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Abstract—Many-core systems with a rapidly increasing number of cores pose a significant challenge to parallel applications to use

their complex memory hierarchies efficiently. Many such applications rely on collective communications in performance-critical phases,

which become a bottleneck if they are not optimized. We address this issue by proposing cache-oblivious algorithms for MPI_Alltoall,

MPI_Allgather, and the MPI neighborhood collectives to exploit the data locality. To implement the cache-oblivious algorithms, we

allocate the send and receive buffers on a shared heap and use Morton order to guide the memory copies. Our analysis shows that our

algorithm for MPI_Alltoall is asymptotically optimal. We show an extension to our algorithms to minimize the communication distance

on NUMA systems while maintaining optimality within each socket. We further demonstrate how the cache-oblivious algorithms can be

applied to multi-node machines. Experiments are conducted on different many-core architectures. For MPI_Alltoall, our implementation

achieves on average 1.40X speedup over the naive implementation based on shared heap for small and medium block sizes (less than

16 KB) on a Xeon Phi KNC, achieves on average 3.03X speedup over MVAPICH2 on a Xeon E7-8890, and achieves on average 2.23X

speedup over MVAPICH2 on a 256-node Xeon E5-2680 cluster for block sizes less than 1 KB.

Index Terms—cache-oblivious algorithms, collective communication, NUMA, MPI_Alltoall, MPI_Allgather, neighborhood collectives

Ç

1 INTRODUCTION

WHILE both frequency and Dennard scaling have
ended, Moore’s law still holds and leads to a steadily

growing number of cores. Many-core processors with mas-
sive intra-node parallelism and complex memory hierar-
chies are now commonplace. Compute nodes are composed
of complex Networks-on-Chip (NoCs) arranged in cache-
coherent multi-chip configurations with increasingly expen-
sive data movement costs. The Message Passing Interface
(MPI) [1] is used ubiquitously for communication in parallel
applications. For many MPI applications, collective opera-
tions (“collectives”) are performance critical and directly
determine scalability. Thus it is imperative to achieve high-
est performance of collective data-transfers using algo-
rithms that exploit the inherent data-locality as well as the
memory hierarchy for intra- and inter-node parts of the
communication.

Intra-node communication is implemented using cache
line transfer on the NoC [2]. However, designing optimal
communication algorithms in terms of cache efficiency is
non-trivial. The first challenge comes from MPI itself: MPI
often launchesmultiple processes at each node, and each pro-
cess has a private virtual address space. Traditionally, data is

copied in and then copied out of a shared system space [3],
which leads to extra memory copies. To deal with this prob-
lem, three approaches have been developed: (1) kernel-
assisted communication [4], [5], (2) thread-based ranks [6],
[7], and (3) shared heaps [8], [9]. All three approaches can
reduce the number of memory copies of intra-node commu-
nication to one (theminimumpossible inMPI). However, tra-
ditional algorithms for MPI collectives [10] mainly focus on
reducing the latency and bandwidth overhead over the net-
work, and ignore the cache efficiency. In fact, inter-node com-
munication faces the same problem, when considering
Dynamic Random Access Memory (DRAM) as a private
cache for each node on amulti-nodemachine.

A second challenge stems from the diversity of many-
core hardware itself: Processors may have very different
memory hierarchies, such as a two-level cache for Intel

�

Xeon PhiTM KNC [11] or a three-level cache for Intel
�
Xeon

E7 [12]. The cache capacity of each level may also be differ-
ent. Furthermore, there are various arrangements of main
memory, including Uniform Memory Access (UMA) or
Non-Uniform Memory Access (NUMA), which has to be
considered in algorithm design to enable best perfor-
mance [7], [13]. This hardware diversity causes a high pro-
gramming effort to tune the algorithms.

Cache-oblivious algorithms [14], [15], [16], [17] are asymp-
totically optimal (often within a factor of two) in terms of
cache complexity without considering any hardware param-
eters. Thus, these algorithms enable portable performance on
different architectures. To carry thesebenefits towards imple-
mentations of MPI collectives, we propose cache-oblivious
algorithms for MPI all-to-all style operations, including
MPI_Alltoall, MPI_Allgather, and their neighborhood ver-
sions (many-to-many collectives), and demonstrate their
performance advantages. Fig. 1 motivates our work. As
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expected, a naive implementation based on shared heap for
MPI_Alltoall, in which each process sequentially copies data
blocks into its own receive buffer, is faster than the traditional
MPI because of less memory copies. However, compared
with the naive implementation based on shared heap, our
cache-oblivious implementation further achieves 1.40X
speedup in the geometric mean when the block size is less
than 16 KB (i.e., the geometric mean of the speedups for the
block sizes from 8 bytes to 8 KB is 1.40X), and performs
equally for larger block sizes.

The key idea is to arrange the order of transferring the
send buffers to the corresponding receive buffers in Morton
order [18]. The algorithms are implemented based on a
shared heap, which is established by POSIX shared memory
and overriding of dynamic memory allocation functions. If
the send and receive buffers in a users’ code are allocated on
the heap, the code directly benefits from our cache-oblivious
implementations without any modification. However, if the
send or receive buffers are on the stack, users have to change
them to be allocated on the heap to benefit from our imple-
mentations. We also demonstrate how the idea can be
applied to multi-node machines. Compared with well-tuned
MPI libraries, our cache-oblivious implementations achieve
significant performance improvements on several different
architectures. The key contributions are as foll ows:

1) We propose cache-oblivious algorithms for MPI all-
to-all style collectives based on Morton order, and
prove the optimality by cache complexity analysis.

2) We improve the proposed cache-oblivious algo-
rithms for NUMA architectures to minimize the total
distance of data transfers.

3) We extend the cache-oblivious algorithms for multi-
node machines, in which DRAM is considered as a
private cache for each node.

4) We propose an ordered-buffer approach combined
with Morton order to exploit the data locality for
neighborhood collectives.

5) We perform benchmark and application studies on
different many-core machines to assess the benefit of
the proposed cache-oblivious algorithms.

6) We compare our analytic bounds with the measured
cache misses to demonstrate that the performance
advantage is due to better data locality.

In the next section, we discuss our cache-oblivious algo-
rithms for all-to-all style collectives. Sections 2.1 and 2.2

present the cache-oblivious algorithms of MPI_Alltoall and
MPI_Allgather based on Morton order. Section 2.3 analyzes
their cache complexity. Sections 2.4 and 2.5 discuss the
improved algorithms for NUMA architectures and multi-
node variants. Section 3 discusses an ordered-buffer
approach combined with Morton order for neighborhood
collectives. Experimental results are presented in Section 4.
Section 5 discusses related work, and Section 6 concludes.

2 CACHE-OBLIVIOUS ALGORITHMS FOR

ALL-TO-ALL STYLE COLLECTIVES

For intra-node collectives, our algorithm design is based on
a shared heap [9], [19]. We briefly explain how to establish
the shared heap. First, we use POSIX shared memory APIs
to create and open a shared memory object, and map the
object to the virtual address space shared by the processes.
Then, the shared address space is equally partitioned
among the processes within a node. Next, we override the
dynamic memory allocation functions provided by the sys-
tem, so that each process can allocate and release memory
on its own partition. In this way, each process can directly
access the data allocated on the partitions of other processes.
All the send/receive buffers and the auxiliary arrays shown
in the following, are allocated on the shared heap. Note that
any MPI library can do this legally following the specifica-
tion. A program with buffers on the stack cannot benefit
from the shared heap solution, unless the code is modified
to allocate the buffers on the shared heap.

