
Motif Prediction with Graph Neural Networks
Maciej Besta

1†
, Raphael Grob

1
, Cesare Miglioli

2
, Nicola Bernold

1
,

Grzegorz Kwasniewski
1
, Gabriel Gjini

1
, Raghavendra Kanakagiri

3
, Saleh Ashkboos

1
,

Lukas Gianinazzi
1
, Nikoli Dryden

1
, Torsten Hoefler

1†

1
ETH Zurich

2
Research Center for Statistics, University of Geneva

3
UIUC

†
Corresponding authors

ABSTRACT
Link prediction is one of the central problems in graphmining. How-

ever, recent studies highlight the importance of higher-order network
analysis, where complex structures called motifs are the first-class

citizens. We first show that existing link prediction schemes fail to

effectively predict motifs. To alleviate this, we establish a general

motif prediction problem and we propose several heuristics that

assess the chances for a specified motif to appear. To make the

scores realistic, our heuristics consider – among others – correla-
tions between links, i.e., the potential impact of some arriving links

on the appearance of other links in a givenmotif. Finally, for highest

accuracy, we develop a graph neural network (GNN) architecture

for motif prediction. Our architecture offers vertex features and

sampling schemes that capture the rich structural properties of

motifs. While our heuristics are fast and do not need any training,

GNNs ensure highest accuracy of predicting motifs, both for dense

(e.g., 𝑘-cliques) and for sparse ones (e.g., 𝑘-stars). We consistently

outperform the best available competitor by more than 10% on

average and up to 32% in area under the curve. Importantly, the

advantages of our approach over schemes based on uncorrelated

link prediction increase with the increasing motif size and com-

plexity. We also successfully apply our architecture for predicting

more arbitrary clusters and communities, illustrating its potential
for graph mining beyond motif analysis.

1 INTRODUCTION AND MOTIVATION
One of the central problems in graphmining and learning is link pre-

diction [4, 5, 65, 83, 96, 98], in which one is interested in assessing

the likelihood that a given pair of vertices is, or may become, con-

nected. However, recent works argue the importance of higher-order
graph organization [9], where one focuses on finding and analyzing

small recurring subgraphs called motifs (sometimes referred to as

graphlets or graph patterns) instead of individual links. Motifs are

central to many graph mining problems in computational biology,

chemistry, and a plethora of other fields [11, 13, 14, 30, 33, 48, 51].

Specifically, motifs are building blocks of different networks, in-

cluding transcriptional regulation graphs, social networks, brain

graphs, or air traffic patterns [9]. There exist many motifs, for exam-

ple 𝑘-cliques, 𝑘-stars, 𝑘-clique-stars, 𝑘-cores, and others [10, 50, 59].

For example, cliques or quasi-cliques are crucial motifs in protein-

protein interaction networks [23, 62]. A huge number of works

are dedicated to motif counting, listing (also called enumeration), or
checking for the existence of a given motif [13, 33]. However, while

a few recent schemes focus on predicting triangles [8, 71, 72], no
works target the problem of general motif prediction, i.e., analyzing
whether specified complex structures may appear in the data. As

with link prediction, it would enable predicting the evolution of

data, but also finding missing structures in the available data. For

example, one could use motif prediction to find probable missing

clusters of interactions in biological (e.g., protein) networks, and

use the outcomes to limit the number of expensive experiments

conducted to find missing connections [65, 67].

In this paper, we first (Section 3) establish and formally describe

a general motif prediction problem, going beyond link prediction

and showing how to predict higher-order network patterns that

will appear in the future (or which may be missing from the data).

A key challenge is the appropriate problem formulation. Similarly to

link prediction, one wants a score function that – for a given vertex

set 𝑉𝑀 – assesses the chances for a given motif to appear. Still, the

function must consider the combinatorially increased complexity

of the problem (compared to link prediction). In general, contrary

to a single link, a motif may be formed by an arbitrary set 𝑉𝑀 of

vertices, and the number of potential edges between these vertices

can be large, i.e., 𝑂 (|𝑉𝑀 |2). For example, one may be interested in

analyzing whether a group of entities𝑉𝑀 may become a 𝑘-clique in

the future, or whether a specific vertex 𝑣 ∈ 𝑉𝑀 will become a hub
of a 𝑘-star, connecting 𝑣 to 𝑘 − 1 other selected vertices from 𝑉𝑀 \
{𝑣}. This leads to novel issues, not present in link prediction. For

example, what if some edges, belonging to the motif being predicted,

already exist? How should they be treated by a score function? Or,

how to enable users to apply their domain knowledge? For example,

when predictingwhether the given verticeswill form some chemical

particle, a user may know that the presence of some link (e.g., some

specific atomic bond) may increase (or decrease) the chances for

forming another bond. Now, how could this knowledge be provided

in the motif score function? We formally specify these and other

aspects of the problem in a general theoretical framework, and

we provide example motif score functions. We explicitly consider

correlations between edges forming a motif, i.e., the fact that the

appearance of some edges may increase or decrease the overall

chances of a given motif to appear.

Then, we develop a learning architecture based on graph neural

networks (GNNs) to further enhance motif prediction accuracy (Sec-

tion 4). For this, we extend the state-of-the-art SEAL link prediction

framework [96] to support arbitrary motifs. For a given motif 𝑀 ,

we train our architecture on what is the “right motif surroundings”

(i.e., nearby vertices and edges) that could result in the appearance

of𝑀 . Then, for a given set of vertices𝑉𝑀 , the architecture infers the

chances for𝑀 to appear. The key challenge is to be able to capture

the richness of different motifs and their surroundings. We tackle

this with an appropriate selection of negative samples, i.e., sub-

graphs that resemble the searched motifs but that are not identical

to them. Moreover, when selecting the size of the “motif surround-

ings” we rely on an assumption also used in link prediction, which

states that only the “close surroundings” (i.e., nearby vertices and

edges, 1–2 hops away) of a link to be predicted have a significant

ar
X

iv
:2

10
6.

00
76

1v
4

 [
cs

.S
I]

 2
1

M
ay

 2
02

2

3-star 5-star 7-star 3-clique 5-clique 7-clique

Jaccard

SEAL

SEAM

66.39 61.13 59.64 74.31 59.99 53.26

67.63 64.48 62.52 72.85 64.90 61.19

77.61 73.32 72.18 77.50 70.62 65.46

86.92 89.48 91.80 90.97 96.33 98.15

Accuracy decreases with motif size Accuracy decreases with motif size

Accuracy increases with motif size Accuracy increases with motif size

SEAL, Jaccard:

SEAM:

Correlated
Jaccard

[This work]

M
a
n
u

a
l

h
e
u
ristics

G
N

N
b
a
se

d

Figure 1: Motivating our work (SEAM): the accuracy (%) of pre-
dicting different motifs with SEAM compared to using a state-of-

the-art SEAL link prediction scheme [96, 98] and a naive one that

does not consider correlations between edges. The details of the

experimental setup are in Section 5 (the dataset is USAir). Impor-
tantly: (1) SEAM outperforms all other methods, (2) the accuracy
of SEAM increases with the size (𝑘) of each motif, while in other

methods it decreases.

impact on whether or not this link would appear [96, 98]. We use

this assumption for motifs: as our evaluation shows, it ensures

high accuracy while significantly reducing runtimes of training and

inference (as only a small subgraph is used, instead of the whole

input graph). We call our GNN architecture SEAM: learning from

Subgraphs, Embeddings and Attributes for Motif prediction1. Our
evaluation (Section 5) illustrates the high accuracy of SEAM (often

more than 90%), for a variety of graph datasets and motif sizes.

To motivate our work, we now compare SEAM and a proposed

Jaccard-based heuristic that considers link correlations to two base-

lines that straightforwardly use link prediction independently for
each motif link: a Jaccard-based score and the state-of-the-art SEAL
scheme based on GNNs [96]. We show the results in Figure 1. The

correlated Jaccard outperforms a simple Jaccard, while the proposed

SEAM is better than SEAL. The benefits generalize to different graph

datasets. Importantly, we observe that the larger the motif to predict

becomes (larger 𝑘), the more advantages our architecture delivers.
This is because larger motifs provide more room for correlations be-
tween their associated edges. Straightforward link prediction based

schemes do not consider this effect, while our methods do, which

is why we offer more benefits for more complex motifs. The advan-

tages of SEAM over the correlated Jaccard show that GNNs more

robustly capture correlations and the structural richness of motifs

than simple manual heuristics. Simultaneously, heuristics do not

need any training. Finally, SEAM also successfully predicts more

arbitrary communities or clusters [13, 14, 45, 59]. They differ from

motifs as they do not have a very specific fixed structure (such as a

star) but simply have the edge density above a certain threshold.

SEAM’s high accuracy in predicting such structures illustrates its

potential for broader graph mining beyond motif analysis.

Overall, the key contributions of our paper are (1) identifying and
formulating the motif prediction problem and the associated score
functions, (2) showing how to solve this problem with heuristics and
graph neural networks, and (3) illustrating that graph neural networks
can solve this problem more effectively than heuristics.

2 BACKGROUND AND NOTATION
We first describe the necessary background and notation.

1
In analogy to SEAL [96, 98], which stands for “learning from Subgraphs, Embeddings, and At-

tributes for Link prediction”.

GraphModelWemodel an undirected graph𝐺 as a tuple (𝑉 , 𝐸);
𝑉 and 𝐸 ⊆ 𝑉 ×𝑉 are sets of nodes (vertices) and links (edges); |𝑉 | =
𝑛, |𝐸 | =𝑚. Vertices are modeled with integers 1, ..., 𝑛; 𝑉 = {1, ..., 𝑛}.
𝑁𝑣 denotes the neighbors of 𝑣 ∈ 𝑉 ; 𝑑 (𝑣) denotes the degree of 𝑣 .

Link Prediction We generalize the well-known link prediction

problem. Consider two unconnected vertices 𝑢 and 𝑣 . We assign

a similarity score 𝑠𝑢,𝑣 to them. All pairs of vertices that are not

edges receive such a score and are ranked according to it. The

higher a similarity score is, the “more likely” a given edge is to be

missing in the data or to be created in the future. We stress that the

link prediction scores are usually not based on any probabilistic

notion (in the formal sense) and are only used to make comparisons

between pairs of vertices in the same input graph dataset.

There are numerous known similarity scores. First, a large num-

ber of scores are called first order because they only consider the

neighbors of 𝑢 and 𝑣 when computing 𝑠𝑢,𝑣 . Examples are the Com-
mon Neighbors scheme 𝑠𝐶𝑁𝑢,𝑣 = |𝑁𝑢 ∩ 𝑁𝑣 | or the Jaccard scheme

𝑠
𝐽
𝑢,𝑣 =

|𝑁𝑢∩𝑁𝑣 |
|𝑁𝑢∪𝑁𝑣 | [12]. These schemes assume that two vertices are

more likely to be linked if they have many common neighbors.

There also exist similarity schemes that consider vertices not di-

rectly attached to 𝑢 and 𝑣 . All these schemes can be described using

the same formalism of the 𝛾-decaying heuristic proposed by [96]. In-
tuitively, for a given pair of vertices (𝑢, 𝑣), the 𝛾-decaying heuristic

for (𝑢, 𝑣) provides a sum of contributions into the link prediction

score for (𝑢, 𝑣) from all other vertices, weighted in such a way that

nearby vertices have more impact on the score.

Graph Neural Networks Graph neural networks (GNNs) are

a recent class of neural networks for learning over irregular data

such as graphs [28, 32, 79, 80, 84, 91, 93, 94, 100, 101]. There exists a

plethora of models and methods for GNNs; most of them consist of

two fundamental parts: (1) an aggregation layer that combines the

features of the neighbors of each node, for all the nodes in the input

graph, and (2) combining the scores into a new score. The input to

a GNN is a tuple 𝐺 = (𝐴,𝑋). The input graph 𝐺 having 𝑛 vertices

is modeled with an adjacency matrix 𝐴 ∈ R𝑛×𝑛 . The features of
vertices (with dimension 𝑑) are modeled with a matrix 𝑋 ∈ R𝑛×𝑑 .

3 MOTIF PREDICTION: FORMAL
STATEMENT AND SCORE FUNCTIONS

We now formally establish the motif prediction problem. We define

a motif as a pair 𝑀 = (𝑉𝑀 , 𝐸𝑀). 𝑉𝑀 is the set of existing vertices

of 𝐺 that form a given motif (𝑉𝑀 ⊆ 𝑉). 𝐸𝑀 is the set of edges of

𝐺 that form the motif being predicted; some of these edges may

already exist (𝐸𝑀 ⊆ 𝑉𝑀 ×𝑉𝑀).

We make the problem formulation (in § 3.1–§ 3.3) general: it can
be applied to any graph generation process. Using this formulation,

one can then devise specific heuristics that may assume some details

on how the links are created, similarly as is done in link prediction.

Here, we propose example motif prediction heuristics that harness

the Jaccard, Common Neighbors, and Adamic-Adar link scores.

We illustrate motif prediction problem and example supported

motifs in Figure 2.

2

Symbol Description
𝐸𝑀 All edges forming a motif in question; 𝐸𝑀 = 𝐸𝑀,N ∪ 𝐸𝑀,E
𝐸𝑀,N Motif edges that do not yet exist

𝐸𝑀,E Motif edges that already exist in the data

𝐸𝑀 Edges not in 𝐸𝑀 , defined over vertex pairs in 𝑉𝑀 ; 𝐸𝑀 = 𝐸𝑀,D ∪ 𝐸𝑀,I
𝐸𝑉𝑀

All possible edges between motif vertices; 𝐸𝑉𝑀
= 𝐸𝑀 ∪ 𝐸𝑀

𝐸𝑀,D Deal-breaker edges; 𝐸𝑀,D = 𝐸𝑀,D,N ∪ 𝐸𝑀,D,E
𝐸𝑀,D,N Deal-breaker edges that do not exist yet

𝐸𝑀,D,E Deal-breaker edges that already exist

𝐸𝑀,I Non deal-breaker edges in 𝐸𝑀 ; “edges that do not matter”

𝐸∗
𝑀

“Edges that matter for the score”: 𝐸∗
𝑀

= 𝐸𝑀 ∪ 𝐸𝑀,D
𝐸∗
𝑀,E All existing edges “that matter”: 𝐸∗

𝑀,E = 𝐸𝑀,E ∪ 𝐸𝑀,D,E
𝐸∗
𝑀,N All non-existing edges “that matter”: 𝐸∗

𝑀,N = 𝐸𝑀,N ∪ 𝐸𝑀,D,N

Table 1: Different types of edges used in this work.

