
sPIN: High-performance streaming Processing in the Network

Torsten Hoefler†∗, Salvatore Di Girolamo†, Konstantin Taranov†, Ryan E. Grant∗, Ron Brightwell*

†ETH Zürich
8092 Zürich, Switzerland

{htor,digirols,ktaranov}@inf.ethz.ch

∗Sandia National Laboratories
Albuquerque, NM, USA

{tnhoefl,regrant,rbbrigh}@sandia.gov

ABSTRACT

Optimizing communication performance is imperative for large-
scale computing because communication overheads limit the strong
scalability of parallel applications. Today’s network cards contain
rather powerful processors optimized for data movement. However,
these devices are limited to fixed functions, such as remote direct
memory access. We develop sPIN, a portable programming model to
offload simple packet processing functions to the network card. To
demonstrate the potential of the model, we design a cycle-accurate
simulation environment by combining the network simulator Log-
GOPSim and the CPU simulator gem5. We implement offloaded mes-
sage matching, datatype processing, and collective communications
and demonstrate transparent full-application speedups. Furthermore,
we show how sPIN can be used to accelerate redundant in-memory
filesystems and several other use cases. Our work investigates a
portable packet-processing network acceleration model similar to
compute acceleration with CUDA or OpenCL. We show how such
network acceleration enables an eco-system that can significantly
speed up applications and system services.

ACM Reference Format:

Torsten Hoefler†∗, Salvatore Di Girolamo†, Konstantin Taranov†, Ryan E.
Grant∗, Ron Brightwell. 2017. sPIN: High-performance streaming Processing
in the Network. In Proceedings of SC17. ACM, New York, NY, USA,
20 pages. https://doi.org/10.1145/3126908.3126970

1 MOTIVATION

The current trend to move towards highly-scalable computing sys-
tems with slow but energy-efficient processors increases the pressure
on the interconnection network. The recent leap in terms of band-
width and latency was achieved by removing the CPU from the
packet processing (data) path. Instead, specialized data processors
offer remote direct memory access (RDMA) functions and enable
tens of gigabytes per second transmission rates at sub-microsecond
latencies in modern network interface cards (NICs).

*Sandia National Laboratories is a multimission laboratory managed and operated by
National Technology and Engineering Solutions of Sandia, LLC., a wholly owned sub-
sidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-NA-0003525.

ACM acknowledges that this contribution was authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this article,
or to allow others to do so, for government purposes only.
SC17, November 12–17, 2017, Denver, CO, USA

© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5114-0/17/11. . . $15.00
https://doi.org/10.1145/3126908.3126970

However, RDMA only transports data between (virtual) memo-
ries of processes on different network endpoints. Different RDMA
interfaces, such as OFED [1], uGNI/DMAPP [2], Portals 4 [3], or
FlexNIC [4] provide varying levels of support for steering the data
at the receiver. Yet, with upcoming terabits-per-second networks [5],
we foresee a new bottleneck when it comes to processing the de-
livered data: A modern CPU requires 10-15ns to access L3 cache
(Haswell: 34 cycles, Skylake: 44 cycles [6, 7]). However, a 400 Gib/s
NIC can deliver a 64-Byte message each 1.2ns.

The main problem is that packets are simply deposited into main
memory, irrespective of the contents of the message itself. Many
applications then analyze the received messages and rearrange them
into the application structures in host memory (e.g., halo exchanges,
parallel graph algorithms, database updates) even though this step
can logically be seen as part of the data routing. This poses a bar-
rier, very similar to pre-RDMA packet processing: CPU cores are
inefficient message processors because their microarchitecture is
optimized for computation. They require thread activation, schedul-
ing, and incoming data potentially pollutes the caches for the main
computation. Furthermore, due to the lack of a better interface, the
highly-optimized data-movement cores on the NIC are likely to
place data blindly into host memory.

To address these limitations and liberate NIC programming, we
propose streaming Processing in the Network (sPIN), which aims
to extend the success of RDMA and receiver-based matching to
simple processing tasks that are dominated by data-movement. In
particular, we design a unified interface where programmers can
specify kernels, similar to CUDA [8] and OpenCL [9], that execute
on the NIC. Differently from CUDA and OpenCL, kernels do not
offload compute-heavy tasks but data-movement-heavy tasks, specif-
ically, tasks that can be performed on incoming messages and only
require limited local state. Such tasks include starting communica-
tions with NIC-based collectives, advanced data steering with MPI
datatypes, data processing such as network raid, compression, and
database filters. Similarly to OpenCL, sPIN’s interface is device-
and vendor-independent and can be implemented on a wide variety
of systems.

We enable sPIN on existing NIC microarchitectures with typically
very small but fast memories without obstructing line-rate packet
processing. For this, we design sPIN around networking concepts
such as packetization, buffering, and packet steering. Packetization is
the most important concept in sPIN because unlike other networking
layers that operate on the basis of messages, sPIN exposes packe-
tization to the programmer. Programmers define header, payload,
and completion handlers (kernels) that are executed in a streaming

https://doi.org/10.1145/3126908.3126970
https://doi.org/10.1145/3126908.3126970

SC17, November 12–17, 2017, Denver, CO, USA T. Hoefler et al.

way by handler processing units (HPUs) for the respective packets
of each matching message. Handlers can access packets in fast local
memory and they can communicate through shared memory. sPIN
offers protection and isolation for user-level applications and can
thus be implemented in any environment. Figure 1 shows sPIN’s
architecture.

sPIN Network Interface (NIC)…

P
a

ck
e

t
S

ch
e

d
u

le
r

HPU 0

HPU 1

HPU 2

HPU 3…

HPU N

empty

Fast shared

memory

(handlers

and data)

DMA Unit

CPU

MEM

R/W

upload

handlers

manage

memory

arriving

packets

Figure 1: sPIN Architecture Overview

sPIN’s philosophy is to expose the highly-specialized packet pro-
cessors in modern NICs to process short user-defined functions.
By “short”, we mean not more than a few hundred instructions
from a very simple instruction set. In this sense, handlers are es-
sentially pluggable components of the NIC firmware. sPIN offers
unprecedented opportunities to accelerate network protocols and
simple packet processing functions and it can be implemented in
discrete NICs, SoCs, or even in parts of CPU cores. Offering pro-
grammable network devices liberates the programmer from restricted
firmware functionalities and custom accelerators and is the next step
towards full software-defined networking infrastructures. The fol-
lowing C code demonstrates how to define handler functions in a
user-application:

__handler int header_handler(const ptl_header_t h, void

*state) {

/ * header h a n d l e r code * / }

__handler int payload_handler(const ptl_payload_t p, void

*state) {

/ * p a c k e t c o n t e n t h a n d l e r code * / }

__handler int completion_handler(int dropped_bytes, bool

flow_control_triggered, void *state) {

/ * pos t −message h a n d l e r code * / }

channel_id_t connect(peer, / * . . . * /, &header_handler,

&payload_handler, &completion_handler);

The function decoration __handler indicates that this function must
be compiled for the sPIN device. Handler code is passed at connec-
tion establishment. This allows a single process to install different
handlers for different connections. Arguments are the packet data
and *state, which references local memory that is shared among
handlers.

As a principled approach to network offloading, sPIN has the po-
tential to replace specific offload solutions such as ConnectX CORE-
Direct collective offload [10], Cray Aries [2], IBM PERCS [11],
or Portals 4 [12] triggered operations. Instead, the community can
focus on developing domain or application-specific sPIN libraries to

accelerate networking, very much like NVIDIA’s cuBLAS or Vien-
naCL [13]. A vendor-independent interface would enable a strong
collaborative open-source environment similar to the Message Pass-
ing Interface (MPI) while vendors can still distinguish themselves
by the design of NICs (e.g., specialized architectures for packet
processing such as massive multithreading in Intel’s Network Flow
Processor).

Specifically, in this paper, we

• present the design of an acceleration system for NIC offload;
• outline a microarchitecture for offload-enabled smart NICs;
• design a cycle-accurate validated simulation environment inte-

grating network, offload-enabled NICs, and CPUs;
• outline and analyze use cases for parallel applications as well

as for distributed data management systems;
• and demonstrate speedups for various real applications.

1.1 Background

We now provide a brief overview of related technologies. At first
glance, sPIN may seem similar to active messages (AM) [14]—it
certainly shares many potential use cases. Yet, it is very different
because it specifies an architecture for fast and tightly integrated NIC
packet processing. Both, AM and sPIN are independent of process
scheduling at the host OS and can be defined independently of the
target hardware. The major difference is that AMs are invoked on
full messages while sPIN is defined in a streaming manner on a
per-packet basis. Early AM systems that constrained the message
size may be considered as special cases of sPIN. Yet, sPIN enables
to pipeline packet processing, similarly to wormhole routing while
AM would correspond to store and forward routing. Furthermore,
AMs use host memory for buffering messages while sPIN stores
packets in fast buffer memory on the NIC close to the processing
units for fastest access; accesses to host memory are possible but
should be minimized. A last semantic difference is that in AM, a
message can be considered atomic because a handler is invoked after
the message is delivered while in sPIN handlers are invoked on parts
of a message and only those parts (i.e., packets) can be processed
atomically.

sPIN is in fact closer to packet processing systems than to AM.
Fast packet processing hardware has been designed in the Intel IXP
family of chips and continued in the Netronome NFP series (cf. [15]).
Recent progress in software defined networking (SDN) enables users
to program switches with simple parse-match-action rules that allow
simple packet processing and routing in the network. P4 [16] is a
language to express such rules concisely and it supports fast packet
parsing in hardware. Another related proposal is FlexNIC [4], which
builds on the SDN/P4 ideas and extends routing to the DMA engine
in the NIC. Yet, in the HPC context, this routing is comparable
to what current HPC network interfaces such as Portals 4 already
support in hardware (receiver-side steering). sPIN goes far beyond
these to exploit processing of packets on specialized units in fast
local memories.

2 PROCESSING IN THE NETWORK

sPIN’s central philosophy, which is independent of any particular
implementation, is based on the fact that network devices split mes-
sages into packets for transmission (messages correspond to network

sPIN: High-performance streaming Processing in the Network SC17, November 12–17, 2017, Denver, CO, USA

transactions). Packets are easier to manage because they can be
buffered and forwarded independently. We adopt this philosophy
for sPIN to enable a direct implementation in a network device. In
sPIN, the programmer defines handler functions that execute on a
set of packets that logically form a message. Those functions are
executed on one or multiple handler processing units (HPUs). A
simple runtime system is responsible for controlling the handlers
and scheduling them for execution on HPUs. Each handler owns
shared memory that is persistent across the lifetime of a message,
i.e., handlers can use that memory to communicate.

Multi-packet Message

Header Packet 1 Packet 2 Packet 3 Packet 4 Packet 5

…
Packet N

Header

Handler

C/C++

Payload

Handler

C/C++

Payload

Handler

C/C++

Payload

Handler

C/C++

Payload

Handler

C/C++

Payload

Handler

C/C++ … Payload

Handler

C/C++

Completion

Handler

C/C++

Figure 2: sPIN Message Handler Overview

Figure 2 shows how the handlers relate to parts of the message.
Network layers enforce that all necessary information to identify
a message and steer it into memory is included in the first packet
that we call header packet. Many communication systems, such as
Ethernet, replicate this header information in each packet (black
boxes). To enable fast channel-based systems, sPIN does not rely
on replicated header information but delegates to the NIC-based
runtime system to identify the set of packets that belongs to the
same message. sPIN defines three handler types to be invoked on
different parts of a message: the header handler works on header
information, the payload handler processes the message payload
after the header handler completes, and the completion handler
executes after all instances of a payload handler have completed.
There is no requirement that packets arrive or are processed in order.

HPU memory is managed by the host operating system and the
user-level application using a typical control-/data-plane separation.
Performance-critical parts such as invoking handlers are performed
without OS involvement while other parts, such as isolation, setting
up protection domains, and memory management on the device can
be performed through the host OS. The host compiles and offloads
handler code to the HPU, similar to how GPU kernels work. Handlers
only contain a few hundred instructions and their code can thus be
placed into fast memory for quick execution. The system can reject
handler code that is too large. The application on the CPU allocates
and initializes HPU memory at handler-installation time. Handlers
can communicate through shared memory but they cannot perform
any memory management and their local memory only offers linear
(physical) addressing.

Handlers are programmed by the user as standard C/C++ code
to enable portable execution and convenient programming. They
can only contain plain code, no system calls or complex libraries.
Handlers are then compiled to the specific target network ISA. The
program can contain static segments of pre-initialized data. Handlers
are not limited in their execution time, yet, resources are accounted
for on a per-application basis. This means that if handlers consume
too much time, they may stall the NIC or drop packets. Thus, pro-
grammers should ensure that handlers can operate at line-rate on the
target device. It is key that handlers can be started at very low cost
for each packet; we assume that execution can start within a cycle
after a packet arrived in the buffer (assuming a HPU is available).

Furthermore, to guarantee high message rate, handlers need to be set
up quickly from the host and parameters must be passed with low
overhead. Handlers execute in a sandbox with respect to application
memory, i.e., they may only access a restricted memory range in the
application’s virtual address space.