2.1 MPI_Alltoall and MPI_Allgather Based on
Morton Order

For MPI_Alltoall, also known as all-to-all personalized
exchange, every process sends a distinct data block to every
other process. Processes can view all send buffers as a 2D
matrix, of which each dimension’s size is equal to the num-
ber of processes involved and each element represents a
data block; and so do the receive buffers. We name these
two matrices as ’send-buffer matrix’ and ’recv-buffer
matrix’, respectively. An all-to-all personalized exchange is
equivalent to transposing the send-buffer matrix and writ-
ing the results to the recv-buffer matrix.

In a naive implementation of MPI_Alltoall, each process
copies a column of the send-buffer matrix into a row of the
recv-buffer matrix. The access to the send-buffer matrix
exhibits poor spatial locality because of the row-major prop-
erty of the matrix. To have good spatial locality for both
send-buffer and recv-buffer matrices, we use Morton order
[18] (also known as Z-order) to sort the elements of the
recv-buffer matrix. For MPI_Alltoall with P processes, the
recv-buffer matrix has 2 dimensions (x and y) with integer
coordinates 0 � x � P � 1 and 0 � y � P � 1. By interleav-
ing the bits of the binary values of x and y, we get a set of
values (called ’Z-values’ here). Taking x = 2 = 0102 and
y = 1 = 0012 as an example, we get the Z-value = 00011 0

2 = 6. The pairs of coordinates are sorted in the numerical
order of their corresponding Z-values, and then stored
sequentially in a 2-tuple array of length P 2 (for a total of P 2

pairs of coordinates). This 2-tuple array is logically parti-
tioned into P segments. Each process sequentially accesses
one segment of the 2-tuple array, and copies the data block

Fig. 1. Latency comparison of MPI_Alltoall between traditional MPI,
naive shared heap, and cache-oblivious implementations based on
shared heap on 60-core Intel Xeon Phi KNC.
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with coordinates (x, y) of the send-buffer matrix into the
data block with coordinates (y, x) of the recv-buffer matrix.
If we connect the coordinates in the numerical order of the
Z-values, we get a recursively Z-shaped curve, as shown in
Fig. 2. The data blocks, which are close to each other in the
2D matrix, are also close to each other in the Z-shaped
curve. Thus, following the Z-shaped curve, the spatial local-
ity of both send-buffer and recv-buffer matrices is exploited.

For MPI_Allgather, also known as all-to-all broadcast,
each process sends the same data block to all other pro-
cesses. Each process can view the send buffers as a vector
(we call it “send-buffer vector”) and the receive buffers as a
matrix (we call it “recv-buffer matrix”). In a naive imple-
mentation of MPI_Allgather, each process copies the send-
buffer vector into its receive buffer (a row of the recv-buffer
matrix). There is no data reuse when each process accesses
the send-buffer vector, which exhibits poor temporal local-
ity. As for MPI_Alltoall, we use Morton order to sort the
coordinates of the recv-buffer matrix and then generate the
2-tuple array. Each process sequentially reads the coordi-
nates stored in one segment of the 2-tuple array, and then
copies the xth block in the send-buffer vector into the block
with coordinates (y, x) in the recv-buffer matrix. Using our
2-tuple array, the Z-shaped curve is drawn in Fig. 3. Once a
data block in the send-buffer vector has been accessed, it
will soon be accessed again following the Z-shaped curve,
which exhibits good temporal locality.

2.2 Metadata Generation

When the number of processes P is a power-of-two, we can
avoid the explicit 2-tuple array and generate the coordinates
on the fly using high-performance bit manipulation instruc-
tions [12]. The intrinsic we use is pext u32ðsource;maskÞ
supported by Intel Haswell architecture. For each bit set in
the mask, the intrinsic extracts the corresponding bits from
the source operand and writes them into contiguous lower
bits of the return value, with the remaining upper bits of the
return value set to 0. For a process with rank i, the Morton
codes it deals with are the integers in the range of
½P � i; P � ðiþ 1Þ � 1�. Each process sequentially selects a
code in the range, and computes the corresponding coordi-
nates (x, y) as ðx = pext u32ðcode; 0x55555555 Þ; y =
pext u32ðcode; 0xAAAAAAAA ÞÞ. In this case, there is no
metadata generation overhead.

When the number of processes P is not a power-of-two,
using the bit-interleaving method discussed above, we may
generate a 2-tuple array corresponding to an imbalanced Z-
shaped curve. Fig. 4a shows the Z-shaped curve for P = 5,
in which the long vertical line (in the right border) and the
long horizontal line (in the bottom border) lead to reduced
locality. Thus, if P is not a power-of-two, we generate a
more balanced Z-shaped curve using binary search. For a
2D matrix M, by dividing the longer dimension by two, we
partition M into two submatrices. We call the top or the left
submatrixM0, and the other oneM1. SupposeM0 has n0 ele-
ments. Then the Z-value for coordinates ðx; yÞ in M is given
by the following binary recursion

ZvalueðM;x; yÞ ¼
0 if M only contains ðx; yÞ;
ZvalueðM0; x; yÞ if ðx; yÞ2M0;

n0+ZvalueðM1; x; yÞ if ðx; yÞ2M1:

8><
>:

Connecting the coordinates in the numerical order of the Z-
values calculated by the recursion, we get a more balanced
Z-shaped curve, as shown in Fig. 4b. The coordinates calcu-
lation is equivalent to the depth-first search of a binary tree
with P 2 leaf nodes. To parallelize the calculation among the
P processes, each process calculates the Z-values for the P
pairs of coordinates of its own receive buffer. Alternatively,
each process (with rank i) calculates the P pairs of coordi-
nates for the Z-values in the range of ½P � i; P � ðiþ 1Þ � 1�
using a similar binary recursion method (i.e., recursively
searching for the coordinates for a given Z-value). We use
the latter method since the coordinates to be used by each
process are calculated by itself and stored locally. The stor-
age overhead of the 2-tuple array for each process is 2P ,

Fig. 2. MPI_Alltoall with 8 processes based on Morton order. The Z-
shaped curve is equally divided into 8 segments as indicated by the col-
ors and each one is handled by a different process.

Fig. 3. MPI_Allgather with 8 processes based on Morton order. The Z-
shaped curve is equally divided into 8 segments as indicated by the col-
ors and each one is handled by a process.

Fig. 4. Morton order example where the number of processes is not a
power-of-two.
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and the computation overhead for each process is
2log 2P � P , where 2log 2P is the height of the tree.

Since MPI_Alltoall and MPI_Allgather use the same 2-
tuple array, we only generate one array for both when P is
not a power-of-two. The 2-tuple array is created together
with the communicator structure [1], which contains the
information to provide the appropriate scope for all com-
munication operations in MPI. The 2-tuple array can be
reused whenever a collective function (such as MPI_All-
toall, MPI_Allgather, or their irregular counterparts) related
to the communicator is called. Thus, the metadata genera-
tion overhead can be amortized across the collective calls on
the communicator, but at a storage overhead of OðP Þ.

2.3 Cache Complexity Analysis

We discuss the cache complexity (the number of cache
misses) of the proposed algorithms for MPI_Alltoall
and MPI_Allgather in this section. Assume an ideal
distributed-cache model [15] for parallel machines. The
model defines a computer with a two-level memory hierar-
chy. Each core has a private ideal cache [14] connected to an
arbitrarily large shared main memory. Each private cache is
partitioned into cache lines, and L is the number of words
in each cache line.1 Each private cache contains Z words,
where Z = VðL2Þ. Since there is no data dependency
between processes in the algorithms to be analyzed, we
assume the number of cache misses incurred by each pro-
cess can be analyzed independently. We use Q for the cache
complexity of an algorithm, P for the number of processes,
and B for the number of words of each data block, namely
the block size.

