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Abstract—Several researchers investigated the placing
of communication calls in message-passing parallel codes.
The current rule of thumb it to maximize communication/-
computation overlap with early binding. In this work, we
demonstrate that this is not the only design constraint
because CPU caches can have a significant impact on
communications. We conduct an empirical study of the
interaction between CPU caching and communications for
several different communication scenarios. We use the
gained insight to formulate a set of intuitive rules for
communication call placement and show how our rules can
be applied to practical codes. Our optimized codes show an
improvement of up to 40% for a simple stencil code. Our
work is a first step towards communication optimizations
by moving communication calls. We expect that future
communication-aware compilers will use our insights as a
standard technique to move communication calls in order
to optimize performance.

Keywords-MPI; CPU Cache; Code Transformations

I. Introduction

Programming distributed memory architectures to
maximize performance is difficult. One of the main
reason is the low abstraction level of many primitives
provided by the message passing paradigm. Basic
send/receive routines are indeed found in almost every
distributed library or language (e.g. MPI [1]). When
writing a parallel program, the programmer needs
to take care not only of the semantic correctness of
it but also about the positioning of the communica-
tion routines within the code. This problem has been
investigated in the past and the common practice,
in MPI, is to schedule nonblocking communication
operations as early as possible in order to maximize
communication/computation overlap [2].

However there are many architectural aspects which
may play a role in determining a good program point
to place send or receive calls. For example, the re-
quest management overhead of asynchronous routines
– which are commonly used to hide communication
costs – may penalize performance for small message
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sizes. Runtime systems for distributed memory li-
braries (e.g. MPI [1] and UPC [3]) usually employ
optimizations to hide many architectural details to the
user code. For example long messages may be split into
smaller chunks to enable pipelining [4]. Oppositely,
when too many short messages are sent, the runtime
system may try to coalesce information into larger mes-
sages reducing the injection rate [5], [6]. Optimizations
done at runtime are highly effective since the system
is fully aware of the underlying architecture. However,
most of the decision have already been made by the
programmer in the source code and therefore, at this
stage, is often too late to overcome performance bugs.
For these reasons, production codes are usually hand-
tuned for particular target architectures.

In this paper we study the impact of CPU cache
on MPI communication routines. Indeed, in order to
hide network latency, MPI libraries aggressively use
buffering. For example, when small messages are sent,
the MPI library does not wait for the receiver process
to be ready-to-receive, instead MPI buffers the message
data on the receiver side (often called eager send).
MPI not only uses the main memory for buffering
reasons but also for allowing efficient communication
of MPI processes allocated on the same multi-core
machine. Intra-node communication is performed by
means of shared memory (SM) transfer layers which
are provided by all major MPI implementations [7],
[8]. Because buffering is implemented using the main
memory, it is subject to cache hierarchies, and thus the
reason for our study.

We measure, with a synthetic benchmark, the dif-
ferences in terms of execution time, for point-to-point
operations performed when the data being sent is
fully loaded into the CPU cache or not. We repeat
the experiment with multiple configurations, i.e., intra-
node and inter-node. In the same way we measure
the impact of those point-to-point communication rou-
tines on the application cache by accessing application
data, previously loaded into the cache, right after the
communication is performed. From the gathered data
we derive a set of rules and guidelines which can be



utilized to transform the input program for improved
cache utilizations and thus performance. To the best of
our knowledge, this aspect has been largely neglected
until now. Work in literature focuses on quantifying the
impact of local memory on communications [9]. Those
works are principally concerned with non-regular data
types which involve expensive packing/unpacking op-
erations and optimizing the way the MPI library han-
dles them; whereas our work focuses on contiguous
data and how the impact of communication routines
can be exploited, by a programmer or a compiler, to
optimize the input code.

