An HPC Systems Guy's View of Quantum Computing

Torsten Hoefler

ETH Zurich, Switzerland (Professor)
Microsoft Quantum, Redmond (Visiting Researcher)

Research
Faculty Summit 2018
Systems | ueling future disruptions

Who is this guy and what is he doing here?

What is a qubit and how do I get one?

"I don't like it, and I'm sorry I ever had anything to do with it."
Schrödinger (about the probability interpretation of quantum mechanics)

$$
\begin{array}{r}
\left.|\Psi\rangle \Rightarrow \alpha_{0}\left|\binom{1}{0}++\operatorname{tac} 11\left(\frac{0}{0}\right) \quad\right| \alpha_{0}\right|^{2}+\left|\alpha_{1}\right|^{2}=1 \\
\text { For example: }|+\rangle=\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle
\end{array}
$$

One qubit can include a lot of information in α_{0} and α_{1} but can only sample one bit while losing all
n qubits live in a vector space of 2^{n} complex numbers (all combinations + entanglement)

$$
\left|\Psi_{\mathrm{n}}\right\rangle=\sum_{i=0 . .2^{n}-1} \alpha_{i}|i\rangle \quad \text { e.g., }\left|\Psi_{2}\right\rangle=\alpha_{0}|00\rangle+\alpha_{1}|01\rangle+\alpha_{2}|10\rangle+\alpha_{3}|11\rangle
$$

Example: adding 2^{n} numbers in $0(\log n)$ time

Reminder: Classical Adder
Quantum Adder
final adder state

Reminder:

Research
Faculty Summit 2018

We add all 2^{n} numbers in parallel but only recover n classical bits!

A Corollary to Holevo's Theorem (1973): at most \boldsymbol{n} classical bits can be extracted from a quantum state with n qubits even though that system requires $2^{n}-1$ complex numbers to be represented!

My corollary: practical quantum algorithms read a linear-size input and
 modify an exponential-size quantum state such that the correct (polynomial size) output is likely to be measured.

Question: Are quantum algorithms good at solving problems where a solution is verifiable efficiently (polynomial time)? Answer: Kind of \odot

So quantum computers can solve NP-complete problems!?

A problem is in NP if a solution can be verified deterministically in polynomial time.

- Even with quantum computing, it seems that $P \neq N P$ (limited by linearity of operators). Quantum is at least as powerful as classic, thus, we do not know!
- New complexity class: Bounded-error Quantum Polynomial time (BQP)
- Quantum version of to Bounded-error Probabilistic Polynomial time (BPP)

Quantum algorithms are very complex (i.e., weird)

Most quantum programs recombine known algorithmic building blocks!

Amplitude Amplification
Amplify probability of the "right"
output
- Using quantum interference
" E.g., Grover's search
- Often $O\left(\sqrt{2^{n}}\right)$ iterations

Quantum Walks

Speedup mixing times in randomized algorithms

- Quantum version of random walks
- Between quadratic and (rarely) exponential speedup

Quantum Fourier Transform

DFT on amplitudes of a quantum state

- $O(n \log n)$ gates for 2^{n} elems
- Used in factoring and discrete logarithm

Hamiltonian Simulation
Simulate nature -

- Exponential speedup (over best known) classical
 algorithm for quantum effects in physics, chemistry, material science problems

Phase Estimation
Measure eigenvalues of a unitary operator

- Used to compute eigenvectors
- Used to solve linear systems
- Determine eigenvalues in $O\left(\frac{1}{\epsilon}\right)$ gates

Others

(not relevant for HPC)

- Quantum teleportation
- EPR-pair based proofs/certificates
- Certified random number generation
- ...

Research
Faculty Summit 2018
Systems | Fueling future disruptions

How does a quantum computer work?

Qubits are arranged on a (commonly 2D) substrate

Reuse big parts of process technology in microelectronics

Qubits are error prone, need to be highly isolated (major challenge)
Quantum error correction enabled the dream of quantum computers

Operations ("gates") are applied to qubits in place!

As opposed to bits flowing through traditional computers!