2.3.1 Analysis for MPI_Alltoall

For MPI_Alltoall, each dimension of send- and recv-buffer
matrices is of size P . It is not consecutive between two adja-
cent rows in these two matrices, since each process allocates
its own buffers. For the naive implementation discussed in
Section 2.1, the access to a row of the recv-buffer matrix is
consecutive, which incurs dPB=Le cache misses for each
process. However, the access to a column of the send-buffer
matrix is not consecutive, which incurs PdB=Le cache
misses for each process. Thus, the cache complexity of the
naive implementation of MPI_Alltoall is

Qalltoall�naive ¼ PdPB=Le þ P 2dB=Le
< 2P 2B=Lþ P 2 þ P ¼ OðP 2B=Lþ P 2Þ:

(1)

Whether P 2B=L or P 2 is the dominant term depends on the
block size B. Thus, we keep both terms in Equation (1).

Next, we prove that the cache complexity of the sequen-
tial algorithm for MPI_Alltoall based on Morton order is
asymptotically optimal. We recursively divide the longer
dimension of the recv-buffer and send-buffer matrix (or
submatrix) by 2, which halves the work recursively and
forms a 2-ary task tree. This procedure is called
k-recursive decomposition [15] which forms a k-ary task tree
(here k = 2). Morton order is equal to a post-order traversal

of the task tree. The working set of each task corresponds to
two submatrices of size m� n and n�m. Let � be a con-
stant sufficiently small so that two submatrices, where
maxfmB;nBg � �L, fit completely in cache. If B > Z=2,
such � does not exist. In this case, the data block size is so
large that the algorithm execution is equal to streaming the
two matrices, which incurs 2PdPB=Le cache misses. If �
exists, there are three cases:

Case 1. maxfmB;nBg � �L. Both matrices fit in the
cache. The cache complexity is equal to the number of cache
lines of the two matrices, namely ndmB=Le þmdnB=Le.

Case 2. nB � �L < mB. Sincem is the larger dimension,
it is recursively divided by 2 by traversing the task tree.
When mB falls into the range of ½�L=2; �L�, the working set
of the current task fits in cache. Then, we have the recursion

Qðm;nÞ � ndmB=Le þmdnB=Le if mB 2 ½�L=2; �L�;
2Qðm=2; nÞ otherwise;

�

whose solution is Qðm;nÞ ¼ ndmB=Le þmdnB=Le. Simi-
larly, we have the same solution formB � �L < nB.

Case 3. mB;nB > �L. The working set is recursively
divided by 2 until both mB and nB fall into the range of
½�L=2; �L�, and the working set of the current task occupies
ndmB=Le þmdnB=Le cache lines. By solving the recursion,
we get Qðm;nÞ ¼ ndmB=Le þmdnB=Le for this case.

For MPI_Alltoall, we have m=n=P . Thus, the cache com-
plexity of the sequential cache-oblivious algorithm based on
Morton order for MPI_Alltoall is

Qalltoall�co�seq ¼ 2PdPB=Le < 2ðP 2B=Lþ P Þ
¼ OðP 2B=Lþ P Þ: (2)

Since the send-buffer and recv-buffer matrices occupy at
least 2PdPB=Le cache lines, the sequential cache-oblivious
algorithm is asymptotically optimal. However, low cache
complexity for sequential algorithms does not mean the
same for parallel algorithms [20]. We utilize Theorem 2.1
from Frigo and Strumpen [15] to analyze the cache complex-
ity of the parallel cache-oblivious algorithm.

Theorem 2.1 (Frigo and Strumpen [15]). Let T be a trace
(the sequence of instructions in program order) of a parallel
computation in P processes. T is partitioned into S segments
and the segments are executed on an ideal distributed-
cache machine. For any segment A of T , let f be a concave
function such that QðAÞ � fðjAjÞ holds, where jAj is the
length of A. Then, the total number QP ðT Þ of cache misses
incurred by the parallel execution of the trace is bounded by
QP ðT Þ � SfðjT j=SÞ.
To use Theorem 2.1, one should prove that the cache

misses of all the segments A are bounded by QðAÞ � fðjAjÞ.
Let T be the trace of the post-order traversal of a k-ary task
tree. One can easily find a nondecreasing function f such
that QðAÞ � fðjAjÞ holds for any segment A corresponding
to a complete subtree. For such f , it has been proved that
QðAÞ � 2fðkjAjÞ holds for all A of T , not only for those cor-
responding to complete subtrees [15]. Then, we obtain the
following corollary based on Theorem 2.1.

1. If streaming prefetchers [12] are triggered on some processor, L is
the total size of the multiple cache lines prefetched at a time.
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Corollary 2.2. Let T be the trace of the post-order traversal of a
k-ary task tree formed by k-recursive decomposition. If f is a
nondecreasing concave function so that QðAÞ � fðjAjÞ holds
for any segment A of T corresponding to a complete subtree,
the cache complexity incurred by a parallel execution of T in P
processes is QP ðT Þ ¼ OðSfðkjT j=SÞÞ, where S is the number
of segments.

Recall that the cache complexity of the sequential cache-
oblivious algorithm for MPI_Alltoall is OðP 2B=Lþ P Þ, and
P 2B is the trace length. Let jAj ¼ P 2B. Then, we have a non-
decreasing concave function fðjAjÞ 2 OðjAj=Lþ ffiffiffiffiffiffiffiffiffiffiffiffiffijAj=Bp Þ,
and QðAÞ � fðjAjÞ holds for any A corresponding to a com-
plete subtree, which can be proved by induction on the com-
plete subtrees. For the parallel cache-oblivious algorithm, the
trace T is equally partitioned into P segments for P processes.
Using Corollary 2.2, we haveQP ðT Þ ¼ OðPfð2jT j=P ÞÞ, where
jT j ¼ P 2B. Thus, the cache complexity of the parallel cache-
oblivious algorithm forMPI_Alltoall is

Qalltoall�co�par ¼ O P 2B=Lþ P
3
2

� �
: (3)

In practice, P is large enough so that P > L=B is com-
monly satisfied. Then both Equation (2) and Equation (3)
can be simplified to OðP 2B=LÞ, from which we find that
cache complexities of the parallel and the sequential cache-
oblivious algorithms for MPI_Alltoall are asymptoticallyeq-
ual, and also asymptotically optimal. Comparing Equa-
tion (1) with Equation (3), we find that the smaller the value
of B=L (i.e., the smaller the value of the block size B), the
larger advantages the parallel cache-oblivious algorithm
has over the naive algorithm; when B is so large that Equa-
tion (1) can be simplified to OðP 2B=LÞ, the two algorithms
perform equally.

Equation (3) gives an upper bound of the cache complex-
ity for the parallel cache-oblivious algorithm in general
cases. To obtain the exact number of cache misses is
difficult. However, both the sequential and parallel cache-
oblivious algorithms incur 2P 2B=L cache misses if the
following two conditions are satisfied: (1) The workload of
each process is a complete task subtree; (2) PB is an integral
multiple of L. This can be proved using Theorem 2.1.

2.3.2 Analysis for MPI_Allgather

For MPI_Allgather, each dimension of the recv-buffer
matrix is P . The length of the send-buffer vector is P . Each
element of the send-buffer vector represents a data block to
be sent. Since each process allocates its own send buffer, it
is not consecutive between two adjacent elements in the
send-buffer vector. For the naive implementation, each pro-
cess copies the send-buffer vector into a row of the recv-
buffer matrix (its own receive buffer). Thus, the cache com-
plexity of the naive implementation of MPI_Allgather is

Qallgather�naive ¼ PdPB=Le þ P 2dB=Le
¼ OðP 2B=Lþ P 2Þ: (4)

To analyze the cache complexity of the parallel algorithm
based on Morton order for MPI_Allgather, there are 3 cases:

Case 1. B > Z=2. In this case, the size of each data block
is too large that two data blocks would exceed the cache

capacity, no temporal locality can be exploited for the send-
buffer vector. Thus, the sequential algorithm based on Mor-
ton order for MPI_Allgather incurs the same cache complex-
ity (shown in Equation (4)) as the naive implementation.

