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Abstract—We discuss issues in designing sparse (nearest neigh-
bor) collective operations for communication and reduction oper-
ations in small neighborhoods for the Message Passing Interface
(MPI). We propose three such operations, namely a sparse gather
operation, a sparse all-to-all, and a sparse reduction operation
in both regular and irregular (vector) variants. By two simple
experiments we show a) that a collective handle for message
scheduling and communication optimization is necessary for
any such interface, b) that the possibly different amount of
communication between neighbors need to be taken into account
by the optimization, and c) illustrate the improvements that are
possible by schedules that posses global information compared
to implementations that can rely on only local information. We
discuss different forms the interface and optimization handles
could take. The paper is inspired by current discussion in the
MPI Forum.

I. INTRODUCTION

The Message Passing Interface Standard (MPI) [1] provides
different ways to realize communication patterns between
processes in a communication universe (communicator). One
way is to implement each pattern with individual send/receive
operations between pairs of processes. This can be tedious
and error-prone because the user has the full responsibility of
optimizing the communication pattern to particular network
topologies, ensuring correctness, and preventing deadlocks.
The use of such point-to-point schemes therefore often results
in suboptimal algorithms for common communication patterns
(such as a linear reduction instead of a tree-based reduction).

To alleviate these drawbacks and support parallel program-
ming at a higher, more portable level, MPI offers a set of (16)
collective operations. These embody common patterns and
operations such as broadcast, all-to-all personalized exchange,
scatter/gather and several parallel data reduction operations.
Most of these operations come in both regular and irregular
(vector) variants, the latter enabling communication of dif-
ferent amounts of data between processes in the collective
pattern. The collective operations all require participation of
all processes in the given communicator.

This set of predefined, dense communication patterns covers
a wide range of practical applications. However, parallel
scientific applications often communicate in a localized neigh-
borhood, e.g., with their neighbors in a regular or irregu-
lar mesh. In MPI, such sparse communication with only a
limited number of processes is currently not supported by
collective operations, and must instead be implemented by

the application (or by application-specific libraries such as
PETSc [2] or ScaLAPACK [3]) by means of point-to-point
communication operations. However, the operations often have
enough common structure that could conveniently be captured
by a set of additional sparse collective operations. Some
sparse collective operations, e.g., sparse, personalized all-to-all
exchange where all processes exchange data with each of their
neighbors, can be expressed by existing MPI collectives, e.g.,
a dense, irregular (vector), personalized all-to-all exchange,
in which no data are exchanged between processes that are
not neighbors (in the neighborhood of the application). This
has several disadvantages. First, it is not a natural abstraction
for applications with a very small local neighborhood (e.g.,
9-neighbor stencil in a 2-dimensional mesh) compared to the
total number of processes. This will tend to detract users from
collective operations that might otherwise have given them a
performance or portability benefit. A second drawback is that
such a solution is not scalable, e.g., the major part of the
arguments to the MPI Alltoallv call will be zeroes that will
nevertheless have to be read an interpreted by the underlying
MPI implementation. Furthermore, because MPI Alltoallv is
one of the (most) general collective operations, the optimiza-
tions (if any!) that are applied by the MPI library may be
weaker (or more time-consuming) than those that would be
possible given the knowledge that communication takes place
only in small neighborhoods. Finally, as we will see, not all
natural, sparse collective operations are easily and efficiently
expressible with the existing MPI collectives.

To address these issues, and in order to reflect current appli-
cation needs, we define three new sparse collective operations,
in both regular and irregular (vector) variants. We discuss
several design possibilities to make the proposal compatible
with the current MPI standard. More concretely, we propose
a sparse gather operation, a sparse personalized all-to-all
operation, and a sparse reduction operation (the latter being an
example of an operation that is not efficiently expressible in
terms of existing MPI collectives), and we discuss alternatives
for specifying the neighborhoods of processes. By means
of two simple experiments, we first show that scheduling
of communication can indeed have an effect on the overall
performance (time to completion) of sparse collectives, and
thereby argue that a global, collective handle is required for
performing such scheduling optimizations. Second, we show
that for the irregular sparse collectives, the actual amount of



data communication between different neighbors needs to be
taken into account in this optimization. These observations set
some natural constraints on the design of the interface, which
we elaborate on in this paper.