Experiments show that a send, or receive, operation
can be up to 25% faster if the data is already in the CPU
cache. Furthermore, cache pollution generated by com-
munication routines can negatively impact on the ap-
plication performance if not carefully placed. Indeed,
send and receive operations can invalidate the content
of the message buffers if they have been preloaded
into the cache. Based on the guidelines derived by our
benchmark data, we propose a communication/cache-
aware code transformation which, when manually
applied to a 3-point stencil code, it improves code
performance up to 40% for specific message sizes.
Our transformation always shows a positive effect on
performance for messages which are smaller than the
last level cache size.

The contributions of the paper are multiple:
• It presents a benchmark to measure the perfor-

mance of send/receive operations with different
configuration of the data cache;

• It derives, from gathered data, a set of optimiza-
tion guidelines which can be used to tune an input
program for improved cache behaviour;

• It demonstrates the efficacy of the derived opti-
mization strategies by applying them to a 3-point
stencil code.

II. AnalyzingMPI Cache Behaviour
In order to highlight the effects of CPU caches on

MPI communication routines we wrote a synthetic
benchmark. The main goal of the MPI cache bench-
mark is to capture differences in terms of execution
time between communication routines with multiple
configurations of the CPU cache and additionally, to
measure their impact on the application cache. In do-
ing so, we also collect the value of several performance
counters using the PAPI library [10]. Many benchmark-
ing suites for MPI exist in literature[11], [12]. Cod-
dington et al. wrote a survey of benchmarking tools
for MPI’s point-to-point communication [13]. However
none of those is designed to capture cache behaviour
of MPI routines. Some of the tools, e.g. MPIBench[12]
and SKaMPI[11], provide options to pre-load messages

into the cache before performing the communication
but they do not provide a way to precisely capture
the level cache pollution caused by MPI communi-
cation routines. The benchmark code which has been
developed for this purpose follows the guidelines for
reproducibility of measurements described in [14]; the
code is publicly available at [15]. Beside the execution
time the benchmark takes care of registering the values
of multiple PAPI performance counters which will be
used to understand low level implementation details
of the underlying MPI library.

The benchmark is split into two scenarios, SCN1
and SCN2, which are further described in this section.
Because of space limitations in [15].

A. Scenario 1 – SCN1

SCN1 studies the behaviour of single MPI send/re-
ceive routines. With this benchmark we are interested
in capturing the behaviour, in term of performance, of
two basic MPI routines, i.e. MPI Send and MPI Recv,
considering different states of the data cache. We
therefore perform a ping-pong operation with three
different initial cache states. In the first case, INV, we
make sure all the content in the cache is wiped out and
none of the data elements being sent or received are
present into any of the CPU caches. The second cache
configuration, EXCL, entirely pre-loads into the cache
the message data right before the communication is
performed. Data elements are only read which means
the corresponding cache lines are in the “exclusive”
state. In the last cache configuration, MOD, cache lines
are preloaded in the “modified” state.

B. Scenario 2 – SCN2

In the second scenario, referred as SCN2, we want to
capture the level of cache pollution caused by send/re-
ceive communication routines. This is obtained by
measuring the time, together with other performance
counters, required to traverse the array containing the
message data previously exchanged in the ping-pong
operation. This is again done considering multiple
configurations of the cache. In INV, we start by cleaning
the caches, we then perform the message exchange
and, upon competition of the send/receive, data is
traversed and the measurement is performed. In the
second configuration, PRE, we pre-load the message
data into the cache before performing the message
exchange. It is worth noting that, in both cases, the
code for which we perform the measurements does not
contain any communication statements. Obtained data
is compared with the values measured while travers-
ing the message buffer without previously performing
any communication. Also in this case we consider two
cache configurations, i.e., cache is invalidated before



System name LEO3 VSC2

Max # of nodes 162 1.314
Sockets per node 2 2
Cores per Socket 6 8
Core Architecture Intel Xeon X5650 AMD Opteron 6132 HE
Clock Frequency 2.67GHz 2.2GHz
L1 cache 32KB + 32KB 64KB + 64KB
L2 cache 256KB (private) 512KB (private)
L3 cache 12MB (shared by 6) 2x6MB (shared by 4)
Symmetric Multi-
Threading (SMT)

Disabled NA

Memory per Node 24GB DDR3 32GB DDR3
Interconnection Infiniband 4x QDR Infiniband 4x QDR
Kernel Version 2.6.32 2.6.32
Open MPI version 1.5.5 1.5.4
SM module OpenMPI default KNEM[16]

Table I: Experimental target architectures.

the array elements are accessed, BASE INV, or the
array is fully pre-loaded into the cache before being
traversed, BASE PRE.

