
PEMOGEN: Automatic Adaptive Performance Modeling
during Program Runtime

Arnamoy Bhattacharyya
ETH Zurich

arnamoy.bhattacharyya@inf.ethz.ch

Torsten Hoefler
ETH Zurich

htor@inf.ethz.ch

ABSTRACT
Traditional means of gathering performance data are trac-
ing, which is limited by the available storage, and profiling,
which has limited accuracy. Performance modeling is often
used to interpret the tracing data and generate performance
predictions. We aim to complement the traditional data
collection mechanisms with online performance modeling, a
method that generates performance models while the appli-
cation is running. This allows us to greatly reduce the stor-
age overhead while still producing accurate predictions. We
present PEMOGEN, our compilation and modeling frame-
work that automatically instruments applications to gen-
erate performance models during program execution. We
demonstrate the ability of PEMOGEN to both reduce stor-
age cost and improve the prediction accuracy compared to
traditional techniques such as least squares fitting. With our
tool, we automatically detect 3,370 kernels from fifteen NAS
and Mantevo applications and model their execution time
with a median coefficient of variation (R̄2) of 0.81. These
automatically generated performance models can be used to
quickly assess the scaling and potential bottlenecks with re-
gards to any input parameter and the number of processes
of a parallel application.

1. INTRODUCTION
Performance analysis is the bread and butter of perfor-

mance engineers. The optimization process can often be
divided into performance data collection, interpretation to
find bottlenecks, and code changes to overcome those bottle-
necks. The first step, data collection, typically utilizes appli-
cation tracing or profiling. The collected data is then ana-
lyzed with the help of performance tools. Performance engi-
neers derive mental models at various complexities ranging
from back-of-the-envelope to highly complex performance
models to represent application performance. Those mod-
els then guide the tuning of the target application code, for
example, algorithmic optimizations, architecture optimiza-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PACT’14, August 24–27, 2014, Edmonton, AB, Canada.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2809-8/14/08 ...$15.00.
http://dx.doi.org/10.1145/2628071.2628100 .

tion, middleware and runtime optimization, or policy opti-
mization.

Various offline machine-learning techniques such as Neural
networks or Support Vector Machines (SVM) have been used
to build predictor models that can be used to extrapolate
or interpolate application performance and scaling based on
trace data [26]. However, most of the machine learning pre-
dictor models used so far are complex functions consisting
of many model parameters, making the models hard to in-
terpret. The generation of machine learning models needs
sufficiently much training data. The gathering of the huge
amount of training data comes with two costs: (1) a series of
training runs has to be performed that might not be feasible
for long-running HPC application, and (2) the storage space
of the profiling data can be potentially huge.

Only a small number of tools support performance mod-
eling to help the user to guide decisions and predict bottle-
necks outside the executed configurations [7]. Semi-empirical
performance modeling [19] is used to generate interpretable
performance models that can be presented to users so that
they can estimate how the program’s performance changes
with the change in values of the input parameters. Opti-
mizing compilers can also use the generated models to guide
decisions. Empirical or semi-empirical performance models
work in a similar fashion to the machine-learning techniques
in the sense that the performance models of the kernels are
built after collecting the training data offline [7] and there-
fore also suffer from storage cost.

In this work, we propose to automatically learn perfor-
mance models during normal application execution to elim-
inate storage costs and reduce runtime overheads. We de-
velop a tool that automatically instruments applications for
modeling and a runtime library for performance modeling
based on advances in online statistical learning methods.
Our generated binaries are completely self-contained and
fully equipped for automatic model generation. The data
collection and generation can be controlled by the user and
is stopped once the models reach a specified quality. An
overview of our tool-chain is shown in Figure 1. We now
briefly discuss LASSO, a statistical technique that can be
used to generate interpretable models.

Least absolute shrinkage and selection operator
(LASSO).

is a statistical technique to generate interpretable regres-
sion models by eliminating parameters that are not signif-
icant in the model construction. Recently, Garrigues et
al. [14] proposed a homotopy algorithm to use LASSO in an

test.c! test.bc! test_inst.bc! PERF_MODEL==1?!

|!
|!
|!
!

|!
|!
|!-----------------LLVM-----------------!

library.bc!

NO!

YES!

Performance!
 Models! User!

Interpretable!

Figure 1: Work-flow of PEMOGEN. The code
is compiled and instrumented using LLVM [25].
Based on the value of an environment variable
PERF MODEL, the instrumented code generates
the performance models for kernels. The generated
models can again be read by the code for model up-
date and/or prediction.

online setting so that the model update can be performed
as new data arrives one at a time. We show how to use
their algorithm to build an application performance model
automatically and transparently from the user. The user
has to only supply the names of the input parameters that
influence the execution time of a program and the desired
threshold for goodness of fit of the generated model(s). A
subset of the program input parameters become the param-
eters of the generated model. These two information are
required because identifying the model parameters require
knowledge from the domain expert and it’s impossible to
predict the accuracy of the performance model required by
the user.

Research Contribution.
Our contributions to the state of the art are as follows:

• We propose a new static representation of the program
called the Loop-Call Graph (LCG) that helps to auto-
matically identify the kernels in the application.

• We propose a methodology for adaptive model gener-
ation so that the profiling and model update can be
turned on and off automatically based on the good-
ness of fit (adjusted R2) of the generated performance
model on new data.

• We combine these two techniques into PEMOGEN, an
automatic tool to generate interpretable performance
models dynamically and transparently from the user.

• We present the results of model generation for the ker-
nels in the NAS and Mantevo benchmarks.

2. METHODOLOGY
Automatically generating human-understandable perfor-

mance models for codes involves several steps: (1) kernel
identification, (2) identifying critical input parameters, (3)
collect performance data, and (4) select and parameterize

model hypotheses. Those steps are similar to but not iden-
tical to the manual steps proposed in earlier research [18,19].
We will now describe each of these steps in detail.

2.1 Automatic Identification of Kernels
The first step before building a performance model auto-

matically is to determine the portions in the program for
which the performance models have to be generated. These
program portions are called kernels. The cumulative perfor-
mance of all the kernels gives an estimate of the performance
of the program for a set of program parameter values.

For the identification of kernels, we consider well de-
fined program structures: natural loops and functions. We
define a new static graph representation of the program
called a Loop-Call Graph (LCG). If a program P has a
set of functions F = (f1, f2, . . . , fn1) and a set of loops
L = (l1, l2, . . . , ln2), then the LCG is a directed graph that
can be formally defined as:

Definition 1. An LCG is a graph G = 〈V,E〉 where

• V = F ∪ L

• E = (e1, e2, . . . , en3) where ei = (v1, v2)∧ v1, v2 ∈ V

Where (v1, v2) means that control flows from v1 to v2. We
use the LCG to aid the dynamic construction of kernels for
different call sites and contexts. We define kernel as:

Definition 2. A kernel k is a sub-graph G′ = 〈V ′, E′〉
of the LCG G where

• V ′ ⊆ V

• E′ ⊆ E ∧ ((v1, v2) ∈ E′ ⇒ v1, v2 ∈ V ′)

Each kernel is constructed from the dynamic call-chain
starting from the entry point of the program. A kernel is
composed of a subset of nodes of the LCG that are connected
by a dynamic calling relation, denoted as→, in the program.

To illustrate how we construct the LCG, consider the fol-
lowing pseudocode:

int my_func () {
for (...) S1;

}
int main() {

for (...) my_func ();
for (...) S2;
my_func ();

}

S1 and S2 are arbitrary sets of statements that do not con-
tain additional loops. Figure 2 shows the LCG of this code.

This program has a set of functions F = (a, b), and a set
of loops L = (a1, a2, b1). Where ‘a’ and ‘b’ represent ‘main’
and ‘my_func’, respectively, and ai denotes the ith loop in
function a. A specific execution of our example program
may lead to the following set of kernels at runtime: K =
{(a), (a → a1), (a → a1 → b), (a → a1 → b → b1), (a →
b), (a→ b→ b1), (a→ a2)}.

2.2 Values of Model Parameters
After all kernels have been identified, the next step is to

identify the input parameters that should be used to build
a performance model for a specific kernel. The first task is
to assemble a list of all input parameters that influence the

main [a]!
P1

’={p1, p2} !

main_loop_2 [a2]!
P3

’={p1} !
main_loop_1 [a1]!