For the discussion of optimization/schedules we make the
simplifying, sometimes problematic assumption that processes
arrive at the sparse collective more or less at the same time.
If the processes arrive in a very unbalanced fashion other
algorithms/approaches than discussed here must be employed.
A preliminary discussion of such algorithms for the (dense)
MPI Bcast collective can be found in [4]. Another alternative
is to define the (sparse) collectives to be nonblocking, which
is touched briefly upon below.

A. Background

Many algorithms, for example weather prediction [5] and
computational fluid dynamics [6], naturally exhibit sparse
communications among neighboring elements or zones. Ad-
ditionally, many practical domain decompositions [7] result
in nearest neighbor communication patterns. Such sparse
communication patterns are very important for applications
such as Qbox [8], TDDFT/Octopus [9], QCD codes [10],
POP [11] and many more. Also libraries such as PETSc [12] or
ScaLAPACK [3], that use MPI to implement several numerical
methods and solvers, often exhibit sparse communication
patterns.

Efficient implementation of sparse communication patterns
is most important for large-scale applications. Most large-
scale parallel computers support only sparse communication
efficiently. For example, the 3d-torus Blue Gene/L [13] and
Cray XT 4 communication networks supports direct commu-
nication with six neighboring nodes most efficiently. The QC-
DOC supercomputer [14] also optimizes for nearest neighbor
communication. For such architectures, which exhibit a very
low effective bisection bandwidth, the mapping from logical
communication paths to physical channels is most important.
It is also rather clear that future massively parallel systems can
not support high bisection bandwidth for every communication
pattern [15]. Thus, the use of sparse communication techniques
and proper mapping will gain more importance in the near
future.

We assume that many such algorithms and applications
would benefit from a higher-level description of their com-
munication operations. A previous study with Octopus [16]
shows that the implementation complexity of the application
can be reduced by applying collective semantics to sparse
communication patterns.

II. SPARSE COLLECTIVE OPERATIONS

We propose three different collective operations that are
defined on process neighborhoods. Process neighborhoods are
attached to the communicator on which the collectives are
called. How neighborhoods can get associated with commu-
nicators will be discussed in Section IV. A process neighbor-
hood is a set of local neighborhoods that for each process
i consists of a list of k target processes [t0, t1, . . . , tk−1]

MPI Neighbor gather(sendbuf,sendcount,sendtype,
recvbuf,recvcount,recvtype,
comm)

Listing 1. Sparse gather collective function description.

recvbuf

sendbuf

t0

s0

s1

s2
s3

t2, s4

t3, s5

t1

s0 s1 s2 s3 s4 s5

Fig. 1. The sparse gather operation on a local neighborhood with 6
source and 4 target processes. As indicated the size of the block sent to
the target processes may be different from the size of the blocks received
from the source processes. In the regular MPI Neighbor gather operation
the received blocks all have the same size and type signature.

and a list of ` not necessarily different source processes
[s0, s1, . . . , s`−1]. In each of the sparse collective operations,
process i sends some data to its target processes, and receives
some data from its source processes. Note that a process can
be both a target and a source neighbor of itself. It is also not
required that processes are unique in the source and target lists
as long as all send/receive pairs match (see Section II-D).

As for the standard MPI collectives, data to be sent and
received are stored in send and receive buffers relative to some
start address. The order of data is given by the order of the
neighbors in the target and source lists. Data are described
by a datatype and a repetition count. The usual semantic
constraints shall apply, i.e., the datatype signature between
neighbors where data are sent and/or received must match.

a) Gather: In the sparse gather operation each process
i receives a block of data from each of its source processes
[s0, s1, . . . , s`−1], and stores the block in that order relative
to the recvbuf address. All received blocks are of the same
size. Process i sends the same block of data from its sendbuf
to its target processes [t0, t1, . . . , tk−1]. This is depicted in
Figure 1. The function description is given in Listing 1. Note
that the size of the data sent must equal the size of the data
received by each of the target processes. If a process is source
and target of itself, this implies that the size of the data sent
and received must be equal. More generally, all processes lying
on a cycle in the process neighborhood must send and receive
the same amount of data.

b) All-to-all: The sparse all-to-all personalized exchange
operation extends the sparse gather operation in that person-
alized data is sent to each target process. Thus, instead of just
a single block the sendbuf holds k blocks of data (of the
same size). The function description is shown in Listing 2.