We repeat the experiment with two different process
allocations in order to test intra-node and inter-node
point-to-point communications. This is obtained by
allocating the two MPI processes respectively on differ-
ent computing nodes or on the same multi-processor
machine. In both cases, the use of affinity settings
ensures the MPI processes are bound to a specific core
of distinct CPUs. This is done in order to take full
advantage of the CPU cache and avoid conflicts which
arise when multiple processes share the same last level
cache.

C. Hardware Platforms

We evaluated the code on 2 computing platforms
summarized in Table I. The LEO3 cluster system con-
sists of 162 compute nodes (with a total of 1944 cores).
All nodes are connected through an Infiniband 4x
QDR high speed interconnect. Each node contains two
Intel Xeon CPU based on the Nehalem architecture
where Hyper Threading (HT), or 2-fold SMT, has been
disabled from the BIOS. The Vienna Supercomputing
Cluster 2 (VSC2) is a HPC system which consists of
1.314 nodes, with 2 AMD Opteron processors each, for
a total of 21.024 CPU cores. CPU cache layout for the
two system is also summarized in Table I. These are
both production clusters and the measurements have
been taken while the clusters were fully operational,
therefore we expect some noise to show up in the
measurements. In order to reduce it we repeat each
measurement 100 times and take the median.

D. MPI Communication Protocols

The cache benchmark treats the underlying MPI li-
brary as a black box. This allows us to make considera-
tions which are not biased towards a particular feature

of an MPI implementation. However, MPI libraries
are very complex and in order to be able to correctly
interpret the gathered data, implementation details
cannot be completely neglected. Indeed every MPI
library exposes several “knobs” which can be used to
tune the performance of a particular application on the
underlying target platform [17], [18]. One of the most
relevant threshold for point-to-point communication
is the so called “eager limit”. The eager protocol is
not standardized by the MPI specification, however
it is an implementation technique utilized by all MPI
implementations. Every message exchanged between
peer processes is subject to this protocol. MPI libraries
typically use (at least) two algorithms, eager and ren-
dezvous. When the size of the transmitted message is
smaller than the specified threshold value, the message
(together with an MPI header) is eagerly sent to the
receiver. For larger messages the rendezvous protocol is
utilized instead, i.e. the sender process sends a ready-
to-send message (RTS) to the receiver and blocks wait-
ing for the acknowledgment, the clear-to-send (CTS),
from the matching receive. The eager protocol is useful
when latency is important because it avoids CTS/RTS
round-trip overhead. However it requires additional
buffering at the receiver side. Rendezvous protocols are
typically used when resource consumption is critical.

For example, the Open MPI library [7] uses multiple
protocols, detailed in [19]. In the case of eager send,
the behaviour is the same as described before. The
rendezvous protocol however enables better latency
hiding. When the communication is performed over
RDMA-enabled networks (such as an OpenFabrics-
based network, e.g. InfiniBand) the protocol is divided
into three phases. In the first phase the RTS message is
sent to the receiver, while the sender is waiting for the
CTS message, it starts “registering” the rest of the large
message with the OpenFabrics network stack. Since
the registration is slow the process is pipelined so that
registration latency is hidden.