P2
’={p1, p2} !

my_func [b]!
P4

’={p1,p2,p4} !

my_func_loop_1 [b1]!
P5

’={p1, p3, p4} !
Figure 2: Example of a Loop Call Graph (LCG).

runtime of the application. We call such parameters critical
(input) parameters [19].

Critical parameters should be scalar values such as sizes of
dimensions or number of iterations. If the execution time of
the program is determined by an input file or a vector, then
it should be condensed into the smallest number of scalar
critical parameters (e.g., if the input file is a sparse matrix,
the critical parameter could be the number of non-zero ele-
ments in the matrix). A domain expert has to determine the
complete set of parameters and supply them to PEMOGEN.
We identify the set of parameters as P = (p1, p2, . . . , pn).

Not all parameters may influence each kernel. Thus,
PEMOGEN relates the specified parameters to the source
code and uses static analysis to determine the parameters
Pi
′ ⊆ P that influence the runtime of each specific kernel ki.

PEMOGEN performs pointer analysis to construct use-def
chains [3] from all statements in each function and loop in
V and checks which critical parameters are used. It con-
servatively adds the parameter to the parameter set Pi

′ for
may-dependencies. Finally, we use the following maps from
each kernel to its parameter set during runtime to collect
the profile fi : ki ← Pi

′, 0 < i < |K|.
The profiled dynamic value of the input parameters and

the static mapping information between the kernels and
their parameter sets are used in the construction of per-
formance models of kernels.

2.3 Target Metrics
Our tool can generate kernel models for various metrics

such as hardware performance counters, the number of mes-
sages communicated, the size of messages communicated,
and the execution time. Without loss of generality, We
choose to present the absolute execution time [16]. It is
often the noisiest metric and thus the most challenging one
for any modeling algorithm. The absolute execution time is
the time elapsed for the execution of instructions that are
parts of nested kernel. For example, in Figure 2, while cal-
culating the absolute execution time of the kernel a→ b, we
do not include the execution time of the kernel a→ b→ b1
though they are nested.

2.4 Dynamic Construction of Performance
Models

Shrinkage is a method in statistics where a penalty is ap-
plied to the coefficients of the regression predictor model
and thus the coefficients values are shrunk to bring them
close to zero. Shrinkage techniques are useful in cases where

there is high correlation between the model parameters or in
cases where some parameters cause the model to overfit. By
selecting the parameter that best describe the model, these
shrinkage methods often result in better prediction accuracy.
Ridge regression technique [22] adds a L2 penalty to the co-
efficients and thus shrunk the coefficients of models close to
‘0’ but does not shrink any coefficient to ‘0’ and therefore
cannot eliminate any parameter. Therefore, although the
ridge regression technique builds model with better predic-
tion accuracy, the generated models are not different from
the ordinary least square regression in terms of user inter-
pretability.

By adding a L1-penalty to the regression coefficients, the
Least absolute shrinkage and selection operator (LASSO)
technique [36] bridges the gap between user interpretabil-
ity and prediction accuracy of the generated models. Due
to the ability of LASSO in the generation of interpretable
models, the LASSO method generated significant interest
in statistics [9, 36], signal processing [10, 13] and machine
learning [17,31] communities.

We utilize the recently developed online version of the
Least Absolute Shrinkage and Selection Operator (LASSO)
method. We call this method oLASSO in the remainder of
this paper.

First, we describe the regular (offline) LASSO briefly:
LASSO assigns an L1 penalty to the coefficients of in-
put parameters (predictors) which leads to sparse solu-
tions and thus achieves results that are easier to inter-
pret. LASSO accepts n training examples or observations
(yi, xij) ∈ R×Rm, i = (1, 2, . . . , n) and j = (1, 2, . . . ,m). We
assume we have m input parameters for the model. Here y
is the performance metric we want to model and x is the set
of input parameters. We wish to fit a linear model to pre-
dict the response yi as a function of xij and a feature vector
θ ∈ Rm, yi = xTi θ + vi, where vi represents the noise in the
observation. The LASSO optimization problem is given by

min
θ

1

2

n∑
i=1

(xTi θ − yi)2 + µn ‖θ‖1 (1)

where µn is a regularization parameter. The solution of
Equation 1 is typically sparse, i.e. the solution θ has few en-
tries that are non-zero, and therefore identifies which dimen-
sions in xi are useful to predict the response yi. The original
LASSO proposal [36] did not have the additional 1

2
multi-

plied with the first term of Equation (1). It was later shown
that the LASSO problem is equivalent to the Basis Pursuit
Denoising (BPDN) optimization problem which needs the
multiplier 1

2
. Also BPDN representation of LASSO makes

it algorithmically easier to solve. LASSO is particularly use-
ful in our case because LASSO is used in cases where the
number of observations is less than the number of predictor
variables and it generates a model that is more interpretable
than Ordinary Least Square Regression [8] or Ridge Regres-
sion [22].

The offline LASSO algorithm works on a set of precom-
puted observations (training data). To use LASSO in an on-
line fashion, we choose a homotopy algorithm proposed by
Garrigues et al. [14]. Following this algorithm, the model is
updated as dynamic training data (yi, xij)i=1,...,n arrive one

at a time. Let θ(n) be the solution of the LASSO after ob-
serving n training examples and θ(n+1) the solution after ob-
serving a new dynamic data point (yn+1, xn+1.j) ∈ R×Rm.

Let X ∈ Rn×m be a matrix whose ith row is equal to xTi
and y = (y1, . . . , yn)T , they introduce the following opti-
mization problem that allows them to compute a homotopy
from θn to θn+1:

θ(t, µ) = argmin
θ

1

2

∥∥∥∥(X
txTn+1

)
θ −

(
y

tyn+1

)∥∥∥∥2
2

+ µ ‖θ‖1 (2)

The algorithm computes a path from θ(n) to θ(n+1) in two
steps where θ(n) = θ(0, µn) and θ(n+1) = θ(1, µn+1).

1. Vary the regularization parameter from µn to µn+1

with t = 0. This amounts to computing a piecewise
linear regularization path between µn to µn+1 [11, 29,
32].

2. Vary the parameter t from 0 to 1 with µn = µn+1.

The solution of the LASSO problem can be computed once
the active set (the indices in θ that have non-zero coeffi-
cients) and signs of the coefficients are known [14]. Therefore
the intuition behind the two-step algorithm is to discover the
active set and signs of the coefficients for computing θ(n+1)

at t = 1. For achieving this, the algorithm starts with the
active set and signs available at t = 0, which is essentially
calculated using LARS (step 1). Then the algorithm contin-
ues until a ‘transition point’ (value of t where the active set
changes). At this point, the necessary updates to the active
set and signs of the coefficients are met. These procedure
iteratively continues until t = 1. Next the solution θ(n+1)

can be computed using the final active set and signs of the
coefficients at t = 1.

2.5 Selection of the regularization parameter
The amount of regularization depends indeed on the vari-

ance of the noise present in the data which is not known
a priori. It is therefore not obvious how to determine the
amount of regularization. We use Garrigues’ algorithm for
choosing the best regularization parameter as new data ar-
rives [14]. The algorithm uses µn = nλn such that λn is the
weighting factor between the average mean squared error
and the l1-norm. The algorithm selects λn in a data-driven
manner. The problem with n observations is given by:

θ(λ) = argmin
θ

1

2n

n∑
i=1

(xTi θ − yi)2 + λ ‖θ‖2 (3)

As θ(λ) is piecewise linear, therefore its gradient can
be computed unless λ is a transition point. If err(λ) =
(xTn+1θ(λ)−yn+1)2 is the error on the new observation. they
update to select λn+1 is as follows:

log λn+1 = log λn − η
∂err

∂ log λ
(λn) (4)

⇒ λn+1 = λn×exp
{

2nηxTn+1,1(XT
1 X1)−1v1(xTn+1θ1 − yn+1)

}
(5)

where the solution after n observations corresponding to the
regularization parameter λn is given by and v1 = sign(θ1).
Therefore the new observation is used as a test set, which
allows the update of the regularization parameter before in-
troducing the new observation by varying t from 0 to 1. The
update is performed in the log domain to ensure that λn is
always positive.