MPI Neighbor alltoall(sendbuf,sendcount,sendtype,
recvbuf,recvcount,recvtype,
comm)

Listing 2. Sparse all-to-all collective function description.

MPI Neighbor reduce(sendbuf,sendcount,sendtype,
recvbuf,recvcount,recvtype,
op,comm)

Listing 3. Sparse reduction collective function description.

c) Reduce: In the sparse reduction operation each pro-
cess gathers data from each of its source processes, and
reduces these data into a single block using an MPI binary
reduction operator (either pre- or user-defined). Each process
contributes the same data block to each of its target processes.
A description of this function is shown in Listing 3.

The sparse reduction operation cannot easily be expressed
in terms of existing MPI collectives. The current reduction
collectives all perform a reduction on contributions from all
processes of the communicator, whereas the sparse operation
produces a value for each process computed from contributions
from the local neighborhoods. An alternative is to revert to a
general MPI Alltoallv operation, followed by local, sequential
reductions by the processes of the data from their neighbor-
hoods.

A. Irregular (vector) variants

For user convenience, in analogy with the existing MPI
collectives, we propose an irregular (vector) variant for each
of the three sparse collectives.

For the all-to-all operation this is straightforward. Each
process can send a different amount of data to each of its target
processes, now addressed by a senddispls displacement
relative to the sendbuf, and receive a different amount of
data from each of its source processes. We also propose an
MPI Alltoallw-like operation where each block to be sent
and received may have its own datatype. As will be seen
in Section II-D this is useful when the blocks have different
memory layouts.

The irregular, sparse gather operation allows that a block
of different size can be received from each source process,
whereas the same block is still sent to each target process.
Likewise, the irregular, sparse reduction operation relaxes the
constraint that the same block (of the same size) is sent for
reduction to the target processes. Instead, an individual block
can be specified for each neighbor. The proposed function
interfaces are shown in Listing 4.

B. Semantics

The proposed operations are collective and need involve-
ment of the processes of the communicator. Whereas the
existing MPI collectives require that all processes in the
communicator call the collective at the same time (i.e., with
no other collective calls in-between), it is possible to define
a more relaxed semantics for the sparse collectives. For
correctness we will always require that if process j is in the

MPI Neighbor gatherv(sendbuf,sendcount,sendtype,
recvbuf,
recvcounts,recvdispls,recvtype,
comm)

MPI Neighbor alltoallv(sendbuf,
sendcounts,senddispls,sendtype,
recvbuf,
recvcounts,recvdispls,recvtype,
comm)

MPI Neighbor alltoallw(sendbuf,
sendcounts,senddispls,sendtypes,
recvbuf,
recvcounts,recvdispls,recvtypes,
comm)

MPI Neighbor reducev(sendbuf,
sendcounts,senddispls,sendtype,
recvbuf,recvcount,recvtype,
op,comm)

Listing 4. Function descriptions for the irregular (vector), sparse collectives.

target list of process i (with multiplicity r), then process i is
in the source list of process j (with multiplicity r).

For each sparse collective, we propose/require that if process
i is calling sparse collective A, then each process j ∈

[t0, t1, . . . , tk−1] ∪ [s0, s1, . . . , s`−1] must eventually call A

with no other collective call (on the same communicator)
in-between. This means that if processes i and j are not
connected by a path in the communication neighborhood (see
below) their calls to sparse collectives can be independent of
each other. From a user’s perspective, it might not always
be easy to verify that all necessary conditions, e.g., matching
block sizes, are met. Thus, it is worth noting that they can
be automatically verified (by similar collective operations),
and thus incorporated into a verification interface as described
in [17], [18].

The relaxed calling conditions can give more flexibility
to applications with disconnected neighborhoods. Processes
in one neighborhood need not ensure that sparse collective
calls follow in the same order or with the same frequency as
sparse collective calls in another disconnected neighborhood.
The number of iterations in loops with sparse collective
calls need thus not be the same in all neighborhoods of the
communicator.

