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Abstract— We propose a parallelization scheme for the con-
jugate gradient method by Teter et. al. and report a detailed
analysis of its scalability. We use MPI collective operations exclu-
sively to take advantage of optimized collective implementations
with possible hardware support. Our parallel conjugate gradient
calculation can be applied in addition to the already implemented
parallelism in the application ABINIT. We propose distribution
schemes for the band vectors and the 3D-FFT, and provide
both a detailed runtime and scalability analysis and a model
for the used collective operations. We use this model of collective
communication to predict the parallel scaling and to show that
the scalability is mostly limited by the communication. Our codes
scales up to 52 processors for a small 43 atom system and up to
120 processors for a larger 86 atom system for a single k-point on
our test cluster. Our results suggest that non-blocking collective
communication could be used to enhace the application running
time especially for cluster computers.

I. INTRODUCTION

Ab initio density functional theory (DFT, [28], [30]) has
proven to be an invaluable tool in understanding modern
materials. However, since this method is computationally de-
manding (O(natom3), where natom is the number of particles
in the simulation box, in our case the number of atoms in
the supercell), one is usually restricted to small model super-
cells. To tackle problems like extended defects or amorphous
systems, code optimizations and parallelization are necessary.

There are many applications available which perfom ab
initio calculations. However, many of them are only available
as binary form or the source-code is licensed restrictively
(cf. Related Work). We use the application ABINIT [20] to
implement our parallelization scheme mainly because of its
GPL license and the fact that it already implements a serial
version of the Teter method. ABINIT solves the effective
one-particle Schrödinger equation derived by means of the
DFT. This equation represents an eigenvalue problem that
has to be solved self-consistently. A self-consistency cycle
is begun by constructing a starting density and deriving a
starting potential. Then the electronic eigenvalues (bands)
and eigenvectors are determined by a band-by-band conjugate
gradient (CG) minimization scheme [38], [40], during which
the density (i.e. the potential) is kept fixed until the whole set
of functions has been obtained. At the end of one CG loop
the density is updated by the scheme of choice (e.g. simple

mixing, or Anderson mixing) [13]. For further details please
refer to [20].

A previous study with ABINIT [26] showed that the biggest
share of the calculation time (about 87%) is used to minimize
the bands with the conjugate gradient based method proposed
by Teter et. al. [40].

The following Section presents related work in the field
of quantum mechanical calculations and shows a rationale
to choose ABINIT. We analyze the current serial calculation
in Section I-C. A detailed scaling analysis is presented in
Section II followed by a brief description of the actual
implementation and measurements in Section III. Section IV
draws conclusions and points out further work.

A. Related Work

Different approaches exist to determine the ground state
atomic and electronic structure of a crystal.

Packages like the open source ABINIT and the commercial
ones VASP [41] and CASTEP [7] perform a self-consistent
field (SCF) calculation to determine the electronic ground
state for a given arrangement of atoms, respectively electrons.
The gradient of the ground state energy with respect to the
ionic positions can then be used to shift the ions towards
their equilibrium positions and repeat the electronic ground
state calculation (static relaxation). In contrast, programs like
CPMD [9] and PWSCF [8] are based on the ab initio molecu-
lar dynamics scheme of Car and Parrinello [6], where ions and
electrons are treated as classical particles, coupled by pseudo-
Newtonian equations of motion, and the positions of ions and
electrons are varied at the same time. Here the computational
effort needed to obtain a fully relaxed atomistic structure is
smaller than in the SCF ground state - static relaxation scheme.
However, during the calculation the electronic system is not in
its adiabatic ground state, and the challenge is to prevent the
algorithm from drifting too far away to converge. ABINIT is
not subject of this problem because it uses the standard SCF
calculation.

The Teter conjugate gradient has not been parallelized yet
because most programs use the scheme proposed by Car and
Parrinello [6] to solve the Schrödinger equation in parallel.
However, the above-mentioned advantages and the fact that
the Teter Method is very memory-efficient (needs only the



data for a single band to minimize it) make a parallelization
useful.

B. Introduction to Electronic Structure Calculations

In solid state physics, bonding and electronic structure
of a material can be investigated by solving the quantum
mechanical (time-independent) Schrödinger equation,

ĤtotΦ = EtotΦ , (1)

in which the Hamilton operator Ĥtot describes all interactions
within the system. The solution Φ, the wavefunction of the
system, describes the state of all N electrons and M atomic
nuclei, and Etot is the total energy of this state.
Usually, the problem is split by separating the electronic
from the ionic part by making use of the Born-Oppenheimer
approximation [4]. Next we consider the electrons as inde-
pendent particles, represented by one-electron wavefunctions
φi. Density functional theory (DFT), based on the work of
Hohenberg and Kohn [28] and Kohn and Sham [30], enables
us to represent the total electronic energy of the system by a
functional of the electron density n(~r):

n(~r) =
∑

i

|φi|2 (2)

→ E = E [n(r)] = F [n] +

∫
Vext(~r)n(~r)d~r

= Ekin[n] +EH[n] +Exc[n] +∫
Vext(~r)n(~r)d~r (3)

Thus the many-body problem is projected onto an effective
one-particle problem, resulting in a reduction of the degrees
of freedom from 3N to 3. The one-particle Hamiltonian Ĥ
now describes electron i, moving in the effective potential Veff

of all other electrons and the nuclei.