3. IMPLEMENTATION
PEMOGEN is implemented using LLVM [25] for perform-

ing the LCG construction and instrumentation. Figure 1
describes the execution flow of a program instrumented by
PEMOGEN. The user can enable or disable the model gen-
eration by setting an environment variable. The model gen-
eration works transparently during the program runtime and
the generated models for kernels are stored in a file that can
be consulted by either the user or a performance monitoring
and optimization system. In addition, following executions
of the instrumented binary can also read the file to refine
the model further.

3.1 Kernel Identification and Instrumenta-
tion

PEMOGEN uses the middle end of LLVM to analyze the
intermediate representation (IR) of the program to build the
LCG. Natural loops and functions are well-formed structures
in the LLVM IR. After the identification of LCG nodes, PE-
MOGEN instruments the IR to prepare the IR for data col-
lection of the intended metric. We implement the data col-
lection functionality in a library that is automatically linked
to the generated program executable.

Optionally, PEMOGEN can output the LCG in the dot
graph language for visualization. If the program is compiled
with debug information, the generated LCG contains code
information such as source code file name and line number.
This is particularly useful to map the kernels to the source
code to identify specific latent performance problems.

3.2 Parameter Specification
The scalar model parameters have to be supplied by a

domain expert. An LLVM pass instruments the source code
so that the values of the model parameters are captured
dynamically. The parameters can be of different types:

• A member of a structure: In this case, the param-
eter name has to be supplied along with the structure
name.

• A local variable in a function: In this case, the pa-
rameter name has to be supplied along with the func-
tion name.

• A global variable or a macro: In this case, the
parameter name is sufficient.

We use the following EBNF for the parameter file:

〈file〉 |= 〈line〉 〈newline〉 | 〈line〉
〈line〉 |= 〈word〉 〈space〉 〈flag〉 〈space〉 〈word〉
〈flag〉 |= 〈0〉 | 〈1〉 | 〈2〉 | 〈3〉

〈word〉 |= 〈wchar〉 〈word〉 | 〈wchar〉
〈wchar〉 |= 〈cchar〉 | 〈ichar〉
〈cchar〉 |= A . . .Z | a . . . z | 0 . . . 9

〈ichar〉 |=

Each line contains three tokens: The first token is the
parameter name as in the source code, the second token
indicates the type of parameters (‘0’ for parameter inside
structure, ‘1’ for parameter inside function, ‘2’ for global
parameter, and ‘3’ for parameter declared as macro), and
the third token specifies the context (function name or struct
name).

3.3 Mapping of Parameters to Kernels
We now discuss how we determine the set P ′i for each ker-

nel ki. We assume that the value of critical parameters does
not change during program execution. For each specified
critical parameter, PEMOGEN finds the statement in the
IR that first accesses it. Then it performs a pointer analy-
sis with all the access instructions in the body of each LCG
node (a function or a natural loop) to find which kernels use
the critical parameter. In the case where the pointer anal-
ysis reports a may point-to relation, PEMOGEN conserva-
tively adds the name of the parameter in the parameter list
of the kernel. PEMOGEN maps parameters to LCG nodes
statically during compile time and then uses the static infor-
mation to aggregate parameter lists for each kernel during
runtime.

For parameters defined as macros, the tool conservatively
adds them to the parameter list of all LCG nodes.

3.4 Constructing the oLASSO
PEMOGEN uses a reference implementation of the

oLASSO algorithm [29] for constructing the online perfor-
mance model. It selects the best predictor model from a pool
of model hypotheses. We extended the Performance Model
Normal Form (PMNF) as described by Calotoiu et al. [7] to
use it with more than one parameter. Our Extended PMNF
(EPMNF) for a parameter set P is given as:

f(P) =

|P |∑
i=1

n∑
k=1

ci.p
jik
i log

lik
2 (pi) (6)

This representation is, of course, not exhaustive, but
proved practical in most scenarios since it is a consequence
of how most computer algorithms are designed. A possible
assignment of all cik, jik and lik in an EPMNF expression
is called a model hypothesis.

The oLASSO method calculates the coefficients for each
candidate model hypothesis. In this way, a number of coef-
ficient vectors, one for each model hypothesis is generated.
When a new measured value arrives, each model is tested
using their goodness of fit on new values. If the goodness of
fit of more than one model falls within an acceptable range
(the acceptable fitting range, ε, has to be specified by the
user), the model with fewer parameters is selected and the
other models are discarded. If the selected model’s fit goes
above the acceptable range, we start building the whole set
of model hypothesis again and continue updating them until
we find a model whose fit falls within the specified ε.

3.5 Reducing the Overhead of Model Gener-
ation

There can be significant overhead for updating the models
for loops and functions that are called a number of times
from a call site. Because in that case, the instrumented
code has to call the model update function every time a new
data point is generated. This can potentially be a problem
for inner loops that may have thousands of iterations.

To have a balance between the collection of data for a
metric and model update, we call the model generating
function on batches of data points.

3.6 Model Confidence
The model update is enabled or disabled based on the

fitting of the generated model on new data and the user-
supplied acceptable fitting range ε.

We also sample the test data for measuring the fitting. As
mentioned in the previous step, the model is updated for a
batch of x observations at once instead of calling the model
update function each time a new observation is received.
The next x data points are used as test data and the adjusted
R-square (ARS) of the predictions by the model is calculated
on the test data:

R2 ≡ 1−
∑x
i=1 (yi − fi)2∑x
i=1 (yi − ȳ)2

(7)

ARS = R2 − (1− R2)
m

x−m− 1
(8)

Where x and m are the test data batch size and number of
parameters respectively. If for a program, we can’t collect a
batch of data points, we keep the metric data temporarily
until we have a batch. Still this method has much less stor-
age overhead than other online methods mainly the storage
overhead from HPC applications come from kernels that run
a large number of times, either in parallel or in a loop. But
in our technique, that is a favourable case because we do not
have to store temporary data for a large number of batches.

We use the state machine shown in Figure 3 to evaluate
the confidence of a model hypothesis. We assign counters to
each model hypothesis. When the model is built for the first
time, the confidence value (counter) is initiated to ‘0’. With
each successful prediction (if ARS < ε, where ε is supplied
by user) the confidence of the model in incremented by one.
If the model’s fit is above the user defined range, the models
confidence in decremented by one. The three states of the

Strongly
Confident!

0!

1!

1!

0!

1!

Manual !
reset!

0: ARS < ε !
1: ARS >= ε !

Intra-run!Inter-run!

Weakly!
Confident!

Initial!

0!

Figure 3: State Machine to Determine the Confi-
dence of the Predictor Model.

model are:

• Initial: Each model is initiated with this state, with
the counter value for model confidence being ‘0’. Mod-
els can also be reset to go back in initial confident state
manually when a strongly confident model fails to fit
well within a desired fitting range. The initial state of
the model is updated each time a new test data batch
arrives within an application run or across application
runs (for kernels whose training batch does not reach
value x within an application run).

Table 1: Applications from NAS [30] and Mantevo Benchmarks [1] and their input parameters.

Code Description Parameters (some abbreviated from original long names)

BT Block tri-diagonal solver grid_points(1), grid_points(2), grid_points(3), niter, dt
CG Conjugate gradient, irregular memory access na, nonzer, niter, shift
DC Create data cube views input_tuples, attrnum, memoryLimit, dim, mnum
EP Embarrassingly parallel random number generator m, mk, mm, nn, nk, nq, epsilon, a, s
FT discrete 3D fast Fourier transform nx, ny, nz, maxdim, niter_default, ntotal, nxp, nyp, ntotalp
IS Bucket sorting {total_keys,max_key,num_buckets}_log_2, max_iters, test_array_size
LU Lower-upper Gauss-Seidel solver ipr, inorm, nitmax, dt, omega, tolnwt(1, 2, 3, 4, 5), nx, ny, nz
MG Multi-grid on a sequence of meshes lt, nit, nx, ny, nz
SP Scalar penta-diagonal solver nx, ny, nz, niter, dt_default
UA Unstructured adaptive mesh lelt, lmor, refine_max, fre, niter, nmxh, alpha

Cloverleaf Compressible Euler solver on a Cartesian grid states(energy, density, svel, yvel), end_time, end_step, x_cells,
y_cells, {x,y}min, {x,y}max, {initial, max}_timestep, timestep_rise

CoMD Typical computations in molecular dynamics n{x,y,z}, {x,y,z}proc, nsteps, time_step, initial_{temp,delta}
FE Proxy application for unstructured finite element codes nx, ny, nz
MiniGhost Difference stencil in three dimensional domain nx, ny, nz, stencil, num_vars, perc_sum, num_sp, error_tol, rep_diff
HPCCG Approximation of unstructured implicit finite element nx, ny, nz

• Weakly Confident: A initial state of a model hy-
pothesis can become weakly confident when the model
hypothesis’ counter reaches the value ‘5’. We have
found this value gives a good balance between model
hypothesis updation overhead and keeping the ARS of
the model within the user defined range for the set of
benchmarks used. This state is also used within an
application run to determine the confidence within a
run.