3.1 Motif Prediction vs. Link Prediction
We illustrate the motif prediction problem by discussing the dif-

ferences between link and motif prediction. We consider all these

differences when proposing specific schemes for predicting motifs.

(M) There May Be Many Potential NewMotifs For a Fixed
Vertex Set Link prediction is a “binary” problem: for a given pair

of unconnected vertices, there can only be one link appearing. In

motif prediction, the situation is more complex. There are many

possible motifs to appear between given vertices 𝑣1, ..., 𝑣𝑘 . We now

state a precise count; the proof is in the appendix.

Observation 1. Consider vertices 𝑣1, ..., 𝑣𝑘 ∈ 𝑉 . Assuming no

edges already connecting 𝑣1, ..., 𝑣𝑘 , there are 2(
𝑘
2
) − 1 motifs (with

between 1 and
(𝑘
2

)
edges) that can appear to connect 𝑣1, ..., 𝑣𝑘 .

Note that this is the largest possible number, which assumes

no previously existing edges, and permutation dependence, i.e.,

two motifs that are isomorphic but have different vertex orderings,

are treated as two different motifs. This enables, for example, the

user to be able to distinguish between two stars rooted at different

vertices. This is useful in, e.g., social network analysis, when stars

rooted at different persons may well have different meaning.

(E) There May Be Existing Edges A link can only appear be-

tween unconnected vertices. Contrarily, a motif can appear and

connect vertices already with some edges between them.

(D) There May Be “Deal-Breaker” Edges There may be some

edges, the appearance of which would make the appearance of

a given motif unlikely or even impossible (e.g., existing chemical

bonds could prevent other bonds). For example, consider a pre-

diction query where one is interested whether a given vertex set

can become connected with a star but in such a way that none of
the non-central vertices are connected to one another. Now, if there
is already some edge connecting these non-central vertices, this

#poten�al mo�fs
on ver�ces:

Link predic�on

Will a link appear
between given
two ver�ces?

Will a given mo�f
appear between

given ver�ces ?

k-cliques

up to

SEAM architecture,
proposed in this work,

supports predic�ng
each of such mo�fs

Mo�f predic�on

Example supported mo�fs

sparse dense

single links k-stars sparse clusters dense clusters
...

Figure 2: Illustration of the motif prediction problem and example supported motifs. We provide support for predicting arbitrary motifs.

3

makes it impossible a given motif to appear while satisfying the

query. We will refer to such edges as the “deal-breaker” edges.

(L) Motif Prediction Query May Depend on Vertex Label-
ing The query can depend on a specific vertex labeling. For exam-

ple, when asking whether a 5-star will connect six given vertices

𝑣1, ..., 𝑣6, one may be interested in any 5-star connecting 𝑣1, ..., 𝑣6,

or a 5-star connecting these vertices in a specific way, e.g., with its

center being 𝑣1. We enable the user to specify how edges in 𝐸𝑀
should connect vertices in 𝑉𝑀 .

3.2 Types of Edges in Motifs
We first describe different types of edges related to a motif. They are

listed in Table 1 and shown in Figure 3. First, note that motif edges

𝐸𝑀 are a union of two types of motif edges, i.e., 𝐸𝑀 = 𝐸𝑀,N ∪𝐸𝑀,E
where 𝐸𝑀,N are edges that do not exist in 𝐺 at the moment of

querying (∀𝑒∈𝐸𝑀,N𝑒 ∉ 𝐸; N indicates “Non-existing”) and 𝐸𝑀,E
are edges that already exist, cf. (E) in § 3.1 (∀𝑒∈𝐸𝑀,E𝑒 ∈ 𝐸; E indicates

“Existing”). Moreover, there may be edges between vertices in 𝑉𝑀
which do not belong to𝑀 (i.e., they belong to 𝐸𝑉𝑀

= {{𝑖, 𝑗} : 𝑖, 𝑗 ∈
𝑉𝑀 ∧ 𝑖 ≠ 𝑗} but not 𝐸𝑀). We refer to such edges as 𝐸𝑀 since 𝐸𝑉𝑀

=

𝐸𝑀 ∪ 𝐸𝑀 (i.e., a union of disjoints sets). Some edges in 𝐸𝑀 may be

deal-breakers (cf. (D) in § 3.1), we denote them as 𝐸𝑀,D (D indicates

“Deal-breaker”). Non deal-breakers that are in 𝐸𝑀 are denoted with

𝐸𝑀,I (I indicates “Inert”). Note that 𝐸𝑀 = 𝐸𝑀,D ∪ 𝐸𝑀,I and

𝐸𝑀 = 𝐸𝑉𝑀
\ 𝐸𝑀 . To conclude, as previously done for the set 𝐸𝑀 ,

we note that 𝐸𝑀,D = 𝐸𝑀,D,N ∪ 𝐸𝑀,D,E where 𝐸𝑀,D,N are deal-

breaker edges that do not exist in 𝐺 at the moment of querying

(∀
𝑒∈𝐸𝑀,D,N

𝑒 ∉ 𝐸;N indicates “Non-existing”) and 𝐸𝑀,D,E are deal-

breaker edges that already exist, cf. (E) in § 3.1 (∀
𝑒∈𝐸𝑀,D,E

𝑒 ∈ 𝐸;

E indicates “Existing”). We explicitly consider 𝐸𝑀,D,N because –

even if a given deal-breaker edge does not exist, but it does have a
large chance of appearing – the motif score should become lower.

3.3 General Problem and Score Formulation
We now formulate a general motif prediction score. Analogously
to link prediction, we assign scores to motifs, to be able to quan-

titatively assess which motifs are more likely to occur. Thus, one

obtains a tool for analyzing future (or missing) graph structure, by

being able to quantitatively compare different ways in which vertex

sets may become (or already are) connected. Intuitively, we assume

that a motif score should be high if the scores of participating edges

are also high. This suggests one could reuse link prediction score

functions. Full extensive details of score functions, as well as more

examples, are in the appendix.

A specific motif score function 𝑠 (𝑀) will heavily depend on a

targeted problem. In general, we define 𝑠 (𝑀) as a function of𝑉𝑀 and

𝐸∗
𝑀
; 𝑠 (𝑀) = 𝑠 (𝑉𝑀 , 𝐸∗

𝑀
). Here, 𝐸∗

𝑀
= 𝐸𝑀 ∪ 𝐸𝑀,D are all the edges

“that matter”: both edges in a motif (𝐸𝑀) and the deal-breaker edges

(𝐸𝑀,D). To obtain the exact form of 𝑠 (𝑀), we harness existing link

prediction scores for edges from 𝐸𝑀 , when deriving 𝑠 (𝑀) (details
in § 3.4–§ 3.5). When using first-order link prediction methods (e.g.,

Jaccard), 𝑠 (𝑀) depends on𝑉𝑀 and potential direct neighbors. With

higher-order methods (e.g., Katz [54] or Adamic-Adar [2]), a larger

part of the graph that is “around 𝑉𝑀 ” is considered for computing

𝑠 (𝑀). Here, our evaluation (cf. Section 5) shows that, similarly to

link prediction [96], it is enough to consider a small part of 𝐺 (1-2

hops away from𝑉𝑀) to achieve high prediction accuracy for motifs.

Still, simply extending link prediction fails to account for possible

correlations between edges forming the motif (i.e., edges in 𝐸𝑀).

Specifically, the appearance of some edges may impact (positively

or negatively) the chances of one or more other edges in 𝐸𝑀 . We

provide score functions that consider such correlations in § 3.5.

3.4 Heuristics with No Link Correlations
There exist many score functions for link prediction [4, 5, 65, 83].

Similarly, one can develop motif prediction score functions with

different applications in mind. As an example, we discuss score

functions for a graph that models a set of people. An edge between

two vertices indicates that two given persons know each other.

For simplicity, let us first assume that there are no deal-breaker

edges, thus 𝐸∗
𝑀

= 𝐸𝑀 . For a set of people 𝑉𝑀 , we set the score

of a given specific motif 𝑀 = (𝑉𝑀 , 𝐸𝑀) to be the product of the

scores of the associated edges: 𝑠⊥ (𝑀) =
∏

𝑒∈𝐸𝑀,N 𝑠 (𝑒) where ⊥
denotes the independent aggregation scheme. Here, 𝑠 (𝑒) is any
link prediction score which outputs into [0, 1] (e.g., Jaccard). Thus,
also 𝑠⊥ (𝑀) ∈ [0, 1] by construction. Moreover, this score implicitly

states that ∀𝑒 ∈ 𝐸𝑀,E we set 𝑠 (𝑒) = 1. Clearly, this does not impact

the motif score 𝑠⊥ (𝑀) as the edges are already Existing. Overall,
we assume that a motif is more likely to appear if the edges that

participate in that motif are also more likely. Now, when using

the Jaccard Score for edges, the motif prediction score becomes

𝑠⊥ (𝑀) 𝐽 = ∏
𝑒𝑢,𝑣 ∈𝐸𝑀,N

|𝑁𝑢∩𝑁𝑣 |
|𝑁𝑢∪𝑁𝑣 | .

To incorporate deal-breaker edges, we generalize the motif

score defined previously as 𝑠∗⊥ (𝑀) = ∏
𝑒∈𝐸𝑀 𝑠 (𝑒)·∏

𝑒∈𝐸𝑀,D
(1 − 𝑠 (𝑒)),

where the product over 𝐸𝑀 includes partial scores from the edges

that belong to the motif, while the product over 𝐸𝑀,D includes

the scores from deal-breaker edges. Here, the larger the chance for

a 𝑒 to appear, the higher its score 𝑠 (𝑒) is. Thus, whenever 𝑒 is a

deal-breaker, using 1 − 𝑠 (𝑒) has the desired diminishing effect on

the final motif score 𝑠∗⊥ (𝑀).

3.5 Heuristics for Link Correlations
The main challenge is how to aggregate the link predictions taking

into account the rich structural properties of motifs. Intuitively, us-

ing a plain product of scores implicitly assumes the independence

of participating scores. However, arriving links may increase the

chances of other links’ appearance in non-trivial ways. To capture

such positive correlations, we propose heuristics based on the con-
vex linear combination of link scores. To show that such schemes

consider correlations, we first (Proposition 3.1) prove that the prod-

uct 𝑃 of any numbers in [0, 1] is always bounded by the convex

linear combination 𝐶 of those numbers (the proof is in the appen-

dix). Thus, our motif prediction scores based on the convex linear

combination of link scores are always at least as large as the in-

dependent products of link scores (as we normalize them to be

in [0, 1], see § 3.6). The difference (𝐶 −𝑃) is due to link correlations.
Details are in § 3.5.1.

Proposition 3.1. Let {𝑥1, ..., 𝑥𝑛} be any finite collection of ele-
ments from 𝑈 = {𝑥 ∈ R : 0 ≤ 𝑥 ≤ 1}. Then, ∀𝑛 ∈ N we have

4

All edge classes
are explained in
detail in Table 1

== =

Figure 3: Illustration of edge types in motif prediction.

∏𝑛
𝑖=1 𝑥𝑖 ≤

∑𝑛
𝑖=1𝑤𝑖𝑥𝑖 , where𝑤𝑖 ≥ 0 ∀𝑖 ∈ {1, ..., 𝑛} and subject to the

constraint
∑𝑛
𝑖=1𝑤𝑖 = 1.

For negative correlations caused by deal-breaker edges, i.e., corre-
lations that lower the overall chances of some motif to appear, we

introduce appropriately normalized scores with a negative sign in

the weighted score sum. The validity of this approach follows from

Proposition 3.1 by noting that

∏𝑛
𝑖=1 𝑥𝑖 ≥ −∑𝑛

𝑖=1𝑤𝑖𝑥𝑖 under the

conditions specified in the proposition. This means that any combi-

nation of such negatives scores is always lower than the product

of scores 𝑃 ; the difference |𝐶 − 𝑃 | again indicates effects between

links not captured by 𝑃 . Details are in § 3.5.2.

3.5.1 Capturing Positive Correlation. In order to introduce positive

correlation, we set the score of a given specific motif𝑀 = (𝑉𝑀 , 𝐸𝑀)
to be the convex linear combination of the vector of scores of the

associated edges:

𝑠 (𝑀) = 𝑓 (s(e)) = ⟨w, s(e)⟩ (1)

Here, 𝑓 (s(e)) : [0, 1] |𝐸𝑀 | → [0, 1] with |𝐸𝑀 | = |𝐸𝑉𝑀
\ 𝐸𝑀 |

(i.e., not considering either Inert or Deal-breaker edges). In the

weight vectorw ∈ [0, 1] |𝐸𝑀 |
, each component𝑤𝑖 is larger than zero,

subject to the constraint

∑ |𝐸𝑀 |
𝑖=1

𝑤𝑖 = 1. Thus, 𝑠 (𝑀) is a convex linear
combination of the vector of link prediction scores s(e). Finally, we
assign a unit score for each existing edge 𝑒 ∈ 𝐸𝑀,E .

Now, to obtain a correlated Jaccard score for motifs, we set
a score for each Non-existing edge 𝑒 (𝑢,𝑣) as

|𝑁𝑢∩𝑁𝑣 |
|𝑁𝑢∪𝑁𝑣 | . Existing

edges each receive scores 1. Finally, we set the weights as w =

1 1

|𝐸𝑀 | , assigning the same importance to each link in the motif𝑀 .

This gives 𝑠 (𝑀) 𝐽 = 1

|𝐸𝑀 |

(∑
𝑒𝑢,𝑣 ∈𝐸𝑀,N

|𝑁𝑢∩𝑁𝑣 |
|𝑁𝑢∪𝑁𝑣 | + |𝐸𝑀,E |

)
. Any

choice of 𝑤𝑖 >
1

|𝐸𝑀 | places a larger weight on the 𝑖-th edge (and

lower for others due to the constraint

∑ |𝐸𝑀 |
𝑖=1

𝑤𝑖 = 1). In this way

we can incorporate domain knowledge for the motif of interest. For

example, in Figure 5, we set w = 1 1

|𝐸𝑀,N | because of the relevant
presence of Existing edges (each receiving a null score).