Using Corollary 2.2, the cache complexity of the parallel
cache-oblivious algorithm for MPI_Allgather is

Qallgather�co�par ¼ OðP 2B=Lþ P 2Þ: (5)

In this case, B=L is much larger than one, and both Equa-
tions (4) and (5) can be simplified to OðP 2B=LÞ. Thus, for
very large block size, the parallel cache-oblivious algorithm
and the naive algorithm for MPI_Allgather perform equally.

Case 2. B � Z=2 and P � ffiffiffiffiffiffiffiffiffiffi
Z=B

p
. In this case, the total

size of send-buffer vector and recv-buffer matrix exceeds
the cache capacity. The temporal locality of the send-buffer
vector can be exploited using Morton order. Using a similar
analysis to the one we used for MPI_Alltoall, we obtain the
cache complexity of the sequential algorithm based on Mor-
ton order for MPI_Allgather as

Qallgather�co�seq ¼ P 2dB=Le=
ffiffiffiffiffiffiffiffiffiffi
Z=B

p
þ PdPB=Le

¼ OðP 2B=Lþ P 2=
ffiffiffiffiffiffiffiffiffiffi
Z=B

p
Þ:

(6)

Using Corollary 2.2, the cache complexity of the parallel
cache-oblivious algorithm for MPI_Allgather is

Qallgather�co�par ¼ OðP 2B=Lþ P 2=
ffiffiffiffiffiffiffiffiffiffi
Z=B

p
Þ: (7)

Comparing Equation (4) with Equation (7), we find that the
larger the value of

ffiffiffiffiffiffiffiffiffiffi
Z=B

p
(i.e., the smaller the value of B,

for Z is a constant), the larger the advantages the
parallel cache-oblivious algorithm has over the naive
implementation.

Case 3. B � Z=2 and P <
ffiffiffiffiffiffiffiffiffiffi
Z=B

p
. In this case, the size of

send-buffer vector and the recv-buffer matrix is small
enough to fit in the cache. Thus, we have

Qallgather�co�seq ¼ PdB=Le þ PdPB=Le
¼ OðP 2B=Lþ P Þ: (8)

Using Corollary 2.2, the cache complexity of the parallel
cache-oblivious algorithm for MPI_Allgather is

Qallgather�co�par ¼ OðP 2B=Lþ P
3
2Þ: (9)

In practice, Equations (8) and (9) can be simplified to
OðP 2B=LÞ. Comparing Equation (4) with Equation (9), we
find that the smaller the value of B=L (i.e., the smaller the
value of the block size B), the larger the advantages of the
parallel cache-oblivious algorithm.

The send-buffer vector and recv-buffer matrix occupy at
least PdB=Le þ PdPB=Le, i.e., OðP 2B=Lþ P Þ, cache lines,
which is asymptotically lower than the cache complexity of
the parallel cache-oblivious algorithm in Case 2. We do not
know if there are other algorithms for MPI_Allgather which
incur a lower cache complexity. For the cache-aware algo-
rithm, the recv-buffer matrix is tiled to exploit the data
locality. In Cases 1 and 3, it is straightforward to observe
that the cache-aware algorithm incurs the same cache com-
plexity as the cache-oblivious algorithm. In Case 2, the total
size of the recv-buffer submatrix and the send-buffer
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subvector in the cache-aware algorithm is tuned to fit in the
cache. Thus, the size of each dimension of the recv-buffer
submatrix is

ffiffiffiffiffiffiffiffiffiffi
Z=B

p
. In this case, the cache-aware algorithm

also incurs the same cache complexity (shown in Equa-
tion (6)) as the cache-oblivious algorithm.

2.4 Improved Algorithms for NUMA Architectures

In NUMA architectures, a processor accesses local memory
faster than remote memory. However, our previously pro-
posed algorithms assume all the processes are equal and
ignore the NUMA features. Guided by the Z-shaped curve,
a process may copy a remote data block to another remote
data block, which leads to a performance penalty. Thus, we
propose improved algorithms for NUMA architectures.

We discuss the algorithm for MPI_Alltoall first. Assume
that a NUMA system has s processors and each processor
has q cores. Each process allocates its send and receive buf-
fers in its local memory. The distance between a process
and a local data block is dl, while the distance between a
process and a remote data block is dr, where dr > dl. To fill
a receive buffer, it needs to read at least qðs� 1Þ remote
data blocks, plus reading q local blocks and writing qs
local data blocks, which leads to the total distance of
qðs� 1Þdr þ qðsþ 1Þdl (the minimal distance).

To achieve the minimal distance of data transfers, we
propose a NUMA-aware algorithm combined with Morton
order for MPI_Alltoall, which guarantees that each process
only writes into its local receive buffers. For processor r, the
local data blocks to be sent to processor x form a bunch that
we call sendBunch(r, x); the local data blocks to be received
from processor y form a bunch that we call recvBunch(r, y).
Here r; x; y 2 ½0; s-1�. The algorithm needs s steps. In step i
(i 2 ½0; s-1�), processor r copies sendBunch(ðrþ iÞ%s, r) into
recvBunch(r, ðrþ iÞ%s); and the q processes within proces-
sor r copy the data blocks in parallel following Morton
order, as discussed in Section 2.1. An instance of the
algorithm for MPI_Alltoall is illustrated in Fig. 5. The

NUMA-aware algorithm for MPI_Allgather is similar.
Using the analysis in Section 2.2, one can show that the
NUMA-aware algorithms are cache-oblivious within each
processor.

2.5 Algorithms for Multi-Node Machines

The proposed cache-oblivious algorithms can be easily
extended tomulti-nodemachines. TakingMPI_Alltoall as an
example, the optimized implementation on multi-core clus-
ters [21], [22] typically has three phases: intra-node packing
with local transpose, inter-node transpose by node leaders,
and intra-node unpacking. Our cache-oblivious algorithms
benefit the intra-node transposes as discussed above.

Next, we discuss how the cache-oblivious algorithm also
benefits the inter-node transpose. For this, we model DRAM
as a private cache for each node, and we model the whole
cluster as a distributed cache. Different from the common
hardware caches, we cache the adjacent data from remote
node in DRAM manually, which is done by sending or
receiving large blocks of consecutive data. First, we consider
the case if P (the number of nodes) is a power-of-two. For
simplicity, we reuse Fig. 2 to illustrate how the algorithm for
MPI_Alltoall works on an 8-node machine (i.e., P ¼ 8). The
workload of each process is determined by the correspond-
ing segment of Morton order. The algorithm includes three
phases: (1) Each process receives the consecutive data blocks
from the corresponding remote node in a single aggregated
message. For example, process0 receives the aggregatedmes-
sage fA0; A1g from itself, fB0; B1g from process1, fC0; C1g
from process2, and fD0; D1g from process3. (2) Each process
does a local transpose on the received blocks following the
Morton order. (3) Each process sends the consecutive trans-
posed data blocks to the corresponding remote node in a sin-
gle aggregated message. For example, process0 sends the
aggregated message fA1; B1; C1;D1g to process1, and sends
fA0; B0; C0; D0g to itself. In this way, the spatial locality of
the inter-node transpose is exploited. If P ¼ 2n and n is an
even number, each process issues

ffiffiffiffi
P

p
independent commu-

nications in both phase (1) and phase (3). If P ¼ 2n and n is an
odd number, each process issues

ffiffiffiffiffiffiffi
2P

p
independent commu-

nications in phase (1) and
ffiffiffiffiffiffiffiffiffi
P=2

p
independent communica-

tions in phase (2).
We further compare our algorithm for MPI_Alltoall with

several traditional algorithms in terms of communication
rounds. Suppose P ¼ 2n and n is an even number. The num-
ber of communications caused by our algorithm is 2

ffiffiffiffi
P

p
,

which is asymptotically lower than the Isends-Irecvs-Waitall
and pairwise exchange algorithms [10] (both algorithms cause
P -1 communications). The number of communications
caused by Bruck’s algorithm [23] is log 2P , which is lower
than our algorithm. However, our algorithm can better uti-
lize the parallelism within the interconnect network (each
process can issue up to

ffiffiffiffi
P

p
messages simultaneously in

both phase (1) and phase (3)). On the contrary, single-ported
Bruck’s algorithm issues the messages sequentially. Bruck’s
algorithm can also be implemented as multi-ported to
exploit the parallelism of the interconnect network. How-
ever, the single-ported version is widely used in the latest
MPI libraries, such as MPICH3, MVAPICH2, and Open
MPI, to achieve low latency for small messages. In addition,
our algorithm transfers less data than Bruck’s algorithm: our