• Strongly confident: In this state, the model upda-
tion as well as data collection for the kernel is turned
off. Using this state gives us a change to optimize
the data collection and model update overhead. We
show the effect of this optimization in Section 4.6. The
strongly confident state is an inter-run measure of con-
fidence and therefore we keep a separate counter for
the strongly confident state information. After the ex-
ecution of the program with a certain set of parameter
values, the strongly confidence counter of all the model
hypotheses in weakly confident state is incremented by
one. Once the strong confidence counter reaches the
value ‘10’, the model hypothesis goes to strongly confi-
dent state, where both the data collection and update
is turned off. Of course using this method, the kernels
whose behaviour largely varies according to different
input parameter values can’t be modeled. But while
determining the performance of a program, the perfor-
mance model of these kernels can be assumed to have
any value for estimation.

There is another well known metric for determining model
confidence, which is called root mean squared error (RMSE).
But we did not use RMSE because by using ARS, we had
an interpretable fit of the model on new data and could
determine how good the built model is. As the kernels that
have largely fluctuating behaviour for different parameter
values are not targeted by our technique, the ARS on new
data gives an estimate of the generated model’s confidence
in predicting the performance of non-fluctuating kernels.

4. EXPERIMENTAL EVALUATION
We applied PEMOGEN to the NAS parallel bench-

marks [30] and the Mantevo benchmarks [1]. Table 1 pro-
vides an overview of all test programs and their critical pa-
rameters. The instrumented versions of these two bench-
marks were run on a Cray XC30 (Piz Daint) supercom-

puter. Each node has eight Intel SandyBridge CPU cores
with 32 GiB memories and one NVIDIA Tesla K20X GPU.
All nodes are connected with Cray’s Aries network in a Drag-
onfly topology.

We used the dragonegg plugin of LLVM-3.3 to compile
Fortran codes. The benchmarks are instrumented using the
LLVM compiler and then the binary was generated from the
bitcode using the LLVM assembler and the GCC-4.8.2 linker
with ’-O3’ optimization.

For constructing the set of candidate model hypotheses
from the EPMNF as described in Section 3.4, we used the
following values of jik =

{
−1, 0, 1

3
, 1
2
, 2, 3

2
, 3
}

and lik =
{0, 1, 2}. Using other values for ik and jk only increased
the model generation overhead but did not increase the pre-
diction accuracy in our benchmarks significantly. For ex-
ample, if a kernel has two parameters p1 and p2 in its pa-
rameter set, we would start with the following set of hy-

pothesis functions: (p1 + p2),
(√
p1 +

√
p2
)
,
(√

p31 +
√
p32

)
,(√

p32 log2 p1 +
√
p32 log2 p2

)
,· · · ,

(
log2 p1 + log2 p2

)
. Each

model hypothesis is a linear combination of the input pa-
rameters and we did not consider interaction terms (e.g.,
p1/p2, p1p3). This set of candidate pools is not exhaustive
for representation of kernels. Again if we had to consider the
linear combination of all possible permutations of model hy-
potheses, the candidate model space for each kernel would
become 21m where m is the number of parameters. This
might cause a huge overhead in model generation in an on-
line setting. Therefore we added one candidate kernel that is
formed by the linear combination of the above 21 hypothesis.
This gave us to find some interesting terms in the generated
models and also took care of the overhead

4.1 Kernel Detection
Table 2 summarizes various application characteristics.

It shows the number of statically identified functions and
loops and the number of dynamically detected kernels. The
context-sensitive kernel detection may lead to a large num-
ber of kernels if loops or functions are called from many
different contexts. However, our results show that for the
benchmarks considered, the maximum number of kernels
discovered is 664 for the application UA from the NAS
benchmarks, indicating a lesser number of different call sites
for functions that contain a large number of loops. Theo-
retically, the number of kernels could vary depending on the

input. We did not observe any such variation in our experi-
ments.

Table 2: Number of functions (“Func”), loops, ker-
nels (“Ker”), and parameters (“Par”) for all bench-
marks. Column “Zero” shows how many parame-
ters were shrunk to zero (on average) by oLASSO
and “Trace” shows the required storage in GiB for
offline model generation.

Code Func Loops Ker Par Zero Trace

BT 28 181 211 6 1 25
CG 16 47 30 5 0 3.4
DC 79 104 178 6 1 12.45
EP 10 9 12 10 3 .75
FT 21 42 39 10 2 14.5
IS 5 16 12 6 3 1.2
LU 27 172 165 14 3 15.6
MG 24 77 98 6 2 14.5
SP 29 250 229 6 2 23.3
UA 75 473 664 8 2 28

Cloverleaf 88 634 645 16 2 25.4
CoMD 135 118 210 11 1 11
FE 546 130 610 6 4 20
MiniGhost 33 114 137 10 5 11
HPCCG 114 28 130 4 0 8

4.2 Experimental Design
We perform two experiments for each code: First, we col-

lect the data during the execution to perform ordinary least
squares (OLS) and the standard (offline) LASSO, called
fLASSO in the following. In the second run, we utilize PE-
MOGEN to compute the parameters using oLASSO during
the application run. For OLS and fLASSO, we used the
lm [8] and glmnet [12] functions implemented in GNU R,
respectively.

For obtaining the results of Sections 4.3, 4.4, 4.5, and 4.6,
the benchmarks were run with the ten different sets of input
parameter values for each of the three regression techniques
to generate the performance models. Then, for calculating
ARS, we ran the benchmarks with five new sets of parameter
values, different from the values used in the training run. All
parameters were either chosen from the different classes of
NAS benchmarks or by varying the parameters in the input
file of Mantevo benchmarks.

We also report the time overhead of running the three
regression methods. Results show that the optimization us-
ing the state confidence machine as described is Section 3.6
reduced the profiling overhead of oLASSO as compared to
the two other methods by halting the execution of kernels
whose ARS became greater than user supplied ‘ε’ (we chose
the value to be .85).

4.3 Goodness of fit of Performance Models
The LASSO method not only simplifies the generated per-

formance model by shrinking some parameter coefficients to
zero, but also it achieves better prediction accuracy than
ordinary least square regression (OLS). The lower accuracy
of OLS could be due to overfitting if there are correlations
between the model parameters or some parameters do not
influence the runtime. Especially the second is likely because
we include parameters conservatively (cf. Section 3.2).

Figure 4 shows the ARS for all benchmarks and all three
methods. We see that oLASSO has always the same or lower

ARS than OLS, meaning the models generated by online
LASSO have better prediction accuracy. The ARS pattern
for both OLS and online LASSO agrees for the kernels in
the application. The most significant difference between
OLS and online LASSO can be seen in the MiniGhost and
EP benchmarks indicating the existence of correlated pa-
rameters and and their elimination using LASSO. The ARS
of oLASSO is generally very close to that of fLASSO with
oLASSO being slightly worse in the general case.

4.4 Parameter Selection
To give an idea about the ability of oLASSO in generating

interpretable models, we report the average number of model
parameters whose coefficients were shrunk to 0. Table 2
shows the total number of parameters of the applications and
the average number of zero-coefficient parameters (column
“Zero”) in the NAS and Mantevo benchmarks.

There can be various reasons why a parameter’s coefficient
is shrunk to zero. Either the parameter has high correlation
with another parameter or the parameter is not important
in the generation of the performance model. In the later
case OLS will try to still use the parameter and suffer from
overfitting. These parameters appear in the parameter set
of a kernel because of our conservative approach of adding
parameters to the parameter list when either the pointer
analysis is unsure of a points-to relation (may points-to case)
or there is no scope of pointer analysis (macro definitions).
Comparing the results in Table 2 and Figure 4, we can see
that the average number of parameters whose coefficients
are shrunk to zero has a contribution towards the better
prediction accuracy of online LASSO in case of benchmarks
like EP, IS, FT, and MiniGhost.