3.5.2 Capturing Negative Correlation. To capture negative correla-
tion potentially coming from deal-breaker edges, we assign negative

signs to the respective link scores. Let 𝑒 ∈ 𝐸∗
𝑀

= 𝐸𝑀 ∪ 𝐸𝑀,D . Then

we set 𝑠∗
𝑖
(𝑒) = −𝑠𝑖 (𝑒) if 𝑒 ∈ 𝐸𝑀,D,N , ∀𝑖 ∈ {1, ..., |𝐸∗

𝑀
|}. Moreover,

if there is an edge 𝑒 ∈ 𝐸𝑀,D,E , we have s∗ (e) = 0. Assigning a

negative link prediction score to a potential Deal-breaker edge

lowers the score of the motif. Setting s∗ (e) = 0 when at least one

Deal-breaker edge exists, allows us to rule out motifs which cannot

arise. We now state a final motif prediction score:

𝑠∗ (𝑀) = 𝑓 (s∗ (e)) = max(0, ⟨w, s∗ (e)⟩) (2)

Here 𝑠∗ (𝑀) : [0, 1] |𝐸∗
𝑀
| → [0, 1] with |𝐸∗

𝑀
| ≤

(|𝑉𝑀 |
2

)
. Further-

more, we apply a rectifier on the convex linear combination of the

transformed scores vector (i.e., ⟨w, s∗ (e)⟩) with the rationale that

any negative motif score implies the same impossibility of the motif

to appear. All other score elements are identical to those in Eq. (1).

3.6 Normalization of Scores for Meaningful
Comparisons and General Applicability

The motif scores defined so far consider only link prediction scores

𝑠 (𝑒) with values in [0, 1]. Thus, popular heuristics such as Common

Neighbors, Preferential Attachment, and the Adamic-Adar index do

not fit into this framework. For this, we introduce a normalized score
𝑠 (𝑒)/𝑐 enforcing 𝑐 ≥ ⌈∥s(e)∥∞⌉ since the infinity norm of the vector

of scores is the smallest value that ensures the desired mapping

(the ceil function defines a proper generalization as ⌈∥s(e)∥∞⌉ = 1

for, e.g., Jaccard [12]). To conclude, normalization also enables the
meaningful comparison of scores of different motifs which may differ
in size or in their edge sets 𝐸𝑀 .

4 SEAM GNN ARCHITECTURE
We argue that one could use neural networks to learn a heuristic for
motif prediction. Following recent work on link prediction [96, 98],

we use a GNN for this; a GNN may be able to learn link correla-

tions better than a simple hand-designed heuristic. Simultaneously,

heuristics are still important as they do not require expensive train-

ing. We now describe a GNN architecture called SEAM (learning

5

Specify vertex
set in a mo�f

to be predicted

1 2 Specify mo�f
edges

and dealbreaker
edges

3 Find posi�ve & nega�ve samples , 4 Extract subgraphs
around samples

(here,
h = 1)

5 Construct node
embeddings

6 Label nodes
in subgraphs

...

Input
graph

Posi�ve sample
(instance of mo�f M)

Nega�ve sample
(instance that
differs from

mo�f M)

1-hop
neighbors

Use Node2Vec
/ DeepWalk

...

(1.2 0 2.3 ...)
(1.1 7.1 0 ...)

(1 2 2 3 ...)

(1 0 0 1 ...)

Outer label

Inner label

7 Create final feature matrix

...

(1 2 2 3 ...)

(1 0 0 1 ...)

Outer labels
of ver�ces in

neighborhood

Inner labels
of ver�ces

in a subgraph

(1.2 0 2.3 ...)

...
...

...

Node
embeddings

8 Training and inference with a GNN

(1 2 2 3 ...)

(1 0 0 1 ...)

(1.2 0 2.3 ...)

...
...

...

..
.

Use DGCNN

Details: §4.2

Details: §4.2

Details: §4.3 Details:
§4.4

Details: §4.5

Details:
§4.6,
§4.7

Details: §4.6
Details: §4.3, §4.8

Input features of extracted subgraphs

3x graph
convolu�on

Sortpooling
1D

convolu�on MLPs

Distribute the features of
each vertex to its neighbors

Sort ver�ces based on
their importance in

the subgraph
Binary classifica�on:

will a given
mo�f M appear?

Mul�-classifica�on:
Which of given

mo�fs will appear?

All edge classes are
explained in detail in
Table 1 and Figure 3

Loss func�on

Figure 4: High-level overview of SEAM.

from Subgraphs, Embeddings and Attributes for Motif prediction).

A high-level overview is in § 4.1 and in Figure 4.

4.1 Overview
Let 𝑀 = (𝑉𝑀 , 𝐸𝑀) be a motif to be predicted in 𝐺 . First, we ex-
tract the already existing instances of𝑀 in𝐺 , denoted as𝐺𝑝 =

(𝑉𝑝 , 𝐸𝑝); 𝑉𝑝 ⊆ 𝑉 and 𝐸𝑝 ⊆ 𝐸. We use these instances 𝐺𝑝 to gen-
erate positive samples for training and validation. To gener-
ate negative samples (details in § 4.3), we find subgraphs 𝐺𝑛 =

(𝑉𝑛, 𝐸𝑛) that do not form a motif 𝑀 (i.e., 𝑉𝑛 = 𝑉𝑀 and 𝐸𝑀 ⊈ 𝐸𝑛

or 𝐸𝑀,D ∩ 𝐸𝑛 ≠ ∅). Then, for each positive and negative sample,

consisting of sets of vertices 𝑉𝑝 and 𝑉𝑛 , we extract a “subgraph
around this sample”, 𝐺𝑠 = (𝑉𝑠 , 𝐸𝑠), with 𝑉𝑝 ⊆ 𝑉𝑠 ⊆ 𝑉 and

𝐸𝑝 ⊆ 𝐸𝑠 ⊆ 𝐸, or 𝑉𝑛 ⊆ 𝑉𝑠 ⊆ 𝑉 and 𝐸𝑛 ⊆ 𝐸𝑠 ⊆ 𝐸 (details in § 4.4).

Here, we rely on the insights from SEAL [96] on their 𝛾-decaying

heuristic, i.e., it is 𝐺𝑠 , the “surroundings” of a given sample (be it

positive or negative), that are important in determining whether𝑀

appears or not. The nodes of these subgraphs are then appropri-
ately labeled to encode the structural information (details in § 4.6).

With these labeled subgraphs, we train our GNN, which classifies

each subgraph depending on whether or not vertices𝑉𝑝 or𝑉𝑛 form

the motif𝑀 . After training, we evaluate the real world accuracy
of our GNN by using the validation dataset.

4.2 Specifying Motifs of Interest
The user specifies the motif to be predicted. SEAM provides an

interface for selecting (1) vertices𝑉𝑀 of interest, (2) motif edges 𝐸𝑀 ,

and (3) potential deal-breaker edges 𝐸𝑀,D . The user first picks 𝑉𝑀

and then they can specify any of up to 2
(|𝑉𝑀 |

2
) − 1 potential motifs

as a target of the prediction. The interface also enables specifying

the vertex ordering, or motif’s permutation invariance.

4.3 Positive and Negative Sampling
We need to provide a diverse set of samples to ensure that SEAM

works reliably on a wide range of real data. For the positive samples,

this is simple because the motif to be predicted (𝑀) is specified.

Negative samples are more challenging, because – for a given motif

– there are many potential “false” motifs. In general, for each motif

𝑀 , we generate negative samples using three strategies. (1) We first

select positive samples and then remove a few vertices, replacing

them with other nearby vertices (i.e., only a small number of motif

edges are missing or only a small number of deal-breaker edges are

added). Such negative samples closely resemble the positive ones.

(2) We randomly sample𝑉𝑀 vertices from the graph; such negative

samples are usually sparsely connected and do not resemble the

positive ones. (3) We select a random vertex 𝑟 into an empty set,

and then we keep adding randomly selected vertices from the union

over the neighborhoods of vertices already in the set, growing a

subgraph until reaching the size of 𝑉𝑀 ; such negative samples may

resemble the positive ones to a certain degree. The final set of

negative samples usually contains about 80% samples generated by

strategy (1) and 10% each of samples generated by (2) and (3). This

distribution could be adjusted based on domain knowledge of the

input graph (we also experiment with other ratios). Strategies (2)

and (3) are primarily used to avoid overfitting of our model.

As an example, let ourmotif𝑀 be a 3-clique (|𝑉𝑀 | = 3 and |𝐸𝑀 | =
3). Consider a simple approach of generating negative samples,

in which one randomly samples 3 vertex indices and verifies if

there is a closed 3-clique between them. If we use these samples,

in our evaluation for considered real world graphs, this leads to

a distribution of 90% unconnected samples |𝐸𝑛 | = 0, 9% samples

with |𝐸𝑛 | = 1 and only about 1% of samples with |𝐸𝑛 | = 2. Thus,

if we train our GNN with this dataset, it would hardly learn the

difference between open 3-cliques |𝐸𝑛 | = 2 and closed 3-cliques

|𝐸𝑀 | = 3. Therefore, we provide our negative samples by ensuring

that a third of samples are open 3-cliques |𝐸𝑛 | = 2 and another

third of samples have one edge |𝐸𝑀 | = 1. For the remaining third of

samples, we use the randomly generated vertex indices described

above, which are mostly unconnected vertices |𝐸𝑀 | = 0.

For dense subgraphs, the sampling is less straightforward. Over-

all, the goal is to find samples with edge density being either close

to, or far away from, the density threshold of a dense subgraph to

be predicted. If the edge density of the sampled subgraph is lower

6

than the density threshold it becomes a negative sample and vice

versa. The samples chosen further away from the density threshold

are used to prevent overfitting similar to strategies (2) and (3) from

above. For this, we grow a set of vertices 𝑅 (starting with a single

random vertex), by iteratively adding selected neighbors of vertices

in 𝑅 such that we approach the desired density.

Overall, we choose equally many positive and negative samples

to ensure a balanced dataset. Furthermore, we limit the number of

samples if there are too many, by taking a subset of the samples

(selected uniformly at random). The positive and negative samples

are split into a training dataset and a validation dataset. This split

is typically done in a 9/1 ratio. To ensure an even distribution of

all types of samples in these two datasets, we randomly permute

the samples before splitting them.

4.4 Extracting Subgraphs Containing Samples
To reduce the computational costs of our GNN, we do not use the

entire graph𝐺 as input in training or validation. Instead, we rely on

recent insights on link prediction with GNNs [96, 98], which illus-

trate that it suffices to provide a subgraph capturing the “close sur-

roundings” (i.e., 1–2 hops away) of the vertices we want to predict

a link between, cf. Section 2. We take an analogous assumption for

motifs (our evaluation confirms the validity of the assumption). For

this, we define the “surroundings” of a given motif𝑀 = (𝑉𝑀 , 𝐸𝑀).
For 𝐺 = (𝑉 , 𝐸) and 𝑉𝑀 ⊆ 𝑉 , the ℎ-hop enclosing subgraph 𝐺ℎ

𝑉𝑀

is given by the set of nodes {𝑖 ∈ 𝑉 | ∃𝑥 ∈ 𝑉𝑀 : 𝑑 (𝑖, 𝑥) ≤ ℎ}. To
actually extract the subgraph, we simply traverse 𝐺 starting from

vertices in 𝑉𝑀 , for ℎ hops.

4.5 Node Embeddings for More Accuracy
In certain cases, the ℎ-hop enclosing subgraph might miss some

information about the motif in question (the details of is missed

depend on a specific input graph and selected motif). To allevi-

ate this, while simultaneously avoiding sampling a subgraph with

large ℎ, we also generate a node embedding 𝑋𝐸 ∈ R𝑛×𝑓 which

encodes the information about more distant graph regions using

random walks. For this, we employ the established node2vec [46]

with the parameters from DeepWalk [74]. 𝑓 is the dimension of

the low-dimensional vector representation of a node. We generate

such a node embedding once and then only append the embedding

vectors (corresponding to the nodes in the extracted subgraph) to

the feature matrix of each extracted subgraph. We obtain (cf. § 4.6)

𝑋𝑠 =
(
𝑋𝑠𝑖 𝑋𝑠𝐸 𝑋𝐻 𝑋𝐿 𝑋𝐸

)
∈ R𝑠×(𝑑+2𝑓 +2𝑘) .

Here, we also extend the SEAL approach called negative injection
formore effective embeddings [96, 98]. The authors of SEAL observe

that if embeddings are constructed using the edge set containing

positive training samples, the GNN would focus on fitting this

part of information. Thus, SEAL generates embedding based on the

edge set containing also negative training samples, which ultimately

improves accuracy. In SEAM, we analogously include all potential
motif and deal-breaker edges 𝐸∗

𝑀
of all training samples to the input

graph when generating the node embedding.

4.6 Node Labeling for Structural Features
In order to provide our GNN with as much structural informa-

tion as possible, we introduce two node labeling schemes. These

schemes serve as structural learning features, and we use them

when constructing feature matrices of the extracted subgraphs, fed

into a GNN. Let 𝑠 be the total number of vertices in the extracted

subgraph 𝐺𝑠 and 𝑘 be the number of vertices forming the motif.

We call the vertices in the respective samples (𝑉𝑝 or 𝑉𝑛) the inner
vertices since they form a motif sample. The rest of the nodes in

the subgraph 𝐺𝑠 are called outer vertices.
The first label is simply an enumeration of all the inner vertices.

We call this label the inner label. It enables ordering each vertex

according to its role in the motif. For example, to predict a 𝑘-star, we

always assign the inner label 1 to the star central vertex. This inner

node label gets translated into a one-hot matrix 𝐻 ∈ N𝑘×𝑘 ; 𝐻𝑖 𝑗 = 1

means that the 𝑖-th vertex in𝑉𝑀 receives label 𝑗 . In order to include

𝐻 into the feature matrix of the subgraph, we concatenate 𝐻 with

a zero matrix 0(𝑠−𝑘)𝑘 ∈ N(𝑠−𝑘)×𝑘
, obtaining 𝑋𝐻 = (𝐻 0(𝑠−𝑘)𝑘)𝑇 .