Fig. 5. NUMA-aware MPI_Alltoall combined with Morton order on a
NUMA system with 4 processors. Each processor has 4 cores. A total of
16 processes are ranked sequentially in the 4 processors.
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algorithm transfers 2 n bytes while Bruck’s algorithm trans-
fers n

2 log 2P bytes, where n is the size of the total receive
buffer. We demonstrate that our algorithm has a perfor-
mance advantage over the traditional algorithms for small
messages in Section 4.1.3.

If P is not a power-of-two, we expect the future hard-
ware or software cache for distributed memory to cache the
remote data automatically, instead of caching the remote
data manually. The reason is that non-power-of-two nodes
lead to irregular sizes of aggregated messages, which makes
the manual cache become complicated and have additional
overhead.

3 NEIGHBORHOOD COLLECTIVES BASED ON

MORTON ORDER

For the MPI neighborhood collectives [1], a process only
communicates with its neighbors in a pre-defined process
topology. For example, MPI_Neighbor_alltoall sends a dis-
tinct data block to every neighbor process. For a naive
implementation based on shared heap, each process directly
copies the data blocks from its neighbors to its receive
buffer. In the following, we discuss how to use Morton
order to exploit data locality for these sparse communica-
tion patterns. We will use a 2D Cartesian topology for 9 pro-
cesses, shown in Fig. 6, as an example to elaborate how our
approach works, although the same approach works for
any process topology, such as a 3D Cartesian and a general
graph topology [24].

3.1 Morton Order for Neighborhood Collectives

For any process topology, the Cartesian product of all the
possible send processes and receive processes produces a 2D
coordinate system. Fig. 7 presents a 2D coordinate system
generated from the 2D Cartesian topology for 9 processes. If
a communication happens between a send process and a
receive process, we mark the corresponding coordinates
with ’X’. We use Morton order to sort all the coordinates,
which forms a Z-shaped curve. By directly connecting the
adjacent coordinates marked by ’X’ in the Z-shaped curve,
we get a compact curve shown in Fig. 7b.

We create a 4-tuple for each pair of coordinates in the
compact curve, and store the 4-tuples in an array in the same
order as that in the compact curve. Each 4-tuple is expressed
as ðRs;Rr; Bs;BrÞ, where Rs denotes the rank of send pro-
cess, Rr denotes the rank of receive process, Bs denotes the
Bsth block in the send buffer, and Br denotes the Brth block
in the receive buffer. Rs and Rr can be derived directly from
the coordinates, whileBs is equal to the number of ’X’s above
the coordinates in the same column and Br is equal to the
number of ’X’s on the left of the coordinates in the same row.

The 4-tuple array is equally partitioned and each process
handles one segment. For MPI_Neighbor_alltoall, the pro-
cess copies the Bsth block in the send buffer of process Rs

into the Brth block in the receive buffer of process Rr. For
MPI_Neighbor_allgather, each process sends the same block
to its neighbors. Thus, each process copies the data block in
the send buffer of process Rs into the Brth block in the
receive buffer of processRr.

The irregular neighborhood collectives, including MPI_-
Neighbor_alltoallv and MPI_Neighbor_allgatherv, can also
utilize the 4-tuple array to exploit data locality. These two
irregular operations allow one to receive data blocks with
different sizes from its neighbors. The data block size and
its displacements in the send and receive buffers can be
obtained by accessing the block-size and displacement
arrays [1] using the 4-tuple. For MPI_Neighbor_allgatherv,
the data block size and its displacement in the receive buffer
are determined by the Brth elements of the block-size and
displacement arrays, respectively. For NUMA architectures,
we use a similar NUMA-aware algorithm as discussed in
Section 2.4 to minimize the data transfer distance.

3.2 Ordered Buffers for Neighborhood Collectives

The algorithm presented in Section 3.1 requires that the data
blocks to be sent are placed in the send buffer in the numeri-
cal order of the ranks of the destination processes; and the
data blocks received are placed in the receive buffer in the
numerical order of the ranks of the source processes. How-
ever, this is not always true. For the MPI_Neighbor_alltoall
in a 2D Cartesian topology shown in Fig. 8a, the four data
blocks to be sent by process P4 are placed in the send buffer
in the order of orientations of the four destination processes,
i.e., the order of {North ðP1Þ, South ðP7Þ,West ðP3Þ, East ðP5Þ}.
However, we should change it to {P1, P3, P5, P7} to obtain the
ordered send buffer as shown in Fig. 8b. The requirement of
ordered buffers may increase the programming complexity,
since the programmer needs to build the topology as a gen-
eral graph [1]. Fortunately, for many scientific applications
[25], [26], [27], [28], [29], these structures are only created in
the initialization phase and reused formany iterations.

4 EVALUATION

Experiments were conducted on three different machines,
including an Intel Xeon Phi KNC 5110P, an Intel Xeon

Fig. 6. A 2D Cartesian topology for 9 processes.

Fig. 7. Morton order for neighborhood collectives in a 2D Cartesian
topology, where ’X’ denotes a communication between a pair of neighbor
processes.
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E7-8890 v3, and a multiple-node Intel Xeon E5-2680 v3
cluster. The cache line size of all three architectures is 64
bytes. Xeon Phi has 60 cores, and each core has a 32 KB L1
data cache and a 512 KB unified L2 cache. The tag directo-
ries for cache coherence [11] and memory controllers are
connected by a bidirectional ring, which forms a UMA
architecture. Xeon E7-8890 contains 4 processors con-
nected by QPI, and each processor has 18 cores sharing a
45 MB unified L3 cache, which forms a NUMA architec-
ture. Each core of Xeon E7-8890 has a 32 KB L1 data cache
and a 256 KB unified L2 cache. We run 72 processes on
Xeon E7-8890 and 60 processes on Xeon Phi to utilize all
the cores. The multi-node cluster consists of 256 nodes,
which are connected by Infiniband. Each node of the clus-
ter has two Xeon E5-2680 v3 processors and each processor
has 12 cores.

We compared our cache-oblivious collectives with sev-
eral state-of-the-art MPI libraries, including MPICH 3.1.4,
Intel MPI 5.0, MVAPICH2 2.1, Open MPI 1.10, and MVA-
PICH2-MIC 2.0. All these libraries provide specific chan-
nel for efficient shared-memory communication, such as
Shared-Memory-CH3 in MVAPICH2, sm BTL in Open
MPI, and Nemesis in MPICH. We also configure MVA-
PICH2 to use Limic2 [4] for one-copy shared-memory
communication. Recall that our algorithms require that
the send and receive buffers be allocated in the shared
heap whereas traditional MPI libraries work with any buf-
fers. For brevity, we use SH-Naive to denote the naive
implementations (implemented in [19]) based on shared
heap, where each process sequentially copies the data
blocks into its receive buffer as discussed in Section 2. To
have a fair performance comparison on NUMA architec-
tures, SH-Naive is also optimized as NUMA-aware, where
each process staggers the data block copies to avoid the
inter-socket congestions. We use SH-CO to denote the
cache-oblivious algorithms based on shared heap which
ignore NUMA features, SH-NUMA-CO to denote the
NUMA-aware algorithms which keep cache-oblivious
within each processor, and MN-CO to denote the cache-
oblivious algorithms on multi-node machines. We define
the speedup S as S = Tref

T . This means an optimized opera-
tion which runs in 50 percent of the latency (time) of the
reference operation is said to have a speedup of 2
(denoted as 2X). When mentioning average speedup, we
mean the geometric mean of the speedups across different
problem sizes.