In shared-memory, the rendezvous protocol can use
several implementation mechanism which have been
presented over the last decade because of the in-
creasing relevance of multi-core systems. Most shared-
memory message passing implementations, such as
Nemesis [20] device in MPICH2 and the SM compo-
nent in Open MPI, depend on a double buffering mem-
ory scheme. An extra memory buffer is pre-allocated
as an exchange zone between processes. Communi-
cation between the processes is performed using the
so called copyin/copyout semantics (CICO). The sender
process copies from the message buffer into the shared
memory and in the same way the receiver reads it
out and copies into the receiver buffer. In order to
reduce latency, the copy happens in a pipelined way.
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Figure 1: LEO3 Inter-node – SCN1 – Send/Receive

However approaches exist, such as KNEM [16], which
via a kernel extension, allows the direct copy from the
sender to the receiver buffer. This mechanism has the
advantage to eliminate the additional memory copy
and therefore both reduces latency and cache pollution.

We perform our measurements using the default
settings provided by the chosen MPI library. We use
Open MPI with the default eager limit, which is set by
default to 12 KiB for communication over Infiniband
and to 4 KiB for intra-node communication, on both
systems. In the LEO3 cluster we used the default
shared memory provided by the Open MPI library
which is based on the CICO mechanism. On the VSC2
cluster shared memory communications are performed
using the KNEM kernel extension.

III. Benchmark results

In this section, the data gathered by running our
cache benchmark for cluster architectures, listed in
Table I, is shown. For space limitations, we show
values of the PAPI performance counters only for the
LEO3 architecture.

A. Inter-node communication – Infiniband
Figures 1 and 2 depict the values obtained by the

two benchmark scenarios (SCN1 and SCN2) using inter-
node communication, over Infiniband.

1) SCN1: Figure 1 shows several performance coun-
ters associated with the MPI Send operation, in the
first line, and MPI Recv, in the second line, using the
three cache configurations: INV, EXCL and MOD. The
first column shows the execution time which, in order
to be as precise as possible, is expressed in terms of
number of CPU clock cycles. Differences in terms of
the execution are barely noticeable. However, we can
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Figure 2: LEO3 Inter-node – SCN2 – Cache Pollution

see that having data preloaded into the cache (as in
EXCL and MOD) reduces the amount of L2 data cache
misses (PAPI L2 DCM counter in the second column)
up to the eager limit, this is visible especially at the
receiver side where buffering happens. Indeed, the two
routines have a reduced execution time, which reaches
its peak of around 20% for messages of 8KiB, when the
message data is preloaded into the cache.

After the eager threshold is exceeded we still have
better behaviour of L2 cache however we notice an
increase of L3 cache misses (PAPI L3 TCM hardware
counter) which is similar for the EXCL and MOD cache
states. While the reduced cache misses in L2 cache
are constant for increasing message sizes, L3 cache
misses proportionally grows with the message size.
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Figure 3: LEO3 Intra-node – SCN1 – Send/Receive

To better understand the reason for this we show
another performance counter, in the last column of Fig-
ure 1, which depicts the number of snoop invalidation
requests addressing the CPU. It can be noticed that
during the rendezvous protocol, the number of inval-
idation requests increases considerably if the message
data is preloaded into the cache. This is more marked
for the receiver as the NIC driver updates the message
buffer in main memory and therefore eventual dirty
copies in the cache need to be invalidated.

2) SCN2: The measurements for the second scenario,
SCN2, are depicted in Figure 2. As previously stated,
this benchmark measures the performance resulting
from accessing the message buffer right after being sen-
t/received. We keep performance values for BASE INV
and BASE PRE as a upper and lower bound for what
we expect to be the performance from this scenario.
Interesting is the number of L3 cache misses, in the
case of the sender process, we notice that accessing
the data after the send operation (INV) causes the same
amount of misses measured for BASE INV. This means
the send operation does not pollute the application
cache. However this is not true for messages which are
smaller than the eager limit. In that case there are no
L3 cache misses for both INV and PRE configurations.