Quantum systems are most naturally seen as accelerators

Work in close cooperation with a traditional control circuit

Operations ("gates") have highly varying complexity
Some are literally free (classical tracking), some are very expensive

Quantum circuits use predication (no control flow)

Circuit view simplifies reasoning but requires classical envelope

Commonly limited to neighbor interactions between qubits

Limited range, may require swapping across chip

Hardware and software architecture for quantum computing

$\begin{gathered} 300 \mathrm{~K} \\ >100 \mathrm{~kW} \end{gathered}$		Logical layer	qubits Quantum circuits	bits Instruction stream + data	abstraction Q\# programming language
	\bigcirc	Gate synthesis			Q intermediate representation
nitrogen) $<1 \mathrm{~kW}$	$\begin{aligned} & \frac{\tilde{\sim}}{\sim} \\ & \frac{0}{0} \\ & \hline \end{aligned}$		(T, Rotation multi-control, ...)	control and qubit routing	Microcoded instructions
	$\stackrel{\square}{0}$	Q error correction	QEC Codes (Steane etc., 1:n mapping)	Control for QEC (varies with code)	Microcoded instructions
<0.1K (dilution refrigeration) <0.01W	qubits	Physical control	Physical quantum state	Analog pulse generators	Qubit control pulses

Research
Faculty Summit 2018
Systems | Fueling future disruptions
operation GroverSearch(n_searchQubits: Int): (Result[]) \{
Full Examole: Grover's search allocate mu
$\left[\log _{2}|D| 1\right.$
$\left|\log _{2}\right| D \mid$
qubits
using (qubits = Qubit[n_searchQubits])
Q\# code

ApplyToEachCA(H, qubits); // qubits to uniform superposition

```
let n_iterations = Floor(0.25 * PI()
                            * Sqrt(ToDouble(2^n_searchQubits)));
```

 // Grover iteration
 for (nonce in 1..n iterations) \{
 OracleAND(qubits); // flips phase of desired state
 // apply Grover diffusion operator
 ApplyToEachCA(H, qubits);
 ApplyToEachCA(X, qubits);
(Controlled Z)(qubits[1..n_searchQubits-1], qubits[0]);
ApplyToEachCA(X, qubits);
ApplyToEachCA(H, qubits);
\}
set resultElement $=$ MultiM(qubits);
\}
return (resultElement);
\}

Research Faculty Summit 2018

Quadratic speedup? Grover on a real machine

Performance estimates must be understood to be believed (inspired by Donald Knuth's "An algorithm must be seen to be believed")

1. Query complexity model - how algorithms are developed

2. Express (oracle and diffusion operator) as n-bit unitary

- Assuming O n-bit operations for oracle!
- $T=O\left\lfloor\frac{\pi}{4} \sqrt{2^{n}}\right\rfloor$ n-bit operations - $T_{t}=\left\lfloor\frac{\pi}{4} \sqrt{2^{n}}\right\rfloor$

3. Decompose unitary into two-bit (+arbitrary rotation) gates

- $T=O_{2}\left\lfloor\frac{\pi}{4} \sqrt{2^{n}}\right\rfloor \cdot 2(n-1)$ elementary operations $-T_{t}=\left\lfloor\frac{\pi}{4} \sqrt{2^{n}}\right\rfloor \cdot 4(n-1)$

4. Design approximate implementations in discrete gate set (using HTHT...)

- $T=O_{\overline{2}}\left\lfloor\frac{\pi}{4} \sqrt{2^{n}}\right\rfloor \cdot 2(n-1)$ discrete T gate operations $-T_{t}=\left\lfloor\frac{\pi}{4} \sqrt{2^{n}}\right\rfloor \cdot 48(n-1)$

5. Mapping to real hardware (swaps and teleport)

- Not to simple to model, depends on oracle - potentially $\Theta\left(\sqrt{2^{n}}\right)$ slowdown :

6. Quantum error correction

- Not so simple, depends on quality of physical bits and circuit depth, huge constant slowdown

Research
 Faculty Summit 2018

Quadratic speedup? Grover on a real machine

Performance estimates must be understood to be believed (inspired by Donald Knuth's "An algorithm must be seen to be believed")

Query complexity model - how algorithms are developed
Quantum computer with logical error rates $\leq 10^{-24}$ and gate times of $10^{-6} \mathrm{~s}$ vs. classical at 1 teraop/s.

Table 5. Quantum resource estimates for Grover's algorithm to attack AES- k, where $k \in\{128,192,256\}$. from Grassl et al.: "Applying Grover's algorithm to AES: quantum resource estimates", arXiv:1512.04965

Research
 Faculty Summit 2018

Systems | Fueling future disruptions

Real applications?

Quantum Chemistry/Physics

- Original idea by Feynman - use quantum effects to evaluate quantum effects
- Design catalysts, exotic materials,

Breaking encryption \& bitcoin

- Big hype - destructive impact - single-shot (but big) business case
- Not trivial (requires arithmetic) but possible

Https
Your connection is not private
Accelerating heuristical solvers

- Quadratic speedup can be very powerful!
- Requires much more detailed resource analysis \rightarrow systems problem

Quantum machine learning

- Feynman may argue: "quantum advantage" assumes that circuits cannot be simulated

G00GLLE, ILIBABA SPIR OVER TILIELINE FOR '0LAVTLS SIPRELIACY

Thanks!

- Special thanks to Matthias Troyer and Doug Carmean