Handlers can perform various actions besides executing normal C
code. Ideally, these actions are implemented as hardware instructions.
At the start of a handler, the packet is available in a fast buffer (ide-
ally single-cycle access). Handlers have access to host memory via
DMA. This enables the runtime system to deschedule handlers from
massively-threaded HPUs while they are waiting for host memory.
Handlers do not block and can voluntarily yield to another handler.
Yet, it is a central part of the programming philosophy that DMA
should be used scarcely, as it is expensive and its performance is
non-deterministic. Handlers can generate two types of messages:
(1) messages originating from HPU memory and (2) messages orig-
inating from host memory. Messages issued from HPU memory
can only contain a single packet and are thus limited to the MTU.
Messages issued from HPU memory may block the HPU thread
until the message is delivered (i.e., the NIC may use HPU memory
as outgoing buffer space). Messages issued from host memory shall
enter the normal send queue as if they were initiated from the host
itself. Messages from host memory shall be nonblocking.

3 A COMPLETE sPIN INTERFACE

sPIN can be added to any RDMA network. As an example to demon-
strate all sPIN features, we use the Portals 4 network interface
because it offers advanced receiver-side steering (matching), OS
bypass, protection, and NIC resource management. It has been im-
plemented in hardware and demonstrated to deliver line-rate interac-
tions with the host CPU [17]. Furthermore, its specification is openly
available; we briefly summarize the key aspects in the following.

3.1 Overview of Portals 4

Portals 4 specifies logical and physical addressing modes and offers
matched or unmatched operation for logical network interfaces that
are bound to physical network resources. Logical addressing can
be used by runtime systems to offer a NIC accelerated virtualized
process space. A matched interface allows the user to specify match
bits to direct incoming messages to different logical lists identified
by tags (potentially with a mask) in a single match list. Each logical
queue head specifies a steering action for incoming packets. Without
loss of generality, we focus on logically addressed and matched mode
as this combination provides the highest level of abstraction [3].

Portals 4 offers put, get, and atomic communication operations.
Completion notification occurs through counting events or append-
ing a full event to an event queue, which is also used for error notifi-
cation. Memory descriptors (MDs) form an abstraction of memory
to be sent; counters and event queues are attached to it. Matching en-
tries (MEs) identify receive memory; matching is performed through
a 64-bit masked id; MEs have counters and event queues associated
with them. Portals 4 offers full memory access protection through
MDs and MEs.

Portals 4 offers two mechanisms that go beyond simple message
steering and that allow implementation of a limited Network Instruc-
tion Set Architecture (NISA) [12, 18]. First, it enables communica-
tions that have been previously set up to be triggered by counters

SC17, November 12–17, 2017, Denver, CO, USA T. Hoefler et al.

reaching a certain threshold. Second, Portals 4 MEs can have lo-
cally managed offsets where incoming data is efficiently packed into
buffers using a local index. Both mechanisms are limited because
only incoming messages can trigger and steer operations, not the
data in those messages. These actions also cannot process pack-
ets (local atomics can be used to emulate very limited processing
capabilities [18]). sPIN integrates with and extends Portals 4 to of-
fer more powerful message steering, protocol implementation, and
packet processing functionalities.

3.2 A sPIN Interface for Portals 4

Based on the general semantics for sPIN systems, we now derive
a candidate Portals 4 (P4) interface called P4sPIN. We only pro-
vide an overview of the functions in the main part of the paper and
refer to the appendix for signatures and a detailed description. All
packet handlers are associated with a specific matching entry (ME)
to which incoming messages are matched. MEs are posted using
PtlMEAppend (cf. Appendix B.1). We extend this call to enable
registering handlers with additional arguments to identify the three
handlers, the shared memory setup, the initial memory state to ini-
tialize the shared memory, and the handler’s memory region at the
host (if needed).

The ME requires a handle that identifies an HPU shared memory
space to run the handler in. HPU memory is allocated using the
PtlHPUAllocMem function (see Appendix B.2) at the host (before
handler installation). This explicit management allows the user to re-
use the same HPU memory for multiple MEs. HPU memory remains
valid until it is deallocated. If multiple incoming messages match
MEs that specify the same HPU memory then the handlers should
perform concurrency control.

If an incoming packet arrives and matches an ME but no HPU
execution contexts are available, the NIC may trigger flow control
for the respective portal table entry. This is symmetric to the situation
where the host runs out of compute resources and fails to post new
MEs to the NIC. In a flow control situation, packets arriving at a
specific portal table entry are dropped until the entry is re-enabled.
Note that this can happen during the processing of a message. In this
case, the completion handler is invoked and notified through the flag
flow_control_triggered.

3.2.1 Header Handler. The header handler is called exactly
once per message and no other handler for this message is started
before the header handler completes. It has access to only the header
fields that can include user-defined headers (the first bytes of the
payload). User-defined headers are declared statically in a struct to
enable fast parsing in hardware. Yet, the struct offers flexibility as
it guarantees no specific memory layout. For example, pre-defined
headers could be in special registers while user-defined headers can
reside in HPU memory. The struct is static such that it can only be
used on the right-hand side of expressions. This makes it possible to
implement using registers.

3.2.2 Payload Handler. The payload handler is called after
the header handler completes for packets carrying a payload. The
passed payload does not include the part of the user-header that was
specified by user_hdr.

Multiple instances of the payload handler can be executed in par-
allel and the programmer must account for concurrent execution.
Payload handlers share all HPU memory coherently. The illusion of
private memory can be created by the programmer, yet no protection
exists. To create private memory, the system offers a compile-time
constant PTL_NUM_HPUS that contains the number of handle exe-
cution units. Note that each unit may be used to process multiple
payload handlers serially but only PTL_NUM_HPUS handlers can be
active simultaneously at any given time. Furthermore, a runtime con-
stant PTL_MY_HPU allows a running handler to determine on which
HPU it is running. Handlers may not migrate between HPUs while
they are running. These two constants allow the user to allocate ar-
rays of size PTL_NUM_HPUS and index into them using PTL_MY_HPU
to emulate HPU-private data.

3.2.3 Completion Handler. The completion handler is called
once per message after all header handlers and payload handlers have
completed but before the completion event is delivered to the host.
The handler can be used for final data collection or cleanup tasks
after the message has been processed. The value in dropped_bytes
indicates how many bytes of payload data have been dropped by
payload handlers. Bytes can either be dropped by payload handlers
returning a variant of DROP or if a flow-control situation occurs.
The flag flow_control_triggered indicates that flow control
was triggered during the processing of this message and thus some
packets may have been dropped without being processed by payload
handlers. The pointer state points at the initial data in HPU memory.
This data may have been initialized by the host or header handler.

All handlers can perform various actions as described before. The
detailed interfaces for all calls are specified in Appendix B.6.

4 PROTOTYPING sPIN

We now describe two prototype implementations of sPIN as an NISA.
The first architecture represents a discrete network card (“dis”) that
is attached to the CPU via a chip-to-chip interconnect such as PCI
express (PCIe). The second architecture represents an integrated

network card (“int”) that is on the same chip as the CPU cores
and attached via a fast signaling protocol such as the Advanced
eXtensible Interface (AXI).

4.1 HPU Design

The HPU architecture is an integral part of the sPIN design. We
briefly describe some design, optimization, and customization ideas
without proposing any particular architecture. We assume that most
of today’s NIC architectures can be re-used. sPIN can be conceptu-
alized ass being equivalent to installing custom mini-firmware for
each application on the NIC.

The header processing unit (HPU) should have fastest (ideally
single-cycle) access to local memory and packet buffers. To achieve
this, it could be connected to packet buffers directly. HPU memory
is not cached. Most HPU instructions should be executed in a single
cycle and the documentation should be explicit about instruction
costs. Handlers should be invoked immediately after a packet arrives
or the previous handler completes. Handlers require no initialization,
loading, or other boot activities because all their context is pre-
loaded and memory is pre-initialized. HPUs can be implemented
using massive multithreading to utilize the execution units most

sPIN: High-performance streaming Processing in the Network SC17, November 12–17, 2017, Denver, CO, USA

efficiently. For example, if handler threads wait for DMA accesses,
they could be descheduled to make room for different threads. Only
the context would need to be stored, similarly to GPU architectures.

Handler execution will delay each message that is processed.
This requires enough HPU cores to process at full bandwidth and
additional memory. The required memory overhead can be computed
using Little’s law. If we assume a handler executes between 10 and
500 instructions at 2.5GHz and IPC=1, we expect a maximum delay
of 200ns per packet. With 1Tb/s, we can calculate the overhead
as 1 Tb/s · 200ns = 25 kB. We expect that this can easily be made
available and more space can be added to hide more latency, probably
up to several microseconds.

sPIN can be implemented in multiple different environments.
On a discrete NIC, one can take advantage of the existing packet
processing infrastructure and buffer space. sPIN can also be added to
an SoC to steer messages to the correct cores for processing. At the
other extreme, sPIN can be implemented in a core with an integrated
NIC as a small layer between the transceiver and the core. It could
even use the pipeline of a super-scalar core with tagged instructions.

4.2 Simulation Setup

To evaluate sPIN at scale, we combine two open-source simula-
tors that have been vetted extensively by the research community:
LogGOPSim [19] to simulate the network of parallel distributed
memory applications and gem5 [20] to simulate various CPU and
HPU configurations. LogGOPSim supports the simulation of MPI
applications, injection of system noise [21, 22], and has been cali-
brated and validated on InfiniBand clusters [19]. The cycle-accurate
gem5 simulator supports a large number of different CPU configura-
tions and is thus an ideal choice for our designs.

In our setup, LogGOPSim is driving the simulation by running a
trace-based discrete-event loop. Traced events are all Portals 4 and
MPI functions as well as the invocation of handlers. LogGOPSim
invokes gem5 for each handler execution and measures the execu-
tion time. The two simulators communicate via a special memory-
mapped region in gem5 through which an executing handler can
issue simcalls from gem5 to LogGOPSim. Simcalls enable simulated
applications in gem5 to invoke functionality in LogGOPSim, for
example, to insert new messages into the discrete-event queue. Over-
all, this combination of trace-based network simulation and cycle-
accurate execution-based CPU simulation enables high-accuracy
and efficient modeling of the complete sPIN system.

We parametrize for a future InfiniBand system using the LogP
model extended with a packet-level simulation to model the L (La-
tency) parameter more accurately. The injection overhead is not
parallelizable, thus, we use o = 65ns (injection overhead), which
we measured on a modern InfiniBand system. Similarly, we expect
the message rate to stay approximately similar, around 150 Million
messages per second for Mellanox ConnectX-4 [23] and thus set
д = 6.7ns (inter-message gap). As bandwidth, we expect networks to
deliver 400 Gib/s around the deployment time of sPIN and thus set
G = 2.5ps (inter-Byte gap). The latency is determined by a model
for a packet-switched network where we assume a switch traversal
time of 50ns (as measured on modern switches) and a wire length of
10m (delay of 33.4ns). We construct a fat tree network from 36-port

switches. The model is simulated using the LogGOPSim MPI simu-
lator that has been shown to be within 10% accuracy when compared
with real runs [21].

We model each NIC to have four 2.5GHz ARM Cortex A15 out-
of-order HPU cores using the ARMv8-A 32-bit ISA. We configure
the cores without cache and with gem5’s SimpleMemory module
configured as scratchpad memory that can be accessed in k cycles
(we use k = 1 in the paper). Endo et al. [24] demonstrated that the av-
erage absolute error of a comparable ARM Cortex A15 was only 7%
when compared to real hardware. Messages are matched in hardware
and only header packets search the full matching queue. A matched
header packet will install a channel into a fast content-addressable
memory (CAM) for the remaining packets. We assume that match-
ing a header packet takes 30 ns (cf. [25]) and each following packet
takes 2ns for the CAM lookup. We assume that matching and the
network gap (д) can proceed in parallel.

We model the host CPU as eight 2.5Ghz Intel Haswell cores with
8 MiB cache and a DRAM latency and bandwidth of 51 ns and 150
GiB/s, respectively. A similar configuration has been analyzed by
Akram et al. [26].

4.3 DMA and Memory Contention

HPU accesses to host memory are performed via DMA. We ex-
tended the simulator by adding support to model contention for host
memory. This contention either happens through the north-bridge
via PCIe (discrete NIC) or through the memory controller of the
CPU (integrated NIC). We model DMA at each host as a simple
LogGP system [27, 28]. We set o = 0 and д = 0 because these times
are already captured by the cycle-accurate gem5 simulation when
initiating the request. We set L and G depending on the discrete or
integrated HPU configuration as follows.

The discrete NIC is connected through an off-chip interconnect
such as PCI express. We use 32-lane PCI express version 4 as a
candidate system with a latency of L = 250ns, and G = 15.6ps

(64 GiB/s). The integrated NIC is connected directly to the chip’s
memory controller, which allows a much lower latency of L = 50ns

and the same bandwidth as the main CPU G = 6.7ps (150 GiB/s).
The DMA time is added to the message transmission when the

NIC delivers data into host memory (e.g., for every message in
RDMA and Portals 4), for HPU calls PutFromHost, and when the
HPU invokes DMA routines to main memory.

4.4 Microbenchmarks

We first demonstrate the parameters of sPIN with a set of microbench-
marks before we show a series of use cases for real-world applica-
tions.

4.4.1 Ping-Pong Latency. We compare our two sPIN systems
with standard RDMA as well as Portals 4 with a simple ping-pong
benchmark. This illustrates the basic capabilities of processing mes-
sages on the NIC. For RDMA and Portals 4, all messages need to be
stored to and loaded from main memory. sPIN can avoid this mem-
ory traffic and reply directly from the NIC buffer, leading to a lower
latency and less memory traffic at the host. Figure 3a illustrates the
following explanations of time spent on the CPU, the host memory,
the NIC, and its memory when executing ping-pong. All variants

SC17, November 12–17, 2017, Denver, CO, USA T. Hoefler et al.