Major differences between sender and receiver hap-
pen beyond the eager threshold. In PRE, while at the
sender side the amount of cache misses is compa-
rable with the one measured for the BASE PRE con-
figuration; the receiver behaviour is instead similar
to the BASE INV case. Indeed, the receive operation
invalidates the entire L3 cache (as suggested by the
memory bus snoop operations shown in Figure 1)
and accessing the received elements costs as many
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Figure 4: LEO3 Intra-node – SCN2 – Cache Pollution

memory operations as accessing it from a completely
invalid cache (BASE INV). Additionally, loading the
data after the receive routine causes more misses than
the BASE INV configuration (which should be the per-
formance upper-bound). Unfortunately we could not
find a reasonable explanation for this. The increased
amount of L3 cache misses has also a significant impact
on the execution time which for INV and PRE is slightly
higher than BASE INV. In our opinion, the reason for
this is consequence of the memory pinning operation
performed by the MPI library. Also it is worth saying
that the same kind of behaviour has been observed at
the sender side when the data is preloaded in a “modi-
fied” state. In that case, the send operation invalidates
all the preloaded cache lines and therefore accessing



the buffer data after the communication routine is
slower.

B. Intra-node Communication – SM

In Figures 3 and 4, the data obtained for shared
memory configuration for the LEO3 cluster is shown.

1) SCN1: Figure 3 depicts the measurements for
SCN1. In this case we observe overall a much higher
number of cache misses since the actual data exchange
between the two MPI processes happens in shared
memory. However, for the sender process, we see only
small differences among the three configurations. We
show the value of the MEM LOAD RETIRED:L3 MISS
performance counter which proves the advantage, i.e.
reduced number of memory load misses, due to fact
of having the message buffer available in the cache.
At the receiver side instead, we observe a smaller
number of both L2 and L3 cache misses for messages
up to the last level cache size. Overall, the performance
of MPI routines is improved when data is preloaded
into the cache and the gain reaches its peak, around
25%, before the cache size is exceeded. As already
stated, in this machine shared memory communication
is performed using a CICO mechanism. Because this
transfer between sender and receiver is done using a
shared buffer, which for the Open MPI library is of
32 KiB, only a portion of the data cache gets polluted
during the transfer.

2) SCN2: This is visible in Figure 4. Differently
from what observed for inter-node communications,
in shared memory the message buffer is fully loaded
into the cache for both INV and PRE configurations.
However while the amount of L3 cache misses for
PRE, BASE PRE and INV is almost the same up to 4
MiB, at 8 MiB we start seeing a gap between the
three configurations. The amount of cache pollution
is higher at the sender side since the difference in
terms of cache misses between PRE and BASE PRE
is noticeably higher than the receiver side. This is
unexpected since the data transfer from the user buffer
to the shared memory segment should be implemented
using non temporal move instructions (e.g. MOVNTDQ),
which avoids the target address to be loaded into the
CPU cache. However, this penalty happens only for
message sizes which are larger than half of the last
level cache size.

IV. Considerations and Optimization Guidelines

From the output of the MPI cache benchmark we
derive, in this section, a set of intuitive rules to find a
good placement for send/receive communication state-
ments which better exploit the properties of the CPU
caches. We divide our consideration into three sub-
sections applying to specific ranges of the transmitted

data, i.e., (i) from 1 byte up to the eager limit, (ii) from
the eager threshold up to the last level cache size and
(iii) beyond the available cache size.

A. From 1 Byte to the Eager Threshold

When the eager protocol is utilized, messages are
transfered to the NIC using a memcpy() operation
which has the side-effect of loading the content of
the send buffer into the CPU cache. Therefore if the
transmitted data is accessed right after the send op-
eration, the data will be still available in one of the
CPU caches. Additionally the memcpy() routine also
benefits from having the source and target buffers
preloaded into the cache. However, the input program
could present dependencies which does not allow this
transformation to be applied. In such situation, the
sent/received data should be accessed immediately
after the communication routines or as late as before
the message buffer content gets kicked out from the
data caches.

RULE 1: For messages up to the eager limit, it
is always preferable to perform the communication
when the message data is cached. Received data
should be immediately accessed.

B. From the Eager Limit to the Last Level Cache Size

We now consider the second message range, from
the eager limit up to the cache size. In this range
intra-node and inter-node communication differ and
we treat them separately.

