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Who is this guy and what is he doing here?

[1] M. Besta, TH: Slim Fly: A Cost Effective Low-Diameter Network Topology, IEEE/ACM SC14, best student paper

Climate Sim Deep Learning

1 professor, 6 scientific staff, 13 PhD students                6.5k staff, 20k students, focus on research
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What is a qubit and how do I get one?

One qubit can include a lot of information in 𝛼0 and 𝛼1but can only sample one bit while losing all

(encoding n bits takes Ω 𝑛 operations)

𝑛 qubits live in a vector space of 2𝑛complex numbers (all combinations + entanglement) 

Ψn = 

𝑖=0..2𝑛−1

𝛼𝑖|𝑖⟩ e.g., Ψ2 = 𝛼0 00 + 𝛼1 01 + 𝛼2 10 + 𝛼3|11⟩

“I don't like it, and I'm sorry I ever had anything to do with it.”
Schrödinger (about the probability interpretation of quantum mechanics)
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Example: adding 2𝑛numbers in O(log 𝑛) time
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(entangled “probability distribution”)

print(a, a+b)
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We add all 2𝑛numbers in parallel but only recover 𝑛 classical bits! 

A Corollary to Holevo’s Theorem (1973): at most 𝒏 classical bits can be 
extracted from a quantum state with 𝒏 qubits even though that system 
requires 2𝑛 − 1 complex numbers to be represented!

My corollary: practical quantum algorithms read a linear-size input and
modify an exponential-size quantum state such that the correct (polynomial
size) output is likely to be measured. 

Question: Are quantum algorithms good at solving problems where a 
solution is verifiable efficiently (polynomial time)? Answer: Kind of ☺



• Even with quantum computing, it seems that P ≠ NP (limited by linearity of operators). 

Quantum is at least as powerful as classic, thus, we do not know!

• New complexity class: Bounded-error Quantum Polynomial time (BQP)

• Quantum version of to Bounded-error Probabilistic Polynomial time (BPP)

PSPACE

BQP

BPP
P

So quantum computers can solve NP-complete problems!?
A problem is in NP if a solution can be verified deterministically in polynomial time.

NP

NP-complete

factoring, discrete logarithmNPI – e.g., graph isomorphism

?



Quantum algorithms are very complex (i.e., weird)
Most quantum programs recombine known algorithmic building blocks!



How does a quantum computer work?

Operations (“gates”) are applied 

to qubits in place!

As opposed to bits flowing 

through traditional computers!

Qubits are arranged on a 

(commonly 2D) substrate 

Reuse big parts of process 

technology in microelectronics

Commonly limited to neighbor 

interactions between qubits

Limited range, may require 

swapping across chip

Operations (“gates”) have highly 

varying complexity

Some are literally free (classical 

tracking), some are very expensive

Qubits are error prone, need to be 

highly isolated (major challenge)

Quantum error correction enabled 

the dream of quantum computers

Quantum circuits use predication 

(no control flow)

Circuit view simplifies reasoning 

but requires classical envelope

Quantum systems are most 

naturally seen as accelerators

Work in close cooperation with a 

traditional control circuit



Q error correction
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Hardware and software architecture for quantum computing
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Full Example: Grover’s search

• Task: find 𝑥 ∈ 𝐷 for which 𝑓 𝑥 = 𝑦
(invert 𝑓(𝑥))
• Classical requires 𝑂( 𝐷 ) queries 

• Quantum requires 𝑂 𝐷 queries

Q# code

𝑓(𝑥)𝐷 → 𝐶↦

allocate 

⌈log2 𝐷 ⌉
qubits

1

2𝑛

0

|0…00⟩ |0…01⟩ |0…10⟩ |1…11⟩|1…10⟩⋯ ⋯|𝑥⟩|0…11⟩

1

⋯ ⋯

average

⋯ ⋯⋯ ⋯



Quadratic speedup? Grover on a real machine

1. Query complexity model – how algorithms are developed

• 𝑇 =
𝜋

4
2𝑛 queries ( 𝐷 = 2𝑛 - represented by 𝑛 bits) 

2. Express (oracle and diffusion operator) as n-bit unitary
• Assuming 𝑂 n-bit operations for oracle!

• 𝑇 = 𝑂
𝜋

4
2𝑛 n-bit operations - 𝑇𝑡 =

𝜋

4
2𝑛

3. Decompose unitary into two-bit (+arbitrary rotation) gates

• 𝑇 = 𝑂2
𝜋

4
2𝑛 ⋅ 2(𝑛 − 1) elementary operations - 𝑇𝑡 =

𝜋

4
2𝑛 ⋅ 4(𝑛 − 1)

4. Design approximate implementations in discrete gate set (using HTHT...)

• 𝑇 = 𝑂ഥ2
𝜋

4
2𝑛 ⋅ 2(𝑛 − 1) discrete T gate operations - 𝑇𝑡 =

𝜋

4
2𝑛 ⋅ 48(𝑛 − 1)

5. Mapping to real hardware (swaps and teleport)
• Not to simple to model, depends on oracle – potentially Θ 2𝑛 slowdown

6. Quantum error correction
• Not so simple, depends on quality of physical bits and circuit depth, huge constant slowdown

Performance estimates must be understood to be believed (inspired by Donald Knuth’s “An algorithm must be seen to be believed”)

𝑓(𝑥)
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𝑓(𝑥)
Quantum computer with logical error rates ≤ 10−24

and gate times of 10−6s vs. classical at 1 teraop/s.

from Grassl et al.: “Applying Grover's algorithm to AES: quantum resource estimates”, arXiv:1512.04965
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Real applications?

▪ Original idea by Feynman – use quantum effects to evaluate quantum effects

▪ Design catalysts, exotic materials, …

Quantum Chemistry/Physics

▪ Big hype – destructive impact – single-shot (but big) business case

▪ Not trivial (requires arithmetic) but possible

Breaking encryption & bitcoin

Your connection is not private

▪ Quadratic speedup can be very powerful!

▪ Requires much more detailed resource analysis → systems problem

Accelerating heuristical solvers

▪ Feynman may argue: “quantum advantage” assumes that circuits cannot be simulated 

classically → they represent very complex functions that could be of use in ML?

Quantum machine learning

Quantum



Thanks!

• Special thanks to Matthias Troyer and Doug Carmean 

• Thanks to: Thomas Haener, Damian Steiger, Martin 

Roetteler, Nathan Wiebe, Mike Upton, Bettina Heim, 

Vadym Kliuchnikov, Jeongwan Haah, Dave Wecker, 

Krysta Svore

• And the whole MSFT Quantum / QuArC team!

All used images belong to the respective owners – source list in appendix

Quantum me on the rocky 
path to develop my

intuition for 
quantum computation