We note that this definition excludes optimizations in which
processes not actually in the neighborhood of some process
helps with routing or computation in the collective operation.
It can be shown that this can sometimes reduce the number of
communication rounds, e.g., for irregular all-to-all communi-
cation [19].

C. Nonblocking variants

Nonblocking versions of the proposed sparse collective
operations are possible. This would enable overlap of com-
munication and computation during the communication phase.
Such benefits of nonblocking nearest neighbor communication
on a graph communicator were investigated in [16]. Another,
more wide-ranging possibility that is not discussed further
here is to introduce a partial completion function to indicate
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Fig. 2. Logical nearest neighbor communication needed for a typical
ghost cell (shaded regions) update operation. The common optimization for
eliminating diagonal communication of the y regions by piggy backing on
the horizontal/vertical x communication can be done transparently to the user
by a good implementation of MPI Neighbor alltoallw.

neighbors for which data have already arrived. This would
allow finer control of the communication while retaining the
higher abstraction level and message scheduling possibilities.

D. An example: ghost cell updates

Applications that use ghost cell regions to introduce more
communication slackness update these by operations that are
captured by the sparse MPI Neighbor alltoallw operation. In
Figure 2 each processor in a mesh maintains a border of ghost
cells (shaded) that have to be exchanged with its 8 neighbors.
This pattern can be expressed as an MPI Neighbor alltoallw
sparse collective communication operation. Horizontal and
vertical x blocks are exchanged with one neighbor only, but
may typically have different layout in memory and thus differ-
ent MPI datatypes. Each of the smaller y blocks is sent to three
neighbors (horizontally, vertically and diagonally), thus the
MPI Neighbor alltoallw operation must allow overlapping
displacements.

The common optimization for saving diagonal communi-
cation, sending each y block first in the horizontal direction,
combining it with the y block from this neighbor, and then
sending both blocks in the vertical direction (see e.g., [20])
could be automatically taken care of by a good implementation
of MPI Neighbor alltoallw.

III. IMPLEMENTATION AND PERFORMANCE

We now consider one of the simplest process communi-
cation topologies in practical use [21], [22], namely a n-
dimensional mesh or torus (we chose two dimensions for
simplicity). Each process has a local neighborhood consisting
of 4 neighbors (excluding itself) as shown in Figure 3, and
sends and receives (the same amount of) data to and from all
neighbors. For this simple communication topology we give
two implementations of the MPI Neighbor alltoall collec-
tive.

A straightforward implementation queries the communica-
tor for source and target lists and posts the corresponding

Fig. 3. Two dimensional mesh or torus (wrap-around edges not shown). The
local neighborhood of each process indicated with heavy lines consists of the
same 4 source and target processes.

int MPI Neighbor alltoall(sendbuf,sendcount,sendtype,
recvbuf,recvcount,recvtype,
comm)

{
// Get source and target lists from communicator
Get alltoall targets(comm,&no of targets,target);
Get alltoall sources(comm,&no of sources,source);

for (i=0; i<no of sources; i++) {
MPI Irecv(recvbuf+i∗recvcount∗recvextent,...,

source[i],...,comm,
request[2∗i]);

}
for (i=0; i<no of targets; i++) {
MPI Isend(sendbuf+i∗sendcount∗sendextent,...,

target[i],...,
comm,request[2∗i+1]);

}
MPI Waitall(no of sources+no of targets,request,

MPI STATUSES IGNORE);
}

Listing 5. Generic, naive sparse all-to-all implementation.

nonblocking send and receive calls for all source and target
processes. This is the way that many applications currently
implement the sparse exchange pattern (cf. Section I-A). The
implementation is shown in Listing 5.

Since there is no control of the order in which the send and
receive operations are started by the underlying MPI imple-
mentation, this implementation could suffer from contention
by several source processes trying to send data to the same
target process at the same time. Furthermore, nonblocking
operations typically incur a certain overhead that could grow
considerably for larger neighborhoods than in the simple mesh
case.