The second label is called the outer label. The label assigns to each
outer vertex its distances to each inner vertex. Thus, each of the 𝑠−𝑘
outer vertices get 𝑘 labels. The first of these 𝑘 labels describes the

distance to the vertex with inner label 1. All these outer labels form

a labeling matrix 𝐿 ∈ N(𝑠−𝑘)×𝑘
, appended with a zero matrix 0𝑘𝑘 ,

becoming 𝑋𝐿 = (0𝑘𝑘 𝐿)𝑇 ∈ N𝑠×𝑘 . The final feature matrix 𝑋𝑠
of the respective subgraph 𝐺𝑠 consists of 𝑋𝐻 , 𝑋𝐿 , the subgraph

node embedding matrix 𝑋𝐸 and the subgraph input feature matrix

𝑋𝑠𝑖 ∈ R𝑠×𝑑 ; we have𝑋𝑠 =
(
𝑋𝑠𝑖 𝑋𝐸 𝑋𝐻 𝑋𝐿

)
∈ R𝑠×(𝑑+𝑓 +2𝑘) ; 𝑑

is the dimension of the input feature vectors and 𝑓 is the dimension

of the node embedding vectors.

4.7 Different Orderings of Motif Vertices
SEAM supports predicting both motifs where vertices have pre-

assigned specific roles, i.e., where vertices are permutation depen-
dant, and motifs with vertices that are permutation invariant.
The former enables the user to assign vertices meaningful different

structural roles (e.g., star roots). The latter enables predicting motifs

where the vertex order does not matter. For example, in a clique,

the structural roles of all involved vertices are equivalent (i.e., these

motifs are vertex-transitive). This is achieved by permuting the

inner labels according to the applied vertex permutation.

4.8 Used Graph Neural Network Model
For our GNN model, we use the graph classification neural network

DGCNN [97], used in SEAL [96, 98].We now summarize its architec-

ture. The first stage of this GNN consist of three graph convolution

layers (GConv). Each layer distributes the vertex features of each

vertex to its neighbors. Then, we feed the output of each of these

GConv layers into a layer called 𝑘-sortpooling where all vertices

are sorted based on their importance in the subgraph. After that,

we apply a standard 1D convolution layer followed by a dense layer,

followed by a softmax layer to get the prediction probabilities.

The input for our GNN model is the adjacency matrix of the

selected ℎ-hop enclosing subgraph𝐺ℎ
𝑉𝑠

together with the feature

matrix 𝑋𝑠 . With these inputs, we train our GNN model for 100

epochs. After each epoch, to validate the accuracy, we simply gen-

erate 𝐺ℎ
𝑉𝑝

and 𝐺ℎ
𝑉𝑛

as well as their feature matrix 𝑋𝑝 and 𝑋𝑛 from

our samples in the validation dataset. We know for each set of

vertices 𝑉𝑝 or 𝑉𝑛 , if they form the motif𝑀 . Thus, we can analyse

the accuracy of our model by comparing the predictions with the

7

original information about the motifs. Ultimately, we expect our

model to predict the set of vertices 𝑉𝑝 to form the motif𝑀 and the

set of vertices 𝑉𝑛 not to form the motif𝑀 .

4.9 Computational Complexity of SEAM
We discuss the time complexity of different parts of SEAM, showing

that motif prediction in SEAM is computationally feasible even for

large graphs and motifs. Assume that 𝑘 , 𝑡 , and 𝑑 are #vertices in

a motif, the number of mined given motifs per vertex, and the

maximum degree in a graph, respectively.

First, extracting samples depends on a motif of interest. For

example, positive sampling takes 𝑂 (𝑛𝑑𝑘) (𝑘-cliques), 𝑂 (𝑡𝑚) (𝑘-
stars), 𝑂 (𝑛𝑑𝑘) (𝑘-db-stars), and 𝑂 (𝑛𝑑𝑘3) (dense clusters). These

complexities assume mining all instances of respective motifs;

SEAM further enables fixing the number of samples to find upfront,

which further limits the complexities. Negative sampling (of a

single instance) takes 𝑂 (𝑑𝑘) (𝑘-cliques), 𝑂 (𝑑) (𝑘-stars), 𝑂 (𝑑 + 𝑘2)
(𝑘-db-stars), and 𝑂 (𝑛𝑑𝑘3) (dense clusters). The complexities may

be reduced is the user chooses to fix sampling counts. The ℎ-hop
subgraph extraction, and inner and outer labeling, take – respec-
tively – 𝑂 (𝑘𝑑2ℎ) and 𝑂 (𝑘2𝑑ℎ) time per sample. Finally, finding
node embeddings (with Node2Vec) and training as well as in-
ference (with DGCNN) have complexities as described in detail in

the associated papers [46, 97]; they were illustrated to be feasible

even for large datasets.

5 EVALUATION
We now illustrate the advantages of our correlated heuristics and

of our learning architecture SEAM. We feature a representative set

of results, extended results are in the appendix.

As comparison targets, we use motif prediction based on three

link prediction heuristics (Jaccard, Common Neighbors, Adamic-

Adar), and on the GNN based state-of-the-art SEAL link prediction

scheme [96, 98]. Here, the motif score is derived using a product

of link scores with no link correlation (“Mul”). We also consider

our correlated heuristics, using link scores, where each score is

assigned the same importance (“Avg”, w = 1 1

|𝐸𝑀,N |), or the smallest
link score is assigned the highest importance (“Min”). This gives a
total of 12 comparison targets. We then consider different variants

of SEAM (e.g., with and without embeddings described in § 4.5).

More details on the evaluation setting are presented on the right

side of Figure 5.

To assess accuracy, we use AUC (Area Under the Curve), a

standard metric to evaluate the accuracy of any classification model

in machine learning. We also consider a plain fraction of all correct

predictions; these results resemble the AUC ones, see the appendix.

Details of parametrization and datasets are included in the

appendix. In general, we use the same datasets as in the SEAL

paper [98] for consistent comparisons; these are, among others,

Yeast (protein-protein interactions), USAir (airline connections),

and Power (a power grid). Overall, our current selection of tested

motifs covers the whole motif spectrum in terms of their density:

stars (very sparse), communities (moderately sparse and dense,
depending on the threshold), and cliques (very dense).

We ensure that the used graphs match our motivation, i.e., they

are either evolving or miss higher order structures that are then

predicted. For this, we prepare the data so that different edges are

removed randomly, imitating noise.

5.1 SEAM GNN vs. SEAL GNN vs. Heuristics
We compare the accuracy of (1) our heuristics from Section 3, (2)

a scheme using the SEAL link prediction, and (3) our proposed

SEAM GNN architecture. The results for 𝑘-stars, 𝑘-cliques, and
𝑘-db-stars (for networks USAir and Yeast) are in Figure 5 while

clusters and communities are analyzed in Figure 6 (“𝑘-dense”
indicates a cluster of 𝑘 vertices, with at least 90% of all possible

edges present).

Behavior and Advantages of SEAM First, in Figure 5, we ob-

serve that the improvement in accuracy in SEAM almost always

scales with the size of the motif. This shows that SEAM captures

correlation between different edges (in larger motifs, there is more

potential correlation between links). Importantly, the advantages

and the capacity of SEAM to capture correlations, also hold in

the presence of deal-breaker edges (“𝑘-db-star”). Here, we assign
links connecting pairs of star outer vertices as deal-breakers (e.g.,

7-db-star is a 7-star with 15 deal-breaker edges connecting its arms

with one another). We observe that the accuracy for 𝑘-stars with

deal-breaker edges is lower than that for standard 𝑘-stars. However,
SEAM is still the best baseline since it appropriately learns such

edges and their impact on the motif appearance. The results in Fig-

ure 6 follow similar trends to those in Figure 5; SEAM outperforms

all other baselines. Its accuracy also increases with the increasing

motif size. Overall, SEAM significantly outperforms both SEAL and
heuristics in accuracy, and is the only scheme that captures higher-
order characteristics, i.e., its accuracy increases with the amount of
link correlations.

Behavior and Advantages of Heuristics While the core re-

sult of our work is the superiority of SEAM in accuracy, our corre-

lated heuristics (“Avg”, “Min”) also to a certain degree improve the

motif prediction accuracy over methods that assume link indepen-

dence (“Mul”). This behavior holds often in a statistically significant

way, cf. Jaccard results for 3-cliques, 5-cliques, and 7-cliques. In

several cases, the differences are smaller and fall within the stan-

dard deviations of respective schemes. Overall, we observe that

𝐴𝑈𝐶𝑀𝑢𝑙 < 𝐴𝑈𝐶𝑀𝑖𝑛 < 𝐴𝑈𝐶𝐴𝑣𝑔 (except for 𝑘-db-stars). This shows

that different aggregation schemes have different capacity in cap-

turing the rich correlation structure of motifs. In particular, notice

that “Min” is by definition (cf. Proposition 3.1) a lower bound of

the score 𝑠 (𝑀) defined in § 3.5.1. This implies that it is the smallest

form of correlation that we can include in our motif score given

the convex linear combination function proposed in § 3.5.1.

The main advantage of heuristics over SEAM (or SEAL) is that

they do not require training, and are thus overall faster. For example,

to predict 100kmotif samples, the heuristics take around 2.2 seconds

with a standard deviation of 0.05 seconds, while SEAM has a mean

execution time (including training) of 1280 seconds with a standard

deviation of 30 seconds. Thus, we conclude that heuristics could be

preferred over SEAMwhen training overheads are deemed too high,

and/or when the sizes of considered motifs (and thus the amount

of link correlations) are small.

Interestingly, the Common Neighbors heuristic performs poorly.

This is due to the similar neighborhoods of the edges that have to

8

3-star 5-star 7-star 3-clique 5-clique 7-clique 3-db-star 5-db-star 7-db-star

CN (Mul)
CN (Min)
CN (Avg)
AA (Mul)
AA (Min)
AA (Avg)

Jaccard (Mul)
Jaccard (Min)
Jaccard (Avg)

SEAL (Mul)
SEAL (Min)
SEAL (Avg)

SEAM, no
embedding

SEAM

49.99 ± 0.45 49.78 ± 0.39 50.19 ± 0.47 50.13 ± 0.65 50.37 ± 0.79 51.55 ± 0.32 52.93 ± 0.61 55.42 ± 0.58 54.81 ± 0.58

49.98 ± 0.33 49.72 ± 0.49 50.26 ± 0.59 50.35 ± 0.27 50.48 ± 0.32 51.77 ± 0.40 52.99 ± 0.75 54.75 ± 0.48 54.60 ± 0.85

49.76 ± 0.32 49.50 ± 0.64 50.18 ± 0.64 50.28 ± 0.51 50.91 ± 0.35 51.70 ± 0.59 53.32 ± 0.35 54.93 ± 0.77 54.20 ± 0.68

63.05 ± 0.71 62.09 ± 0.57 60.67 ± 0.95 54.95 ± 0.92 51.25 ± 0.63 51.40 ± 0.68 53.92 ± 0.52 55.15 ± 0.77 54.93 ± 0.61

63.34 ± 0.68 62.81 ± 0.80 61.59 ± 0.94 54.81 ± 0.77 51.26 ± 0.38 51.60 ± 0.68 54.15 ± 0.89 54.59 ± 0.65 54.94 ± 0.27

63.96 ± 0.68 63.66 ± 0.48 62.71 ± 0.52 55.78 ± 0.74 51.28 ± 0.55 51.79 ± 0.62 54.52 ± 0.57 55.20 ± 0.53 54.55 ± 0.39

67.17 ± 0.92 62.01 ± 0.72 59.71 ± 0.93 69.62 ± 1.09 57.60 ± 0.73 52.75 ± 0.97 51.75 ± 1.10 51.68 ± 0.85 50.93 ± 0.64

69.20 ± 0.80 67.11 ± 0.46 65.24 ± 0.80 73.88 ± 0.88 63.36 ± 1.17 56.50 ± 0.94 52.30 ± 0.54 51.86 ± 0.77 50.87 ± 0.53

70.12 ± 0.78 68.59 ± 0.71 68.69 ± 0.77 75.35 ± 0.60 67.93 ± 0.87 61.22 ± 1.11 51.76 ± 0.91 49.74 ± 0.75 47.66 ± 0.58

76.68 ± 0.61 74.00 ± 0.50 71.80 ± 0.95 76.25 ± 1.90 63.66 ± 4.01 59.48 ± 4.87 68.53 ± 0.88 67.49 ± 1.27 67.88 ± 1.43

77.15 ± 0.43 74.62 ± 0.55 73.11 ± 0.99 78.00 ± 1.49 69.70 ± 3.56 64.49 ± 5.47 66.40 ± 1.44 62.94 ± 1.98 62.88 ± 3.57

77.91 ± 0.91 75.98 ± 0.99 75.71 ± 0.66 77.50 ± 2.35 72.68 ± 3.21 66.95 ± 6.79 66.05 ± 0.78 65.14 ± 0.89 66.99 ± 1.32

86.24 ± 0.99 85.57 ± 0.94 88.61 ± 0.71 91.20 ± 1.03 96.16 ± 0.55 98.40 ± 0.22 83.39 ± 0.94 86.12 ± 0.66 87.86 ± 1.06

90.78 ± 1.30 90.00 ± 1.84 91.53 ± 1.53 93.06 ± 0.61 97.26 ± 0.23 98.90 ± 0.18 83.81 ± 0.53 87.56 ± 0.79 88.59 ± 1.51

3-star 5-star 7-star 3-clique 5-clique 7-clique 3-dbstar 5-dbstar 7-dbstar

46.15 ± 0.54 44.26 ± 0.60 44.84 ± 0.68 50.80 ± 0.46 49.61 ± 0.46 50.10 ± 0.62 48.66 ± 0.70 50.69 ± 0.84 50.10 ± 0.53
46.37 ± 0.79 43.96 ± 0.97 44.70 ± 0.46 50.77 ± 0.41 49.52 ± 0.72 50.02 ± 0.30 48.15 ± 0.53 50.73 ± 0.62 50.25 ± 0.73
46.27 ± 0.54 44.15 ± 0.99 44.36 ± 0.49 50.82 ± 0.45 49.24 ± 0.61 50.18 ± 0.77 48.10 ± 0.59 48.11 ± 0.53 47.18 ± 0.86
57.03 ± 0.73 54.50 ± 0.81 54.17 ± 0.92 54.44 ± 0.47 50.00 ± 0.77 50.50 ± 0.73 50.42 ± 1.03 50.44 ± 0.70 50.10 ± 0.69
57.01 ± 0.81 55.15 ± 0.47 54.61 ± 0.75 54.26 ± 0.41 50.67 ± 0.63 50.45 ± 0.45 50.80 ± 0.58 50.42 ± 0.49 50.49 ± 0.57
57.76 ± 0.65 56.84 ± 1.03 56.67 ± 0.56 54.36 ± 0.62 50.26 ± 0.76 50.06 ± 0.75 51.23 ± 0.64 48.44 ± 1.09 48.25 ± 0.90
57.49 ± 0.83 56.45 ± 0.51 56.34 ± 1.04 51.40 ± 0.73 50.58 ± 0.64 51.35 ± 0.63 49.67 ± 0.60 48.74 ± 0.64 48.81 ± 0.65