CPU

Memory

NIC/HPU

Memory

Network

Memory

NIC/HPU

Memory

CPU

RDMA

o

L

L

om

Portals 4

o

DMA

m

L

DMA

L

sPIN (store)
≤1 packet

o

m

L L

sPIN (store)
(>1 packet)

o

m

L

DMA

L

sPIN (stream)
(>1 packet)

o

m

L
L

DMA DMA DMA DMA DMA

(a) Schematic Ping Pong (thick lines show multi-packet

messages, DMA transactions at source omitted for clarity)

1

2

4

8

2
2

2
4

2
6

2
8

2
10

2
12

2
14

2
16

2
18

Number of Transferred Bytes

H
a
lf
 R

o
u
n
d
 T

ri
p
 T

im
e
 (
u
s
)

0.65

0.70

0.75

0.80

2
3

2
4

2
5

2
6

2
7

2
8

2
9

2
10

RDMA

P4

sPIN (both)

sPIN (store)/RDMA/P4

sPIN (stream)

(b) Ping Pong (integrated NIC)

1

2

4

8

2
2

2
4

2
6

2
8

2
10

2
12

2
14

2
16

2
18

Number of Transferred Bytes

H
a
lf
 R

o
u
n
d
 T

ri
p
 T

im
e
 (
u
s
)

1.0

1.2

1.4

1.6

2
3

2
4

2
5

2
6

2
7

2
8

2
9

2
10

RDMA

P4

sPIN (store)/RDMA/P4

sPIN (store)

sPIN (both)

sPIN (stream)

(c) Ping Pong (discrete NIC)

1

4

16

2
3

2
4

2
5

2
6

2
7

2
8

2
9
2

10
2

11
2

12
2

13
2

14
2

15
2

16
2

17
2

18

Number of Transferred Bytes

C
o
m

p
le

ti
o
n
 T

im
e
 (
u
s
)

0.50

0.75

1.00

1.25

2
3

2
4

2
5

2
6

2
7

2
8

2
9

2
10

RDMA/P4 (dis)

sPIN (int)

RDMA/P4 (dis)

sPIN (dis)

RDMA/P4

RDMA/P4 (int)

sPIN (int)

int

sPIN (dis)

(d) Accumulate (both types)

Figure 3: Ping pong and remote accumulate comparing RDMA, Portals 4, and various sPIN implementations

start a transmission from the main CPU and the message travels for
time L through the network.

For RDMA, the pong message is sent by the main CPU. Thus,
the destination CPU polls for a completion entry of the incoming
ping message, performs message matching, and immediately posts
the pong message. The completion will only appear after the whole
message has been deposited into host memory. Processing occurs on
the CPU, therefore, system noise may delay the operation.

For Portals 4, the pong message is pre-set up by the destination
CPU and the reply is automatically triggered after the incoming
message has been deposited into host memory. Thus, system noise
on the main CPU will not influence the pong message. Even though
the message itself is automatically triggered, the data is fetched via
DMA from the CPU’s main memory as in the RDMA case.

In sPIN ping-pong, the ping message may invoke header, payload,
and/or completion handlers. sPIN gives us multiple options for gen-
erating the pong message: (1) (store) the ping message consists of a
single packet and a pong can be issued with a put from device, (2)
(store) the ping message is larger than a packet and the pong mes-
sage is issued with put from host using the completion handler after
the packet is delivered to host memory, and (3) (stream) a payload
handler could generate a pong put from device for each incoming
packet. Here the NIC would act as a packet processor and split a
multi-packet message into many single-packet messages. The first
two correspond to store and forward processing for different message
sizes while the last corresponds to fully streaming operation.

The performance of ping-pong for all configurations is shown
for integrated sPIN implementations in Figure 3b and for discrete
implementations in Figure 3c. The latency difference is more pro-
nounced in the discrete setting due to the higher DMA latency. Large
messages benefit in both settings from the streaming approach where
data is never committed to the host memory. The full handler code
is shown in Appendix C.3.1.

4.4.2 sPIN Accumulate. In the second microbenchmark we
evaluate sPIN’s interaction with local memory at the destination.
For this, we choose a simple accumulate benchmark where we send
an array of double complex numbers to be multiplied to an array
of numbers of the same type at the destination. The multiplication
is either performed on the CPU or by the NIC/HPU. This example
represents an operation that is not typically supported as a NIC
atomic in RDMA or Portals 4 NICs. Yet, it can easily be implemented

using sPIN. If the operation was supported by the NIC directly, then
the performance would be similar to sPIN.

In an RDMA implementation, the data would be delivered into
a temporary buffer that is read by the CPU and then accumulated
into the destination buffer. Here, the NIC writes the array to host
memory, notifies the CPU, which then reads two arrays from host
memory and writes the result back. So if the data is of size N , we
have two N -sized read and two N -sized write transactions.

In sPIN, the packets will arrive and be scheduled to different
HPUs. Each HPU will fetch the data from host memory, apply the
operation, and write it back. For an array of size N , we only read
N bytes and write N bytes. Thus, sPIN halves the memory load
compared to RDMA and P4. However, because the data has to
be moved twice through the bus from the host memory, the bus
latency may slow-down processing of small messages. Many NICs
employ caching of atomic operations to hide the DMA latency [2] by
relaxing the memory coherence—sPIN can use similar techniques
but we decided to show a coherent system with the latency overhead.

Figure 3d shows the accumulate results. As expected, the latency
for small accumulates is higher for sPIN than for RDMA because the
data has to be first fetched via DMA to the HPU. This is especially
pronounced for the discrete NIC configuration where we see the
250ns DMA latency. However, due to sPIN’s streaming parallelism
and the resulting pipelining of DMA requests, processing large
accumulates gets significantly faster for larger messages. The full
handler code is shown in Appendix C.3.2.

How many HPUs are needed? We use this example to discuss
one of the most important design choices of a sPIN NIC: the number
of HPU cores. Each packet is processed by an HPU and multiple
packets belonging the same or different messages may be processed
in parallel. Now we can discuss the number of needed HPUs in order
to guarantee line-rate execution. This can be modeled by Little’s
law. If we assume an average execution time per packet of T and an
expected arrival rate of ∆, then we need T · ∆ HPUs in the system.
With a fixed bandwidth (1/G), the arrival rate only depends on the
packet size s and the gap д such that ∆ = min{1/д, 1/(G · s)}. For
our parameters, this means 12.5Mmps ≤ ∆ ≤ 150Mmps (Mmps =
million messages per second). Figure 4 shows how many HPUs are
needed to guarantee line rate for different packet sizes and processing
times. With our design of 8 HPUs, we can support any packet size
if the handler takes less than T̂s = 53ns. From д/G = 335B, the link
bandwidth becomes the bottleneck and we can support full line rate

sPIN: High-performance streaming Processing in the Network SC17, November 12–17, 2017, Denver, CO, USA

0

10

20

30

0 1000 2000 3000 4000

Expected packet size (Bytes)

H
P

U
s
 n

e
e
d
e
d

g-bound G-bound

100ns
200ns 500ns 1.000ns,

335

Figure 4: HPUs needed depending on T and s.

as long as the handler executes in less than T̂l (s) = 8Gs. For full
4KiB packets, T̂l (4, 096) = 650ns.

4.4.3 sPIN Offloaded Broadcast. For the last microbench-
mark, we demonstrate the design of distributed algorithms in sPIN
using a broadcast operation. We implement a binomial tree algo-
rithm, which would require logarithmic space on a Portals 4 NIC
and would thus be limited in scalability. In sPIN, the algorithm is not
limited in scalability while it will occupy one HPU for its execution.

We implemented the broadcast operation in RDMA on the CPU,
in Portals 4 as predefined triggered operations, and with sPIN using
store-and-forward as well as streaming HPU kernels. As for ping-
pong, the store-and-forward mode sends messages that are smaller
than a packet directly from the device and from host memory other-
wise. Thus, the performance is always within 5% of the streaming
mode for single-packet messages and to Portals 4 for multi-packet
messages. Thus, we omit the store-and-forward mode from the plots.

Figure 5a shows the small message (8 B) and large-message (64
KiB) case for varying numbers of processes and the different imple-
mentations. We observe the benefit of direct forwarding for small
messages as well as streaming forwarding for large messages. We
only show data for the discrete NIC configuration to maintain read-
ability. The integrated NIC has slightly lower differences but sPIN is
still 7% and 5% faster than RDMA and Portals 4 at 1,024 processes,
respectively. The full handler code is shown in Appendix C.3.3.

All benefits known from collective offloading implementa-
tions [10, 12, 29] such as asynchronous progression and noise-
resilience remain true for sPIN. As opposed to existing offloading
frameworks that restrict the collective algorithms (e.g., to pre-defined
trees), sPIN supports arbitrary algorithms (including pipeline and
double-tree [30]) due to the flexible programmability and high for-
warding performance of the HPUs. In fact, the very low overheads
for HPU packet processing suggest new streaming algorithms for
collective operations. We leave a more detailed investigation for
future work.

5 USE CASES FOR sPIN

We now discuss several more complex use cases for sPIN. The
idea is not to present full applications for which our cycle-accurate
simulation environment would be too slow, but to present detailed
simulation results of the critical pieces of real applications.

5.1 Asynchronous Message Matching

High-speed interconnection network attempts to offload as much
work as possible to the NIC. This is simple for remote memory
access (RMA) programming models where the source determines
the destination address and the NIC simply deposits the data into
the correct virtual address (as specified in the packet). However,

this requires some form of distributed agreement on the destination
buffer offset. Message passing simplifies the program logic and al-
lows the target process to determine the local buffer location by
calling recv. This simplification at the programming level compli-
cates the offloading of the matching because the correct destination
address may only be known after the packets of the message ar-
rive. Protocols to implement message passing over RDMA networks
are typically implemented by the CPU [31]. However, progressing
these protocols requires synchronous interaction with the CPU. Thus,
communication/computation overlap for rendezvous as well as non-
blocking collective operations are often hindered [32]. These issues
led to the development of specialized protocol offload engines that
sPIN generalizes to a universal network instruction set architecture
(NISA).

Figure 5b illustrates the matching process for small messages
(left) and large messages (right) as well as the cases where the re-
ceive is posted before the message arrived (top) or after the message
arrived (bottom). The matching mechanism of Portals 4 and sPIN
allows for offloading progression and matching of small message
transmissions. If the receive is posted before the first packet arrives
it installs a matching entry (filled circle) and the NIC will deposit
the data into the correct memory at the target process upon receiv-
ing the message. Otherwise, as shown in case III, the packets will
match a default action (hollow circle) that stores the message into a
predetermined location. When the matching receive is then called
later, the CPU finds the message and copies the data into the receive
buffer and completes immediately. This allows a data copy to be
saved in case I, while RDMA will always perform a copy (similar to
case III).

If the data is too large to be buffered, the process is more complex
because it requires synchronization between the sender and the re-
ceiver. Ideally, this is fully offloaded to the receiver’s NIC (without
the need to synchronize on the receive-side CPU). Barrett et al. [33]
propose a protocol for Portals 4 where the receiver monitors the re-
ceived bytes, and if a message arrives that writes more than the eager
threshold. This message triggers a get to the source that is matched
to the correct pre-set-up memory. Unfortunately, this protocol is not
practical due to the following limitations: (1) it requires triggered
gets to be set up for each of the P − 1 potential sources, requiring
Ω(P) memory per process; (2) it requires additional match-bits to
keep a message counter that is used to identify the correct matching
entry at the source; and (3) it does not support wildcard receives
(e.g., MPI_ANY_SOURCE).

In sPIN, we implement a practical protocol that avoids all three
limitations as illustrated in the right half of Figure 5b. If the receive
was called before the message arrived (case II), it sets up a header
handler and a payload handler for the first message (filled circle at
receiver). The header handler checks whether the message is large
or small (determined by its size) and falls back to the normal Portals
4 handling for small messages. If the message is large, the handler
interprets the first and second user-header as the total message size
and the tag at the source. Then, the header handler uses these two
fields to issue a get operation to the source. This get matches a
descriptor that has been set up during the send (filled circle at source).
The payload handler then deposits the payload of the message at the
beginning of the host’s memory descriptor. If the message arrived

SC17, November 12–17, 2017, Denver, CO, USA T. Hoefler et al.

0

5

10

15

20

4 16 64 256 1024

Number of Processes

L
a

te
n

c
y
 (

u
s
)

RDMA (8B)

P4 (8B)

sPIN (8B)

sPIN (64kiB)

P4 (64 kiB)

RDMA (64 kiB)

(a) Broadcast on a binomial tree (discrete NIC)

CPU NIC CPU NIC CPU NIC CPU NIC

Send() Recv() Send() Recv()

DMA

DMA

DMA

DMA

put put

get

Send()

Recv()

DMA

DMA

put

copy

Send()

Recv()

DMA DMA
put

copy

get

I II

III IV

(b) Matching protocols (left: small messages, right: large messages;

top: recv called before arrival, bottom: after arrival)

program p msgs ovhd spdup

MILC 64 5.7M 5.5% 3.6%
POP 64 772M 3.1% 0.7%
coMD 72 5.3M 6.1% 3.7%
coMD 360 28.1M 6.5% 3.8%
Cloverleaf 72 2.7M 5.2% 2.8%
Cloverleaf 360 15.3M 5.6% 2.4%

(c) Application overview

Figure 5: Broadcast and message matching protocols implemented using sPIN

before receive was called (case III) then the handler logic is executed
by the main CPU.