4.5 Storage Cost Elimination
A major advantage of an online model generation tech-

nique comes from its ability to eliminate the temporary stor-
age cost that is needed to store the profile information for
a number of training runs. As the model generation pro-
cess continues in an incremental fashion as data arrive one
at a time, there is no need to keep the data for the pre-
vious training runs and then feeding the data to a model
generation technique as in the case of regular regression.

The online model generation also eliminates the cost of
running the application a number of times to train the gen-
erated model with the profile data. The more training runs
with different values of the model parameters, the merrier.
But it is impossible to explore the whole space of possi-
ble values of the model parameters for the generation of a
model with a 100% accuracy. Therefore in most cases the
training runs are stopped after a desired prediction accuracy
of the generated model has been reached. In other words,
if the model’s ARS is within an acceptable range, the train-
ing runs stopped and the application continues to execute
without modeling. We chose an ARS range of .85 as an
acceptable value for fitting.

In this section we report the required storage cost and
the time necessary for training runs for the offline regres-
sion techniques (fLASSO and OLS) for the NAS and the
Mantevo benchmarks. The storage cost is reported for the
ten different sets of parameter values as were used in the
previous experiments.

As the number of kernels grows in the program, the stor-
age cost of the profiles also grows. For example, in Table 2,

●●●
●●

●●
●●●●

●●●●●
●●●●

●●●●●
●●●●●●

●●●●●
●●●●●●

●●●●●●
●●●●

●●●●●
●●●●

●●●●
●●●

●●●●
●●●●

●●●
●●

●●
●●●●●

●
●●

●●●
●●●●

●●●
●●●●

●●●●
●●●●

●●●●●●●
●●●●●

●●●●●
●●●●●●●

●●●●●●
●●●●●●●

●●●●●●●●
●●●

●●●●●●●
●●●●●

●●●●●●
●●●●●●

●●●●
●●●●●

●●●●●●●
●●●●●●

●●●●

0.5

0.6

0.7

0.8

0.9

0 50 100 150 200
Kernels

A
dj

us
te

d
R

−
sq

ua
re

(a) BT

● ●

0.5

0.6

0.7

0.8

0.9

0 10 20 30
Kernels

A
dj

us
te

d
R

−
sq

ua
re

(b) CG

●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●
●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●