58.97 ± 0.64 60.18 ± 0.81 60.37 ± 0.96 53.18 ± 0.87 55.43 ± 1.10 54.35 ± 0.70 50.57 ± 0.56 48.88 ± 0.68 49.17 ± 0.57
60.02 ± 0.86 62.18 ± 0.66 63.37 ± 0.98 54.37 ± 0.68 58.77 ± 0.69 60.43 ± 0.92 49.47 ± 0.64 46.59 ± 0.73 45.41 ± 0.69
71.82 ± 3.24 70.84 ± 1.09 69.59 ± 1.06 62.15 ± 4.01 59.66 ± 3.68 59.49 ± 1.69 62.85 ± 1.23 57.84 ± 1.28 55.12 ± 1.35
72.94 ± 2.67 71.44 ± 1.30 69.68 ± 1.51 62.55 ± 3.77 61.89 ± 5.76 56.27 ± 2.72 60.23 ± 1.12 53.38 ± 1.24 53.46 ± 2.38
71.51 ± 1.63 72.13 ± 1.25 72.03 ± 0.91 66.26 ± 4.42 66.73 ± 4.74 61.72 ± 5.90 61.97 ± 1.42 57.98 ± 0.68 55.44 ± 0.84
89.81 ± 0.61 82.45 ± 0.87 82.28 ± 1.03 96.43 ± 0.36 95.74 ± 0.41 96.72 ± 0.23 84.42 ± 0.52 79.30 ± 0.98 79.83 ± 0.91
90.13 ± 0.64 84.04 ± 1.21 83.69 ± 0.77 96.51 ± 0.25 96.90 ± 0.21 97.77 ± 0.31 84.37 ± 0.71 79.78 ± 0.66 81.54 ± 0.81

CN (Mul)
CN (Min)
CN (Avg)
AA (Mul)
AA (Min)
AA (Avg)

Jaccard (Mul)
Jaccard (Min)
Jaccard (Avg)

SEAL (Mul)
SEAL (Min)
SEAL (Avg)

SEAM, no
embedding

SEAM

USAir network

Yeast network

Evaluation scenarios
enabled in SEAM

Pick
motif X

in graph A

Train for
predicting new

instances
of motif X
in graph A

Pick
motifs
X, Y, ...

in graph A

Train for
predicting

new instances
of motifs X, Y, ...

in graph A

Pick
motifs
X, Y, ...

in graphs
A, B, ...

Train for
predicting

new instances
of motifs X, Y, ...

in graphs
A, B, ...

Figure 5: Comparison of different motif prediction schemes; SEAM is the proposed GNN based architecture. Other baselines use different

link prediction schemes as building blocks; CN stands for Common Neighbors, AA stands for Adamic-Adar. We use graphs also used by the

SEAL link prediction method [96, 98]. “𝑘-db-star” indicate motifs with deal-breaker edges considered. In the presented data, we predict new

instances of a given selected motif in a given graph dataset.

11-dense 15-dense 19-dense

CN
AA

Jaccard
SEAL

83.44 ± 0.78 84.24 ± 0.61 84.74 ± 0.65

83.05 ± 0.87 83.38 ± 0.78 82.15 ± 0.82

88.55 ± 0.37 86.44 ± 0.82 86.25 ± 0.42

93.92 ± 1.91 92.66 ± 1.58 92.40 ± 0.82

98.16 ± 0.63 98.62 ± 0.36 99.45 ± 0.26

98.86 ± 0.48 99.21 ± 0.28 99.66 ± 0.18

SEAM, no
embedding

SEAM

Figure 6: Comparison of prediction schemes as in Figure 5 for pre-

dicting dense subgraph motif described in § 4.3. All link prediction

based schemes use the same motif score. We use the Yeast graph,

also used by the SEAL link prediction method [96, 98].

be predicted. The high similarity of these neighborhoods is caused

by our subgraph extraction strategy discussed in Section 4.4, where

we select the existing motif edges of the positive samples in such a

way as to mimic the edge structure of the negative samples. These

results show also that different heuristics do not perform equally

with respect to the task of motif prediction and further studies are

needed in this direction.

The accuracy benefits of SEAM over the best competitor (SEAL

using the “Avg” way to compose link prediction scores into motif

prediction scores) range from 12% to almost 32%. This difference

is even larger for other methods; it is because there comparison

targets cannot effectively capture link correlations in motifs. This

result shows that the edge correlation in motifs is important to

accurately predict a motif’s appearance, and that it benefits greatly

from being learned by a neural network.

5.2 Additional Analyses
The only difference in this dataset is the slight drop in accuracy for

bigger stars and stars with deal-breaker edges. We conjecture this

is because (1) this dataset has many challenging negative samples

(4.3) for bigger motifs, and (2) the neighborhoods of negative and

positive samples being almost indistinguishable. We also consider a

Power graph, see Figure 7. This graph dataset is very sparse with a

very low average vertex degree of 2.7 (see the appendix for dataset

details). SEAM again offers the best accuracy.

This result clearly shows very low accuracy of SEAL and other

motif scores if there are just a few vertices in the neighborhood of

the motif. The prediction accuracy for 𝑘-stars with deal-breaker

edges is significantly better. This is caused by the properties of the

positive samples discussed in Section 4.3. The prediction task of

these positive samples boils down to predicting one motif edge,

which has to be added, and several deal-breaker edges, that cannot

appear. Due to the sparsity of the motif neighborhood, these deal-

breaker edges are often predicted correctly to not appear, which

significantly increases the prediction strength of SEAL and all the

other motif scores.

We also analyze the impact of additionally using Node2Vec node

embeddings (cf. § 4.5). Interestingly, it consistently (by 0.2 – 4%)

9

3-star 5-star 7-star 3-clique 3-dbstar 5-dbstar 7-dbstar

CN (Mul)
CN (Min)
CN (Avg)
AA (Mul)
AA (Min)
AA (Avg)

 (Mul)
 (Min)
 (Avg)
 (Mul)
 (Min)
 (Avg)

19.13 ± 0.29 25.72 ± 0.24 27.91 ± 0.24 51.11 ± 1.68 52.12 ± 0.40 50.28 ± 0.66 50.63 ± 0.94
19.18 ± 0.22 25.62 ± 0.28 28.01 ± 0.22 51.11 ± 1.68 52.13 ± 0.49 50.28 ± 0.66 50.63 ± 0.94
19.27 ± 0.19 24.72 ± 0.35 26.15 ± 0.39 51.24 ± 1.72 53.14 ± 0.49 52.68 ± 0.69 52.93 ± 1.06
18.97 ± 0.50 26.26 ± 0.32 29.08 ± 0.41 42.04 ± 1.33 51.42 ± 0.49 50.35 ± 0.67 50.64 ± 0.94
19.01 ± 0.22 25.95 ± 0.26 28.99 ± 0.49 42.06 ± 1.80 51.42 ± 0.49 50.35 ± 0.67 50.64 ± 0.94
19.20 ± 0.26 25.63 ± 0.34 27.59 ± 0.29 42.16 ± 2.44 52.33 ± 0.52 53.03 ± 0.73 53.50 ± 1.09
20.47 ± 0.41 30.32 ± 0.26 33.59 ± 0.23 44.73 ± 2.70 50.76 ± 0.50 50.30 ± 0.67 50.62 ± 0.95
20.56 ± 0.21 30.62 ± 0.44 34.44 ± 0.58 47.27 ± 2.97 50.77 ± 0.50 50.30 ± 0.67 50.62 ± 0.95
21.66 ± 0.49 31.30 ± 0.28 34.78 ± 0.34 48.17 ± 1.98 50.95 ± 0.55 51.04 ± 0.71 51.14 ± 0.94
25.90 ± 0.36 34.07 ± 0.38 37.05 ± 0.40 44.02 ± 2.21 45.61 ± 7.49 46.35 ± 6.54 47.46 ± 5.71
24.58 ± 0.31 33.69 ± 0.20 36.92 ± 0.31 45.01 ± 2.79 47.53 ± 4.49 51.90 ± 2.29 54.40 ± 2.09
24.37 ± 0.23 33.51 ± 0.29 35.88 ± 0.59 45.48 ± 1.98 50.09 ± 3.00 50.26 ± 2.40 49.62 ± 3.43
89.98 ± 1.28 92.72 ± 0.71 93.88 ± 0.71 72.19 ± 3.64 70.34 ± 0.67 80.88 ± 1.06 84.28 ± 1.17
92.64 ± 1.19 97.01 ± 0.46 98.74 ± 0.50 79.04 ± 3.21 71.34 ± 0.75 85.98 ± 0.72 90.47 ± 0.64

SEAM,
no em-

bedding

SEAM

Jac

SL

Jac
Jac

SL
SL

Figure 7: Comparison of different motif prediction schemes for a very sparse Power (power grid) graph. CN: Common Neighbors, AA:

Adamic-Adar, Jac: Jaccard, SL: SEAL. “𝑘-db-star”: motifs with deal-breaker edges considered.

improves the accuracy while simultaneously reducing the variance
in most cases by around 50% for cliques and dense clusters.

We also consider other aspects, for example, we vary the number

of existing edges, and even eliminate all such edges; the results

follow similar patterns to those observed above.

SEAM’s running times heavily depend on the used model pa-

rameters. A full SEAM execution on the Yeast graph dataset with

40,000 training samples and 100 training epochs does typically take

between 15–75 minutes (depending on the complexity of the mo-

tif, with stars and dense clusters being the fastest and slowest to

process, respectively). The used hardware configuration includes

an Intel 6130 @2.10GHz with 32 cores and an Nvidia V100 GPU;

details are in the appendix.

Other analyses are in the appendix, they include varying the

used labeling schemes, training dataset sizes, learning rates, epoch

counts, or sizes of enclosing subgraphs.

6 RELATEDWORK
Our work is related to various parts of data mining and learning.

First, we generalize the established link prediction problem [4, 5, 30,

33, 48, 51, 65, 83, 96, 98] into arbitrary higher-order structures, con-

sidering inter-link correlations, and providing prediction schemes

based on heuristics and GNNs. Next, many works exist on listing,

counting, or finding different patterns (also referred to as motifs,

graphlets, or subgraphs) [3, 5, 10, 13, 14, 24, 29, 30, 36, 39, 42, 50, 51,

59, 60, 63, 65, 75–77, 82, 86, 89]. Our work enables predicting any

of such patterns. Moreover, SEAM can use these schemes as sub-

routines when mining for specific samples. Third, different works

analyze the temporal aspects of motifs [58, 87], for example by ana-

lyzing the temporal dynamics of editor interactions [53], temporal

dynamics of motifs in general time-dependent networks [57, 73], ef-

ficient counting of temporal motifs [64], predicting triangles [8, 71],

or using motif features for more effective link predictions [1]. How-

ever, none of them considers prediction of general motifs. Moreover,

there exists an extensive body of work on graph processing and algo-

rithms, both static and dynamic (also called temporal, time-evolving,

or streaming) [15–17, 19–21, 27, 37, 38, 43, 55, 55, 66, 68, 78, 81].

Still, they do not consider prediction of motifs.

Finally, GNNs have recently become a subject of intense re-

search [25, 26, 26, 31, 31, 44, 47, 47, 56, 80, 93, 93, 99, 100, 100, 101,

101]. In this work, we use GNNs for making accurate predictions

about motif appearance. While we pick DGCNN as a specific model

to implement SEAM, other GNN models can also be used; such

an analysis is an interesting direction for future work. An inter-

esting venue of future work would be harnessing GNNs for other

graph related tasks, such as compression [11, 18, 22]. We implement

SEAM within the Pytorch Geometric GNN framework. Still, other

GNN frameworks could also be used [40, 49, 61, 92, 95, 102]. An

interesting line of work would be to implement motif prediction

using the serverless paradigm [6, 34, 52, 69], for example within

one of recent dedicated serverless engines [85].

7 CONCLUSION & DISCUSSION
Higher-order network analysis is an important approach for mining

irregular data. Yet, it lacks methods and tools for predicting the

evolution of the associated datasets. For this, we establish a prob-

lem of predicting general complex graph structures called motifs,

such as cliques or stars. We illustrate its differences to simple link

prediction, and then we propose heuristics for motif prediction that

are invariant to the motif size and capture potential correlations

between links forming a motif. Our analysis enables incorporating

domain knowledge, and thus – similarly to link prediction – it can

be a foundation for developing motif prediction schemes within

specific domains.

While being fast, heuristics leave some space for improvements

in prediction accuracy. To address this, we develop a graph neural

network (GNN) architecture for predicting motifs. We show that it

outperforms the state of the art by up to 32% in area under the curve,

offering excellent accuracy, which improves with the growing size

and complexity of the predicted motif. We also successfully apply

our architecture to predicting more arbitrarily structured clusters,

indicating its broader potential in mining irregular data.

Acknowledgements We thank Hussein Harake, Colin McMur-

trie, Mark Klein, AngeloMangili, and thewhole CSCS team granting

access to the Ault and Daint machines, and for their excellent tech-

nical support. We thank Timo Schneider for immense help with

computing infrastructure at SPCL. This research received funding

10

from Google European Doctoral Fellowship, Huawei, and the Euro-

pean Research Council (ERC) under the European Union’s Horizon

2020 programme (grant agreement DAPP, No. 678880).

REFERENCES
[1] G. AbuOda, G. D. F. Morales, and A. Aboulnaga. Link prediction via higher-order

motif features. In ECML PKDD, 2019.
[2] L. A. Adamic and E. Adar. Friends and neighbors on the web. Social networks,

2003.