The main benefits of sPIN compared to RDMA are one less copy
in the small-message case and completely asynchronous progress in
the large-message case. We simulate the influence of fully-offloaded
execution using LogGOPSim. The overhead of the local copy can be
significant because the network deposits data at a rate of 50 GiB/s,
while the local memory only delivers 150 GiB/s. This can lead to
a copy overhead of up to 30%. We only considered point-to-point
operations for implementation because collective communication
may use specialized protocols. We simulated traces for several real-
world and proxy applications. Due to simulation overheads, we only
execute relatively short runs between 20 and 600 seconds. Yet, we
measure full application execution time including initialization and
output (from MPI_Init to MPI_Finalize). Thus, we expect
that the speedups for longer runs are higher. We discuss the results
below and summarize them in Table 5c.

MILC. The MIMD Lattice Computation (su3_rmd) is used to
study Quantum Chromodynamics (QCD), the theory of the strong
interaction [34] as a finite regular hypercubic grid of points in four
dimensions with mostly neighbor interactions. We traced MILC on
64 processes where it spent 5.5% of execution time in point-to-point
communications. In the simulation, MILC exchanged 5,743,212 mes-
sages and generated a total of 48M events. Fully offloaded matching
protocols improved the overall execution time by 3.6%.

POP. The Parallel Ocean Program [35] (POP) models general
ocean circulation and is used in several climate modeling applica-
tions. The logically (mostly) rectangular problem domain is decom-
posed into two-dimensional blocks with nearest-neighbor communi-
cations and global exchanges. We traced POP on 64 processes where
it spent 3.1% of execution time in point-to-point communications.
In the simulation, POP exchanged 772,063,149 messages and gen-
erated a total of 1.5B events. Fully offloaded matching protocols
improved the overall execution time by 0.7%.

coMD. The codesign app for molecular dynamics is part of the
Mantevo proxy application suite [36]. It features the Lennard-Jones
potential and the Embedded Atom Method potential. We traced
coMD on 72 processes where it spent 6.1% of execution time in
point-to-point communications. In the simulation, coMD exchanged

5,337,575 messages and generated a total of 22M events. Fully
offloaded matching protocols improved the execution time by 3.7%.

Cloverleaf. Cloverleaf is also part of the Mantevo proxy applica-
tions [36] and implements a two-dimensional Eulerian formulation
to investigate materials under stress. We traced Cloverleaf on 72
processes where it spent 5.2% of execution time in point-to-point
communications. In the simulation, Cloverleaf exchanged 2,677,705
messages and generated a total of 12M events. Fully offloaded match-
ing protocols improved the overall execution time by 2.8%.

We remark that offloading message matching and asynchronous
transmissions is not limited to MPI. For example, Kim et al. [37]
propose an asynchronous task offloading model that could also be
implemented with sPIN.

5.2 MPI Datatypes

Communicated data is often not consecutive in host memory. For
example, in a simple three-dimensional stencil code, only two of
the six communicated halos are consecutive in host memory. Most
applications use process-local copying of the data to marshal it into
a consecutive buffer for sending and from a consecutive buffer for
receiving. As Schneider et al. [38] point out, this is often not con-
sidered as part of the communication overhead even though it is in
practicality, a part of the communication. Furthermore, they showed
that the data marshaling time can be up to 80% of the communica-
tion time for real-world applications because it is performed at both
the send and receive side.

Data marshaling can be implemented in sPIN without the extra
memory copy, potentially reducing the communication overhead
by 80%. A datatype processing library could implement this trans-
parently to the MPI user and upload a handler for each message.
The HPUs would compute the correct offsets on the NIC and DMA
the data into the final location. Here, sPIN not only improves the
performance of the communication but also relieves the memory
subsystem of the host.

Without loss of generality, we focus on the most common strided
access that can be represented with MPI vector datatypes. Most
of today’s networking interfaces (e.g., Portals 4 or OFED) support
iovecs to specify nonconsecutive accesses. However, they require
O (n) storage to specify n blocks to be copied, even for strided access.
With vector datatypes, strided access can be expressed as an O (1)

sPIN: High-performance streaming Processing in the Network SC17, November 12–17, 2017, Denver, CO, USA

tuple of ⟨start, stride, blocksize, count⟩, where count blocks of size
blocksize are copied beginning from address start.

1… …

HPU 1 - Packet 2

Main memory

NIC

1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8

…
HPU 2 - Packet 1 HPU 3 - Packet 3

1 2 33 4 5 6 6 7 8

DMA

Figure 6: Processing vector datatypes in payload handlers

Figure 6 illustrates how the payload handlers copy the data into
the correct positions for a strided layout. The figure shows three
packets of a stream that are deposited as a strided type into main
memory. The user only specifies the tuple ⟨start, stride=2.5 KiB,

blocksize=1.5 KiB, count=8⟩ and the MTU is 4 KiB (the illustration
omits headers for clarity). The packets can be processed by the
payload handlers in any order or in parallel because each packet
carries its offset in the message and the payload handlers computes
the correct offset in the block. Arrows represent DMA writes and
their width indicates the size of the transaction. The full code is
shown in Appendix C.3.4.

To demonstrate the performance of sPIN in practice, we simulate
an execution of datatype processing (unpack) at the destination. For
this, we choose a fixed message size of 4 MiB and vary the blocksize.
We keep the strides fixed at twice the blocksize. Figure 7a shows
the results. The DMA overhead for small transfers dominates up
to block size 256, then sPIN is able to deposit the data nearly at
line-rate (50 GiB/s) while RDMA remains at a bandwidth around
8.7 GiB/s due to the additional strided copies.

5.3 Distributed RAID Storage

After demonstrating sPIN’s benefits for parallel applications, we
now show that it can also benefit system software on large-scale
compute systems. For example, filesystems often use replication
at the object storage layer involving multiple nodes to improve
reliability of the data [39]. We assume that the inode-to-block lookup
has been performed by the client that addresses the correct blocks
at the storage server. Blocks are accessed through the network and
if a block is updated, the parity block on another server needs to be
updated as well. The computation is simple: p′ = p ⊕ n′ ⊕ n where
p and p′ are the old and new parity blocks and n and n′ are the old
and new data blocks, respectively.

Filesystem nodes are often accessed through RDMA (e.g., object
data servers in Lustre). Since replication is totally transparent to
the client, RDMA cannot be used directly because it would reply
before the parity node is updated. Thus, such systems implement a
more complex protocol using the target’s CPU as shown in the left
part of Figure 7b. With sPIN, the server NIC can issue requests to
update the parity without involving the servers CPU. Furthermore,
the parity node’s NIC can apply the update in host memory. This
can easily be used to implement a traditional disk-backed storage
server or a distributed memory system similar to ramcloud [40]. In
both cases, sPIN offloads most of the storage protocol to the NIC.

We show a simple latency/bandwidth benchmark comparing in-
memory storage using four data nodes and one parity node in a
RAID-5 configuration. For this test, we update contiguous memory
of growing size strided across the four data nodes and measure the

time until all ACKs are received (after updating the parity node).
Figure 7c shows the performance comparing RDMA and sPIN. The
results demonstrate the comparable performance for small mes-
sages and the significantly higher bandwidth of sPIN for large block
transfers, the common case for parallel filesystems. To demonstrate
sPIN’s influence on real-world workloads, we simulate five traces
obtained from the Storage Performance Council [41]. The first two
traces represent OLTP applications running at a large financial in-
stitution. The remaining three are I/O traces from a popular search
engine. sPIN improves the processing time of all traces between
2.8% and 43.7%. The integrated sPIN NIC with financial traces
showed the largest speedup. The full handler code is shown in Ap-
pendix C.3.5.

5.4 Other Use Cases

We have demonstrated all key features of sPIN in the previous sec-
tions. However, many applications, tools, and system services can
benefit from sPIN. Here, we outline other use cases for which we
have to omit a detailed analysis due to space restrictions.

Distributed Key-Value Stores. Distributed key-value stores pro-
vide a storage infrastructure where data is identified by keys that
simplify the application’s storage interface [42]. They can be com-
pared to large distributed two-level hash-tables. The first level de-
termines the target node and the second level determines a lo-
cation at that node. Let (k,v) represent a key-value pair with
k ∈ K and v ∈ V . We assume that there exist two hash func-
tions H1 (x) : K 7→ {0..P − 1} and H2 (x) : K 7→ {0..N − 1} where P
and N are the number of nodes and hashtable-size per node, respec-
tively. We assume H1 and H2 are reasonably balanced with respect
to the expected key distribution but not generally free of conflicts.
Various high-performance RDMA implementations with varying
complexity exist, ranging from replicated state machines [43] and
HPC storage layers [44] to distributed databases [45, 46].

We now describe how sPIN could be used to offload the insert
function: A client that wants to insert the KV pair (k,v) first com-
putes H1 (k) to determine the target node p. Then, it computes H2 (k)

and crafts a message (H2 (k), len(k),k,v) (where len(k) is the size
of the key in Bytes) to be sent to node p. We use a header handler
to allocate memory to deposit v and link it to the correct position
H2 (k) in the hash table. Depending on the hash table structure (e.g.,
closed or open), the handler may need to walk through a list in host
memory. To not back up the network, the header handler would abort
after a fixed number of steps and deposit the work item to the main
CPU for later processing. Other functions such as get or delete can
be implemented in a similar way.

Conditional Read. Many distributed database problems scan re-
mote tables using simple attributes. For example the statement
SELECT name FROM employees WHERE id = 100 may
cause a full scan of the (distributed) table employees. Reading all
data of this table via RDMA would be a waste of network bandwidth.
Since our current handler definition does not allow interception and
filtering of the data for a get operation, we implement our own
request-reply protocol. The request message contains the filter crite-
rion and a memory range and the reply message contains only the

SC17, November 12–17, 2017, Denver, CO, USA T. Hoefler et al.

128

256

512

1024

2048

2
4

2
5

2
6

2
7

2
8

2
9

2
10

2
11

2
12

2
13

2
14

2
15

2
16

2
17

2
18

Block/Stride Size

C
o
m

p
le

ti
o
n
 T

im
e
 (
u
s
)

RDMA/P4 (int + dis)

11.44 GiB/s

4 MiB transfer with varying blocksize
stride = 2 x blocksize

sPIN (int + dis) 46.3 GiB/s

(a) Strided receive with varying blocksizes

Client CPU MEM NIC CPU MEM NIC

Server Parity node

Client CPU MEM NIC CPU MEM NIC

Server Parity node

write

DMA
old

new

new

diff
DMA

put

DMA
old

diff

new

ACK

ACK

write

old

new
put diff

old

new

ACK
ACK

RDMA sPIN

(b) Distributed RAID using RDMA (left) and sPIN (right)

2

4

8

16

32

64

2
2

2
4

2
6

2
8

2
10

2
12

2
14

2
16

2
18

Number of Transferred Bytes

C
o
m

p
le

ti
o
n
 T

im
e
 (
u
s
)

1.5

2.0

2.5

3.0

2
3

2
4

2
5

2
6

2
7

2
8

2
9

2
10

RDMA/P4 (int)

sPIN (int)

RDMA/P4 (dis)

RDMA/P4 (dis)

sPIN (dis)

RDMA/P4 (int)

sPIN (int)

sPIN (dis)

(c) Update time in a distributed RAID-5 system

Figure 7: Strided datatype and distributed RAID performance comparing RDMA/Portals 4 and sPIN

data that matches. The more complex query offload model described
by Kumar et al. [47] can also be implemented in sPIN.

Distributed Transactions. Distributed transactions require book-
keeping of the addresses that have been accessed during the trans-
action. Complex protocols using memory protection mechanisms
are employed for multi-core CPUs [48]. We can use sPIN to log
remote accesses to local memory. For this, we introspect the header
handlers of all incoming RDMA packets and record the accesses in
main memory. The introspection can be performed at line rate and
transaction management is then performed at commit time on the
host by evaluating the logs.

Simple Graph Kernels. Many graph algorithms have very simple
functions to be invoked for each vertex. For example, a BFS only
checks if the vertex was not visited before and assigns it a number
at the first visit. Shortest path search (SSSP) algorithms update a
vertex’ distance with the minimum of its current distance and the
preceding vertex’ distance plus the weight of the connecting edge.

In distributed settings, node-boundaries can be crossed by the
traversal. Then, messages are sent from the originating vertex to the
destination vertex on the remote node. A message contains the new
distance (i.e., the distance of the source vertex plus the edge weight).
The remote handler then (atomically) checks if the destination vertex
needs to be updated and conditionally performs the update.

This is typically implemented by receiving messages in batches
into buffers and processing them on the main CPU. Yet, this requires
to store and load the message data from and to memory just to discard
it after the update. With sPIN we can define an offloaded handler to
process the updates immediately and save memory bandwidth.

Fault-tolerant Broadcast. There are many different ways to im-
plement a fault-tolerant broadcast. Some rely on failure detectors and
a two-phase broadcast-and-check protocol, where the root restarts
the broadcast with a different tree if nodes have failed [49]. Others
redundantly send messages in a virtual topology such as a binomial
graph [50]. The former rely on failure detectors, which cannot easily
be implemented in the current RDMA or Portals 4 networks. The
latter guarantee reliable delivery for less than log2 P failures and
often outperform the broadcast-and-check protocols in practice.

Usually, these protocols are implemented with the help of the
main CPU to forward messages. This means that all log2 P redundant
messages must be delivered to host memory. We can use sPIN to
accelerate such protocols by only delivering the first message to

the user. This would enable a transparent reliable broadcast service
offered by the network.

6 RELATED WORK

We already discussed the relation of sPIN and active messages
and switch-based packet processing such as P4 in Section 1.1. Pro-
grammable NICs have existed in special-purpose environments. For
example, Quadrics QSNet [51] offered a programming interface that
was used to offload collectives [52] and an early Portals implemen-
tation [53] used a programmable NIC. However, QSNet had to be
programmed at a very low level and was rather limited, which hin-
dered wider adoption. Myrinet provided open firmware that allowed
researchers to implement their own modules on the specialized NIC
cores in C [54]. As opposed to these constrained solutions, sPIN
defines a simple offload interface for network operations, similar to
the ones that have widely been adopted for compute offloading.