●●●●●●●●
●●●●●●●●●●

●●●●●●●●
●●●●●●●

●●
●●

●●●●●●●●●●
●

0.5

0.6

0.7

0.8

0.9

0 50 100 150
Kernels

A
dj

us
te

d
R

−
sq

ua
re

(c) DC

●

●

●

●

● ●

● ● ● ● ● ●

0.5

0.6

0.7

0.8

0.9

2.5 5.0 7.5 10.0 12.5
Kernels

A
dj

us
te

d
R

−
sq

ua
re

(d) EP

● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ●

● ● ●
● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ●

0.5

0.6

0.7

0.8

0.9

0 10 20 30 40
Kernels

A
dj

us
te

d
R

−
sq

ua
re

(e) FT

●

●

●

●

●

●

●

●

0.5

0.6

0.7

0.8

0.9

2.5 5.0 7.5 10.0 12.5
Kernels

A
dj

us
te

d
R

−
sq

ua
re

(f) IS

●
●●

●
●

●

●●
●●●

●
●●

●

●●

●
●

●

●

●
●●

●

●

●

●

●●
●

●

●
●
●

●●

●
●●

●

●
●
●

●

●

●

●●
●●

●
●●

●

●

●

●

●●

●

●

●

●
●
●●

●●

●
●

●

●

●

●●
●

●
●

●
●●

●

●●

●

●

●

●

●●

●

●●
●
●

●
●●

●

●

●

●

●

●●
●
●●

●●

●

●

●●
●

●
●

●
●
●●

●

●

●
●

●
●

●

●
●

●
●

●
●
●
●●

●

●

●
●

●

●

●

●

●
●

●
●
●
●

●

●

●

●●

●
●

●

●
●

●

●

●

0.5

0.6

0.7

0.8

0.9

0 50 100 150
Kernels

A
dj

us
te

d
R

−
sq

ua
re

(g) LU

●

●●●

●●●
●●●●

●
●

●
●●●

●●●●
●●

●●●
●●●●●●

●●●●●●●●●●●
●●

●●●
●●●●●

●
●●●●●●●

●●●
●●

●
●●●●

●●●
●

●●●●●●
●●

●●

●●
●●

●●
●

●●
●

●

●●

0.5

0.6

0.7

0.8

0.9

0 25 50 75 100
Kernels

A
dj

us
te

d
R

−
sq

ua
re

(h) MG

●
●●

●●
●●●●●

●●●●
●●●●

●●●●●●●●●
●●●●●●

●●●●●●●●
●●●●●●●

●●●●●●
●●●●●●●●●●

●●●●●●●●
●●●●●●●

●●●●●
●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●

●●●●●●
●●●

●●●●●
●●●●●●●

●●●●●●●●●
●●●●●●●

●●●●●
●●●●●

●●●●●●
●●●●●●●●

●●●●●
●●●●

●●

0.5

0.6

0.7

0.8

0.9

0 50 100 150 200
Kernels

A
dj

us
te

d
R

−
sq

ua
re

(i) SP

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●

●●●●●
●●
●

●
●●●●●
●●●●●

●●●●●
●
●

●
●
●
●●●
●●●●●●●●●●●●●●●●●

●●●●
●
●

●
●●●●
●
●●●●

●
●●●●●
●●
●
●●●●
●
●●
●●●●●●●●

●●
●●●●●●

●
●
●●
●
●●●●●
●●●
●
●●
●
●
●●●
●●●●●●●●●

●
●●●●●●●

●●
●●
●●
●●●
●●
●●
●●
●●
●●
●●●
●●●
●●●●●●●

●●●●●●
●
●●●●
●●
●
●
●●●●●●

●
●●●●●
●
●
●●
●●
●●●●●
●●●●
●
●
●●
●●●●
●●
●●
●
●●●
●●●●●●●●●

●●
●●●●●●

●●●
●●
●
●●●●
●
●
●●●●
●
●●●
●
●●●●
●
●●
●●
●
●
●
●
●●●●●●●●

●
●●
●
●●
●●
●
●
●
●●●
●
●
●●
●
●●
●●●●
●●●●●
●
●●
●
●●●●
●
●●
●●
●
●
●●
●

●
●●●●
●

0.5

0.6

0.7

0.8

0.9

0 200 400 600
Kernels

A
dj

us
te

d
R

−
sq

ua
re

(j) UA

●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●
●●●●
●
●●●●●●●

●
●●
●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●

●
●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●

●●
●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●

0.5

0.6

0.7

0.8

0.9

0 200 400 600
Kernels

A
dj

us
te

d
R

−
sq

ua
re

(k) Cloverleaf

●●
●●●

●●●●●●
●●●●

●●●●●●●●
●●●●●●●●

●●●●●●
●●●●

●●●●●
●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●

●●●●●●●
●●●●●

●●●
●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●

0.5

0.6

0.7

0.8

0.9

0 50 100 150 200
Kernels

A
dj

us
te

d
R

−
sq

ua
re

(l) CoMD

●●●●
●●●●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●

●●●●●●●
●●●●●
●●●●●●●●●

●●●●●●
●●●●●
●●●●●●●

●●●●
●●●●●●

●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●
●●●●●●

●●●●●●
●●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●●
●●●●●●●●

●●●●●●●
●●●●●
●●●●●●●

●●●●●●●●
●●●●●●●●●

●●●●●●●●●
●●●●●●●

●●●●●●
●●●●●●

●●●●
●●●●●●●●●●●

●●●●
●●●●●●●●●

●●●●●●●
●●●●
●●●●●●●●●●

●●●●●●●●●
●●●●●
●●●●●●

●●●
●●●●●●

●●●●●●●
●●●●●
●●●●●●

●●●●●●
●●●●●●●●●●

●●●●●●●●
●●●●●●●

●●●●●●●
●●●●●
●●●●●●●●●●

●●●●●
●●●●●●

●●●●
●●●●●●●●●●

●●●●●●●●●●●
●●●●
●●●●●
●

●●●●
●●●●●●●●●

●●●●●
●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●

●●●●●●
●●●●●
●●●●●●●●

●●

●●●●●●●
●●●●●●

●●●●●
●●●●
●●●●
●●●●●●

●●●●●●●●●●
●●●●
●●●

●●●●●●●
●●●●●●●

●●●●●
●●●●●
●●●●●●

●●
●●●●●●●●●●

●
●

0.5

0.6

0.7

0.8

0.9

0 200 400 600
Kernels

A
dj

us
te

d
R

−
sq

ua
re

(m) FE

●

●●
●●

●
●●

●
●
●

●●

●

●
●●

●

●●●

●●●
●●

●●
●●

●

●

●
●

●

●
●
●

●

●

●

●
●

●

●●
●●

●●

●●
●
●
●
●
●●●

●

●●

●

●

●

●●
●
●
●
●

●

●
●●●

●●●
●

●●●
●●●●

●

●●
●
●

●
●●

●

●
●
●●

●

●
●
●

●●
●●

●

●

●
●

●●
●
●●

●●●
●●●●●●

●●
●
●●

●●●

●

●
●

0.5

0.6

0.7

0.8

0.9

0 50 100
Kernels

A
dj

us
te

d
R

−
sq

ua
re

(n) MiniGhost

●●●●●●

●●●

●●
●●●●●●●

●●●●●●●●●
●●

●●●●●
●●●●

●

●●●●●●●
●

●●●●●●

●●●●

●●●●●

●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●

●●●●●●●●●●●●●●

●●●

●

0.5

0.6

0.7

0.8

0.9

0 50 100
Kernels

A
dj

us
te

d
R

−
sq

ua
re

(o) HPCCG

●

●

●

●

● ●

● ● ● ● ● ●

0.5

0.6

0.7

0.8

0.9

1.0

2.5 5.0 7.5 10.0 12.5
Kernels

Ad
ju

st
ed

 R
−s

qu
ar

e

● fLASSO

oLASSO

OLS

●

●

●

●

● ●

● ● ● ● ● ●

0.5

0.6

0.7

0.8

0.9

1.0

2.5 5.0 7.5 10.0 12.5
Kernels

Ad
ju

st
ed

 R
−s

qu
ar

e

● fLASSO

oLASSO

OLS

Figure 4: Comparison of predicting performance of oLASSO with OLS and Regular offline LASSO (fLASSO)
in terms of their fit on new test data. The 95% confidence interval for the ARS is also included in the figure.
The ARS values can range from ‘0’ to ‘1’ and higher is better. The kernels are sorted as per the ARS values
of OLS along the x-axis.

BT CG DC EP FT

0

3

6

9

fL
ASSO

oL
ASSO

OLS

fL
ASSO

oL
ASSO

OLS

fL
ASSO

oL
ASSO

OLS

fL
ASSO

oL
ASSO

OLS

fL
ASSO

oL
ASSO

OLS

%
 o

ve
rh

ea
d

co
m

pa
re

d
to

 n
on

−
pr

of
ili

ng
 r

un
IS LU MG SP UA

0.0

2.5

5.0

7.5

10.0

12.5

fL
ASSO

oL
ASSO

OLS

fL
ASSO

oL
ASSO

OLS

fL
ASSO

oL
ASSO

OLS

fL
ASSO

oL
ASSO

OLS

fL
ASSO

oL
ASSO

OLS

Regression

Cloverleaf CoMD FE HPCCG miniGhost

0

3

6

9

fL
ASSO

oL
ASSO

OLS

fL
ASSO

oL
ASSO

OLS

fL
ASSO

oL
ASSO

OLS

fL
ASSO

oL
ASSO

OLS

fL
ASSO

oL
ASSO

OLS

Modelling

Profiling

Figure 5: Time Overhead of three LASSO methods. The profiling and model generation time has been shown
separately.

UA, BT, Cloverleaf benchmarks have a huge storage over-
head due to the presence of the highest number of kernels. In
general, all our offline experiments required between several
hundreds of Megabytes and several Gigabytes storage. The
oLASSO algorithm requires to store a maximum of 36×m
floating point values and is therefore well suited for online
model learning.

4.6 Overheads of Online and Offline Model-
ing

In this section, we describe the overhead of running
the three different regression techniques for model genera-
tion. The overhead comes from both profiling and model
generation (OLS, fLASSO, oLASSO) and model update
(oLASSO). As seen in Figure 5, profiling constitutes a sig-
nificant portion of the overhead in all the three techniques.
The data collection overhead depends both on the number
of kernels and the number of times they are executed in
the program. The data collection overhead for oLASSO is
less than that of the offline techniques due to the use of
the confidence-state machine as described in Section 3.6.
This optimization allows the overhead of oLASSO being
smaller than fLASSO though the model generation overhead
of fLASSO sometimes is less than the model generation and
update overhead of oLASSO. The computational complex-
ity of oLASSO is O(d2) where d is the number of active
parameters (whose coefficients are non zero) at a step [29].
For the fLASSO, the computational complexity is O(Nm)
where N data points are present for m number of input pa-
rameters [12]. As the cardinality of the input parameter
set is not very high in our case, the model generation over-
head for fLASSO did not have a significant advantage over
oLASSO.

5. CASE STUDIES
We now present two different case studies, one from NAS

and one from the Mantevo benchmarks to illustrate our
method in detail.

5.1 IS
IS is a NAS benchmark that implements the bucket sort

algorithm. We randomly chose the main iteration loop of
the NAS IS benchmark. IS has the following input pa-
rameters: total_keys_log_2 (p1), max_key_log_2 (p2), num_-
buckets_log_2 (p3), max_iterations (p4), test_array_size

(p5), and num_procs (p6). First for building the prediction
model using oLASSO, we run the benchmarks 25 times with
different random combinations of the sets parameter values
as follows: p1=(16, 20, 23, 25), p2=(10, 16, 19, 21), p3=(8,
10, 12), p4=(5, 10, 15, 20), p5=(15, 20, 22, 25, 28), p6=(16,
20, 32, 64, 80). The runtime model generated from the 25
runs had the max_key_log_2 parameter eliminated:

T = .004p1 − 1.01p3 + 0.04p4 + 1.107p5 log p5 +
330.45

p6
(9)

Using the model of Equation (9), we plotted the predictions
and the actual execution times using a new set of parameter
values: p1=12, p3=9, p4=25, p5=8 with changing p6 and
p1=22, p3=6, p4=35, p6=32 with changing p5. We kept all
the parameter values fixed but changed one parameter to
observe the predicted and actual trends in the execution
times with change in values of that one parameter. We
repeat this experiment for the two paramters: number
of processors and the test_array_size. From Figure 6,
the oLASSO generated model was able to predict the
performance trend with changing values of both number of
processes and test_array_size.

5.2 HPCCG
HPCCG is a simple conjugate gradient benchmark that

has 4 input parameters: nx (p1), ny (p2), nz (p3), num_procs
(p4). For training the model, we ran the benchmark 25
times using random combinations from the following sets of
input parameter values: p1=(16, 32, 64, 100, 110, 120, 800,
1000), p2=(16, 32, 64, 100, 110, 120, 800, 1000), p3=(16, 32,
64, 100, 110, 120, 800, 1000), p4=(8, 16, 32, 64, 128, 256).
The generated model for the ddot kernel of the HPCCG
benchmark in weak scaling mode was:

T = 0.79p1 + 0.02p3 + 1.11
√
p4 log p4 (10)

The absence of parameter ny can be explained by the fact
that function ddot works on the current row of the 3-D sten-
cil. The points in the current row of the stencil are skipped
in either nx or ny based on their values. The skipped points
in the y-direction accounts for the removal of ny from the
model. Also as the function operates on rows, the relation
with nz is much less than that with nx.

We used the same method as IS to find out how well the
model fits for new data using different sets of input param-
eter values as are used in training. The values used were
p1=80, p2=40, p3=55, with changing p4 and p2=14, p3=125,
p4=32, with changing p1. For plotting, we kept all the pa-
rameter values fixed but varied one parameter at a time.
We chose the nx and num_procs parameters for evaluating
the model predictions for the HPCCG benchmark. Figure 6
shows the results.