[3] C. C. Aggarwal and H. Wang. Managing and mining graph data, volume 40.

Springer, 2010.

[4] M. Al Hasan, V. Chaoji, S. Salem, and M. Zaki. Link prediction using supervised

learning. In SDM06: workshop on link analysis, counter-terrorism and security,
2006.

[5] M. Al Hasan and M. J. Zaki. A survey of link prediction in social networks. In

Social network data analytics, pages 243–275. Springer, 2011.
[6] I. Baldini, P. Castro, K. Chang, P. Cheng, S. Fink, V. Ishakian, N. Mitchell,

V. Muthusamy, R. Rabbah, A. Slominski, et al. Serverless computing: Cur-

rent trends and open problems. In Research Advances in Cloud Computing, pages
1–20. Springer, 2017.

[7] V. Batagelj and A. Mrvar. Pajek datasets, 2006. http://vlado.fmf.uni-

lj.si/pub/networks/data/.

[8] A. R. Benson et al. Simplicial closure and higher-order link prediction. Proceed-
ings of the National Academy of Sciences, 115(48):E11221–E11230, 2018.

[9] A. R. Benson, D. F. Gleich, and J. Leskovec. Higher-order organization of complex

networks. Science, 353(6295):163–166, 2016.
[10] M. Besta et al. To push or to pull: On reducing communication and synchro-

nization in graph computations. In HPDC, pages 93–104. ACM, 2017.

[11] M. Besta et al. Slim graph: Practical lossy graph compression for approximate

graph processing, storage, and analytics. In ACM/IEEE Supercomputing, pages
1–25, 2019.

[12] M. Besta et al. Communication-efficient jaccard similarity for high-performance

distributed genome comparisons. In IPDPS, pages 1122–1132. IEEE, 2020.
[13] M. Besta et al. Graphminesuite: Enabling high-performance and programmable

graph mining algorithms with set algebra. arXiv preprint arXiv:2103.03653, 2021.
[14] M. Besta et al. Sisa: Set-centric instruction set architecture for graph mining on

processing-in-memory systems. arXiv preprint arXiv:2104.07582, 2021.
[15] M. Besta, M. Fischer, T. Ben-Nun, D. Stanojevic, J. D. F. Licht, and T. Hoefler.

Substream-centric maximum matchings on fpga. ACM Transactions on Recon-
figurable Technology and Systems (TRETS), 13(2):1–33, 2020.

[16] M. Besta, M. Fischer, V. Kalavri, M. Kapralov, and T. Hoefler. Practice of streaming

processing of dynamic graphs: Concepts, models, and systems. arXiv preprint
arXiv:1912.12740, 2019.

[17] M. Besta and T. Hoefler. Accelerating Irregular Computations with Hardware

Transactional Memory and Active Messages. In Proc. of the Intl. Symp. on
High-Perf. Par. and Dist. Comp., HPDC ’15, pages 161–172, 2015.

[18] M. Besta and T. Hoefler. Survey and taxonomy of lossless graph compression

and space-efficient graph representations. arXiv preprint arXiv:1806.01799, 2018.
[19] M. Besta, F. Marending, E. Solomonik, and T. Hoefler. Slimsell: A vectoriz-

able graph representation for breadth-first search. In Parallel and Distributed
Processing Symposium (IPDPS), 2017 IEEE International, pages 32–41. IEEE, 2017.

[20] M. Besta and otherd. High-performance parallel graph coloring with strong

guarantees on work, depth, and quality. In ACM/IEEE Supercomputing, 2020.
[21] M. Besta, E. Peter, R. Gerstenberger, M. Fischer, M. Podstawski, C. Barthels,

G. Alonso, and T. Hoefler. Demystifying graph databases: Analysis and taxon-

omy of data organization, system designs, and graph queries. arXiv preprint
arXiv:1910.09017, 2019.

[22] M. Besta, D. Stanojevic, T. Zivic, J. Singh, M. Hoerold, and T. Hoefler. Log

(graph): a near-optimal high-performance graph representation. In Proceedings
of the 27th International Conference on Parallel Architectures and Compilation
Techniques, page 7. ACM, 2018.

[23] M. Bhattacharyya and S. Bandyopadhyay. Mining the largest quasi-clique in

human protein interactome. In EAIS. IEEE, 2009.
[24] C. Bron and J. Kerbosch. Algorithm 457: finding all cliques of an undirected

graph. Communications of the ACM, 16(9):575–577, 1973.

[25] M. M. Bronstein, J. Bruna, T. Cohen, and P. Veličković. Geometric deep learning:

Grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478,
2021.

[26] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst. Geometric

deep learning: going beyond euclidean data. IEEE Signal Processing Magazine,
34(4):18–42, 2017.

[27] A. Buluç and J. R. Gilbert. The combinatorial blas: Design, implementation,

and applications. The International Journal of High Performance Computing
Applications, 25(4):496–509, 2011.

[28] W. Cao, Z. Yan, Z. He, and Z. He. A comprehensive survey on geometric deep

learning. IEEE Access, 8:35929–35949, 2020.

[29] F. Cazals and C. Karande. A note on the problem of reporting maximal cliques.

Theoretical Computer Science, 407(1-3):564–568, 2008.
[30] D. Chakrabarti and C. Faloutsos. Graph mining: Laws, generators, and algo-

rithms. ACM computing surveys (CSUR), 38(1):2, 2006.
[31] I. Chami, S. Abu-El-Haija, B. Perozzi, C. Ré, and K. Murphy. Machine learning on

graphs: A model and comprehensive taxonomy. arXiv preprint arXiv:2005.03675,
2020.

[32] Z. Chen et al. Bridging the gap between spatial and spectral domains: A survey

on graph neural networks. arXiv preprint arXiv:2002.11867, 2020.
[33] D. J. Cook and L. B. Holder. Mining graph data. John Wiley & Sons, 2006.

[34] M. Copik, G. Kwasniewski, M. Besta, M. Podstawski, and T. Hoefler. Sebs: A

serverless benchmark suite for function-as-a-service computing. arXiv preprint
arXiv:2012.14132, 2020.

[35] CSCS. Swiss national supercomputing center, 2021. https://cscs.ch.

[36] M. Danisch, O. Balalau, and M. Sozio. Listing k-cliques in sparse real-world

graphs. In Proceedings of the 2018WorldWideWeb Conference onWorldWideWeb,
pages 589–598. International WorldWideWeb Conferences Steering Committee,

2018.

[37] D. Ediger et al. Massive streaming data analytics: A case study with clustering

coefficients. In IEEE IPDPSW, 2010.

[38] D. Ediger, R. McColl, J. Riedy, and D. A. Bader. Stinger: High performance data

structure for streaming graphs. In 2012 IEEE Conference on High Performance
Extreme Computing, pages 1–5. IEEE, 2012.

[39] D. Eppstein, M. Löffler, and D. Strash. Listing all maximal cliques in sparse

graphs in near-optimal time. In Algorithms and Computation - 21st International
Symposium, ISAAC 2010, Jeju Island, Korea, December 15-17, 2010, Proceedings,
Part I, pages 403–414, 2010.

[40] M. Fey and J. E. Lenssen. Fast graph representation learning with pytorch

geometric. arXiv preprint arXiv:1903.02428, 2019.
[41] M. Fey and J. E. Lenssen. Fast graph representation learning with pytorch geo-

metric. In Proceedings of the International Conference on Learning Representations,
volume 7, 2019.

[42] B. Gallagher. Matching structure and semantics: A survey on graph-based

pattern matching. In AAAI Fall Symposium: Capturing and Using Patterns for
Evidence Detection, pages 45–53, 2006.

[43] L. Gianinazzi et al. Communication-avoiding parallel minimum cuts and con-

nected components. In PPoPP, pages 219–232. ACM, 2018.

[44] L. Gianinazzi, M. Fries, N. Dryden, T. Ben-Nun, and T. Hoefler. Learning combi-

natorial node labeling algorithms. arXiv preprint arXiv:2106.03594, 2021.
[45] D. Gibson, R. Kumar, and A. Tomkins. Discovering large dense subgraphs in

massive graphs. In Proceedings of the 31st international conference on Very large
data bases, pages 721–732, 2005.

[46] A. Grover and J. Leskovec. node2vec: Scalable feature learning for networks. In

KDD, pages 855–864, 2016.
[47] W. L. Hamilton et al. Representation learning on graphs: Methods and applica-

tions. arXiv preprint arXiv:1709.05584, 2017.
[48] T. Horváth, T. Gärtner, and S. Wrobel. Cyclic pattern kernels for predictive

graph mining. In KDD, pages 158–167. ACM, 2004.

[49] Y. Hu et al. Featgraph: A flexible and efficient backend for graph neural network

systems. arXiv preprint arXiv:2008.11359, 2020.
[50] S. Jabbour et al. Pushing the envelope in overlapping communities detection.

In IDA, pages 151–163. Springer, 2018.
[51] C. Jiang, F. Coenen, and M. Zito. A survey of frequent subgraph mining algo-

rithms. The Knowledge Engineering Review, 28(1):75–105, 2013.
[52] E. Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsai, A. Khandelwal, Q. Pu,

V. Shankar, J. Carreira, K. Krauth, N. Yadwadkar, et al. Cloud programming sim-

plified: A berkeley view on serverless computing. arXiv preprint arXiv:1902.03383,
2019.

[53] D. Jurgens and T.-C. Lu. Temporal motifs reveal the dynamics of editor interac-

tions in wikipedia. In AAAI ICWSM, volume 6, 2012.

[54] L. Katz. A new status index derived from sociometric analysis. Psychometrika,
1953.

[55] J. Kepner et al. Mathematical foundations of the graphblas. In HPEC, pages 1–9.
IEEE, 2016.

[56] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolu-

tional networks. arXiv preprint arXiv:1609.02907, 2016.
[57] L. Kovanen et al. Temporal motifs in time-dependent networks. Journal of

Statistical Mechanics: Theory and Experiment, 2011(11):P11005, 2011.
[58] L. Kovanen, M. Karsai, K. Kaski, J. Kertész, and J. Saramäki. Temporal motifs.

In Temporal networks, pages 119–133. Springer, 2013.
[59] V. E. Lee, N. Ruan, R. Jin, and C. Aggarwal. A survey of algorithms for dense

subgraph discovery. In Managing and Mining Graph Data, pages 303–336.
Springer, 2010.

[60] E. A. Leicht, P. Holme, and M. E. Newman. Vertex similarity in networks.

Physical Review E, 73(2):026120, 2006.
[61] S. Li et al. Pytorch distributed: Experiences on accelerating data parallel training.

arXiv preprint arXiv:2006.15704, 2020.

11

[62] X.-L. Li, C.-S. Foo, S.-H. Tan, and S.-K. Ng. Interaction graph mining for protein

complexes using local clique merging. Genome Informatics, 2005.
[63] D. Liben-Nowell and J. Kleinberg. The link-prediction problem for social net-

works. Journal of the American society for information science and technology,
58(7):1019–1031, 2007.

[64] P. Liu, A. R. Benson, and M. Charikar. Sampling methods for counting temporal

motifs. In ACM WSDM, pages 294–302, 2019.

[65] L. Lü and T. Zhou. Link prediction in complex networks: A survey. Physica A:
statistical mechanics and its applications, 390(6):1150–1170, 2011.

[66] K. Madduri, D. Ediger, K. Jiang, D. A. Bader, and D. Chavarria-Miranda. A faster

parallel algorithm and efficient multithreaded implementations for evaluating

betweenness centrality on massive datasets. In Parallel & Distributed Processing,
2009. IPDPS 2009. IEEE International Symposium on, pages 1–8. IEEE, 2009.

[67] V. Martínez, F. Berzal, and J.-C. Cubero. A survey of link prediction in complex

networks. ACM computing surveys (CSUR), 49(4):1–33, 2016.
[68] R. McColl, O. Green, and D. A. Bader. A new parallel algorithm for connected

components in dynamic graphs. In 20th Annual International Conference on
High Performance Computing, pages 246–255. IEEE, 2013.

[69] G. McGrath and P. R. Brenner. Serverless computing: Design, implementation,

and performance. In 2017 IEEE 37th International Conference on Distributed
Computing Systems Workshops (ICDCSW), pages 405–410. IEEE, 2017.

[70] P. Moritz et al. Ray: A distributed framework for emerging ai applications. arXiv
preprint arXiv:1712.05889, 2017.

[71] H. Nassar, A. R. Benson, and D. F. Gleich. Pairwise link prediction. In ASONAM,

pages 386–393. IEEE, 2019.

[72] H. Nassar, A. R. Benson, and D. F. Gleich. Neighborhood and pagerank methods

for pairwise link prediction. Social Network Analysis and Mining, 10(1):1–13,
2020.

[73] A. Paranjape, A. R. Benson, and J. Leskovec. Motifs in temporal networks. In

Proceedings of the Tenth ACM International Conference on Web Search and Data
Mining, pages 601–610, 2017.

[74] B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online learning of social

representations. In KDD, pages 701–710, 2014.
[75] T. Ramraj and R. Prabhakar. Frequent subgraph mining algorithms-a survey.

Procedia Computer Science, 47:197–204, 2015.
[76] S. U. Rehman, A. U. Khan, and S. Fong. Graph mining: A survey of graph

mining techniques. In Seventh International Conference on Digital Information
Management (ICDIM 2012), pages 88–92. IEEE, 2012.

[77] P. Ribeiro, P. Paredes, M. E. Silva, D. Aparicio, and F. Silva. A survey on sub-

graph counting: Concepts, algorithms and applications to network motifs and

graphlets. arXiv preprint arXiv:1910.13011, 2019.
[78] S. Sakr et al. The future is big graphs! a community view on graph processing

systems. arXiv preprint arXiv:2012.06171, 2020.
[79] R. Sato. A survey on the expressive power of graph neural networks. arXiv

preprint arXiv:2003.04078, 2020.
[80] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. The graph

neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.
[81] E. Solomonik, M. Besta, F. Vella, and T. Hoefler. Scaling betweenness centrality

using communication-efficient sparse matrix multiplication. In Proceedings
of the International Conference for High Performance Computing, Networking,
Storage and Analysis, page 47. ACM, 2017.