1) Inter-node communication: As far the communica-
tion statement is concerned, we observe an increase in
the number of L3 cache misses which is proportional
to the message size, Figure 1. However the overall
number of cache misses is small that the execution time
is not affected by it. More interesting considerations
can be done for Figure 2. At the sender side, we no-
ticed no cache pollution caused by the send operation.
Therefore we expect no changes in the application per-
formance from changing send statements placement.

However things change dramatically at the re-
ceiver side. The receive operation invalidates all the
preloaded cache lines in the case the message data was
preloaded into the cache. Additionally, because of the
memory pinning, utilized by the rendezvous protocol
in Open MPI, loading the received data right after the
communication statement has a negative impact on
performance. A similar behaviour was also observed
for the sender process when the data is preloaded in
a “modified” state as discussed in Section III-B.

RULE 2: Avoid to access the transfered data imme-
diately after the communication routines. If possible,
perform all the computation on the message buffer
before issuing a send operation. At the receiver side,



for(unsigned iter=0; iter<MAX_ITERS; ++iter) {

MPI_Sendrecv(&A[0][0], COLS, MPI_DOUBLE , bottom, 0,
&A[ROWS -1][0], COLS, MPI_DOUBLE , top, 0,
MPI_COMM_WORLD , MPI_STATUS_IGNORE);

for(unsigned i = 0; i<ROWS-1; ++i)
for(unsigned j = 0; j<COLS-1; ++j)
tmp[i][j]=A[i][j]+(A[i+1][j]+A[i][j+1])/4;

double** ttemp=A; A=tmp; tmp=ttemp; // swap arrays
}

Listing 1: 3-point stencil code

delay the access to the receiver buffer by overlapping
other computation.

2) Intra-node communication: For shared memory
communication we notice a reduction of L2 and L3
cache misses, Figure 3, which is proportional to the
size of the message being transferred. This has positive
effects on the execution time which reaches a maxi-
mum improvement, of around 25%, both for sender
and receiver processes, for 8 MiB messages. For shared
memory communications, both the send and the re-
ceive routines populate the cache with the content
of the message buffer and in the case the data is
preloaded before the communication routine, the cache
lines will not be invalidated. However, when the CICO
mechanism is utilized, cache pollution may occur for
large messages.

RULE 3: Access the message data after the commu-
nication statements, if the data is not already loaded
into the cache, when the message size is smaller than
LAST LEVEL CACHE SIZE/2 bytes. If the data is
already into the cache, perform all the computation
before invoking any communication routine.

C. Beyond the Last Level Cache Size

Beyond the cache line the behaviour of our bench-
marks tend to converge, therefore no meaningful opti-
mization rule can be defined. However, large messages
can be divided into smaller chucks using a well known
MPI code transformation referred in literature as soft-
ware pipelining or message strip mining [21]. If the
splitting size is chosen accordingly, the cache effects
can be enabled. However this aspect is orthogonal to
the argumentation of this paper and we are set to
explore it in future work.

V. A Case Study: 3-point Stencil

Following the optimization guidelines derived in the
previous section we manually tuned a 3-point stencil
code which encodes a pattern commonly utilized in
many HPC codes. A common way of parallelizing
such stencil operation in MPI is shown in Listing 1.
The code has a communication statement at beginning
of the loop which exchange the first and last row

for(unsigned iter=0; iter<MAX_ITERS; ++iter) {

for(unsigned j = 0; j<COLS-1; ++j)
tmp[0][j]=A[0][j]+(A[1][j]+A[0][j+1])/4;

MPI_Sendrecv(&A[0][0], COLS, MPI_DOUBLE , top, 0,
&A[ROWS -1][0], COLS, MPI_DOUBLE , bottom, 0,
MPI_COMM_WORLD , MPI_STATUS_IGNORE);

for(unsigned i = 1; i<ROWS-1; ++i)
for(unsigned j = 0; j<COLS-1; ++j)
tmp[i][j]=A[i][j]+(A[i+1][j]+A[i][j+1])/4;

double** ttemp=A; A=tmp; tmp=ttemp; // swap arrays
}

Listing 2: Tuned 3-points stencil code (OPT1)

of a 2-dimensional matrix which is updated by the
following stencil computation. It is worth noting that
while the receive operation must be performed before
the last iteration of the i loop, the send operation
has no dependencies and can be therefore issued at
any program point, but before the swap procedure.
We derive two versions of the stencil code depicted
respectively in Listings 2 and 3.