High-speed packet processing frameworks used for router imple-
mentations, software defined networking [54] and P4 [16] provide
similar functions. They also relate well to sPIN in that the key idea
is to apply simple functions to packets. However, these frameworks
are not designed to interact with host memory and the execution
units are stateless and are thus much less powerful than sPIN.

7 DISCUSSION

Will sPIN NICs be built? With sPIN, we define an offloading inter-
face for NICs (which we call NISA) and we outline the requirements
for a NIC microarchitecture. Using our results from simulating ARM
CPUs, a vendor could immediately build such a NIC. In fact, we
are aware of several vendors that will release smart NICS that can
be programmed to support sPIN with a similar microarchitecture
this year. sPIN enables the development of a vendor-independent
ecosystem just like MPI where third parties can develop libraries for
domain-specific handlers. Network acceleration could then be, very
much like NVIDIA’s cuBLAS or NCCL libraries, offered for do-
mains outside of HPC, such as machine learning and data analytics,
to impact bigger markets.

Can sPIN work with other libraries than Portals 4. Yes, for exam-
ple, it would be straight-forward to define sPIN’s handlers for OFED
or Cray’s uGNI. Here, the three handlers would not be attached to a
matching entry but a queue pair and they would be invoked for every
arriving message. One can also define sPIN for connection-less pro-
tocols such as SHMEM or Cray’s DMAPP. Here, one would define
handlers to be executed for messages arriving at certain contexts or

sPIN: High-performance streaming Processing in the Network SC17, November 12–17, 2017, Denver, CO, USA

address ranges (similar to an ME). We chose to demonstrate the func-
tionality with the most complex interface, Portals 4, the principles
remain the same for others.

Can sPIN be executed on network switches? The definition of
handlers allows them to be executed at any switch in the network
with some limitations. Since they’re not associated with a host, the
functions put and get from host are not allowed and DMA commands
cannot be issued. Yet, the handlers can manipulate packets and use
their shared memory to keep state. We believe that this extension
would be simple but we defer a detailed analysis of use cases to
future work.

What if sPIN handlers run too long? In general, handlers may run
for a very long time and incorrect handlers may even not terminate.
We would recommend to kill handlers after a fixed number of cycles
and move the interface into flow control. However, this flow-control
behavior is specific to Portals 4. In general, one can imagine various
ways to deal with slow handlers. We do not recommend backing-
up data into the (most likely lossless) interconnect because a bad
handler may block the whole network. Instead, arriving packets that
cannot be processed can be dropped and the user, once notified of
this event, can tune the handlers until they can perform at line-rate.

8 SUMMARY AND CONCLUSIONS

We defined sPIN, a vendor-independent and portable interface for
network acceleration. We discuss a reference implementation for
Portals 4 and develop and share a simulation infrastructure that com-
bines a network and a microarchitecture simulator to analyze the
benefits of network offloading1. We show several use cases of how it
can be used in real-world parallel applications as well as system ser-
vices for data management. Our simulations demonstrate significant
speedups for real applications as well as important kernels.

We believe that sPIN will change the way we approach network-
ing and how we design NICs in the future—it will make exposing
the specialized data movement cores on the NIC to the user simple
and enables the development of a sophisticated ecosystem.

Acknowledgments

TH edited the manuscript and developed the original idea and spec-
ified the interface with input from RB and RG. SG developed the
simulation toolchain and implemented the first prototype. KT imple-
mented the handler codes and performed all experiments.

We thank Keith Underwood, James Dinan, Charles Giefer, and
Sayantan Sur for helpful discussions during the initial design. The
interface and theory was developed during a research stay of the first
author at Sandia National Laboratories.

REFERENCES
[1] Shawn Hansen and Sujal Das. 2006. Fabric-agnostic RDMA with OpenFabrics

Enterprise Distribution: Promises, Challenges, and Future Direction. In Proceed-

ings of the 2006 ACM/IEEE Conference on Supercomputing (SC ’06). ACM, New
York, NY, USA, Article 23. DOI:http://dx.doi.org/10.1145/1188455.1188479

[2] Greg Faanes, Abdulla Bataineh, Duncan Roweth, Tom Court, Edwin Froese, Bob
Alverson, Tim Johnson, Joe Kopnick, Mike Higgins, and James Reinhard. 2012.
Cray Cascade: A scalable HPC system based on a Dragonfly network. In Proc.

of the International Conference for High Performance Computing, Networking,

1https://spcl.inf.ethz.ch/Research/Parallel_Programming/sPIN
Storage and Analysis (SC’12). IEEE Computer Society, Article 103, 9 pages.
http://dl.acm.org/citation.cfm?id=2388996.2389136

[3] Brian W Barrett, Ronald Brightwell, Ryan E. Grant, Scott Hemmert, Kevin T
Pedretti, Kyle Wheeler, Keith Underwood, Rolf Riesen, Arthur B. Maccabe,
and Trammell Hudson. 2017. The Portals 4.1 network programming interface.

Technical Report. Sandia National Laboratories (SNL-NM), Albuquerque, NM
(United States).

[4] Antoine Kaufmann, SImon Peter, Naveen Kr. Sharma, Thomas Anderson, and
Arvind Krishnamurthy. 2016. High Performance Packet Processing with FlexNIC.
SIGPLAN Not. 51, 4 (March 2016), 67–81. DOI:http://dx.doi.org/10.1145/
2954679.2872367

[5] Ethernet Alliance. 2015. 2015 Ethernet Roadmap. (2015).
[6] Daniel Molka, Daniel Hackenberg, and Robert Schöne. 2014. Main Memory and

Cache Performance of Intel Sandy Bridge and AMD Bulldozer. In Proceedings

of the Workshop on Memory Systems Performance and Correctness (MSPC ’14).
ACM, New York, NY, USA, Article 4, 10 pages. DOI:http://dx.doi.org/10.1145/
2618128.2618129

[7] Intel Corporation. 2016. Intel 64 and IA-32 Architectures Optimization Reference
Manual. (July 2016).

[8] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. 2008. Scalable
Parallel Programming with CUDA. Queue 6, 2 (March 2008), 40–53. DOI:

http://dx.doi.org/10.1145/1365490.1365500
[9] John E. Stone, David Gohara, and Guochun Shi. 2010. OpenCL: A Parallel

Programming Standard for Heterogeneous Computing Systems. IEEE Des. Test

12, 3 (May 2010), 66–73. DOI:http://dx.doi.org/10.1109/MCSE.2010.69
[10] M. G. Venkata, R. L. Graham, J. S. Ladd, P. Shamis, I. Rabinovitz, V. Filipov, and

G. Shainer. 2011. ConnectX-2 CORE-Direct Enabled Asynchronous Broadcast
Collective Communications. In 2011 IEEE International Symposium on Parallel

and Distributed Processing Workshops and Phd Forum. 781–787. DOI:http:
//dx.doi.org/10.1109/IPDPS.2011.221

[11] B. Arimilli, R. Arimilli, V. Chung, S. Clark, W. Denzel, B. Drerup, T. Hoe-
fler, J. Joyner, J. Lewis, J. Li, N. Ni, and R. Rajamony. 2010. The PERCS
High-Performance Interconnect. In Proceedings of 18th Symposium on High-

Performance Interconnects (Hot Interconnects 2010). IEEE.
[12] K Scott Hemmert, Brian Barrett, and Keith D Underwood. 2010. Using triggered

operations to offload collective communication operations. In European MPI

Users’ Group Meeting. Springer, 249–256.
[13] K. Rupp, F. Rudolf, and J. Weinbub. 2010. ViennaCL - A High Level Linear

Algebra Library for GPUs and Multi-Core CPUs. In Intl. Workshop on GPUs and

Scientific Applications. 51–56.
[14] Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, and Klaus Erik

Schauser. 1992. Active Messages: A Mechanism for Integrated Communication
and Computation. SIGARCH Comput. Archit. News 20, 2 (April 1992), 256–266.
DOI:http://dx.doi.org/10.1145/146628.140382

[15] Ada Gavrilovska. SPLITS Stream Handlers: Deploying Application-level Ser-

vices to Attached Network Processor. Ph.D. Dissertation. Georgia Institute of
Technology.

[16] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
others. 2014. P4: Programming protocol-independent packet processors. ACM

SIGCOMM Computer Communication Review 44, 3 (2014), 87–95.
[17] Atos Technologies. 2016. Bull eXascale Interconnect in sequana. (2016).
[18] S. Di Girolamo, P. Jolivet, K. D. Underwood, and T. Hoefler. 2015. Exploiting Of-

fload Enabled Network Interfaces. In Proceedings of the 23rd Annual Symposium

on High-Performance Interconnects (HOTI’15). IEEE.
[19] T. Hoefler, T. Schneider, and A. Lumsdaine. 2010. LogGOPSim - Simulating

Large-Scale Applications in the LogGOPS Model. In Proceedings of the 19th

ACM International Symposium on High Performance Distributed Computing.
ACM, 597–604.

[20] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. 2011. The Gem5 Simulator. SIGARCH Comput. Archit.

News 39, 2 (Aug. 2011), 1–7. DOI:http://dx.doi.org/10.1145/2024716.2024718
[21] T. Hoefler, T. Schneider, and A. Lumsdaine. 2010. Characterizing the Influence

of System Noise on Large-Scale Applications by Simulation. In International

Conference for High Performance Computing, Networking, Storage and Analysis

(SC’10).
[22] T. Hoefler, T. Schneider, and A. Lumsdaine. 2009. The Effect of Network Noise

on Large-Scale Collective Communications. Parallel Processing Letters (PPL)

19, 4 (Aug. 2009), 573–593.
[23] Mellanox Technologies. 2015. EDR InfiniBand. (Jan. 2015). Open Fabrics User’s

Meeting 2015.
[24] F. A. Endo, D. CouroussÃl’, and H. P. Charles. 2014. Micro-architectural sim-

ulation of in-order and out-of-order ARM microprocessors with gem5. In 2014

International Conference on Embedded Computer Systems: Architectures, Mod-

eling, and Simulation (SAMOS XIV). 266–273. DOI:http://dx.doi.org/10.1109/
SAMOS.2014.6893220

http://dx.doi.org/10.1145/1188455.1188479
http://dl.acm.org/citation.cfm?id=2388996.2389136
http://dx.doi.org/10.1145/2954679.2872367
http://dx.doi.org/10.1145/2954679.2872367
http://dx.doi.org/10.1145/2618128.2618129
http://dx.doi.org/10.1145/2618128.2618129
http://dx.doi.org/10.1145/1365490.1365500
http://dx.doi.org/10.1109/MCSE.2010.69
http://dx.doi.org/10.1109/IPDPS.2011.221
http://dx.doi.org/10.1109/IPDPS.2011.221
http://dx.doi.org/10.1145/146628.140382
http://dx.doi.org/10.1145/2024716.2024718
http://dx.doi.org/10.1109/SAMOS.2014.6893220
http://dx.doi.org/10.1109/SAMOS.2014.6893220

SC17, November 12–17, 2017, Denver, CO, USA T. Hoefler et al.

[25] Keith D. Underwood, Jerrie Coffman, Roy Larsen, K. Scott Hemmert, Brian W.
Barrett, Ron Brightwell, and Michael Levenhagen. 2011. Enabling Flexible
Collective Communication Offload with Triggered Operations. In Proceedings

of the 2011 IEEE 19th Annual Symposium on High Performance Interconnects

(HOTI ’11). IEEE Computer Society, Washington, DC, USA, 35–42. DOI:http:
//dx.doi.org/10.1109/HOTI.2011.15

[26] Ayaz Akram and Lina Sawalha. 2016. x86 computer architecture simulators: A
comparative study. In Computer Design (ICCD), 2016 IEEE 34th International

Conference on. IEEE, 638–645.
[27] B. v. Werkhoven, J. Maassen, F. J. Seinstra, and H. E. Bal. 2014. Performance

Models for CPU-GPU Data Transfers. In 2014 14th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing. 11–20. DOI:http://dx.doi.
org/10.1109/CCGrid.2014.16

[28] Maxime Martinasso, Grzegorz Kwasniewski, Sadaf R. Alam, Thomas C.
Schulthess, and Torsten Hoefler. 2016. A PCIe Congestion-aware Performance
Model for Densely Populated Accelerator Servers. In Proceedings of the In-

ternational Conference for High Performance Computing, Networking, Storage

and Analysis (SC ’16). IEEE Press, Piscataway, NJ, USA, Article 63, 11 pages.
http://dl.acm.org/citation.cfm?id=3014904.3014989

[29] Duncan Roweth and Ashley Pittman. 2005. Optimised Global Reduction on QsNet
II. In Proceedings of the 13th Symposium on High Performance Interconnects

(HOTI ’05). IEEE Computer Society, Washington, DC, USA, 23–28. DOI:http:
//dx.doi.org/10.1109/CONECT.2005.28

[30] T. Hoefler and D. Moor. 2014. Energy, Memory, and Runtime Tradeoffs for
Implementing Collective Communication Operations. Journal of Supercomputing

Frontiers and Innovations 1, 2 (Oct. 2014), 58–75.
[31] Tim S. Woodall, Galen M. Shipman, George Bosilca, Richard L. Graham,

and Arthur B. Maccabe. 2006. High Performance RDMA Protocols in HPC.
In Proceedings of the 13th European PVM/MPI User’s Group Conference

on Recent Advances in Parallel Virtual Machine and Message Passing Inter-

face (EuroPVM/MPI’06). Springer-Verlag, Berlin, Heidelberg, 76–85. DOI:

http://dx.doi.org/10.1007/11846802_18
[32] T. Hoefler and A. Lumsdaine. 2008. Message Progression in Parallel Computing

- To Thread or not to Thread?. In Proceedings of the 2008 IEEE International

Conference on Cluster Computing. IEEE Computer Society.
[33] Brian W Barrett, Ron Brightwell, K Scott Hemmert, Kyle B Wheeler, and Keith D

Underwood. 2011. Using triggered operations to offload rendezvous messages. In
European MPI Users’ Group Meeting. Springer, 120–129.