[82] L. Tang and H. Liu. Graph mining applications to social network analysis. In

Managing and Mining Graph Data, pages 487–513. Springer, 2010.
[83] B. Taskar, M.-F. Wong, P. Abbeel, and D. Koller. Link prediction in relational

data. In Advances in neural information processing systems, pages 659–666, 2004.
[84] K. K. Thekumparampil, C. Wang, S. Oh, and L.-J. Li. Attention-based graph

neural network for semi-supervised learning. arXiv preprint arXiv:1803.03735,
2018.

[85] J. Thorpe, Y. Qiao, J. Eyolfson, S. Teng, G. Hu, Z. Jia, J. Wei, K. Vora, R. Netravali,

M. Kim, et al. Dorylus: Affordable, scalable, and accurate gnn training over

billion-edge graphs. arXiv preprint arXiv:2105.11118, 2021.
[86] E. Tomita, A. Tanaka, and H. Takahashi. The worst-case time complexity for

generating all maximal cliques and computational experiments. Theor. Comput.
Sci., 363(1):28–42, 2006.

[87] S. Torkamani and V. Lohweg. Survey on time series motif discovery. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 7(2):e1199,
2017.

[88] C. Von Mering et al. Comparative assessment of large-scale data sets of protein–

protein interactions. Nature, 417(6887):399–403, 2002.
[89] T. Washio and H. Motoda. State of the art of graph-based data mining. Acm

Sigkdd Explorations Newsletter, 5(1):59–68, 2003.
[90] D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-world’networks.

nature, 393(6684):440–442, 1998.
[91] S. Wu, F. Sun, W. Zhang, and B. Cui. Graph neural networks in recommender

systems: a survey. arXiv preprint arXiv:2011.02260, 2020.
[92] Y. Wu, K. Ma, Z. Cai, T. Jin, B. Li, C. Zheng, J. Cheng, and F. Yu. Seastar:

vertex-centric programming for graph neural networks. In EuroSys, 2021.

[93] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip. A comprehensive

survey on graph neural networks. IEEE Transactions on Neural Networks and
Learning Systems, 2020.

[94] C. Zhang, D. Song, C. Huang, A. Swami, and N. V. Chawla. Heterogeneous

graph neural network. In KDD, pages 793–803, 2019.
[95] D. Zhang et al. Agl: a scalable system for industrial-purpose graph machine

learning. arXiv preprint arXiv:2003.02454, 2020.
[96] M. Zhang and Y. Chen. Link prediction based on graph neural networks. arXiv

preprint arXiv:1802.09691, 2018.
[97] M. Zhang, Z. Cui, M. Neumann, and Y. Chen. An end-to-end deep learning

architecture for graph classification. In AAAI, volume 32, 2018.

[98] M. Zhang, P. Li, Y. Xia, K. Wang, and L. Jin. Revisiting graph neural networks

for link prediction. arXiv preprint arXiv:2010.16103, 2020.
[99] S. Zhang, H. Tong, J. Xu, and R. Maciejewski. Graph convolutional networks: a

comprehensive review. Computational Social Networks, 6(1):1–23, 2019.
[100] Z. Zhang, P. Cui, and W. Zhu. Deep learning on graphs: A survey. IEEE

Transactions on Knowledge and Data Engineering, 2020.
[101] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun.

Graph neural networks: A review of methods and applications. AI Open, 1:57–81,
2020.

[102] R. Zhu, K. Zhao, H. Yang, W. Lin, C. Zhou, B. Ai, Y. Li, and J. Zhou. Aligraph: A

comprehensive graph neural network platform. arXiv preprint arXiv:1902.08730,
2019.

12

APPENDIX A: PROOFS
We recall the statement of Observation 1 in Section 3.1:

Consider vertices 𝑣1, ..., 𝑣𝑘 ∈ 𝑉 . Assuming no edges already con-

necting 𝑣1, ..., 𝑣𝑘 , there are 2(
𝑘
2
) − 1 motifs (with between 1 and

(𝑘
2

)
edges) that can appear to connect 𝑣1, ..., 𝑣𝑘 .

Proof. We denote as 𝐸𝑘 = {{𝑖, 𝑗} : 𝑖, 𝑗 ∈ 𝑉𝑘 ∧ 𝑖 ≠ 𝑗} the edge
set of the undirected subgraph (𝑉𝑘 , 𝐸𝑘) with 𝑉𝑘 ⊆ 𝑉 . The number

of all possible edges between 𝑘 vertices is |𝐸𝑘 | =
(𝑘
2

)
. Any subset

of 𝐸𝑘 , with the exception of the empty set, defines a motif. Thus

the set of all possible subsets (i.e., the power set P) of 𝐸𝑘 is the set

of motifs. Then, since |P(𝐸𝑘) | = 2
(𝑘
2
)
, we subtract the empty set

(which we consider as an invalid motif) from the total count to

obtain the desired result. □

We recall the statement of Proposition 3.1 in Section 3.5:

Let {𝑥1, ..., 𝑥𝑛} be any finite collection of elements from𝑈 = {𝑥 ∈
R : 0 ≤ 𝑥 ≤ 1}. Then, ∀𝑛 ∈ N we have

∏𝑛
𝑖=1 𝑥𝑖 ≤

∑𝑛
𝑖=1𝑤𝑖𝑥𝑖 , where

𝑤𝑖 ≥ 0 ∀𝑖 ∈ {1, ..., 𝑛} and subject to the constraint ∑𝑛
𝑖=1𝑤𝑖 = 1.

Proof. We start by noticing that

∏𝑛
𝑖=1 𝑥𝑖 ≤ min{𝑥1, ..., 𝑥𝑛}. This

is trivial to verify if ∃ 𝑥𝑖 = 0 for 𝑖 ∈ {1, ..., 𝑛}. Otherwise, it can
be shown by contradiction: imagine that

∏𝑛
𝑖=1 𝑥𝑖 > min{𝑥1, ..., 𝑥𝑛}.

We know that𝑈 is closed with respect to the product (i.e.,

∏𝑛
𝑖=1 𝑥𝑖 ∈

𝑈 ∀ 𝑛 ∈ N). Then, we can divide both sides by min{𝑥1, ..., 𝑥𝑛},
since we ruled out the division by zero, to obtain

∏𝑛−1
𝑖=1 𝑥𝑖 > 1.

This implies

∏𝑛−1
𝑖=1 𝑥𝑖 ∉ 𝑈 , which contradicts that 𝑈 is closed to

the product. For the right side of the original statement, we know

by definition that 𝑥𝑖 ≥ min{𝑥1, ..., 𝑥𝑛} ∀𝑖 ∈ {1, ..., 𝑛}. Since𝑤𝑖 ≥ 0,

we can also write that 𝑤𝑖𝑥𝑖 ≥ 𝑤𝑖 min{𝑥1, ..., 𝑥𝑛} ∀𝑖 ∈ {1, ..., 𝑛}.
Thus, since 𝑈 is an ordered set, we can state that

∑𝑛
𝑖=1𝑤𝑖𝑥𝑖 ≥∑𝑛

𝑖=1𝑤𝑖 min{𝑥1, ..., 𝑥𝑛}. But then, since
∑𝑛
𝑖=1𝑤𝑖 min{𝑥1, ..., 𝑥𝑛} =

min{𝑥1, ..., 𝑥𝑛}, we conclude that min{𝑥1, ..., 𝑥𝑛} ≤
∑𝑛
𝑖=1𝑤𝑖𝑥𝑖 . This

ends the proof thanks to the transitive property. □

We also justify some complexity bounds from § 4.9. Mining

𝑘-stars is independent of 𝑘 . To find a 𝑘-star at a given node 𝑥 ,

one chooses 𝑘 − 1 random nodes of 𝑥 . This has a complexity of

𝑂 (𝑘+𝑑 (𝑥)). If 𝑘 is larger than𝑑 (𝑥), there is no star and one can skip
the node in𝑂 (1). Otherwise, it takes𝑂 (𝑑 (𝑥)) to extract a star. Thus,
for a given star, we extract 𝑡 samples in 𝑂 (𝑡𝑑 (𝑥)). Summing over

all nodes is hence 𝑂 (𝑡𝑚). Next, the bounds for cliques and clusters

are straightforward. Finally, for the enclosing subgraph extraction

and labeling, we do a BFS starting from each of the 𝑘 motif vertices

that visits all ℎ-hop neighbors. Each node has at most 𝑑 neighbors,

hence there is at most 𝑘𝑑ℎ nodes in the ℎ-hop neighborhood that

need to be visited. But, as BFS is also linear in the number of edges,

the complexity is𝑂 (𝑘𝑑2ℎ). The inner labels are a one-hot-encoding
of the motif vertices, which can be produced in 𝑂 (𝑘2𝑑ℎ) time. The

outer labels are the distances to the motif nodes, which can be

computed at the same time as the BFS traversal for the extraction,

so it is the overhead of 𝑂 (𝑘2𝑑ℎ).

APPENDIX B: DETAILS OF DATASETS
In this section, we provide additional details on the various datasets

that we used. We selected networks of different origins (biological,

engineering, transportation), with different structural properties

(different sparsities and skews in degree distributions).

USAir [7] is a graph with 332 vertices and 2,126 edges repre-

senting US cities and the airline connections between them. The

vertex degrees range from 1 to 139 with an average degree of 12.8.

Yeast [88] is a graph of protein-protein interactions in yeast with

2,375 vertices and 11,693 edges. The vertex degrees range from 1 to

118 with an average of 9.8. Power [90] is the electrical grid of the

Western US with 4,941 vertices and 6,594 edges. The vertex degrees

range from 1 to 19 with an average degree of 2.7.

APPENDIX C: SEAMMODEL PARAMETERS
We now discuss in more detail the selection of the SEAM model

parameters.

Choosing learning rate and number of epochs
We first describe how we tune the hyperparameters for our motif

prediction framework. To find the optimal learning rate for SEAM

we try different learning rates as shown in Figures 8, 9 and 10. The

associated hyperparameters are highly dependent on the specific

motif to be predicted and on the used dataset. As an example, we

analyze the hyperparameters for 𝑘-stars and 𝑘-cliques on the USAir

graph dataset. The plots show that there is a sweet spot for the

learning rate at 0.001-0.002. Any value below that rate is too small

and our model cannot train its neural network effectively, while

for the values above that, the model is unable to learn the often

subtle differences between hard negative samples and positive sam-

ples. The number of epochs of the learning process can be chosen

according to the available computational resources of the user.

Analysis of different training dataset sizes
We also analyze the effect of different training dataset sizes on

the prediction strength of SEAM. We want to assess the smallest

number of samples that still ensures an effective learning process.

Figure 11 shows the different accuracy results of SEAM, for differ-

ent motifs and training dataset sizes. We observe that the accuracy

strongly depends on the motif to be predicted. For example, a dense

subgraph can be predicted with high accuracy with only 100 train-

ing samples. On the other hand, prediction accuracy of the 5-star

motif improves proportionally to the amount of training samples

while still requiring more samples (than plain dense subgraphs) for

a high accuracy score. For all motifs, we set our minimal amount

of training samples to 20,000 for positive and for negative ones.

APPENDIX D: ANALYSIS OF DIFFERENT
VARIANTS OF MOTIF PREDICTION IN SEAM
Here, we analyze the effects and contributions from different vari-

ants of SEAM. First, we investigate the accuracy improvements

due to our proposed labeling scheme in Section 4.6. Then, we em-

pirically justify our approach to only sample the ℎ-hop enclosing

subgraph for small ℎ (1–2). Finally, we evaluate the performance of

every prediction method if there are no motif edges already present.

13

3-star 5-star 7-star 3-clique 5-clique 7-clique

0.000125
0.00025
0.0005
0.001
0.002
0.004
0.008
0.016
0.032

Le
ar

ni
ng

 R
at

e
80.89 ± 0.91 82.08 ± 0.64 85.35 ± 0.11 84.07 ± 0.95 85.08 ± 1.81 87.56 ± 1.18
81.61 ± 0.82 84.68 ± 1.15 87.53 ± 0.36 84.70 ± 0.77 88.01 ± 1.76 91.17 ± 2.35
83.80 ± 1.05 86.06 ± 0.42 89.55 ± 0.93 86.03 ± 0.97 91.31 ± 1.11 94.79 ± 1.02
84.50 ± 0.45 87.18 ± 0.62 90.83 ± 0.05 87.46 ± 0.98 93.64 ± 0.80 96.98 ± 0.53
86.26 ± 0.66 86.91 ± 0.93 90.42 ± 0.46 88.22 ± 0.53 94.77 ± 0.82 97.80 ± 0.78
86.92 ± 1.50 88.01 ± 2.25 88.04 ± 1.16 88.12 ± 1.30 94.76 ± 1.22 93.76 ± 8.11
83.87 ± 2.94 81.85 ± 4.97 84.32 ± 2.19 87.43 ± 2.45 81.89 ± 10.59 76.37 ± 11.53
71.03 ± 7.58 65.56 ± 5.81 63.58 ± 2.35 76.28 ± 8.69 66.94 ± 14.02 57.13 ± 5.09
54.14 ± 5.73 54.94 ± 9.88 50.00 ± 0.00 58.18 ± 9.06 56.33 ± 2.30 58.95 ± 7.42

Figure 8: AUC-Score comparison for different learning rates on USAir graph. SEAM parameters: proposed labels enabled, proposed

embedding disabled. Number of epochs = 50, training dataset size = 100,000.

3-star 5-star 7-star 3-clique 5-clique 7-clique

0.000125
0.00025
0.0005
0.001
0.002
0.004
0.008
0.016
0.032

Le
ar

ni
ng

 R
at

e

82.46 ± 0.92 85.01 ± 0.56 88.56 ± 0.04 85.35 ± 0.82 87.99 ± 1.69 90.85 ± 0.64
83.48 ± 0.59 86.83 ± 1.27 90.11 ± 0.20 86.28 ± 0.75 91.33 ± 1.28 94.61 ± 1.58
85.62 ± 1.05 88.05 ± 0.21 91.53 ± 0.42 87.92 ± 0.83 94.75 ± 0.81 97.26 ± 0.47
86.58 ± 0.99 88.70 ± 0.57 92.27 ± 0.20 89.95 ± 1.34 95.77 ± 0.54 98.50 ± 0.37
88.40 ± 1.50 88.75 ± 0.96 91.79 ± 0.39 90.30 ± 0.43 96.78 ± 0.97 98.67 ± 0.31
89.68 ± 1.02 91.34 ± 2.97 90.93 ± 0.61 92.06 ± 2.70 96.62 ± 1.15 94.09 ± 8.94
86.72 ± 1.74 86.01 ± 2.49 88.13 ± 1.27 91.44 ± 3.06 90.45 ± 10.07 85.74 ± 8.56

75.29 ± 10.46 66.72 ± 7.92 63.58 ± 2.35 78.91 ± 11.09 70.96 ± 17.71 59.60 ± 11.00
55.32 ± 5.90 55.40 ± 10.80 50.00 ± 0.00 58.18 ± 9.06 56.25 ± 2.28 60.44 ± 6.98

Figure 9: AUC-Score comparison for different learning rates on USAir graph. SEAM parameters: proposed labels enabled, proposed

embedding disabled. Number of epochs = 100, training dataset size = 100,000.