Based on the our observations, the code has a bad
cache behaviour as the array elements being sent,
which are in a “modified” state, are accessed right after
the communication statement, therefore after being
kicked out from the CPU cache (when the rendezvous
protocol is utilized). In order to optimize this aspect
we can rewrite the code by moving the communication
right after the first iteration of the loop is performed.
This has two advantages: (i) it makes sure the matrix
rows which are going to be sent/received are freshly
loaded into the cache; (ii) avoid to access the received
data right after the communication routine. The trans-
formed code is depicted in Listing 2, we refer to this
code version as OPT1.

The OPT1 code version can however be further im-
proved for the receive operation. As a matter of fact,
the received data is not immediately consumed but
accessed only in the last iteration of the stencil loop.
This could not be optimal for messages which are
smaller than the eager limit. For optimizing this aspect
we can derive a second code version which utilizes the
received data immediately after the data is available
in the receiver buffer. This is obtained by reversing
the order of execution of the stencil code. We traverse
the 2-dimensional matrix from ROW-3 backwards until
the first row. In this way we make sure to have the
send data already into the cache. We then perform the
communication and successively complete the stencil
by updating the last row. We refer to this code version
as OPT2, the code is depicted in Listing 3. It is worth
noting that in this version, the receiver buffer may not
be into the cache before the message exchange if the
entire problem does not fit into the cache.



for(unsigned iter=0; iter<MAX_ITERS; ++iter) {

for(long i = ROWS-3; i>=0; --i)
for(long j = COLS-2; j>=0; --j)

tmp[i][j] = A[i][j] + 1/4*(A[i+1][j]+A[i][j+1]);

MPI_Sendrecv(&A[0][0], COLS, MPI_DOUBLE , top, 0,
&A[ROWS -1][0], COLS, MPI_DOUBLE , bottom, 0,
MPI_COMM_WORLD , MPI_STATUS_IGNORE);

for(unsigned j = 0; j<COLS-1; ++j)
tmp[ROWS -2][j]=A[ROWS -2][j]+

(A[ROWS -1][j]+A[ROWS -2][j+1])/4;

double** ttemp=A; A=tmp; tmp=ttemp; // swap arrays
}

Listing 3: Tuned 3-points stencil code (OPT2)
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Figure 5: LEO3 – Evaluation of tuned 3-point stencil
application code

A. Evaluation

We evaluated the three versions of the stencil code
on the two clusters described in Table I. Each ver-
sion has been executed multiple times with different
problem sizes using two different process allocations,
i.e. intra-node and inter-node. We ran the stencil code
using two MPI processes to correlate the outcome
with the results gathered by the cache benchmark. We
measured the execution time of each code versions
and used the value of the median obtained from 100
repetitions of the program.

Figure 5 shows the execution time of code versions
OPT1 and OPT2 relative to the baseline solution, i.e.
1 for the LEO3 cluster. The x axis refers to the size
of the message (in bytes) being exchanged by the
stencil computation in every iteration. As expected,
the OPT2 version has better performance for small mes-
sage sizes reaching, for shared memory, a performance
improvement of around 20% for 256 bytes messages.
For larger messages OPT1 has a better performance
reducing the execution time of the stencil code by 40%.
For larger message, the advantage becomes smaller as
the communication/computation ratio diminishes.
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Figure 6: VSC2 – Evaluation of tuned 3-point stencil
application code

Figure 6 shows the results for the VSC2 cluster for
both intra- and inter-node communications. Also on
this machine, OPT2 has an advantage over the original
stencil code for very small message sizes. However,
for larger messages this version is noticeable slower.
The OPT1 version, on the contrary, is faster for both
inter- and intra-node communication. However, the
measured performance improvement is contained, i.e.
around 10%. We believe the bad performance of the
OPT2 version is due to the reversed access of array
elements which may inhibit the CPU prefetcher from
correctly determine the data access pattern.