As can be seen from Figure 6, the model was able to suc-
cessfully fit in the performance trend of the kernel.

6. RELATED WORK
Model-based Simulation is a simulation technique where

not each hardware detail is investigated but abstract models
are used to determine the runtime or resource consumption.
The simulation time can be less than the execution time
leading to a “simulation speedup” of several orders of mag-
nitude [21,37,41] while still accurately capturing important
details of the execution. This technique has been used to
discover important performance effects [20], however, it of-
ten fails to provide the required insight to understand the
root cause of such effects. It is a complex task to execute
such simulations in practice such that simulation tools are
often only used by computer scientists and not by applica-
tion developers. Nevertheless, model-based simulation is a
very accurate practical and accurate technique to predict
large-scale performance.

The use of performance modeling manually has been ex-
plored before. Hoefler et al. aimed to popularize perfor-
mance modeling by defining a simple six-step process to cre-
ate application performance models [19]. Bauer, Gottlieb,
and Hoefler show how to model performance variations us-
ing simple statistical tools [5]. They also describe how to
measure the influence of certain system parameters such as
the network topology.

There are approaches that focus on models generated for
a very specific purpose but less on human-readable general-
purpose models. For example, Ipek et al. propose multi-
layer artificial neural networks to learn application perfor-
mance [24] and Lee et al. compare different schemes for
automated machine-based performance learning and predic-
tion [26]. Zhai, Chen, and Zheng extrapolate single-node
performance to complex parallel machines [40]. Wu and
Muller [39] extrapolate traces to larger process counts and
can thus predict communication operations.

There is also ample research in building performance tools
that can hint optimization opportunities. The authors of
the Statistical Stall Breakdown [4] describe a mechanism
that samples hardware counters and dynamically multi-
plexes hardware counters to compute a breakdown model
for a PowerPC based microprocessor.

The work presented in [23] focuses on automating the
process for parallel performance experimentation, analysis
and problem diagnosis. Such mechanism is built on top of
the PerfExplorer performance data mining system combined
with the OpenUH [27] compiler infrastructure. The usage
of PerfExplorer is useful for easy comparison of several ex-
periments using the same application, and the selective in-
strumentation of TAU [34] helps avoid excessive overhead
during the execution and gives the opportunity to provide
optimization suggestions to the user.

The PerfExpert [6] tool employs the HPCToolkit [35] mea-
surement system to execute a structured sequence of perfor-
mance counter measurements to detect probable core, socket
and node-level performance bottlenecks in important proce-
dures and loops of an application.

The work described in [33] characterizes the memory be-
havior, including memory footprint, memory bandwidth and
cache efficiency of several scientific applications. Based on
the analysis of the executions of such applications they also
estimate the impact of the memory system on the amount
of the instruction stalls and on the real computation perfor-
mance. Their results are shown per application execution,
summing up all the information from the different tasks.

There are other performance tools that exploit processor
hardware counters and that have integrated sampling capa-
bilities into their analyses. Tools like TAU, Scalasca [38],
HPC-Toolkit, use sampling in addition to instrumentation,
their sampling capabilities are mainly focused on assigning
time consumption to source code lines instead of providing
finer details on the hardware counters.

Approaches exist to reduce the cost of storage and time
of offline modeling. For example, the database of stored
profiles are analyzed to discover parts of an application that
represent the whole program execution and the performance
of only that portion of the program is observed instead
of the whole execution [34]. There are approaches to fil-
ter out profile data of program parts that take negligible
time [15]. There are proposals of using statistical techniques
(e.g. PCA, F-Ratio analysis) to reduce the dimensionality
of huge collected profile data so that the analysis techniques
can scale [2].

Gonzalez et al. presents a tool that automatically charac-
terizes the different computation regions of the program [15].
They use density based clustering algorithms to performance
counters to find similar code regions (that belong to the same
counter). Their clustering is based on two hardware metric
combination: Processor cycle combined with IPC and Com-
pleted Instructions, L1 and L2 Cache misses [15]..

Servat et al. detects clusters based on IPC and number of
instructions committed and then detects the change of per-
formance counters like cache misses inside the clusters [28].
They modify the code manually for optimization based on
the detected phase changes (slope of hardware counters w.r.t
time) to get performance improvement.

But none of these above methods gave a solution to build
the performance models in an online setting that would
greatly reduce the storage cost. Also none of the above
methods talked about the interpretability of the generated
model. To our knowledge, our research is the first method of
using oLASSO to generate interpretable performance mod-
els in an online fashion.

7. CONCLUSION
We demonstrated PEMOGEN, an automatic tool that can

generate dynamic and adaptive, interpretable performance
models using the Least Absolute Shrinkage and Selection
Operator (LASSO) technique in an online fashion. PE-
MOGEN can be downloaded from http://spcl.inf.ethz.
ch/Research/Performance/PEMOGEN/

We showed that the Coefficient of Variation (adjusted R2)
of online LASSO (oLASSO) is significantly better than ordi-
nary least square regression (OLS) and very close to that of
the offline LASSO (fLASSO). Based on our results, we argue

http://spcl.inf.ethz.ch/Research/Performance/PEMOGEN/
http://spcl.inf.ethz.ch/Research/Performance/PEMOGEN/

●

●

●

●

●

●
●

●

20 40 60 80 100 120 140 160

5
10

15
20

IS

Number of processes, Strong Scaling

tim
e(

in
 s

ec
)

●

●

●

●

●

●
●

●

● Measured Value

Tr
ai

ni
ng

Te
st

(a) Varying num_procs

●

●

●

●

●

●

●

●

15 20 25 30 35 40

30
40

50
60

70

IS

TEST_ARRAY_SIZE, 32 Processes

tim
e(

in
 s

ec
)

●

●

●

●

●

●

●

●

● Measured Value

Tr
ai

ni
ng

Te
st

(b) Varying TEST_ARRAY_SIZE

●

●

●

●

●

●

●

●

●

0 100 200 300 400

40
50

60
70

80
90

HPCCG

Number of processes, Weak Scaling

tim
e(

in
 s

ec
)

●

●

●

●

●

●

●

●

●

● Measured Value

Tr
ai

ni
ng

Te
st

(c) Varying num_procs

●

●

●

●

●

●

●

●

●

20 40 60 80 100 120 140

20
40

60
80

10
0

HPCCG

Varying nx, 32 processes

tim
e(

in
 s

ec
)

●

●

●

●

●

●

●

●

●● Measured Value

Tr
ai

ni
ng

Te
st

(d) Varying nx
Figure 6: The predicted and actual performance trends of IS and HPCCG kernels with varying the values of
one parameter, while keeping the other parameter values fixed.

that using online LASSO is a better choice for the generation
of performance models in HPC applications not only because
the model generation and update can run transparently as
the application runs and can automatically be turned on
and off based on some confidence value of the model, but
also the online technique greatly reduces the storage cost of
training data. We also showed the effectiveness of using a
confidence state machine in reducing the profiling overhead
in online LASSO.

We expect that our technique to generate self-modeling
applications will rapidly become state-of-the-art in high-
performance programming.

8. REFERENCES

[1] Mantevo Project. http://mantevo.org.

[2] D. H. Ahn and J. S. Vetter. Scalable analysis
techniques for microprocessor performance counter
metrics. In SC’02: Proceedings of the 2002
ACM/IEEE conference on Supercomputing, pages
1–16, 2002.

[3] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The
Design and Analysis of Computer Algorithms.
Addison-Wesley Publishing Company, 1974.

[4] R. Azimi, M. Stumm, and R. Wisniewski. Online
performance analysis by statistical sampling of
microprocessor performance counters. In
ICS’05:Proceedings of the 19th Annual International
Conference on Supercomputing, pages 101–110, 2005.

[5] G. Bauer, S. Gottlieb, and T. Hoefler. Performance
modeling and comparative analysis of the MILC
lattice QCD application su3 rmd. In Proc. of CCGrid,
2012.

[6] M. Burtscher, B.-D. Kim, J. M. J. Diamond,
L. Koesterke, and J. Browne. PerfExpert: an
easy-to-use performance diagnosis tool for HPC
applications. In Proceedings of the 2010 ACM/IEEE
International Conference for High Performance
Computing, Networking, Storage and Analysis, pages
1–11, 2010.