3-star 5-star 7-star 3-clique 5-clique 7-clique

0.000125
0.00025
0.0005
0.001
0.002
0.004
0.008
0.016
0.032

Le
ar

ni
ng

 R
at

e

83.50 ± 0.98 86.65 ± 0.29 90.12 ± 0.11 86.25 ± 0.72 90.06 ± 1.20 93.14 ± 0.58
84.41 ± 0.75 87.66 ± 0.20 91.27 ± 0.41 87.46 ± 0.60 93.39 ± 1.13 96.42 ± 0.84
86.47 ± 0.74 88.82 ± 0.39 92.23 ± 0.50 89.23 ± 0.60 95.96 ± 0.63 98.09 ± 0.27
88.00 ± 0.94 89.06 ± 0.47 92.72 ± 0.30 91.26 ± 1.25 96.46 ± 0.44 98.89 ± 0.33
89.43 ± 1.58 90.17 ± 1.52 92.37 ± 0.17 91.49 ± 1.43 97.26 ± 0.74 98.87 ± 0.31
91.52 ± 0.56 93.47 ± 2.44 91.30 ± 0.30 93.66 ± 3.01 97.33 ± 0.78 97.84 ± 1.23
87.46 ± 1.74 90.53 ± 3.21 90.39 ± 0.32 92.76 ± 2.78 93.93 ± 7.25 87.15 ± 9.33

76.81 ± 11.74 67.98 ± 10.33 63.58 ± 2.35 80.29 ± 11.41 72.57 ± 17.40 59.65 ± 10.99
55.32 ± 5.90 56.99 ± 12.11 50.00 ± 0.00 58.18 ± 9.05 56.25 ± 2.28 60.44 ± 6.98

Figure 10: AUC-Score comparison for different learning rates on USAir graph. SEAM parameters: proposed labels enabled, proposed

embedding disabled. Number of epochs = 150, training dataset size = 100,000.

Labeling Scheme vs. Accuracy
Figure 12 shows that our proposed labeling scheme generally has a

positive impact on the accuracy of SEAM. The exception is the 𝑘-

star motif. For 𝑘 = 3, the labeling scheme significantly improves the

accuracy. On the other hand, using𝑘 > 3 reduces the accuracywhile

simultaneously increasing the variance of test results. This effect

can be explained with the implementation details of our labeling

scheme. We remove every edges between all the motif vertices to

calculate our 𝑘-dimensional distance labels. This procedure seems

to misrepresent the structure of 𝑘-stars for 𝑘 > 3. There are possible

improvements to be gained in future work by further optimizing

our labeling scheme.

ℎ-Hop Enclosing Subgraphs vs. Accuracy
Zhang et al. [96] motivated the use of small ℎ-hop neighborhoods

for SEAL with the 𝛾-decaying heuristic. We now provide additional

data to backup this decision in SEAM. Figures 14 and 13 show

that in most cases there is not much performance to be gained by

sampling an ℎ-hop enclosing subgraph with ℎ > 2. This effect is

especially striking for sparse graph datasets like the Power shown

in Figure 14. The accuracy starts to drop significantly for ℎ > 2. The

only outlier in our little test was the 5-star motif shown in Figure 13.

This effect was most likely caused by the specifics of this particular

dataset and it does reflect a trend for other graphs. An additional

explanation could also be the non-optimal labeling implementation

14

3-star 5-star 7-star 3-clique 5-clique 7-clique 11-dense 15-dense 19-dense 3-dbstar 5-dbstar 7-dbstar

100
500

1k
5k

10k
25k
50kSi

ze
 o

f T
ra

in
in

g
Da

ta
se

t 62.50 ± 12.72 54.80 ± 16.74 64.00 ± 8.23 70.90 ± 14.51 63.00 ± 11.07 62.90 ± 14.95 81.80 ± 8.26 81.20 ± 4.98 85.30 ± 6.90 74.30 ± 8.15 74.70 ± 6.81 72.00 ± 15.25

70.56 ± 3.98 70.10 ± 4.86 77.89 ± 3.59 75.64 ± 4.98 75.62 ± 4.15 74.07 ± 4.36 90.21 ± 1.54 88.08 ± 2.09 87.33 ± 3.65 74.54 ± 3.16 75.56 ± 4.06 75.45 ± 5.03

75.77 ± 5.13 71.22 ± 3.73 79.67 ± 1.80 81.32 ± 3.42 80.09 ± 2.96 81.07 ± 4.66 91.75 ± 2.53 91.03 ± 2.60 89.70 ± 1.93 77.20 ± 2.79 77.10 ± 3.23 79.49 ± 3.40

79.15 ± 2.13 80.03 ± 1.48 87.21 ± 0.66 87.37 ± 1.05 91.18 ± 1.73 96.05 ± 0.83 97.39 ± 0.72 97.17 ± 0.44 97.34 ± 0.26 81.54 ± 2.07 82.25 ± 2.00 84.28 ± 1.42

82.45 ± 1.09 82.99 ± 0.80 89.35 ± 0.60 90.56 ± 0.85 93.87 ± 1.08 98.19 ± 0.50 98.04 ± 0.25 97.89 ± 0.28 98.06 ± 0.23 82.46 ± 1.43 85.36 ± 1.15 86.03 ± 1.06

87.14 ± 1.55 87.63 ± 1.86 92.51 ± 0.79 90.22 ± 1.51 96.80 ± 0.69 98.74 ± 0.30 98.69 ± 0.15 98.81 ± 0.17 98.89 ± 0.18 83.29 ± 0.69 86.34 ± 0.53 88.69 ± 1.07

87.41 ± 1.14 90.30 ± 2.35 93.80 ± 0.11 90.19 ± 0.93 96.46 ± 0.45 98.78 ± 0.46 99.16 ± 0.00 99.44 ± 0.00 99.32 ± 0.00 83.03 ± 0.79 86.49 ± 0.73 88.29 ± 0.90

Figure 11: AUC-Score comparison for different training dataset sizes on USAir graph. SEAM parameters: proposed labels enabled, proposed

embedding enabled. Learning rate = 0.002, number of epochs = 100.

3-star 5-star 7-star 3-clique 5-clique 7-clique 3-dbstar 5-dbstar 7-dbstar

SEAM no labels

SEAM

Pr
ed

ict
io

n
M

et
ho

d

82.75 ± 0.75 94.71 ± 0.32 98.86 ± 0.12 89.21 ± 0.99 97.51 ± 0.35 98.88 ± 0.27 81.41 ± 0.95 85.39 ± 0.64 87.58 ± 0.64

90.78 ± 1.30 90.00 ± 1.84 94.88 ± 2.28 93.06 ± 0.61 97.26 ± 0.23 98.90 ± 0.18 83.70 ± 0.82 87.56 ± 0.79 88.78 ± 1.49

Figure 12: Effect of our proposed labeling scheme on USAir graph. ℎ-hop = 1, learning rate = 0.002, number of epochs = 100, training

dataset size = 100,000.

for the 5-star motif. These special cases do not justify to increase

the neighborhood size of the motif in a general case.

Presence of Motif Edges vs. Accuracy
We now illustrate that SEAM also ensures high accuracy when no or
very fewmotif edges are already present, see Figures 15 and 16. Thus,

we can conclude that SEAM’s prediction strength relies mostly on

the structure of the neighborhood subgraph, embeddings, vertex

attributes, and our proposed labeling scheme, and not necessarily

on whether a given motif is already partially present. Outliers in

this experiment are the 3–clique in the Power graph, the 𝑘-star

motif with 𝑘 > 3 in the USAir graph, and the 3-star motif in general.

Still, there is no general tendency indicating that SEAM would

profit greatly from the presence of most motif edges.

APPENDIX F: DETAILS OF IMPLEMENTATION
& USED HARDWARE
Our implementation

2
of SEAM and SEAL use the PyTorch Geomet-

ric Library [41]. We employ Ray [70] for distributed sampling and

preprocessing, and RaySGD for distributed training and inference.

To run our experiments, we used the AULT cluster and the Piz

Daint cluster at CSCS [35]. For smaller tasks, we used nodes from

the AULT cluster such as AULT9/10 (64 AMD EPYC 7501 @ 2GHz

processors, 512 GB memory and 4 Nvidia V100 GPUs), AULT23/24

(32 Intel Xeon 6130 @ 2.10GHz processors, 1.5TB memory and 4

Nvidia V100 GPUs), and AULT25 (128 AMD EPYC 7742 @ 2.25GHz

processors, 512 GB memory and 4 Nvidia A100 GPUs). For larger,

tasks we used our distributed implementation on the Piz Daint

cluster (5704 compute nodes, each with 12 Intel Xeon E5-2690 v3 @

2.60GHz processors, 64 GB memory and a Nvidia Tesla P100 GPU).

2
Code will be available at http://spcl.inf.ethz.ch/Research/Parallel_Programming/motifs-GNNs/

15

http://spcl.inf.ethz.ch/Research/Parallel_Programming/motifs-GNNs/

3-star 5-star 7-star 3-clique 5-clique 7-clique

1-hop

2-hop

3-hop

4-hop

Si
ze

 o
f N

ei
gh

bo
rh

oo
d

86.20 ± 0.88 85.80 ± 0.93 88.61 ± 0.71 91.20 ± 1.03 96.16 ± 0.55 98.40 ± 0.22

90.48 ± 0.76 92.80 ± 2.52 96.60 ± 0.66 92.41 ± 1.35 97.45 ± 0.19 98.97 ± 0.35

91.46 ± 0.79 93.41 ± 1.59 95.87 ± 1.50 92.88 ± 1.21 97.59 ± 0.19 99.00 ± 0.32

90.88 ± 1.52 95.58 ± 1.76 96.98 ± 0.70 93.21 ± 1.21 97.59 ± 0.52 99.04 ± 0.26

Figure 13: Comparison of different ℎ-hop enclosing subgraphs used in SEAM, for the USAir graph. Learning rate = 0.002, number of epochs

= 100.

3-star 5-star 7-star 3-clique

1-hop

2-hop

3-hop

Si
ze

 o
f N

ei
gh

bo
rh

oo
d

89.98 ± 1.28 92.72 ± 0.71 93.88 ± 0.71 72.19 ± 3.64

90.18 ± 0.90 93.65 ± 0.62 94.90 ± 0.56 73.86 ± 3.61

89.37 ± 1.03 90.47 ± 2.12 90.51 ± 4.94 73.42 ± 4.96

Figure 14: Comparison of different ℎ-hop enclosing subgraphs used in SEAM, for the Power graph. Learning rate = 0.002, number of epochs

= 100, training dataset size = 100,000. The graph does not contain enough 5-cliques and 7-cliques due to its sparsity.

3-star 5-star 7-star 3-clique 3-dbstar 5-dbstar 7-dbstar

No Motif Edges

Most Motif Edges

Pr
es

en
t M

ot
if

Ed
ge

s

87.85 ± 1.22 94.56 ± 0.61 97.00 ± 0.84 67.28 ± 6.76 70.64 ± 0.80 84.17 ± 0.66 86.95 ± 0.74

91.31 ± 1.81 94.86 ± 2.23 96.31 ± 2.51 75.62 ± 4.85 70.84 ± 0.86 83.43 ± 2.70 87.38 ± 3.24

Figure 15: Comparison of the prediction accuracy of SEAM for different already present motif edges for the Power graph. ℎ-hop = 1,

learning rate = 0.002, number of epochs = 100, training dataset size = 100,000. The graph does not contain enough 5-cliques and 7-cliques

due to its sparsity.

3-star 5-star 7-star 3-clique 5-clique 7-clique 3-dbstar 5-dbstar 7-dbstar

No Motif Edges

Most Motif Edges

Pr
es

en
t M

ot
if

Ed
ge

s

87.80 ± 0.86 92.24 ± 1.23 95.28 ± 2.19 92.08 ± 0.52 97.28 ± 0.20 98.84 ± 0.28 83.83 ± 0.42 86.54 ± 0.48 87.33 ± 0.49

90.24 ± 1.46 89.99 ± 1.58 92.00 ± 1.28 93.61 ± 1.88 96.69 ± 0.53 98.32 ± 0.63 83.70 ± 0.82 87.56 ± 0.79 88.78 ± 1.49

Figure 16: Comparison of the prediction accuracy of SEAM for different already present motif edges for the USAir graph. ℎ-hop = 1,

learning rate = 0.002, number of epochs = 100, training dataset size = 100,000.

16

	Abstract
	1 Introduction and Motivation
	2 Background and Notation
	3 Motif Prediction: Formal Statement and Score Functions
	3.1 Motif Prediction vs. Link Prediction
	3.2 Types of Edges in Motifs
	3.3 General Problem and Score Formulation
	3.4 Heuristics with No Link Correlations
	3.5 Heuristics for Link Correlations
	3.6 Normalization of Scores for Meaningful Comparisons and General Applicability

	4 SEAM GNN ARCHITECTURE
	4.1 Overview
	4.2 Specifying Motifs of Interest
	4.3 Positive and Negative Sampling
	4.4 Extracting Subgraphs Containing Samples
	4.5 Node Embeddings for More Accuracy
	4.6 Node Labeling for Structural Features
	4.7 Different Orderings of Motif Vertices
	4.8 Used Graph Neural Network Model
	4.9 Computational Complexity of SEAM

	5 Evaluation
	5.1 SEAM GNN vs. SEAL GNN vs. Heuristics
	5.2 Additional Analyses

	6 Related Work
	7 Conclusion & Discussion
	References

