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Case 2: Find Missing Data

Which links 
are missing?

Why do we 
care?

Reduce experiment costs

Fixing 
missing data
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Warmup: Link Prediction

How to 
assess?

One obtains a „score” 
s(e) = s(u,v) for each 

(missing) link in a graph

The higher the score, the 
more probable a given link 
e is to appear in the graph
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Idea: Generalize Link Prediction to Motifs

Link prediction is well understood 
for, well, links (scores assigned to 

links, similarity based methods, etc.)

How to generalize to 
motifs?

General vision: assign some score 
to motifs (make them comparable)

Motifs with higher scores are 
more probable

[1] M. Besta et al.: “Motif prediction with graph neural networks”, KDD’22

…but there are so many 
differences to link prediction!

Let’s go over them [1] …
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[1] M. Besta et al.: “Motif prediction with graph neural networks”, KDD’22 15

Difference 1: There May Be Many Potential New Motifs for a Fixed Vertex Set

Link prediction: Motif prediction:

How to consider such 
diversity of possible 

patterns in score functions?

A link is either 
there or not there
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Difference 2: Incoming Motifs May Have Existing Edge

Link prediction: Motif prediction:

Already exists

Example: some 
existing relationships 
in a group of people

How to consider 
such edges in the 
score functions?

A link to be predicted 
does not exist

[1] M. Besta et al.: “Motif prediction with graph neural networks”, KDD’22

?
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Difference 3: There May Be “Deal-Breaker” Edges

Link prediction: Motif prediction:

We don’t want these links! 
(i.e., these links appearing 

would make it impossible for 
a motif in question to appear

Example: 
chemical bonds

No such effect (a link to 
be predicted is never a 

„deal breaker”)
How to consider 
such edges in the 
score functions?

[1] M. Besta et al.: “Motif prediction with graph neural networks”, KDD’22
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Link prediction: Motif prediction:
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Link prediction: Motif prediction:
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single link)
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Difference 4: Motif Prediction Query May Depend on Vertex Labeling

Link prediction: Motif prediction:

We want this:

No such effect (not 
enough room with a 

single link)

...but not this:

How to formulate motif 
prediction, considering all 

these differences?
[1] M. Besta et al.: “Motif prediction with graph neural networks”, KDD’22
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Another formulation (perhaps more intuitive):

A deal-breaker edge 
that does already exist:

Check the paper [1] for details about heuristics 
(based on parwise Jaccard, Common 
Neighbors, and Adamic-Adar scores)

These are all heuristics… but recent results for 
learning-enhanced link prediction [2] post a question: 

can we use learning for motif prediction as well?

[2] M. Zhang et al.: “Link Prediction Based on Graph Neural Networks”, NeurIPS’18



spcl.inf.ethz.ch

@spcl_eth

The animation borrowed 
from T. Hoefler

The graph structure may be arbitrary, maybe 
one could arrive at better heuristics by learning?

How does deep learning work?

22



spcl.inf.ethz.ch

@spcl_eth

The animation borrowed 
from T. Hoefler

The graph structure may be arbitrary, maybe 
one could arrive at better heuristics by learning?

How does deep learning work?

22



spcl.inf.ethz.ch

@spcl_eth

The animation borrowed 
from T. Hoefler

The graph structure may be arbitrary, maybe 
one could arrive at better heuristics by learning?

How does deep learning work?

Samples

22



spcl.inf.ethz.ch

@spcl_eth

The animation borrowed 
from T. Hoefler

The graph structure may be arbitrary, maybe 
one could arrive at better heuristics by learning?

How does deep learning work?

Samples

22



spcl.inf.ethz.ch

@spcl_eth

The animation borrowed 
from T. Hoefler

The graph structure may be arbitrary, maybe 
one could arrive at better heuristics by learning?

How does deep learning work?

Samples

22



spcl.inf.ethz.ch

@spcl_eth

f(x)

The animation borrowed 
from T. Hoefler

The graph structure may be arbitrary, maybe 
one could arrive at better heuristics by learning?

How does deep learning work?

Samples

22



spcl.inf.ethz.ch

@spcl_eth

f(x)

The animation borrowed 
from T. Hoefler

The graph structure may be arbitrary, maybe 
one could arrive at better heuristics by learning?

How does deep learning work?

Samples Learning a 
heuristic

22



spcl.inf.ethz.ch

@spcl_eth

0.54

0.28

0.02

0.07

0.33

0.04

0.02

Cat

Dog

Airplane

Truck

Horse

Bicycle

f(x)

The animation borrowed 
from T. Hoefler

The graph structure may be arbitrary, maybe 
one could arrive at better heuristics by learning?

How does deep learning work?

Samples Learning a 
heuristic

22



spcl.inf.ethz.ch

@spcl_eth

0.54

0.28

0.02

0.07

0.33

0.04

0.02

Cat

Dog

Airplane

Truck

Horse

Bicycle

f(x)
1.00

0.00

0.00

0.00

0.00

0.00

0.00

Cat

Dog

Airplane

Truck

Horse

Bicycle

The animation borrowed 
from T. Hoefler

The graph structure may be arbitrary, maybe 
one could arrive at better heuristics by learning?

How does deep learning work?