By exploiting the knowledge of the global mesh topology,
a possibly more efficient implementation of the sparse all-
to-all operation would schedule communication in dimension
order, and use combined, blocking send-receive operations. If
processes can be assumed to arrive at the collective more or
less at the same time, this implementation will not suffer from
contention, and can possibly more efficiently take advantage
of bidirectional communication capabilities of the underlying
network (even in the case where the size of a dimension is
odd). This implementation is sketched in Listing 6.

Both implementations send and receive the same amount
of data without any combining or fancy rerouting, and there-
fore have the same message complexity. The first, generic,
implementation may suffer from contention, and possibly has



int MPI Neighbor alltoall(sendbuf,sendcount,sendtype,
recvbuf,recvcount,recvtype,
comm)

{
i = 0;
for (d=0; d<dim; d++) {

MPI Cart shift(comm,d,1,&down,&up);

MPI Sendrecv(sendbuf+i∗sendcount∗sendextent,...,
up,...,
recvbuf+i∗recvcount∗recvextent,...,
down,...,comm,MPI STATUS IGNORE);

i++; // next pair of neighbors
MPI Sendrecv(sendbuf+i∗sendcount∗sendextent,...,

down,...,
recvbuf+i∗recvcount∗recvextent,...,
up,...,comm,MPI STATUS IGNORE);

i++; // next pair of neighbors
}

}

Listing 6. Scheduled sparse all-to-all implementation for Cartesian meshes
and tori.
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Fig. 4. Running times for the two sparse all-to-all implementations on an
NEC SX-8 node with 8 processes.

a higher overhead due to the use of nonblocking operations,
but does not rely on global knowledge of the communi-
cation topology. The second implementation works strictly
for meshes or similar, regular topologies. Posting blocking
send-receive operations on a local neighborhood without any
knowledge of the order in which the other processes perform
the send-receive operations will deadlock in most cases. Only
for this reason, global knowledge is necessary for scheduling
blocking communication for general sparse collective oper-
ations, unless one is satisfied with the generic solution of
Listing 5.

We use a simple benchmark for measuring the time to
completion of the two alternatives. Results on a single shared-
memory node are given in Figure 4 and a results for a hybrid
x86 cluster with InfiniBand interconnect are shown in Figure 5.
We see that the generic, naive implementation (Listing 5)
can be about 10% slower than the more carefully scheduled
implementation (Listing 6).
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Fig. 6. The two exchange patterns for the irregular all-to-all benchmark.
Left: horizontal. Right: circular.

A. Irregular

We now use the dimension-scheduled implementation of
MPI Neighbor alltoall also for solving the irregular variant
of the problem. For the benchmark, we distinguish between
communication light and heavy edges and analyze the two
different exchange patterns shown in Figure 6. We refer
to these as horizontal (left) and circular (right) exchanges,
respectively.

The two patterns obviously have the same message com-
plexity (each process sends and receives two heavy and two
light messages), but whereas the horizontal pattern has all
communication in only one dimension, and can thus complete
in only two heavy rounds (right-to-left followed by left-to-
right), the circular pattern requires four heavy rounds (right-
to-left sends or receives on a heavy edge, and likewise left-to-
right sends or receives on a heavy edge. Also the two up-down
communication rounds are both heavy). It is obvious that a
different schedule could easily be used to solve the circular
problem also in two heavy rounds.

The results from the benchmark show the expected differ-
ence in performance of about a factor two on an NEC SX-
8, see Figure 7. Figure 8 shows the same benchmark for
an x86 cluster with InfiniBand. We see that the horizontal
communication is faster for all homogeneous communication
systems, however, when we mixed InfiniBand and shared
memory, we see that our scheduling performs worse. This
shows that message scheduling strategies perform differently
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on the investigated systems. Thus, an abstract interface could
not only provide higher performance but also performance
portability among different systems. This simple example
shows that scheduling optimizations that only consider the
communication topology but ignore the actual amount of data
that is transferred can perform far from optimal.