4.1 Benchmark Evaluation

We use benchmarks to test the latency of the collectives.
Each collective is run for 256 times and we present the aver-
age latency in the following figures. The difference between
the average value and the latency measured in each itera-
tion is within 5 percent. On shared memory machines, we
design our own micro-benchmarks, which makes sure that
the send and receive buffers of each process are only in its
local cache before each time of running. In this way, we pre-
vent that the whole send-buffer and receive-buffer matrices
are cached locally for very small block sizes. Fig. 9 shows
the pseudo code of the benchmarks we use on shared mem-
ory machines. On multi-node machines, we use the OSU
micro-benchmarks [30] to test the latency. The OSU micro-
benchmarks are the same as our micro-benchmarks used on
shared memory machines except that lines 3-7 in Fig. 9 are
removed in the OSU micro-benchmarks.

4.1.1 Results on Xeon Phi

Fig. 10a shows that SH-Naive for MPI_Alltoall outperforms
all the traditional MPI libraries, including Intel MPI, MVA-
PICH2, MVAPICH2-MIC, and MPICH3. This is because the
shared heap incurs less memory copies than the traditional
MPI [7]. Compared with MPICH3 which performs best
among the traditional MPI libraries, SH-CO for MPI_Alltoall
achieves on average 3.11X speedup for all the block sizes.
Compared with SH-Naive, SH-CO for MPI_Alltoall achieves
on average 1.40X speedup when the block size is less than
16 KB (small and medium block sizes), and performs
equally when the block size gets larger. This is consistent
with the cache complexity analysis for MPI_Alltoall in
Section 2.3, which shows that SH-CO has advantages over
SH-Naive for smaller value of B/L, where B is block size.
Here, the cache line length is 64 bytes. However, modern
processors provide streaming prefetchers [12], which pre-
fetch multiple consecutive cache lines at a time for consecu-
tive references. In this case, the value of L is considered as
the size of multiple cache lines prefetched, which is larger
than 64 bytes. This is the reason why SH-CO still outper-
forms SH-Naive for medium block size.

Fig. 10b shows that SH-Naive for MPI_Allgather outper-
forms all the traditional MPI libraries due to the shared
heap. For all the block sizes, SH-CO for MPI_Allgather
achieves on average 2.90X speedup and 2.57X speedup
over MPICH3 and Intel MPI, respectively. Compared with

Fig. 8. Comparison of data-block layouts between the traditional and
ordered-buffer MPI_Neighbor_alltoall in a 2D Cartesian topology.

Fig. 9. Pseudo code of the benchmark on shared memory machines.
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SH-Naive, SH-CO achieves on average 1.49X speedup when
the block size is less than 32 KB, and achieves on average
1.09X speedup for block sizes between 32 KB and 128 KB.
This is consistent with the cache complexity analysis for
MPI_Allgather in Section 2.3, namely SH-CO has advan-
tages over SH-Naive when the block size is less than half of
the cache capacity (i.e., B � Z=2), and the advantages of
SH-CO are larger when the block size B is smaller.

Figs. 10c and. 10d show the performance for neighbor-
hood collectives in a 2D Cartesian topology. We find that
SH-Naive significantly outperforms all the traditional MPI
libraries due to the shared heap. For all the block sizes, SH-
CO for MPI_Neighbor_alltoall and MPI_Neighbor_allgather
achieve on average 3.05X speedup and 2.91X speedup over
MPICH3, respectively. When the block size is less than 64
KB, SH-CO for MPI_Neighbor_alltoall and MPI_Neighbor_-
allgather achieve on average 1.18X speedup and 1.17X
speedup over SH-Naive, respectively. This demonstrates
that our cache-oblivious algorithms have advantages even
for sparse communication patterns. Figs. 10e and. 10f show
similar results for irregular MPI neighborhood collectives.

4.1.2 Results on Xeon E7-8890

On Intel Xeon E7-8890, we configure MVAPICH2 to use
Limic2 [4] for one-copy shared-memory communication.
Although Open MPI and MPICH3 can also be configured
with KNEM [5] to support one-copy shared-memory com-
munication, we only use MVAPICH2 with Limic2 as an
example for performance comparison. Fig. 11a shows that
SH-Naive for MPI_Alltoall outperforms all the traditional
MPI libraries. One special case is MVAPICH2, which per-
forms equally with SH-Naive for large block size. This is
because MVAPICH2 switches to use Limic2 when the block
size is larger than 64 KB. SH-CO performs worse than SH-
Naive, SH-NUMA-CO, and MVAPICH2 for large block size,

because SH-CO ignores the NUMA feature of Xeon E7-8890
and causes more cross-chip data transfers. SH-NUMA-CO
performs equally with MVAPICH2 when Limic2 is trig-
gered (i.e., for the block sizes from 64 KB to 2 MB), and sig-
nificantly outperforms MVAPICH2 for the block sizes
smaller than 64 KB. Overall, SH-NUMA-CO achieves on
average 3.03X speedup over MVAPICH2 for all the block
sizes. Compared with SH-Naive, SH-NUMA-CO achieves on
average 1.41X speedup when the block size is smaller than
16 KB, and performs equally when the block size gets larger.
This is consistent with the cache complexity analysis in
Section 2.3. Since SH-Naive is also optimized as NUMA-
aware, the advantage of SH-NUMA-CO comes from the
lower cache complexity of the cache-oblivious algorithm.

Fig. 11b shows that SH-NUMA-CO for MPI_Allgather
achieves on average 1.62X speedup over SH-Naive when the
block size is smaller than 64 KB, and achieves on average
1.12X speedup over SH-Naive for block sizes from 64 KB to
2 MB. These results are consistent with the cache complexity
analysis for MPI_Allgather in Section 2.3. Compared with
MVAPICH2, SH-NUMA-CO achieves on average 1.09X
speedup when Limic2 is triggered in MVAPICH2 (i.e., for
the block sizes from 128 KB to 2 MB), and achieves on aver-
age 6.05X speedup for the block sizes less than 128 KB.
Because of ignoring the NUMA features, SH-CO performs
worse than SH-Naive, SH-NUMA-CO, and MVAPICH2 for
large block sizes.

To further explain these phenomena on Xeon E7-8890,
we present the cache misses of different algorithms for
MPI_Allgather and MPI_Alltoall in Tables 1 and 2, respec-
tively. First, we demonstrate that the predicted values dis-
cussed in Section 2.3 are consistent with the measured
values. We measure the value of L using a simple bench-
mark, in which the data in one buffer is consecutively cop-
ied from one buffer into another buffer and the cache

Fig. 10. Latency of all-to-all style collective operations on Intel Xeon Phi KNC.
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misses on each cache level during the memory copy are
measured. We use Nmiss to denote the number of cache
misses on each cache level, and Ntotal to denote the number
of cache lines that the two buffers occupy. Then, the value
of L is estimated as L = ðNtotal=NmissÞ�cacheLineSize. We find
that the value of L is different on different cache levels, and
also different for different buffer sizes. Here, we use an
example, the number of L2 cache misses of MPI_Allgather
when the block size is 4 KB, to show the consistency. When

comparing the values, we use the number of cache misses
predicted for the sequential cache-oblivious algorithm to
estimate the number of cache misses incurred the parallel
cache-oblivious algorithm. In the example, the L2 cache
capacity Z ¼ 256 KB, the block size B ¼ 4 KB, and the num-
ber of processes P=72. We measured L ¼ 70:4 for the
buffer size around 4 KB and L0 ¼ 80:6 for the buffer size
around 16 KB on L2 cache. Since B � Z=2 and P � ffiffiffiffiffiffiffiffiffiffi

Z=B
p

,
Equation (6) is used to predict the cache misses for the

Fig. 11. Latency of all-to-all style collective operations on Xeon E7-8890.

