
spcl.inf.ethz.ch

@spcl_eth

TORSTEN HOEFLER

High-Performance Distributed RMA Locks

with support of Patrick Schmid, Maciej Besta @ SPCL

presented at Wuxi, China, Sept. 2016

spcl.inf.ethz.ch

@spcl_eth

 ETH Zurich – top university in central Europe

 Shanghai ranking ‘15 (Computer Science): #17, best outside North America

 16 departments, 1.62 Bn $ federal budget

 Computer Science department

 28 tenure-track faculty, 1k students

 Systems group (7 professors)

 O. Mutlu, T. Roscoe, G. Alonso, A. Singla, C. Zheng, D. Kossmann, TH

 Focused on systems research of all kinds (data management, OS, …)

 SPCL focusses on performance/data/HPC

 1 faculty

 3 postdocs

 8 PhD students (+2 external)

 15+ BSc and MSc students

 http://spcl.inf.ethz.ch

 Twitter: @spcl_eth

2

ETH, CS, Systems Group, SPCL

http://spcl.inf.ethz.ch/

spcl.inf.ethz.ch

@spcl_eth

[SC14]

[SC14]

[SC13]

[SC13]

OpenSM

DFSSSP

spcl.inf.ethz.ch

@spcl_eth

4

crClim – Cloud-resolving Climate Simulations

spcl.inf.ethz.ch

@spcl_eth

NEED FOR EFFICIENT LARGE-SCALE SYNCHRONIZATION

spcl.inf.ethz.ch

@spcl_eth

Proc qProc p

Various

performance

penalties

LOCKS An example

structure

Inuitive

semantics

spcl.inf.ethz.ch

@spcl_eth

LOCKS: CHALLENGES

P1 P2

P3 P4

spcl.inf.ethz.ch

@spcl_eth

LOCKS: CHALLENGES

P

P

P

P

P
P

P

P

P P

P

P

We need intra- and

inter-node topology-

awareness

We need to cover

arbitrary topologies

spcl.inf.ethz.ch

@spcl_eth

LOCKS: CHALLENGES

Reader Reader

Reader

Reader

Reader

Reader

Reader

Reader

Writer

Writer

[1] V. Venkataramani et al. Tao: How facebook serves the social graph. SIGMOD’12.

We need to distinguish

between readers and writers

We need flexible

performance for both types

of processes

spcl.inf.ethz.ch

@spcl_eth

What will we use in the

design?

spcl.inf.ethz.ch

@spcl_eth

Proc

WHAT WE WILL USE

MCS Locks

Pointer to the

queue tail

Can

enter

Next

proc

Proc

Cannot

enter

Next

proc

Proc

Cannot

enter

Next

proc ...

Proc

Cannot

enter

Next

proc

Can

enter

spcl.inf.ethz.ch

@spcl_eth

WHAT WE WILL USE

Reader-Writer Locks

...

W

R

R

R

R

spcl.inf.ethz.ch

@spcl_eth

How to manage the

design complexity?

How to ensure tunable

performance?

What mechanism to use

for efficient

implementation?

spcl.inf.ethz.ch

@spcl_eth

REMOTE MEMORY ACCESS (RMA) PROGRAMMING

Memory Memory

Cray

BlueWaters

put

Process p Process q

A

B
get

B

A

B

flush

A

B

spcl.inf.ethz.ch

@spcl_eth

REMOTE MEMORY ACCESS PROGRAMMING

 Implemented in hardware in NICs in the majority of HPC

networks support RDMA

spcl.inf.ethz.ch

@spcl_eth

How to manage the

design complexity?

How to ensure tunable

performance?

What mechanism to use

for efficient

implementation?

spcl.inf.ethz.ch

@spcl_eth

Each element has its

own distributed MCS

queue (DQ) of writers

MCS

queues form

a distributed

tree (DT)

Readers and writers

synchronize with a

distributed counter (DC)

W3 W5 W8

How to manage the design complexity?

Modular

design

W8W7W3 W5 W6W2W1 W4

W1

2 2 3 2

...

W8W3

R9
R2

R1

R4
R3 R7 R9R2

R1
R6

R5
R8

spcl.inf.ethz.ch

@spcl_eth

DT: a

parameter for

the

throughput of

readers vs

writers

Each DQ: fairness

vs throughput of

writers

DC: a parameter for

the latency of readers

vs writers

W3 W5 W8

How to ensure tunable performance?

W8W7W3 W5 W6W2W1 W4

W1

R4
R3 R7 R9R2

R1
R6

R5
R8

2 2 2 2

A tradeoff

parameter

for every

structure

...
R9

R2

R1

W8W3

spcl.inf.ethz.ch

@spcl_eth

W8

W3 W5

W3

W8

W8W7W3 W5 W6W2W1 W4

W1

DISTRIBUTED MCS QUEUES (DQS)
Throughput vs Fairness

Each DQ: The

maximum number

of lock passings

within a DQ at level

i, before it is passed

to another DQ at i.