[7] A. Calotoiu, T. Hoefler, M. Poke, and F. Wolf. Using
Automated Performance Modeling to Find Scalability
Bugs in Complex Codes. In Proceedings of SC13:
International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’13,
pages 45:1–45:12, 2013.

[8] J. M. Chambers. Linear models, Chapter 4 of
Statistical models in S. Wadsworth & Brooks/Cole,
1992.

[9] Y. Dodge. Statistical Data Analysis Based on the
L1-Norm and Related Methods. Birkhauser, 2002.

[10] D. Donoho. Compressed sensing. Information Theory,
IEEE Transactions on, 52(4):1289–1306, April 2006.

[11] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani.
Least angle regression. Annals of Statistics,
32:407–499, 2004.

[12] J. Friedman, T. Hastie, and R. Tibshirani.
Regularization Paths for Generalized Linear Models
via Coordinate Descent. Journal of Statistical
Software, 33(1):1–22, 2010.

[13] J.-J. Fuchs. On sparse representations in arbitrary
redundant bases. Information Theory, IEEE
Transactions on, 50(6):1341–1344, June 2004.

[14] P. Garrigues and L. El Ghaoui. An homotopy
algorithm for the Lasso with online observations. In
Neural Information Processing Systems (NIPS),
volume 21, 2008.

[15] J. Gonzalez, J. Gimenez, and J. Labarta. Automatic
detection of parallel applications computation phases.
In IPDPS, pages 1–11, 2009.

[16] S. L. Graham, P. B. Kessler, and M. K. Mckusick.
Gprof: A Call Graph Execution Profiler. In
Proceedings of the 1982 SIGPLAN Symposium on
Compiler Construction, SIGPLAN ’82, pages 120–126,
1982.

[17] I. Guyon and A. Elisseeff. An Introduction to Variable
and Feature Selection. J. Mach. Learn. Res.,
3:1157–1182, Mar. 2003.

[18] T. Hoefler. Bridging Performance Analysis Tools and
Analytic Performance Modeling for HPC. In
Proceedings of Workshop on Productivity and
Performance (PROPER 2010). Springer, Dec. 2010.

[19] T. Hoefler, W. Gropp, W. Kramer, and M. Snir.
Performance Modeling for Systematic Performance
Tuning. SC ’11, pages 6:1–6:12, 2011.

[20] T. Hoefler, T. Schneider, and A. Lumsdaine.
Characterizing the Influence of System Noise on
Large-Scale Applications by Simulation. In Proceedings
of the 2010 ACM/IEEE International Conference for
High Performance Computing, Networking, Storage
and Analysis, SC ’10, pages 1–11, 2010.

http://mantevo.org

[21] T. Hoefler, T. Schneider, and A. Lumsdaine.
LogGOPSim - Simulating Large-Scale Applications in
the LogGOPS Model. In Proceedings of the 19th ACM
International Symposium on High Performance
Distributed Computing, pages 597–604. ACM, Jun.
2010.

[22] A. E. Hoerl and R. W. Kennard. Ridge Regression:
Biased Estimation for Nonorthogonal Problems.
Technometrics, 12(1):55–67, 1970.

[23] K. Huck, O. Hernandez, V. Bui, S. Chandrasekaran,
B. Chapman, A. Malony, L. McInnes, and B. Norris.
Capturing performance knowledge for automated
analysis. In Proceedings of the 2008 ACM/IEEE
Conference on Supercomputing, SC’08, pages
49:1–49:10, 2008.

[24] E. Ipek, B. R. de Supinski, M. Schulz, and S. A.
McKee. An approach to performance prediction for
parallel applications. In Proc. of the 11th Intl.
Euro-Par Conference, pages 196–205, 2005.

[25] C. Lattner and V. Adve. LLVM: A Compilation
Framework for Lifelong Program Analysis &
Transformation. In Proceedings of the 2004
International Symposium on Code Generation and
Optimization (CGO’04), Palo Alto, California, Mar
2004.

[26] B. C. Lee, D. M. Brooks, B. R. de Supinski, M. Schulz,
K. Singh, and S. A. McKee. Methods of inference and
learning for performance modeling of parallel
applications. In Proc. of the 12th ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming, (PPoPP’07), pages 249–258, 2007.

[27] C. Liao, O. Hernandez, B. Chapman, W. Chen, and
W. Zheng. OpenUH: an optimizing, portable
OpenMP compiler. In 12th Workshop on Compilers
for Parallel Computers, 2006.

[28] G. Llort, J. Gonzalez, H. Servat, J. Gimenez, and
J. Labarta. On-line detection of large-scale parallel
application’s structure. In Parallel Distributed
Processing (IPDPS), 2010 IEEE International
Symposium on, pages 1–10, 2010.

[29] D. Malioutov, M. Cetin, and A. Willsky. Homotopy
continuation for sparse signal representation. In
Acoustics, Speech, and Signal Processing, 2005.
Proceedings. (ICASSP ’05). IEEE International
Conference on, volume 5, pages v/733–v/736 Vol. 5,
March 2005.

[30] NASA. NAS Parallel Benchmarks.
https://www.nas.nasa.gov/publications/npb.html.

[31] A. Y. Ng. Feature Selection, L1 vs. L2 Regularization,
and Rotational Invariance. In Proceedings of the
Twenty-first International Conference on Machine
Learning, ICML ’04, pages 78–, 2004.

[32] M. R. Osborne. An effective method for computing
regression quantiles. IMA Journal of Numerical
Analysis, 12(2), 1992.

[33] M. Pavlovic, Y. Etsion, and A. Ramirez. Analysis of
memory system requirements for scientific computing.
In IEEE International Symposium on Workload
Characterization, 2009.

[34] S. Shende and A. Malony. The TAU parallel
performance system. International Journal of High

Performance Computer Applications, 20:287–311,
2006.

[35] N. Tallent, J. Mellor-Crummey, L. Adhianto,
M. Fagan, and M. Krentel. HPCToolkit: performance
tools for scientific computing. Journal of Physics:
Conference Series, 012088, 2008.

[36] R. Tibshirani. Regression Shrinkage and Selection Via
the Lasso. Journal of the Royal Statistical Society,
Series B, 58:267–288, 1994.

[37] M. Tikir, M. Laurenzano, L. Carrington, and
A. Snavely. PSINS: An open source event tracer and
execution simulator. In DoD High Performance
Computing Modernization Program Users Group
Conference (HPCMP-UGC), 2009, pages 444–449,
June 2009.

[38] F. Wolf, B. Wylie, E. Abraham, D. Becker, W. Frings,
K. Furlinger, M. Geimer, M.-A. Hermanns, B. Mohr,
S. Moore, M. Pfeifer, and Z. Szebenyi. Usage of the
SCALASCA for scalable performance analysis of
large-scale parallel applications. In Tools for High
Performance Computing, pages 157–167, 2008.

[39] X. Wu and F. Muller. Scalaextrap: Trace-based
communication extrapolation for SPMD programs.
ACM Transactions on Programming Languages and
Systems, 34(1), 2012.

[40] J. Zhai, W. Chen, and W. Zheng. Phantom:
predicting performance of parallel applications on
large-scale parallel machines using a single node.
SIGPLAN Notices, 45(5):305–314, 2010.

[41] G. Zheng, G. Gupta, E. Bohm, I. Dooley, and L. Kale.
Simulating Large Scale Parallel Applications Using
Statistical Models for Sequential Execution Blocks. In
Parallel and Distributed Systems (ICPADS), 2010
IEEE 16th International Conference on, pages
221–228, Dec 2010.

https://www.nas.nasa.gov/publications/npb.html

	Introduction
	Methodology
	Automatic Identification of Kernels
	Values of Model Parameters
	Target Metrics
	Dynamic Construction of Performance Models
	Selection of the regularization parameter

	Implementation
	Kernel Identification and Instrumentation
	Parameter Specification
	Mapping of Parameters to Kernels
	Constructing the oLASSO
	Reducing the Overhead of Model Generation
	Model Confidence

	Experimental Evaluation
	Kernel Detection
	Experimental Design
	Goodness of fit of Performance Models
	Parameter Selection
	Storage Cost Elimination
	Overheads of Online and Offline Modeling

	Case studies
	IS
	HPCCG

	Related Work
	Conclusion
	References