TABLE 1
Cache Misses for MPI_Allgather on Xeon E7-8890

Block size (bytes)
L1 data cache misses L2 data cache misses L3 cache misses

SH-Naive SH-CO SH-NUMA-CO SH-Naive SH-CO SH-NUMA-CO SH-Naive SH-CO SH-NUMA-CO

8 292 149 204 250 86 141 12 14 12
64 385 239 301 323 133 208 15 33 17
512 1557 967 1077 925 543 840 43 163 42
4K 9644 6667 7254 8134 4260 4888 108 1078 111
32K 75052 75152 75010 56759 36232 37314 3317 5951 2931
2M 4736648 4735659 4736010 4684743 4708920 4692626 682473 1039694 705242

Measured with PAPI 5.4.1 using the benchmark in Fig. 9.

TABLE 2
Cache Misses for MPI_Alltoall on Xeon E7-8890

Block size (bytes)
L1 data cache misses L2 data cache misses L3 cache misses

SH-Naive SH-CO SH-NUMA-CO SH-Naive SH-CO SH-NUMA-CO SH-Naive SH-CO SH-NUMA-CO

8 296 189 228 274 111 148 18 31 18
64 437 313 341 354 210 259 64 70 59
512 1681 1279 1338 1109 846 886 446 482 349
4K 10508 9228 9302 8419 7076 7221 1565 1739 1256
32K 75209 75184 75351 60318 58944 57524 17620 19899 15693
2M 4724670 4728056 4699975 4644480 4625977 4450142 1391704 1452379 1399442

Measured with PAPI 5.4.1 using the benchmark in Fig. 9.
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cache-oblivious algorithm. The number of cache misses
incurred by the cache-oblivious algorithm for each process
is PdB=Le= ffiffiffiffiffiffiffiffiffiffi

Z=B
p þ dPB=L0e ¼ 4190 (L0 is used here since

consecutive data blocks in the receive-buffer matrix are
accessed under Morton order, and the size of the consecu-
tive data blocks is about 16 KB). Similarly, using Equa-
tion (4), the number of cache misses incurred by the naive
algorithm for each process is dPB=L0e þ PdB=Le ¼ 7907.
We can see that the predicted values are approximately con-
sistent with the measured values (4888 and 8134 for SH-
NUMA-CO and SH-Naive, respectively) shown in Table 1.
We summarize that other predicted values are also approxi-
mately consistent with the measured values. The reasons
for the error between the predicted and the measured val-
ues include: (1) The value of L is not very accurate since it
varies for different buffer sizes; (2) The instructions
and other data structures would take up part of the
cache capacity.

Next, we discuss how the cache miss statistics in Table 1
explain the performance data of MPI_Allgather in Fig. 11b.
For the block sizes less than 32 KB, SH-CO and SH-CO-
NUMA incur less cache misses than SH-Naive in both the
L1 and L2 cache, due to better locality for the private
caches. This explains why SH-CO-NUMA outperforms
SH-Naive for small block sizes. However, SH-CO incurs
more L3 cache misses than SH-NUMA-CO and SH-Naive
for all block sizes, because SH-CO is not NUMA-aware
and causes more remote (cross-chip) accesses. This
explains why SH-CO performs worse than SH-Naive and
SH-NUMA-CO. The cache misses in Table 2 also explain
the performance data of MPI_Alltoall in Fig. 11a. The
cache miss statistics, together with the cache complexity
analysis in Section 2.3, provide concrete evidence that the
performance advantage of our cache-oblivious algorithms
is due to better data locality.

Figs. 11c and . 11d show the performance for neighbor-
hood collectives in a 3D Cartesian topology. SH-NUMA-CO
for MPI_Neighbor_alltoall and MPI_Neighbor_allgather
achieve on average 1.17X speedup and 1.15X speedup over
SH-Naive when the block size is less than 64 KB, respec-
tively; and achieve 109.6 GB/s and 104.8 GB/s total band-
width when the block size is 4 MB, respectively. Figs. 11e
and. 11f show that SH-NUMA-CO performs slightly worse
than SH-Naive for small blocks for irregular neighborhood
collectives, which is caused by the indirect data accesses to
the message-size and displacement arrays.

4.1.3 Results on the Xeon E5-2680 Cluster

Fig. 12a presents the latency of MPI_Alltoall on the 256-
node Xeon E5-2680 cluster (using one core on each node).
For MVAPICH2, it uses Bruck’s algorithm [23] for block
sizes less than 512 bytes, and uses the Isend-Irecv algorithm
for the larger block sizes. Note that both MVAPICH2 and
MN-CO use MPI point-to-point communications to imple-
ment the collective operations on multi-node machines.
MN-CO achieves on average 2.23X speedup over MVA-
PICH2 for block sizes less than 1 KB, and performs worse
than MVAPICH2 for larger block sizes. Compared with
Bruck’s algorithm, our algorithm better utilizes the parallel-
ism within the interconnect network and transfers less data,
as discussed in Section 2.5. This is the reason why MN-CO
outperforms MVAPICH2 for small messages. However, as
the block size becomes larger, MVAPICH2 switches to the
pairwise exchange algorithm. Although MN-CO causes less
communications than the pairwise exchange algorithm, the
amount of data to be transferred is two times as much as the
pairwise exchange algorithm. This is the reason why MN-CO
performs worse than MVAPICH2 for larger block sizes. At
last, it demonstrates that the cache-oblivious algorithm has
a significant advantage over Bruck’s algorithm for small
messages by exploiting data locality in DRAM.

Fig. 12b presents the latency of MPI_Alltoall on the 128-
node Xeon E5-2680 cluster (using all 24 cores on each node).
The label topo-aware in Fig. 12b means the corresponding
implementation is topology-aware, which consists of three
phases: (1) intra-node packing with local transpose, (2)
inter-node transpose by node leaders, and (3) intra-node
unpacking. The difference between the different topology-
aware implementations lies in the phase of the inter-node
transpose by node leaders. For the block sizes less than
64 B, topo-aware MN-CO achieves on average 1.88X speedup
over topo-aware MVAPICH2. This is because topo-aware MN-
CO has a performance advantage in the phase of the inter-
node transpose for small block sizes. Topo-aware MN-CO
achieves on average 3.81X speedup over MVAPICH2 with-
out topology-aware optimization for the block sizes less
than 64 B. We also present the latency of MPI_Allgather on
the 256-node Xeon E5-2680 cluster in Fig. 12c. For block
sizes less than 4 KB, topo-aware MN-CO achieves on average
1.91X speedup over topo-awareMVAPICH2.

We also implement the two topology-aware MPI_All-
gather algorithms proposed by Mamidala et al. [22] and Ma
et al. [31], and compare them with our algorithm in Fig. 13.

Fig. 12. The latency of MPI_Alltoall and MPI_Allgather on multi-node machines.
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For the former one, MPI_Allgather is implemented as inter-
node recursive-doubling overlapped with intra-node unpack-
ing, labeled as recursive-doubling with overlap. For the latter
one, MPI_Allgather is implemented as inter-node ring algo-
rithm overlapped with intra-node unpacking, labeled as
ring with overlap. For the block sizes less than 2 KB, topo-
aware MN-CO achieves on average 1.88X and 1.82X speed-
ups over recursive-doubling with overlap and ring with overlap,
respectively, since our algorithm utilizes the parallelism of
the interconnect network better. These results demonstrate
that our cache-oblivious algorithms also benefit multi-core
clusters.