[34] Claude Bernard, Michael C Ogilvie, Thomas A DeGrand, Carleton E DeTar,
Steven A Gottlieb, A Krasnitz, Robert L Sugar, and Doug Toussaint. 1991. Study-
ing quarks and gluons on MIMD parallel computers. The International Journal of

Supercomputing Applications 5, 4 (1991), 61–70.
[35] Philip W Jones, Patrick H Worley, Yoshikatsu Yoshida, JB White, and John

Levesque. 2005. Practical performance portability in the Parallel Ocean Program
(POP). Concurrency and Computation: Practice and Experience 17, 10 (2005),
1317–1327.

[36] Michael A Heroux, Douglas W Doerfler, Paul S Crozier, James M Willenbring,
H Carter Edwards, Alan Williams, Mahesh Rajan, Eric R Keiter, Heidi K Thorn-
quist, and Robert W Numrich. 2009. Improving Performance via Mini-applications.
Technical Report SAND2009-5574. Sandia National Laboratories.

[37] Hyong-youb Kim, Vijay S. Pai, and Scott Rixner. 2003. Exploiting Task-level
Concurrency in a Programmable Network Interface. In Proceedings of the Ninth

ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming

(PPoPP ’03). ACM, New York, NY, USA, 61–72. DOI:http://dx.doi.org/10.1145/
781498.781506

[38] T. Schneider, R. Gerstenberger, and T. Hoefler. 2012. Micro-Applications for
Communication Data Access Patterns and MPI Datatypes. In Recent Advances

in the Message Passing Interface - 19th European MPI Users’ Group Meeting,

EuroMPI 2012, Vienna, Austria, September 23-26, 2012. Proceedings, Vol. 7490.
Springer, 121–131.

[39] Matthias Weber. High availability for the lustre file system. Ph.D. Dissertation.
Oak Ridge National Laboratory.

[40] John Ousterhout, Parag Agrawal, David Erickson, Christos Kozyrakis, Jacob
Leverich, David Mazières, Subhasish Mitra, Aravind Narayanan, Guru Parulkar,
Mendel Rosenblum, and others. 2010. The case for RAMClouds: scalable high-
performance storage entirely in DRAM. ACM SIGOPS Operating Systems Review

43, 4 (2010), 92–105.
[41] Storage Performance Council. 2002. SPC Trace File Format Specification, Revi-

sion 1.0.1. (2002).
[42] Brad Fitzpatrick. 2004. Distributed caching with memcached. Linux journal 2004,

124 (2004), 5.
[43] Marius Poke and Torsten Hoefler. 2015. DARE: High-Performance State Machine

Replication on RDMA Networks. In Proceedings of the 24th International Sym-

posium on High-Performance Parallel and Distributed Computing (HPDC ’15).
ACM, New York, NY, USA, 107–118. DOI:http://dx.doi.org/10.1145/2749246.
2749267

[44] Ciprian Docan, Manish Parashar, and Scott Klasky. 2010. DataSpaces: An In-
teraction and Coordination Framework for Coupled Simulation Workflows. In
Proceedings of the 19th ACM International Symposium on High Performance

Distributed Computing (HPDC ’10). ACM, New York, NY, USA, 25–36. DOI:
http://dx.doi.org/10.1145/1851476.1851481

[45] Aleksandar Dragojević, Dushyanth Narayanan, Orion Hodson, and Miguel Castro.
2014. FaRM: Fast Remote Memory. In Proceedings of the 11th USENIX Con-

ference on Networked Systems Design and Implementation (NSDI’14). USENIX
Association, Berkeley, CA, USA, 401–414. http://dl.acm.org/citation.cfm?id=
2616448.2616486

[46] Aleksandar Dragojević, Dushyanth Narayanan, Edmund B. Nightingale, Matthew
Renzelmann, Alex Shamis, Anirudh Badam, and Miguel Castro. 2015. No Com-
promises: Distributed Transactions with Consistency, Availability, and Perfor-
mance. In Proceedings of the 25th Symposium on Operating Systems Principles

(SOSP ’15). ACM, New York, NY, USA, 54–70. DOI:http://dx.doi.org/10.1145/
2815400.2815425

[47] V. Santhosh Kumar, M. J. Thazhuthaveetil, and R. Govindarajan. 2006. Exploiting
Programmable Network Interfaces for Parallel Query Execution in Workstation
Clusters. In Proceedings of the 20th International Conference on Parallel and

Distributed Processing (IPDPS’06). IEEE Computer Society, Washington, DC,
USA, 77–77. http://dl.acm.org/citation.cfm?id=1898953.1899010

[48] Maurice Herlihy and J. Eliot B. Moss. 1993. Transactional Memory: Architectural
Support for Lock-free Data Structures. SIGARCH Comput. Archit. News 21, 2
(May 1993), 289–300. DOI:http://dx.doi.org/10.1145/173682.165164

[49] Darius Buntinas. 2012. Scalable distributed consensus to support MPI fault
tolerance. In Parallel & Distributed Processing Symposium (IPDPS), 2012 IEEE

26th International. IEEE, 1240–1249.
[50] Thara Angskun, George Bosilca, and Jack Dongarra. 2007. Binomial graph: A

scalable and fault-tolerant logical network topology. In International Symposium

on Parallel and Distributed Processing and Applications. Springer, 471–482.
[51] Fabrizio Petrini, Wu-chun Feng, Adolfy Hoisie, Salvador Coll, and Eitan Fracht-

enberg. 2002. The Quadrics network: High-performance clustering technology.
IEEE Micro 22, 1 (2002), 46–57.

[52] W. Yu, D. Buntinas, R. L. Graham, and D. K. Panda. 2004. Efficient and scalable
barrier over Quadrics and Myrinet with a new NIC-based collective message pass-
ing protocol. In 18th International Parallel and Distributed Processing Symposium,

2004. Proceedings. 182–. DOI:http://dx.doi.org/10.1109/IPDPS.2004.1303191
[53] Ron Brightwell Kevin T. Pedretti. 2004. A NIC-Offload Implementation of Portals

for Quadrics QsNet. In Fifth LCI International Conference on Linux Clusters.
[54] A. Wagner, Hyun-Wook Jin, D. K. Panda, and R. Riesen. 2004. NIC-based offload

of dynamic user-defined modules for Myrinet clusters. In 2004 IEEE International

Conference on Cluster Computing (IEEE Cat. No.04EX935). 205–214. DOI:

http://dx.doi.org/10.1109/CLUSTR.2004.1392618

http://dx.doi.org/10.1109/HOTI.2011.15
http://dx.doi.org/10.1109/HOTI.2011.15
http://dx.doi.org/10.1109/CCGrid.2014.16
http://dx.doi.org/10.1109/CCGrid.2014.16
http://dl.acm.org/citation.cfm?id=3014904.3014989
http://dx.doi.org/10.1109/CONECT.2005.28
http://dx.doi.org/10.1109/CONECT.2005.28
http://dx.doi.org/10.1007/11846802_18
http://dx.doi.org/10.1145/781498.781506
http://dx.doi.org/10.1145/781498.781506
http://dx.doi.org/10.1145/2749246.2749267
http://dx.doi.org/10.1145/2749246.2749267
http://dx.doi.org/10.1145/1851476.1851481
http://dl.acm.org/citation.cfm?id=2616448.2616486
http://dl.acm.org/citation.cfm?id=2616448.2616486
http://dx.doi.org/10.1145/2815400.2815425
http://dx.doi.org/10.1145/2815400.2815425
http://dl.acm.org/citation.cfm?id=1898953.1899010
http://dx.doi.org/10.1145/173682.165164
http://dx.doi.org/10.1109/IPDPS.2004.1303191
http://dx.doi.org/10.1109/CLUSTR.2004.1392618

sPIN: High-performance streaming Processing in the Network SC17, November 12–17, 2017, Denver, CO, USA

A ARTIFACT DESCRIPTION APPENDIX:

SPIN: HIGH-PERFORMANCE STREAMING

PROCESSING IN THE NETWORK

A.1 Abstract

The results presented in this paper are generated with a simula-
tion tool-chain based on the cycle-accurate gem5 simulator and
the packet-level LogGOPSim simulator. The whole tool-chain is
available to the public.

A.2 Description

A.2.1 Check-list (artifact meta information).

Program LogGOPSim and gem5
Compilation Standard GNU Linux environment (tested on Debian,

Ubuntu and Redhat)
Binary Available as source-code only (for transparency). Build

instructions are included
Data-set Small ones (<100MiB) are included, larger ones (>100

GiB) upon request, see below.
Hardware Execution tested on x86, simulated hardware ARMv7.
Publicly available : Yes, see below.

A.2.2 How software can be obtained (if available). We
release the whole simulation tool-chain with a mini-howto and
instructions to reproduce the data in the paper on our webpage:
https://spcl.inf.ethz.ch/Research/Parallel_Programming/sPIN. After
downloading and unpacking the tar-ball, follow the instructions in
the README to build the two simulators. The README also de-
scribes part of the software infrastructure. The directory also contains
a README_SC17, which contains instructions how to generate the
data used in this paper.

A.2.3 Hardware dependencies. None

A.2.4 Software dependencies. Standard gem5 installation,
agraph and cgraph as included in default Debian/Ubuntu/Redhat
systems. See README in the package for details.

A.2.5 Datasets. All but one are included, the large (>100 GiB
is available on demand), see above.

A.3 Installation

See README in package.

A.4 Experiment workflow

See README_SC17 in package.

A.5 Evaluation and expected result

The exact results we show in the paper can be reproduced using the
scripts and simulators we used.

A.6 Experiment customization

None

A.7 Notes

In the following, we provide a detailed specification of the P4sPIN
interface so that readers can follow the details and implement a sPIN

system. Furthermore, in Appendix C.3, we provide the source code
of all handlers described in this paper for convenience. All source
codes are also included in the tar-package linked above.

B DETAILED P4SPIN INTERFACE

Here, we describe the detailed C interface for P4sPIN to ensure
reproducibility.

B.1 Detailed MD descriptor

ptl_me_t {

... / / o r i g i n a l P o r t a l s 4 argument s

ptl_handler_t header_handler;

ptl_handler_t payload_handler;

ptl_handler_t completion_handler;

ptl_hpu_md_h hpu_memory;

void *hpu_initial_state;

ptl_size_t hpu_initial_state_length;

void *handler_host_mem_start;

ptl_size_t handler_host_mem_length;

}

The three handlers can be installed independently. The user can
choose to not have a specific handler called by setting it NULL.
To keep the size of the ptl_me_t struct small if no handlers are
needed, one could specify a sub-struct ptl_handler_data for all
these additional elements. This sub-struct could be set to NULL if no
handlers are installed.

B.2 HPU Memory Management

int PtlHPUAllocMem(ptl_size_t length,

ptl_handle_ni_t ni, ptl_hpu_md_h *hpu_mem)

int PtlHPUFreeMem(ptl_hpu_md_h *hpu_mem)

This call allocates length memory in device ni and stores all infor-
mation in the opaque handle hpu_mem, which is then associated with
an ptl_me_t.

Handlers can read and write host memory and parameters could
be passed through this memory. Yet, it is often useful to initialize
HPU memory with some small control values that are set from the
host while installing the ME and handler. When posting an ME, the
host can specify a memory region with hpu_initial_state that is
used to initialize that HPU memory. This feature can be used to coor-
dinate multiple header handlers working on the same HPU memory.
The length is the size of the pre-allocated state memory that is passed
to the header handler; it must be smaller than max_initial_state
(cf. Section B.2.1). The state will always be allocated but only be
overwritten if hpu_initial_state is not NULL.

The ME identifies host memory to steer the access to. If a han-
dler is present, it may be useful to have additional memory for the
handler data (e.g., to collect statistics about messages). The fields
handler_host_mem_start and handler_host_mem_length

identify a second range of host memory where the handler can
store its output. An additional option HANDLER_IOVEC specifies if
the handler memory start and length are to be interpreted as an iovec.

SC17, November 12–17, 2017, Denver, CO, USA T. Hoefler et al.

A handler can generate messages from the context of an ME
that change the completion semantics of an ME. For example, an
MPI rendezvous message may arrive at a posted rendezvous handler,
which then in turn posts a get operation to fetch the data. In this
case, the handler can return PENDING which instructs the runtime
to not complete the ME once this message is processed but wait for
another message that matches it.