IV. SPECIFYING NEIGHBORHOODS

So far we have assumed that the local neighborhoods,
i.e., the lists of source and target processes for each process
are somehow associated with the communicator. We now
have to discuss how this can be done. It is clear that this
requires some collective call in which the processes define
their local neighborhoods and communication volumes. Such
a handle can then be used to schedule correct, deadlock-
free and efficient communication among the neighbors. This
collective handle would be responsible for computing and dis-
tributing knowledge about the global communication topology
to each process, thereby allowing it to make efficient and
correct scheduling decisions. Although the handle needs to
be collective, this does not necessarily imply that a global

MPI Neighbor alltoall set(sources,sourceweights,
targets,targetweights,
info,comm)

Listing 7. Collective handle for attaching local neighborhoods to communi-
cator (for MPI Neighbor alltoall).

MPI Neighborhood set(operation,
sources,sourceweights,
targets,targetweights,
info,comm)

Listing 8. Combined collective handle for attaching local neighborhoods to
communicator.

communication graph has to be explicitly constructed in full
by any one process. Distributed algorithms (e.g., for graph
coloring [23]) could be used to obtain enough information for
each process to make the correct scheduling and optimization
decisions.

In the following we discuss two solutions to the problem.

A. Handles taking local information

The straightforward alternative would be to introduce a
collective operation in which each process contributes its local
neighborhood in the form of source and target lists. These
lists would get associated with the communicator used in the
call, and can later be queried locally. At this point, schedules
and other optimizations can be decided (locally) for the pro-
cesses. However, since the three sparse collectives described
in Section II may use different local neighborhoods in the
application, and since the scheduling and other optimization
criteria may be different for the three collectives, it seems
that a specific handle for each type of collective would be
necessary. Thus, either three handles, as shown in Listing 7,
would have to be introduced or a composite handle, as in
Listing 8, with source and target lists for each collective as
the first argument.

The operation argument for the second possibility
could be a bit-vector of values MPI NEIGHBOR GATHER,
MPI NEIGHBOR ALLTOALL, and MPI NEIGHBOR -
REDUCE that could thus be given in any combination.

For both possibilities an MPI info object is introduced
to convey information of optimization criteria, process arrival
patterns and other information that could be relevant to the
MPI implementation. The weight arguments should reflect
(approximately) the amount of communication with neighbors,
and can be used by the MPI library to find a good schedule
for the underlying hardware architecture. Note that this is
decoupled from the actual communication amounts (given by
the send and receive counts and datatype arguments in the
actual, sparse collective calls), and it is not required that the
two are identical. If a user makes a sparse collective call
with completely different communication amounts from what
was specified in the neighborhood handle call, suboptimal
performance may be expected. Correctness must, however,
not be compromised. Thus, communication weights and info
object are only hints to the library as to what can be expected.



In MPI, lists (ordered sets) of processes are represented by
process groups. The source and target list arguments should
thus be given as process groups, although many users consider
this construct tedious. An alternative might be simply to supply
simple lists of process ranks.

B. Using the MPI virtual topology functionality

The set of all local neighborhoods, that is the source
and target lists introduced in Section II, together comprise
a directed communication graph. In MPI there is already a
mechanism for using such communication graphs to improve
communication performance. This is the virtual topology func-
tionality [1, Chapter 7]. It is therefore a natural alternative to
use this functionality also for fixing the process neighborhoods
for the sparse collective operations.

The Cartesian topology mechanism allows implicit speci-
fication of simple meshes, tori (and hypercubes). Each pro-
cess has neighbors along the dimensions. This neighborhood
communication pattern is probably too restricted for many
actual applications (that use e.g., 9-neighbor stencils in the 2-
dimensional case), and it further limits the sparse collectives
to only symmetric exchange patters. For using this, otherwise
convenient functionality, extensions that give more flexibility
would need to be considered.

The general, graph topology interface gives full flexibility
in describing neighborhoods, since communication graphs are
not required by the MPI standard [1] to be symmetric. Unfor-
tunately, in the current interface all processes are required to
supply the full communication graph. This may not be known,
and it would therefore entail global, collective communication
by the user to build this knowledge. Furthermore, the exist-
ing functionality has room neither for communication edge
weights, nor for an info object for providing information
to the MPI library. This is, however, likely to be extended
with new, more flexible functionality in upcoming versions of
the MPI standard. In order to get the list of local neighbors
that is needed to pack and access data in the communication
buffers, additional convenience functionality is needed for the
Cartesian topology functionality.