4.2 Application Evaluation

We test the total runtime of 3D FFT from NPB3.2 [32]
using the classes S, W, A, and B, where MPI_Alltoall is
intensively used for global transpose. The workload of
each class is slightly changed since the number of pro-
cesses (in 1D layout) on Xeon Phi and Xeon E7-8890 is not
a power-of-two. The data block sizes of MPI_Alltoall for

classes S, W, A, and B are 1 KB, 2 KB, 32 KB, and 128 KB,
respectively. Results in Figs. 14a and. 14b show that
SH-CO has a performance improvement over SH-Naive at
small scales (S and W). On Xeon Phi, SH-CO achieves on
average 1.16X speedup over SH-Naive at all scales, and
achieves on average 1.80X speedup over Intel MPI at
all scales. On Xeon E7-8890, SH-NUMA-CO achieves on
average 1.14X speedup over SH-Naive at all scales, and
achieves on average 1.52X speedup over MVAPICH2 with
Limic2 at all scales.

Heat transfer simulations on 2D grid and 3D grid of dif-
ferent sizes are carried out on Xeon Phi and Xeon E7-8890,
respectively. Both simulations are run for 1,024 iterations.
On Xeon Phi, we run 60 processes, which are arranged in a
2D Cartesian topology (6 �10). As labeled in Fig. 15a, the
size of the 2D grid is N �N . Thus, each process is responsi-
ble for a (N/6)*(N/10) rectangular region. The ghost data to
be exchanged for each process are the four edges, with the
lengths of N/10, N/10, N/6, and N/6, respectively. MPI_-
Neighbor_alltoallv dominates the communication time; SH-
CO achieves on average 1.15X speedup and 1.85X speedup
over SH-Naive and MVAPICH2 at all scales, respectively, as
shown in Fig. 15a. On Xeon E7-8890, we run 72 processes,
which are arranged in a 3D Cartesian topology (3 �4� 6).
As labeled in Fig. 15b, the size of the 3D grid is 3 N *4 N *6
N . Thus, each process is responsible for an N*N*N cubic
region. The ghost data to be exchanged for each process are
the six facets of the cubic region, with the area of N*N .
MPI_Neighbor_alltoall dominates the communication time;
SH-NUMA-CO achieves on average 1.27X speedup and
1.79X speedup over SH-Naive and MVAPICH2 with Limic2
at all scales, respectively, as shown in Fig. 15b. Results on
real applications verify the advantages of the cache-oblivi-
ous collective operations.

Fig. 13. MPI_Allgather with intra- and inter-node communications over-
lap on 256-node Xeon E5-2680 v3, using all 24 cores on each node.

Fig. 14. 3D FFTon Xeon Phi and Xeon E7-8890.

Fig. 15. Heat transfer simulation on Xeon Phi and Xeon E7-8890.
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5 RELATED WORK

To improve the efficiency of data movement, several techni-
ques [4], [5], [6], [8], [19] have been developed for single-
copy shared-memory MPI communication. Although the
underlying communication channel has been well tuned,
both intra-node and inter-node collectives are commonly
implemented using the traditional algorithms [10]. These
algorithms are originally designed to minimize the latency
or bandwidth overhead in a network, but do not fully
exploit the data locality in the memory hierarchy.

Topology-aware implementations for MPI collective and
I/O operations have been intensively studied. Mamidala
et al. [22] proposed a shared memory and RDMA based
design for MPI_Allgather. They used a common memory
segment for both intra- and inter-node communications.
Based on this, the number of inter-node messages is
reduced, and also the intra- and inter-node communications
can be overlapped. Ma et al. [31] proposed HierKNEM,
which is a kernel-assisted topology-aware collective frame-
work and enables overlap of intra- and inter-node commu-
nications. Karonis et al. [33] proposed an implementation of
topology-aware collective operations, which exploited the
hierarchy in a multi-layer network. To improve the data
locality for collective I/O operation, Filgueira et al. [34]
employed the linear assignment problem for finding the
optimal distribution of data to processes.

To exploit the data locality, Frigo et al. [14] have pre-
sented cache-oblivious algorithms for matrix transpose,
FFT, sorting, and matrix multiplication, where the problem
is divided recursively and eventually reaches a subproblem
size that fits into cache. These algorithms achieve asymptoti-
cally optimal cache complexity without tuning any parame-
ter. However, these algorithms rely heavily on recursive
function calls. Besides, one should use scheduling strate-
gies, like work stealing [20], to parallelize these algorithms,
which incurs scheduling overhead. Alternatively, this paper
uses a Z-shaped curve to implement the parallel cache-
oblivious algorithms without any scheduling overhead.
Chatterjee and Sen [35] investigated the memory system
performance of several memory-efficient algorithms under
different memory models, including the cache-oblivious
algorithm, for matrix transposition. Frigo et al. [15] ana-
lyzed the cache complexity of parallel cache-oblivious algo-
rithms executed by the Cilk work-stealing scheduler [36],
which inspired us to analyze the proposed cache-oblivious
MPI collectives.

Space-filling curves, such as Morton order, Peano, and
Hilbert, have been utilized to implement cache-oblivious
algorithms. Bader et al. [16] proposed a cache-oblivious
scheme combined with hand-tuned kernels for matrix mul-
tiplication and LU decomposition based on Peano curves.
Frens et al. [37] presented a cache-oblivious algorithm for
QR factorization based on Morton-ordered quadtreematri-
ces. Yzelman and Bisseling [38] proposed a cache-oblivious
sparse matrix-vector multiplication scheme using Hilbert
curve. Martone et al. [39] presented a recursive sparse
matrix storage format based on an improved Morton order
for matrices with non-power-of-two dimensions. These
works motivate us to implement cache-oblivious MPI col-
lectives based on Morton order.

6 CONCLUSION

As supercomputers evolve into the exascale era, the number
of cores keeps increasing while the amount of memory per
core is decreasing. Data movement is increasingly expen-
sive in terms of runtime and power consumption. Thus, it is
critical for parallel programming languages and libraries to
take advantage of memory hierarchies and provide commu-
nication operations with high cache efficiency. In this paper,
we propose cache-oblivious algorithms for MPI, the most
popular library for high-performance computing, to
improve the performance of all-to-all style collectives.

For MPI_Alltoall and MPI_Allgather, we design cache-
oblivious algorithms based on Morton order, and prove
their optimality. We further optimize the cache-oblivious
algorithms for NUMA architectures to minimize the dis-
tance of data transfer. We extend the cache-oblivious algo-
rithms for multi-node machines, regarding DRAM as a
private cache for each node. For neighborhood collectives,
we propose an ordered-buffer approach combined with
Morton order to exploit data locality.

Experimental results show that our cache-oblivious algo-
rithms based on shared heap achieve portable performance
improvement on both single- and multi-node machines.
Our implementation for MPI_Alltoall achieves on average
3.11X speedup over MPICH3 on the UMA-architecture
Xeon Phi; achieves on average 3.03X speedup over MVA-
PICH2 on the NUMA-architecture Xeon E7-8890; and
achieves on average 2.23X speedup over MVAPICH2 on a
256-node Xeon E5-2680 for the block sizes less than 1KB.
Architecture trends indicate that deep memory hierarchies
will be necessary. We foresee that the benefit of our cache-
oblivious algorithms will be more significant on such future
machines. Our developed algorithms and cache complexity
analysis approach form a basis for parallel communication
algorithms design on future exascale systems.
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