B.2.1 NI Limits. All resources in Portals 4 are strictly limited
to allow for an efficient hardware implementation. The available
resources for each logical network interface (NI) are reflected in the
limits structure. To support sPIN, we add the following fields:

parameter name description

max_user_hdr_size maximum size of a user-header at a
packet (maximum size the user can
add to the header, for quick parsing)

max_payload_size maximum size of payload data in a
packet (used to determine require-
ments for payload handler)

max_handler_mem maximum bytes of HPU memory for
a handler

max_initial_state maximum bytes of HPU initial state
for a handler

min_fragmentation_limit minimum allowed unit (bytes) for
packet processing (each payload han-
dler’s data is always guaranteed to be
naturally aligned to this limit as well
as be a multiple of this limit, a high-
quality implementation makes this as
big as possible)

max_cycles_per_byte maximum number of HPU cycles per
byte payload

B.3 Header Handler Details

The pointer state points at the initial data in HPU memory. This data
may have been initialized by the host during installation of the ME.
The struct ptl_header_t contains the following elements:

struct ptl_header_t {

ptl_request_type_t type; / / put , ge t , a t om i c

ptl_size_t length; / / pay load l e n g t h

ptl_process_t target_id; / / t a r g e t n i d / p i d

ptl_process_t source_id; / / s o u r c e n i d / p i d

ptl_match_bits_t match_bits; / / match t a g

ptl_size_t offset; / / o f f s e t i n ME

ptl_hdr_data_t hdr_data; / / i n l i n e da ta

ptl_user_header_t user_hdr; / / u s e r header

}

The struct user_header_t is user-defined and can be used by the
compiler and HPU to parse headers. It allows access to the first
bytes of the payload of the header message as user-defined header
structures.

The return code of the handler is used to influence the runtime
system. We define the following return codes:

DROP handler executed successfully and mes-
sage shall be dropped (NIC will discard
all following packets)

DROP_PENDING same as DROP but do not complete ME
PROCESS_DATA handler executed successfully, NIC shall

continue calling payload handlers for
packets

PROCESS_DATA_PENDING same as PROCESS_DATA but do not com-
plete ME

PROCEED handler executed successfully, NIC shall
execute the default action identified by
the request and not invoke any fur-
ther handlers. If the default action is
to deposit the payload at the ME off-
set, then this payload will include the
user-header.

PROCEED_PENDING same as PROCEED but do not complete
ME

SEGV (*) segmentation violation
FAIL (*) handler error (user-returned)

Return codes marked with (*) are considered errors and will raise
an event in the event queue associated with the ME. If multiple errors
occur while processing a message, only the first one is reported in
the event queue.

B.4 Payload Handler Details

The pointer state points at the initial data in HPU memory. This data
may have been initialized by the host or header handle. The struct
ptl_payload_t contains information about the payload data:

struct ptl_payload_t {

ptl_size_t length; / / l e n g t h o f t h e da ta

ptl_size_t offset; / / pay load o f f s e t i n message

uint8_t base[0]; / / b e g i n n i n g o f da ta

}

The return code of the handler is used to influence the runtime
system. We define the following return codes:

DROP handler executed successfully, drop packet
SUCCESS handler executed successfully
FAIL (*) handler error (user-returned)
SEGV (*) segmentation violation

Return codes marked with (*) are considered errors and will raise
an event in the event queue associated with the ME. If multiple errors
occur while processing a message, only the first one is reported in the
event queue. Note that “first” may not be well defined for payload
handlers because they may execute in parallel.

B.5 Completion Handler Details

The return code of the handler is used to influence the runtime
system. We define the following return codes:

SUCCESS handler executed successfully
SUCCESS_PENDING same as SUCCESS but do not complete ME!
FAIL (*) handler error (user-returned)
SEGV (*) segmentation violation

sPIN: High-performance streaming Processing in the Network SC17, November 12–17, 2017, Denver, CO, USA

Return codes marked with (*) are considered errors and will raise
an event in the event queue associated with the ME. If multiple errors
occur while processing a message, only the first one is reported in
the event queue. If either the header or completion handler returned
a PENDING code then the ME will not be completed after completing
the message.

B.6 Handler Actions Details

We specify blocking and nonblocking DMA calls to allow the HPU
to copy to/from host memory. The blocking DMA calls block the
HPU thread until the data arrived (the HPU can context-switch to
another thread) and the nonblocking DMA calls return a handle
for later completion. Nonblocking DMA calls are slightly higher
overhead due to handle allocation and completion and should only
be used if the DMA can be overlapped with other HPU instructions.
Blocking DMA requests can be seen as an indication of urgency
and could be prioritized by the DMA subsystem. We show the
nonblocking interfaces below.

int PtlHandlerDMAToHostNB(const void *local,

ptl_size_t offset, ptl_size_t len, unsigned

int options, ptl_dma_h *h);

This function copies len bytes from local to offset in ME. Options
can either set PTL_ME_HOST_MEM or PTL_HANDLER_HOST_MEM to
select the host memory space).

int PtlHandlerDMAFromHostNB(ptl_size_t offset,

void* local, ptl_size_t len, unsigned int

options, ptl_dma_h *h);

This function copies len bytes from offset in ME to lo-
cal memory. Options can either set PTL_ME_HOST_MEM or
PTL_HANDLER_HOST_MEM to select the host memory space). Both
functions return immediately with a handle that can be used to check
for completion. The blocking interfaces PtlHandlerDMAToHostB
() and PtlHandlerDMAFromHostB() accept the same arguments
but do not return a handle.

Standard DMA calls to and from the host are not atomic. Atomic
DMAs over PCI can be expensive (and might require locking the
ME explicitly), thus, we offer an atomic DMA compare-and-swap
function for synchronization. Data has to be naturally aligned:

int PtlHandlerDMACASNB(ptl_size_t offset, uint64_t

*cmpval, uint64_t swapval, unsigned int

options, ptl_dma_h *h);

This call compares the value at the offset location with cmpval and
replaces it with swapval if they are equal. If the CAS fails, cmpval
is overwritten with the value at the offset location.

int PtlHandlerDMAFetchAddNB(ptl_size_t offset,

ptl_size_t inc, ptl_size_t *res, ptl_type_t t,

unsigned int options, ptl_dma_h *h);

This call atomically increments the value of type t at location offset
by inc and returns the value before in res. Similar blocking function
exist for both atomic calls.

The nonblocking completion test function

int PtlHandlerDMATest(ptl_dma_h handle);

returns true if handle is complete and the data transfer is finished,
false otherwise. The completion wait function

int PtlHandlerDMAWait(ptl_dma_h handle);

waits until handle is complete and the data transfer is finished. A
handle can be re-used only after it has been completed.

Multiple HPU threads may share the same HPU memory and run
simultaneously. We define a compare-and-swap function on HPU
memory to provide powerful synchronization features:

int PtlHandlerCAS(uint64_t *value, uint64_t cmpval

, uint64_t swapval);

The function atomically tests value and cmpval for equality and
replaces value with swapval if the test succeeds. It returns true if
the swap succeeded and false otherwise. Furthermore, we define a
fetch-and-add function for HPU threads:

int PtlHandlerFAdd(uint64_t *val, uint64_t *before

, uint64_t inc);

This function atomically increments the value val with inc and re-
turns the value before. HPU threads are not de-scheduled automati-
cally but they can yield the HPU voluntarily using the function call
PtlHandlerYield(). A runtime environment is free to ignore this
call but it can be understood as a hint to schedule another thread. For
example, when waiting for a DMA, yielding allows the HPU to use
its processing resources more efficiently than polling.

Handlers can send messages either from HPU or host memory.
We define two different function calls for these two scenarios:

int PtlHandlerPutFromHost(ptl_size_t offset,

ptl_size_t len, ptl_req_ct_t ct, ptl_ack_req_t

ack_req, ptl_process_t target_id,

ptl_match_bits_t match_bits, ptl_size_t

remote_offset, void* user_ptr, ptl_hdr_data_t

hdr_data);

This call enqueues a put operation from host memory. This operation
shall behave as if it was posted by the host. The offset is relative to
the ME, other fields such as pt_index, eq_hdl, etc. are inherited from
ME. The call simply enqueues an operation and may thus not block.

int PtlHandlerPutFromDevice(const void *local,

ptl_size_t len, ptl_req_ct_t ct, ptl_ack_req_t

ack_req, ptl_process_t target_id,

ptl_match_bits_t match_bits, ptl_size_t

remote_offset, void* user_ptr, ptl_hdr_data_t

hdr_data);

This call performs a (single-packet) put operation from device mem-
ory. The data is sent from HPU memory and len must be at most
max_payload_size, other fields such as pt_index, eq_hdl, etc. are
inherited from ME. This function may block until it is completed.
Similar handler functions are specified for PtlHandlerGet* and
PtlHandlerAtomic*.

Counters can be manipulated with the following calls:

int PtlHandlerCTInc(ptl_ct_event_t increment);

int PtlHandlerCTGet(ptl_ct_event_t *event);

int PtlHandlerCTSet(ptl_ct_event_t new_ct);

All three of them atomically read or modify a counter with the
expected semantics.

SC17, November 12–17, 2017, Denver, CO, USA T. Hoefler et al.

C COMPUTATIONAL RESULTS ANALYSIS:

SPIN: HIGH-PERFORMANCE STREAMING

PROCESSING IN THE NETWORK

C.1 Abstract

To increase the trust in our simulation results, we now show de-
tails of how we implemented the simulation. Our system allows us
to run real handler C codes with only trivial changes in the Log-
GOPSim/gem5 environment. The handlers run in a gem5 simulation
and are compiled with a real gcc cross-compilation tool chain. Be-
cause the handlers are relatively simple, we present the complete
source code here so the reader can validate the functionality and
get a feeling of the low complexity and high power of the overall
approach.

We also provide some selected trace diagrams that our simulator
can produce. These diagrams help understanding how time is spent
in the different systems and can lead to additional insights beyond
the explanations in the paper. They are neither post-processed nor
intended for the main paper, we apologize for the rendering com-
plexity due to the simple output interface. Yet, we believe that, if
they are carefully analyzed, they increase the reader’s confidence in
the simulation correctness as they provide more intuition of the main
benefits of sPIN (packetized pipelining and NIC-side processing).

Both, the source code and the diagrams can be found in the
package to reproduce the experiments. We show them here simply
for the convenience of the reader.

C.2 Results Analysis Discussion

As any simulation approach, we made several assumptions about the
speeds of the future devices. They are all covered in the available
source code and described in the paper. We believe that our simu-
lations accurately reflect reality and a real system could be built to
achieve similar results. Both simulators have been calibrated for the
target system. LogGOPSim is calibrated for a modern InfiniBand
system and gem5 is calibrated to a modern ARM architecture (see
references to the reports in the main document).

C.3 Summary: Handler code used in this paper

We now present the raw C source codes and some selected visualiza-
tions to understand the system better.

C.3.1 Ping pong.

#define PTL_MAX_SIZE 4096

#define STREAMING 1

typedef struct {

ptl_size_t offset;

ptl_process_t source;

ptl_size_t length;

bool stream;

} pingpong_info_t;

int pingpong_header_handler(const ptl_header_t h,

void *state) {

pingpong_info_t *i = state;

if(h.length > PTL_MAX_SIZE || !STREAMING) {

i->stream = false;

i->length = h.length;

return PROCEED; / / don ' t e x e c u t e any o t h e r

h a n d l e r s

} else {

i->source = h.source_id;

i->stream = true;

return PROCESS_DATA; / / e x e c u t e pay load

h a n d l e r t o p u t from d e v i c e

}

}

int pingpong_payload_handler(const ptl_payload_t p

, void *state) {

pingpong_info_t *i = state;

PtlHandlerPutFromDevice(p.base, p.length, 1, 0,

i->source, 10, 0, NULL, 0);

return SUCCESS;

}

int pingpong_completion_handler(int dropped_bytes,

bool flow_control_triggered, void *state) {

pingpong_info_t *i = state;

if(!i->stream) PtlHandlerPutFromHost(i->offset,

i->length, 1, 0, i->source, 10, 0, NULL, 0);

return SUCCESS;

}

The following figure shows the trace simulation out-
put for RDMA 8 KiB ping-pong. The red and blue sec-
tions at rank 0 and 1 indicate message posting over-
heads and the vertical blue bars represent data transfers.

Rank 0

NIC

DMA

HPU 0

Rank 1

NIC

DMA

HPU 0

The next figure shows the trace simulation output for
sPIN store mode. Here, the two packets are matched sep-
arately and the completion handler is executed on HPU 0.

Rank 0

NIC

DMA

HPU 0

Rank 1

NIC

DMA

HPU 0

The next figure shows the trace simulation output for sPIN
stream mode. Here, the two packets are matched separately and
two instances of the payload handler are executed on HPU 2 and

sPIN: High-performance streaming Processing in the Network SC17, November 12–17, 2017, Denver, CO, USA

HPU 0, respectively. The first reply packet is already sent be-
fore the second is fully received (the transceiver is full duplex).

Rank 0

NIC

DMA

HPU 0

HPU 1

HPU 2

Rank 1

NIC

DMA

HPU 0

HPU 1

HPU 2

C.3.2 Accumulate.

typedef struct {

ptl_size_t offset;

bool pong;

ptl_process_t source;

} accumulate_info_t;

int accumulate_header_handler(const ptl_header_t h

, void *state) {

accumulate_info_t *i = state;

if(i->pong) i->source = h.source_id;

return PROCESS_DATA;

}

int accumulate_payload_handler(const ptl_payload_t

p, void * state) {

accumulate_info_t *i = (accumulate_info_t*)state

;

float* buf = malloc(p.length/sizeof(float));

PtlHandlerDMAFromHostB(i->offset+p.offset, buf,

p.length, PTL_ME_HOST_MEM);

float *data = (float*)p.base;

for(int j=0; j<p.length/sizeof(float); j+=2) {

buf[j] = data[j]*buf[j] - data[j+1]*buf[j+1];

buf[j+1] = data[j]*buf[j+1] - data[j+1]*buf[j

];

}

PtlHandlerDMAToHostB(buf, i->offset+p.offset, p.

length, PTL_ME_HOST_MEM);

if(i->pong) PtlHandlerPutFromDevice(buf, p.

length, 1, 0, i->source, 10, 0, NULL, 0);

free(buf);

return SUCCESS;

}

The following figure shows the trace simulation out-
put for RDMA accumulate of 8KiB. The elements

are similar to ping pong but the accumulate is per-
formed at rank 1’s CPU (multi-core not displayed here).

