parallel Prefix (Scan) Algorithms for MPI.
Springer Berlin Heidelberg, 2006, pp. 49–57.

[17] C. P. Kruskal, L. Rudolph, and M. Snir, “The power of parallel
prefix,” IEEE Transactions on Computers, vol. C-34, no. 10, pp. 965–
968, Oct 1985.

[18] H. Meijer and S. G. Akl, “Optimal computation of prefix sums
on a binary tree of processors,” International Journal of Parallel
Programming, vol. 16, no. 2, pp. 127–136, Apr 1987.

[19] Ömer Eǧecioǧlu and Çetin Kaya Koç, “Parallel prefix computation
with few processors,” Computers & Mathematics with Applications,
vol. 24, no. 4, pp. 77 – 84, 1992.

[20] S. Maleki, A. Yang, and M. Burtscher, “Higher-order and
tuple-based massively-parallel prefix sums,” in Proceedings of
the 37th ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 539–552. [Online].
Available: https://doi.org/10.1145/2908080.2908089

[21] P. Sanders, J. Speck, and J. L. Träff, Full Bandwidth Broadcast, Re-
duction and Scan with Only Two Trees. Springer Berlin Heidelberg,
2007, pp. 17–26.

[22] P. Sanders, J. Speck, and J. L. Träff, “Two-tree algorithms for full
bandwidth broadcast, reduction and scan,” Parallel Computing,
vol. 35, no. 12, pp. 581 – 594, 2009.

[23] S. Maleki, M. Musuvathi, and T. Mytkowicz, “Parallelizing dy-
namic programming through rank convergence,” SIGPLAN Not.,
vol. 49, no. 8, pp. 219–232, Feb. 2014.

[24] T. Gradl, A. Spörl, T. Huckle, S. J. Glaser, and T. Schulte-
Herbrüggen, “Parallelising matrix operations on clusters for an
optimal control-based quantum compiler,” in Euro-Par 2006 Par-
allel Processing, W. E. Nagel, W. V. Walter, and W. Lehner, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 751–762.

[25] K. Waldherr, T. Huckle, T. Auckenthaler, U. Sander, and T. Schulte-
Herbrüggen, “Fast 3d block parallelisation for the matrix multipli-
cation prefix problem,” in High Performance Computing in Science
and Engineering, Garching/Munich 2009, S. Wagner, M. Steinmetz,
A. Bode, and M. M. Müller, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 39–50.

[26] T. Auckenthaler, M. Bader, T. Huckle, A. Spörl, and K. Waldherr,
“Matrix exponentials and parallel prefix computation in a quan-
tum control problem,” Parallel Computing, vol. 36, no. 5, pp. 359 –
369, 2010, parallel Matrix Algorithms and Applications.

[27] S. Wang, Y. Bai, and G. Pekhimenko, “Scaling back-propagation
by parallel scan algorithm,” CoRR, vol. abs/1907.10134, 2019.

[28] Y. Zou and S. Rajopadhye, “Scan detection and parallelization
in “inherently sequential” nested loop programs,” in Proceedings
of the Tenth International Symposium on Code Generation and Op-
timization, ser. CGO ’12. New York, NY, USA: Association for
Computing Machinery, 2012, p. 74–83.

[29] A. B. Yankovich, B. Berkels, W. Dahmen, P. Binev, S. I. Sanchez,
S. A. Bradley, A. Li, I. Szlufarska, and P. M. Voyles, “Picometre-
precision analysis of scanning transmission electron microscopy
images of platinum nanocatalysts,” Nature Communications, vol. 5,
Jun. 2014.

[30] (2019) Quocmesh library. [Online]. Available: http://numod.ins.
uni-bonn.de/software/quocmesh/

[31] L. Nguyen, T. Hashimoto, D. N. Zakharov, E. A. Stach, A. P.
Rooney, B. Berkels, G. E. Thompson, S. J. Haigh, and T. L. Burnett,
“Atomic-scale insights into the oxidation of aluminum,” ACS
Applied Materials & Interfaces, vol. 10, no. 3, pp. 2230–2235, 2018,
pMID: 29319290.

[32] A. Barry, “Resource utilization reporting,” in Proceedings of the Cray
User Group Meeting 2013 (CUG 2013), May 2013.

[33] A. J. Younge, R. E. Grant, J. H. Laros, M. Levenhagen, S. L.
Olivier, K. Pedretti, and L. Ward, “Small scale to extreme:
Methods for characterizing energy efficiency in supercomputing
applications,” Sustainable Computing: Informatics and Systems,
vol. 21, pp. 90–102, 2019. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S2210537918301021

[34] A. Hart, H. Richardson, J. Doleschal, T. Ilsche, M. Bielert, and
M. Kappel, “User-level power monitoring and application perfor-
mance on cray xc30 supercomputers,” Proceedings of the Cray User
Group (CUG), 01 2014.

Marcin Copik is a PhD student at ETH Zurich.
His research interests include high-performance
computing, serverless computing and perfor-
mance modeling.

Tobias Grosser is an Associate Professor at
University of Edinburgh, where he works in
the Compiler and Architecture Design Group.
His reasearch interests are in compilation, pro-
gramming language design, and effective perfor-
mance programming.

Torsten Hoefler is a Professor at ETH Zurich,
where he leads the Scalable Parallel Computing
Lab. His research aims at understanding per-
formance of parallel computing systems ranging
from parallel computer architecture through par-
allel programming to parallel algorithms.

Paolo Bientinesi is a Professor in High-
Performance Computing at Umeå University and
the director of the High Performance Computing
Center North (HPC2N). His research interests
include numerical linear algebra, tensor opera-
tions, performance modelling & prediction, com-
puter music, and the automatic generation of
algorithms and code.

Benjamin Berkels is a Juniorprofessor for
Mathematical Image and Signal Processing at
AICES, RWTH Aachen. His research interests
include variational and joint methods for image
registration and segmentation, and medical im-
age processing.