𝑇𝐿,𝑖

𝑇𝐿,1 𝑇𝐿,1 𝑇𝐿,1 𝑇𝐿,1

𝑇𝐿,2 𝑇𝐿,2

Larger : more

throughput at level i.

Smaller : more

fairness at level i.

𝑇𝐿,𝑖

𝑇𝐿,𝑖

𝑇𝐿,3

spcl.inf.ethz.ch

@spcl_eth

DISTRIBUTED TREE OF QUEUES (DT)
Throughput of readers vs writers

DT: The maximum

number of consecutive

lock passings within

readers ().𝑇𝑅

𝑇𝐿,2

W8

W3 W5

W3

W8

W8W7W3 W5 W6W2W1 W4

W1

𝑇𝐿,1 𝑇𝐿,1 𝑇𝐿,1 𝑇𝐿,1

𝑇𝐿,2

...
R9

R2

R1

𝑇𝐿,3

spcl.inf.ethz.ch

@spcl_eth

DISTRIBUTED COUNTER (DC)
Latency of readers vs writers

DC: every kth compute node

hosts a partial counter, all of

which constitute the DC.

𝑘 = 𝑇𝐷𝐶

R4
R3 R7 R9R2

R1

R6

R5
R8

0|9|7 0|8|5 0|5|30|3|1

b|x|y
A writer holds

the lock

Readers that

arrived at the CS

Readers that

left the CS𝑇𝐷𝐶 = 1

𝑇𝐷𝐶 = 2

0|12|8 0|13|8

spcl.inf.ethz.ch

@spcl_eth

THE SPACE OF DESIGNS

𝑇𝐷𝐶

𝑇𝑅

Higher throughput of writers vs readers

𝑇𝐿,𝑖

L
o

c
a
li

ty
v
s
 f

a
ir

n
e
s
s

(f
o
r

w
ri
te

rs
)

Design ADesign B

spcl.inf.ethz.ch

@spcl_eth

LOCK ACQUIRE BY READERS A lightweight acquire protocol

for readers: only one atomic

fetch-and-add (FAA) operation

R4

R3R2

R10|7|7 0|1|1

b|x|y
A writer holds

the lock

Readers that

arrived at the CS

Readers that

left the CS

FAA

FAA

FAA FAA

0|8|70|9|7 0|2|10|3|1

spcl.inf.ethz.ch

@spcl_eth

LOCK ACQUIRE BY WRITERS

W8

W3 W5

W3

W8

W8W7W3 W5 W6W2W1 W4

W1

...
R9

R2

R1

W9

Acquire MCS

W9

Acquire MCS

W9

Acquire the

main MCS lock

0|9|9 0|3|3 0|8|8 0|5|5

Acquire the main lock

1|9|9 1|3|3 1|8|8 1|5|5

spcl.inf.ethz.ch

@spcl_eth

 CSCS Piz Daint (Cray XC30)

 5272 compute nodes

 8 cores per node

 169TB memory

EVALUATION

spcl.inf.ethz.ch

@spcl_eth

EVALUATION

CONSIDERED BENCHMARKS

Single-operation

The latency

benchmark
Empty-critical-section

Workload-critical-section

Wait-after-release

Distributed

hashtable

evaluation

DHT

Throughput

benchmarks:

spcl.inf.ethz.ch

@spcl_eth

EVALUATION

DISTRIBUTED COUNTER ANALYSIS

Throughput, 2% writers

Single-operation benchmark

0|9|7 0|3|1

0|12|8

spcl.inf.ethz.ch

@spcl_eth

EVALUATION

READER THRESHOLD ANALYSIS

Throughput, 0.2% writers,

Empty-critical-section benchmark

spcl.inf.ethz.ch

@spcl_eth

EVALUATION

COMPARISON TO THE STATE-OF-THE-ART

[1] R. Gerstenberger et al. Enabling Highly-scalable Remote Memory Access Programming with MPI-3 One Sided.

ACM/IEEE Supercomputing 2013.

spcl.inf.ethz.ch

@spcl_eth

EVALUATION

COMPARISON TO THE STATE-OF-THE-ART

Throughput, single-operation benchmark

[1] R. Gerstenberger et al. Enabling Highly-scalable Remote Memory Access Programming with MPI-3 One Sided.

ACM/IEEE Supercomputing 2013.

spcl.inf.ethz.ch

@spcl_eth

EVALUATION

DISTRIBUTED HASHTABLE

20% writers 10% writers

[1] R. Gerstenberger et al. Enabling Highly-scalable Remote Memory Access Programming with MPI-3 One Sided.

ACM/IEEE Supercomputing 2013.

spcl.inf.ethz.ch

@spcl_eth

EVALUATION

DISTRIBUTED HASHTABLE

2% of writers 0% of writers

[1] R. Gerstenberger et al. Enabling Highly-scalable Remote Memory Access Programming with MPI-3 One Sided.

ACM/IEEE Supercomputing 2013.

spcl.inf.ethz.ch

@spcl_eth

OTHER ANALYSES