Rank 0

NIC

DMA

HPU 0

Rank 1

NIC

DMA

HPU 0

The next figure shows the trace simulation output for sPIN store
mode. The simulation schedules the two packets for HPU 0 and HPU
2, respectively. The HPUs issue competing DMA requests to the
host memory. The DMA sections on the figure depict the blocking
time of the handler. In other words, the time spent by the HPU to
complete the DMA request. Thus, DMA requests can be overlapped
on the generated diagrams. Long sections stand for DMAFromHost,
since we pay two DMA latencies to read the data, and short ones
for DMAToHost, which blocks HPUs to initiate the write request.

Rank 0

NIC

DMA

HPU 0

HPU 1

HPU 2

Rank 1

NIC

DMA

HPU 0

HPU 1

HPU 2

C.3.3 Broadcast.

#define PTL_MAX_SIZE 4096

#define STREAMING 1

typedef struct {

ptl_size_t offset;

ptl_process_t my_rank;

ptl_process_t p; / / t o t a l number o f

h o s t s

bool stream;

ptl_size_t length;

} bcast_info_t;

int bcast_header_handler(const ptl_header_t h,

void *state) {

bcast_info_t *i = state;

if(h.length > PTL_MAX_SIZE || !STREAMING) {

i->stream = false;

i->length = h.length;

return PROCEED; / / don ' t e x e c u t e any o t h e r

h a n d l e r s

} else {

i->stream = true;

return PROCESS_DATA; / / e x e c u t e pay load

h a n d l e r t o p u t from d e v i c e

}

SC17, November 12–17, 2017, Denver, CO, USA T. Hoefler et al.

}

int bcast_payload_handler(const ptl_payload_t p,

void *state) {

bcast_info_t *i = state;

for (uint32_t half = i->p/2; half>=1; half/=2)

if (i->my_rank % (half*2) == 0)

PtlHandlerPutFromDevice(p.base, p.length,

PTL_LOCAL_ME_CT, 0, i->my_rank+half, 10, 0,

NULL, 0);

return SUCCESS;

}

int bcast_completion_handler(int dropped_bytes,

bool flow_control_triggered, void *state) {

bcast_info_t *i = state;

if(!i->stream)

for (uint32_t half = i->p/2; half>=1; half/=2

)

if (i->my_rank % (half*2) == 0)

PtlHandlerPutFromHost(i->offset, i->length

, PTL_LOCAL_ME_CT, 0, i->my_rank+half, 10, 0,

NULL, 0);

return SUCCESS;

}

The following figure shows the trace simulation out-
put for RDMA broadcast of 8KiB to 16 ranks. The ele-
ments are similar to ping pong and rank 0 is the root.

Rank 0
NIC

DMA
HPU 0

Rank 1
NIC

DMA
HPU 0

Rank 2
NIC

DMA
HPU 0

Rank 3
NIC

DMA
HPU 0

Rank 4
NIC

DMA
HPU 0

Rank 5
NIC

DMA
HPU 0

Rank 6
NIC

DMA
HPU 0

Rank 7
NIC

DMA
HPU 0

Rank 8
NIC

DMA
HPU 0

Rank 9
NIC

DMA
HPU 0

Rank 10
NIC

DMA
HPU 0

Rank 11
NIC

DMA
HPU 0

Rank 12
NIC

DMA
HPU 0

Rank 13
NIC

DMA
HPU 0

Rank 14
NIC

DMA
HPU 0

Rank 15
NIC

DMA
HPU 0

The next figure shows the trace simulation output for
the sPIN broadcast. We see again how the packets are
forwarded in a pipelined manner by the HPUs at each
node. The first packets are sent before the message is

fully received, illustrating the wormhole-routing-like behavior.

Rank 0
NIC

DMA

HPU 0
HPU 1
HPU 2

Rank 1
NIC

DMA

HPU 0
HPU 1
HPU 2

Rank 2
NIC

DMA

HPU 0
HPU 1
HPU 2

Rank 3
NIC

DMA

HPU 0
HPU 1
HPU 2

Rank 4
NIC

DMA

HPU 0
HPU 1
HPU 2

Rank 5
NIC

DMA

HPU 0
HPU 1
HPU 2

Rank 6
NIC

DMA

HPU 0
HPU 1
HPU 2

Rank 7
NIC

DMA

HPU 0
HPU 1
HPU 2

Rank 8
NIC

DMA

HPU 0
HPU 1
HPU 2

Rank 9
NIC

DMA

HPU 0
HPU 1
HPU 2

Rank 10
NIC

DMA

HPU 0
HPU 1
HPU 2

Rank 11
NIC

DMA

HPU 0
HPU 1
HPU 2

Rank 12
NIC

DMA

HPU 0
HPU 1
HPU 2

Rank 13
NIC

DMA

HPU 0
HPU 1
HPU 2

Rank 14
NIC

DMA

HPU 0
HPU 1
HPU 2

Rank 15
NIC

DMA

HPU 0
HPU 1
HPU 2

C.3.4 Strided Datatype.

typedef struct {

ptl_size_t offset;

ptl_size_t vlen;

ptl_size_t stride;

} ddtvec_info_t;

int ddtvec_payload_handler(const ptl_payload_t p,

void *state) {

ddtvec_info_t *i = (ddtvec_info_t*)state;

ptl_size_t first_seg_num = (i->offset+p.offset)/

i->vlen; / / rounded down i m p l i c i t l y

ptl_size_t last_seg_num = (i->offset+p.offset+p.

length)/i->vlen; / / rounded down i m p l i c i t l y

int offset_in_packet = 0;

for(int j = first_seg_num; j<=last_seg_num; j++)

{

ptl_size_t offset_in_block = (i->offset+p.

offset+offset_in_packet)%i->vlen;

ptl_size_t offset = j * (i->vlen+i->stride) +

offset_in_block;

ptl_size_t size = (i->vlen -

offset_in_block) < (p.length -

offset_in_packet) ? (i->vlen - offset_in_block

) : (p.length - offset_in_packet) ;

PtlHandlerDMAToHostB(p.base+offset_in_packet,

offset, size, PTL_ME_HOST_MEM);

offset_in_packet+=size;

}

return SUCCESS;

}

The following figure shows the trace simulation out-
put for RDMA reception of a datatype with 32 8 KiB
blocks (256 KiB total). The elements are similar to

sPIN: High-performance streaming Processing in the Network SC17, November 12–17, 2017, Denver, CO, USA

ping pong and the unpack is performed by the CPU.

Rank 0

NIC

DMA

HPU 0

Rank 1

NIC

DMA

HPU 0

The next figure shows the trace simulation output for the sPIN
datatype receive. Packets are blocked and each block is pro-
cessed by one of the four HPUs, which issues a local DMA
transaction to host memory. For each packet the payload han-
dler was executed (64 calls overall), which deposited data di-
rectly to right locations in memory, whereas RDMA system
should wait for the arrival of the whole message to process it.

Rank 0

NIC

DMA

HPU 0

HPU 1

HPU 2

HPU 3

Rank 1

NIC

DMA

HPU 0

HPU 1

HPU 2

HPU 3

C.3.5 Reed-Solomon.

#define PARITY_TAG 53

/ * Code f o r da ta s e r v e r * /

typedef struct {

ptl_process_t source;

ptl_process_t parity;

ptl_size_t offset;

} primary_info_t;

typedef struct {

int length;

} ptl_user_header_t;

int primary_write_header_handler(const

ptl_header_t h, void * state) {

primary_info_t *i = state;

i->source=h.source_id;

return PROCESS_DATA;

}

int primary_write_payload_handler(const

ptl_payload_t p, void * state) {

primary_info_t *i = state;

uint32_t* buf = malloc(p.length/sizeof(uint32_t)

);

PtlHandlerDMAFromHostB(i->offset+p.offset, buf,

p.length, PTL_ME_HOST_MEM);

uint32_t *data = (uint32_t*)p.base;

for(int i=0; i<p.length/sizeof(uint32_t); i++)

buf[i] = (buf[i] ^ data[i]);

PtlHandlerDMAToHostB(buf, i->offset+p.offset, p.

length, PTL_ME_HOST_MEM);

PtlHandlerPutFromDevice(buf, p.length,

PTL_LOCAL_ME_CT, 0, i->parity, PARITY_TAG, 0,

NULL, i->source);

free(buf);

return SUCCESS;

}

int primary_read_header_handler(const ptl_header_t

h, void * state) {

primary_info_t *i = state;

PtlHandlerPutFromHost(h.offset, h.user_hdr.

length, PTL_LOCAL_ME_CT, 0, h.source_id, h.

match_bits, 0, NULL, 0);

return PROCEED;

}

int primary_send_acknowledgement_header_handler(

const ptl_header_t h, void * state) {

uint8_t reply = SUCCESS;

PtlHandlerPutFromDevice(&reply, 1,

PTL_LOCAL_ME_CT, 0, h.user_hdr.client, h.

match_bits, 0, NULL, 0);

return PROCEED;

}

/ * Code f o r p a r i t y s e r v e r * /

typedef struct {

ptl_process_t source;

ptl_process_t client;

ptl_size_t offset;

} parity_info_t;

typedef struct {

int client;

} ptl_user_header_t;

int parity_update_header_handler(const

ptl_header_t h, void * state) {

parity_info_t *i = state;

i->source=h.source_id;

i->client=h.user_hdr.client;

return PROCESS_DATA;

}

int parity_update_payload_handler(const

ptl_payload_t p, void * state) {

parity_info_t *i = state;

uint32_t* buf = malloc(p.length/sizeof(uint32_t)

);

SC17, November 12–17, 2017, Denver, CO, USA T. Hoefler et al.

PtlHandlerDMAFromHostB(i->offset+p.offset, buf,

p.length, PTL_ME_HOST_MEM);

uint32_t *data = (uint32_t*)p.base;

for(int i=0; i<p.length/sizeof(uint32_t); i++)

buf[i] = (buf[i] ^ data[i]);

PtlHandlerDMAToHostB(buf, i->offset+p.offset, p.

length, PTL_ME_HOST_MEM);

free(buf);

return SUCCESS;

}

int parity_update_completion_handler(int

dropped_bytes, bool flow_control_triggered,

void *state) {

parity_info_t *i = state;

uint8_t reply = SUCCESS;

PtlHandlerPutFromDevice(&reply,1,

PTL_LOCAL_ME_CT, 0, i->source, 30, 0, NULL, i

->client);

return SUCCESS;

}

The following figure shows the trace simulation output for RDMA
write using Reed-Solomon coding in a RAID-5 configuration. Here,
rank 0 is the client and it sends updates to all four servers (rank 2-5),
which then update the parity at rank 1 and acknowledge back to rank
0. P4 case is different from RDMA, since the data server can predict
getting acknowledgment from parity server and initiate triggered put

right after the sending the data to it in order to reply the client faster.

Rank 0

NIC

DMA

HPU 0

Rank 1

NIC

DMA

HPU 0

Rank 2

NIC

DMA

HPU 0

Rank 3

NIC

DMA

HPU 0

Rank 4

NIC

DMA

HPU 0

Rank 5

NIC

DMA

HPU 0

The next figure shows the trace simulation output for
the sPIN RAID-5 update. Again, packets applied to the
local host memory via DMA and they are pipelined si-
multaneously through the network towards the parity rank
1. Also acknowledgments are sent directly from the NICs.

Rank 0

NIC

DMA

HPU 0

HPU 1

HPU 2

HPU 3

Rank 1

NIC

DMA

HPU 0

HPU 1

HPU 2

HPU 3

Rank 2

NIC

DMA

HPU 0

HPU 1

HPU 2

HPU 3

Rank 3

NIC

DMA

HPU 0

HPU 1

HPU 2

HPU 3

Rank 4

NIC

DMA

HPU 0

HPU 1

HPU 2

HPU 3

Rank 5

NIC

DMA

HPU 0

HPU 1

HPU 2

HPU 3

	Abstract
	1 Motivation
	1.1 Background

	2 Processing in the Network
	3 A complete sPIN Interface
	3.1 Overview of Portals 4
	3.2 A sPIN Interface for Portals 4

	4 Prototyping sPIN
	4.1 HPU Design
	4.2 Simulation Setup
	4.3 DMA and Memory Contention
	4.4 Microbenchmarks

	5 Use cases for sPIN
	5.1 Asynchronous Message Matching
	5.2 MPI Datatypes
	5.3 Distributed RAID Storage
	5.4 Other Use Cases

	6 Related work
	7 Discussion
	8 Summary and Conclusions
	References
	A Artifact Description Appendix: sPIN: High-performance streaming Processing in the Network
	A.1 Abstract
	A.2 Description
	A.3 Installation
	A.4 Experiment workflow
	A.5 Evaluation and expected result
	A.6 Experiment customization
	A.7 Notes

	B Detailed P4sPIN Interface
	B.1 Detailed MD descriptor
	B.2 HPU Memory Management
	B.3 Header Handler Details
	B.4 Payload Handler Details
	B.5 Completion Handler Details
	B.6 Handler Actions Details

	C Computational Results Analysis: sPIN: High-performance streaming Processing in the Network
	C.1 Abstract
	C.2 Results Analysis Discussion
	C.3 Summary: Handler code used in this paper