The virtual topology functionality creates a new commu-
nicator with possibly a new process to processor mapping
that can have been improved for the communication pattern
implied by the user supplied communication graph. If used
as a handle for sparse collective operations, this would also
have the effect of optimizing for these patterns. However, as
discussed above, the same neighborhood would be fixed for
all three collective operations. Furthermore, any change in
neighborhood would force the user to create a new virtual
topology communicator, and this might be rather expensive.
The solution discussed in the previous section is more flexible
in this respect.

In addition to the advantage of reusing existing (but ex-
tended) MPI functionality, the major advantage of this solution
is that process reordering (for improved point-to-point com-
munication) and optimization of sparse collective patterns is
not separated. The first alternative suffers from this drawback.

C. Programmability

Both approaches, the virtual topology and the creation of
separate handles, are mostly equivalent from a user’s per-
spective. The user has to create a (local) neighborhood at
each process and either create a topological communicator or
attach it to a neighbor operation. It was already shown in [16]
that such abstractly defined collective operations can simplify
parallel programs significantly.

D. Scheduling communication and other optimizations

For the regular, sparse all-to-all collective, the experiments
showed exchange in dimension-order to be beneficial, and this
was an example of a more general scheduling optimization.

For homogeneous, single-ported systems both the regular
and the irregular all-to-all problem can be solved by graph
edge-coloring. A communication multi-graph is constructed
where the number of edges between any pair of nodes is
proportional to the communication amount between the corre-
sponding processes. An edge coloring with colors 0 ≤ i < c

where c − 1 is the largest color used gives a deadlock-free
schedule for the communication in c communication rounds.
In round i processes sends and receives on edges with color
i. This is a common solution, see e.g., [19], with many
variations. We were deliberately vague about how to handle
directed graphs and uni- or bidirectional communication ca-
pabilities. The general edge-coloring problem is NP-complete,
but good approximation schemes exist, so that this is a viable
course for finding good schedules. Also, depending on the
communication model sometimes the problem to be solved is
a bipartite edge coloring problem (or other variant), that can
be solved in polynomial time. For non-homogeneous systems,
like SMP-clusters, this approach is not likely to produce good
results. For such cases, optimizations that combine messages
to save on communication start-ups over weak connections are
likely to pay off. Such are often implemented by users, e.g.,
sending the data to a vertical and diagonal neighbor that reside
on a process on a different SMP node in one message. Here it
is important that the interface definitions of Section II do not
preclude such optimizations.

Figure 9 finally illustrates the sensitivity of the commu-
nication schedules to process mapping on an SMP system.
The benchmark of Figure 6 was used on a 4-node SX-8
system with 8 processes per node. We compared the cases
of horizontal heavy edges, vertical heavy edges, and the
circular pattern on the MPI_COMM_WORLD communicator.
With MPI’s row major ordering, the horizontal pattern has
the most heavy edges crossing nodes, and thus performs the
worst, whereas the vertical pattern performs best, with circular
in between. We note that process reordering (which is done
by NEC’s MPI/SX implementation [24]) cannot improve the
communication in any of the cases, because the (current)
MPI topology functionality does not permit specification of
communication amounts between neighbors.
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V. CONCLUSIONS

Sparse collective operations are (together with other collec-
tive enhancements) currently under discussion in MPI Forum
for future MPI versions. In this paper we proposed three such
sparse collective communication and reductions operations,
each in a regular and an irregular (vector) variant. We proposed
two alternative ways of informing the MPI library of the local
neighborhoods of the processes.

Collective operations and collective handles for specifying
neighborhoods were designed to capture patterns in actual
applications, and should not exclude any of the optimizations
that are typically carried out by users, e.g., combination of
messages and scheduling of communication. One exception
was made: The relaxed collective semantics do not require
that all processes in the communicator always take part in a
call, and this excludes certain types of rerouting via otherwise
idle processes.

By experiments with one of the simplest sparse commu-
nication topologies it was shown that messages scheduling
is necessary for performance, especially for the irregular
operations and that global knowledge is necessary also for
correctness (deadlock-freedom). We think that these are the
side-constraints that any design for sparse collectives for MPI
must obey.
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