Overall, the tuned code is faster on both architec-
tures. We demonstrate how our simple guidelines,
derived from the LEO3 cluster, are portable to different
architectures. However the experiment also shows how
sensible the performance might be because of peculiar-
ities of the underlying hardware.

VI. Conclusions and FutureWork

In this paper we studied, using a synthetic bench-
mark, the impact of CPU caches on MPI communi-
cation statements and conversely the effects of MPI
routines on the application cache. We described inter-
esting findings regarding implementation details of the
MPI library and we derived three simple optimization
guidelines which can be used to tune MPI programs
for improved cache utilization.

We followed and apply our optimization rules to a
simple stencil code showing a performance improve-
ment of up to 40%. To some extent, we demonstrated
that performance is portable among different architec-
tures. However, experiments showed that the details
of the underlying CPU architecture may prefer dif-
ferent styles of optimizations. Therefore we expect, in
the future, that by combining the semantics of MPI



communication routines and the knowledge of the
underlying architecture, the code transformations here
proposed can be automatically applied by an MPI-
aware compiler.

Acknowledgments
This work was supported by the Austrian Ministry of Sci-

ence BMWF as part of the UniInfrastrukturprogramm of the
Research Platform Scientific Computing at the University of
Innsbruck. Furthermore, the computational results presented
have been achieved in part using the Vienna Scientific Cluster
(VSC).

References

[1] MPI Forum, “Message Passing Interface (MPI) Forum
Home Page,” http://www.mpi-forum.org/ (Dec. 2009).

[2] T. Fahringer and E. Mehofer, “Buffer-safe communica-
tion optimization based on data flow analysis and per-
formance prediction,” in Proceedings of the 1997 Interna-
tional Conference on Parallel Architectures and Compilation
Techniques (PACT’97). IEEE Computer Society Press,
1997, pp. 189–200.

[3] UPC Consortium, “UPC Language Specifications, v1.2,”
Lawrence Berkeley National Lab, Tech Report LBNL-
59208, 2005.

[4] G. M. Shipman, T. S. Woodall, G. B. andRich L. Graham,
and A. B. Maccabe, “High performance RDMA proto-
cols in HPC,” in Proceedings, 13th European PVM/MPI
Users’ Group Meeting, ser. Lecture Notes in Computer
Science. Bonn, Germany: Springer-Verlag, September
2006.

[5] M. J. Koop, T. Jones, and D. K. Panda, “Reducing
connection memory requirements of mpi for infiniband
clusters: A message coalescing approach,” in Proceedings
of the Seventh IEEE International Symposium on Cluster
Computing and the Grid, ser. CCGRID ’07. Washington,
DC, USA: IEEE Computer Society, 2007, pp. 495–504.

[6] W.-Y. Chen, C. Iancu, and K. Yelick, “Communication
optimizations for fine-grained upc applications,” in Pro-
ceedings of the 14th International Conference on Parallel
Architectures and Compilation Techniques, ser. PACT ’05.
Washington, DC, USA: IEEE Computer Society, 2005,
pp. 267–278.

[7] “Open MPI,” http://www.open-mpi.org.

[8] “MPICH2,” http://www.mcs.anl.gov/mpi/mpich2.

[9] K. W. Cameron and X.-H. Sun, “Quantifying Locality
Effect in Data Access Delay: Memory logP,” in Proceed-
ings of the 17th International Symposium on Parallel and
Distributed Processing, ser. IPDPS ’03. Washington, DC,
USA: IEEE Computer Society, 2003.

[10] K. London, S. Moore, P. Mucci, K. Seymour, and
R. Luczak, “The PAPI Cross-Platform Interface to Hard-
ware Performance Counters,” in Department of Defense
Users Group Conference Proceedings, 2001, pp. 18–21.

[11] R. Reussner, P. Sanders, and J. L. Träff, “SKaMPI: a
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