Samples Learning a 
heuristic

22



spcl.inf.ethz.ch

@spcl_eth

0.54

0.28

0.02

0.07

0.33

0.04

0.02

Cat

Dog

Airplane

Truck

Horse

Bicycle

f(x)

layer-wise weight update

1.00

0.00

0.00

0.00

0.00

0.00

0.00

Cat

Dog

Airplane

Truck

Horse

Bicycle

The animation borrowed 
from T. Hoefler

The graph structure may be arbitrary, maybe 
one could arrive at better heuristics by learning?

How does deep learning work?

Samples Learning a 
heuristic

22



spcl.inf.ethz.ch

@spcl_eth

0.54

0.28

0.02

0.07

0.33

0.04

0.02

Cat

Dog

Airplane

Truck

Horse

Bicycle

f(x)

layer-wise weight update

1.00

0.00

0.00

0.00

0.00

0.00

0.00

Cat

Dog

Airplane

Truck

Horse

Bicycle

The animation borrowed 
from T. Hoefler

The graph structure may be arbitrary, maybe 
one could arrive at better heuristics by learning?

How does deep learning work?

Samples Learning a 
heuristic

22



spcl.inf.ethz.ch

@spcl_eth

Motif Prediction: Deep Learning Formulation A motif:

23



spcl.inf.ethz.ch

@spcl_eth

Motif Prediction: Deep Learning Formulation A motif:

Goal: predict 
this motif M:

23



spcl.inf.ethz.ch

@spcl_eth

Motif Prediction: Deep Learning Formulation A motif:

Goal: predict 
this motif M:

23



spcl.inf.ethz.ch

@spcl_eth

Motif Prediction: Deep Learning Formulation A motif:

A given fixed 
set of vertices:

Goal: predict 
this motif M:

23



spcl.inf.ethz.ch

@spcl_eth

Motif Prediction: Deep Learning Formulation A motif:

A given fixed 
set of vertices:

Goal: predict 
this motif M: Positive 

samples

23



spcl.inf.ethz.ch

@spcl_eth

Motif Prediction: Deep Learning Formulation A motif:

A given fixed 
set of vertices:

Goal: predict 
this motif M: Positive 

samples

23



spcl.inf.ethz.ch

@spcl_eth

Motif Prediction: Deep Learning Formulation A motif:

A given fixed 
set of vertices:

Goal: predict 
this motif M: Positive 

samples

23



spcl.inf.ethz.ch

@spcl_eth

Motif Prediction: Deep Learning Formulation A motif:

A given fixed 
set of vertices:

Goal: predict 
this motif M: Positive 

samples

The neighborhood of 
the sampled vertex set

A “positive” sample for the 
neural network architecture

23



spcl.inf.ethz.ch

@spcl_eth

Motif Prediction: Deep Learning Formulation A motif:

A given fixed 
set of vertices:

Goal: predict 
this motif M: Positive 

samples

The neighborhood of 
the sampled vertex set

A “positive” sample for the 
neural network architecture

Negative 
samples

23



spcl.inf.ethz.ch

@spcl_eth

Motif Prediction: Deep Learning Formulation A motif:

A given fixed 
set of vertices:

Goal: predict 
this motif M: Positive 

samples

The neighborhood of 
the sampled vertex set

A “positive” sample for the 
neural network architecture

Negative 
samples

23



spcl.inf.ethz.ch

@spcl_eth

Motif Prediction: Deep Learning Formulation A motif:

A given fixed 
set of vertices:

Goal: predict 
this motif M: Positive 

samples

The neighborhood of 
the sampled vertex set

A “positive” sample for the 
neural network architecture

A “negative” sample 
for the neural 

network architecture

Negative 
samples

23



spcl.inf.ethz.ch

@spcl_eth

0.54

0.28

0.02

0.07

0.33

0.04

0.02

Cat

Dog

Airplane

Truck

Horse

Bicycle

f(x)

layer-wise weight update

1.00

0.00

0.00

0.00

0.00

0.00

0.00

Cat

Dog

Airplane

Truck

Horse

Bicycle

Motif Prediction: Deep Learning Formulation

24



spcl.inf.ethz.ch

@spcl_eth

0.54

0.28

0.02

0.07

0.33

0.04

0.02

Cat

Dog

Airplane

Truck

Horse

Bicycle

f(x)

layer-wise weight update

1.00

0.00

0.00

0.00

0.00

0.00

0.00

Cat

Dog

Airplane

Truck

Horse

Bicycle

Motif Prediction: Deep Learning Formulation

24



spcl.inf.ethz.ch

@spcl_eth

0.54

0.28

0.02

0.07

0.33

0.04

0.02

Cat

Dog

Airplane

Truck

Horse

Bicycle

f(x)

layer-wise weight update

1.00

0.00

0.00

0.00

0.00

0.00

0.00

Cat

Dog

Airplane

Truck

Horse

Bicycle

Motif Prediction: Deep Learning Formulation

24

A given fixed 
set of vertices:



spcl.inf.ethz.ch

@spcl_eth

f(x)

layer-wise weight update

Motif Prediction: Deep Learning Formulation

24

A given fixed 
set of vertices:

Will a k-clique 
appear or not?



spcl.inf.ethz.ch

@spcl_eth

f(x)

layer-wise weight update

Motif Prediction: Deep Learning Formulation

24

A given fixed 
set of vertices:

Will a k-clique 
appear or not?

[1] M. Zhan et al. 2018. An end-to-end deep 
learning architecture for graph classification. 
AAAI Conference on Artificial Intelligence

The samples are used to train a neural 
network model called Deep Graph 

Convolutional Neural Network (DGCNN) [1]
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Much more results and sensitivity 
analyses in the paper 
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