Ĥ φi = εi φi{
−~2∆

2m + Veff [n(r)]
}
φi(~r) = εi φi(~r),

where Veff [n(~r)] = Veff(r)
Veff(r) = VH(~r) + Vxc(~r) + Vext(~r) .





(4)

In (4), which are part of the so-called Kohn-Sham equations,
−~2∆

2m is the operator of the kinetic energy, VH is the Hartree
and Vxc the exchange-correlation potential. Vext is the external
potential, given by the lattice of atomic nuclei. For a more
detailed explanation of the different terms see e.g. [34]. The
self-consistent solution of the Kohn-Sham equations deter-
mines the set of wavefunctions φi that minimize the energy
functional (3). In order to obtain it, a starting density nin is
chosen from which the initial potential is constructed. The
eigenfunctions of this Hamiltonian are then calculated, and
from these a new density nout is obtained. The density for the
next step is usually a combination of input and output density.
This process is repeated until input and output agree within
the limits of the specified convergence criteria.
There are different ways to represent the wavefunction and to
model the electron-ion interaction. In this paper we focus on

pseudopotential+planewave methods.
If the wavefunction is expanded in plane waves,

φi =
∑

~G

ci,~k+~Ge
i(~k+~G)~r (5)

the Kohn-Sham equations assume the form [38]
∑

~G′

H~k+~G,~k+~G′ × ci,~k+~G′ = εi,~kci,~k+~G , (6)

with the matrix elements

H~k+~G,~k+~G′ =
~2

2m
|k + G|2δGG′

+VH(G−G′) +

Vxc(~G− ~G′) + Vext(~G− ~G′) . (7)

In this form the matrix of the kinetic energy is diagonal,
and the different potentials can be described in terms of their
Fourier transforms. Equation (6) can be solved independently
for each k-point on the mesh that samples the first Brillouin
zone. In principle this can be done by conventional matrix
diagonalization techniques. However, the cost of these meth-
ods increases with the third power of the number of basis
states, and the memory required to store the Hamiltonian
matrix increases as the square of the same number. The
number of plane waves in the basis is determined by the
choice of the cutoff energy Ecut = ~2/2m|~k + ~Gcut|2 and
is typically of the order of 100 per atom, if norm-conserving
pseudopotentials are used. Therefore alternative techniques
have been developed to minimize the Kohn-Sham energy
functional (3), e.g. by conjugate gradient (CG) methods (for
an introduction to this method see e.g. [36]). In a band-by-
band CG scheme one eigenvalue (band) εi,~k is obtained at a
time, and the corresponding eigenvector is orthogonalized with
respect to the previously obtained ones.

C. Conjugate Gradient

The conjugate gradient method itself is an enhancement of
the steepest descent method [17]. Both methods can be used
to minimize the value of a function f(~x), where ~x is a n-
dimensional vector. The search direction in the n-dimensional
space for each iteration is the direction of the steepest descent:

~di = − ∂f
∂~xi

= −G~xi , (8)

where G is the gradient operator. The search continues in
the direction of ~di. The size of the step depends on the
function f(~x). The length can be found by calculating the
point on the line ~x + a~d where the gradient is orthogonal to
the search direction. This can be done by solving the equation
~d · G(~x + a~d) = 0. This technique reduces the value of the
function along a specific line in the n-dimensional space and
introduces slight errors at each iteration (moves in several
dimensions away from the minimum). The conjugate gradient
technique minimizes this error by taking the direction vector
of the previous iteration into account (see [17] for a detailed
description). The conjugate gradient vector ~c in iteration i can



be derived from ~ci−1 and the steepest descent vector ~d as
follows:

~ci = ~di + γi~ci−1, (9)

with γi =
~di · ~di

~di−1 · ~di−1
. (10)

This scheme leads to the exact solution of a n-dimensional
problem in n steps. Teter et al. adapted this method to
the minimization of the bands in ab initio calculations. The
considered function f(~x) is the Kohn-Sham energy functional
[40] E and the vector ~x with the wave function ψe of the
actual band (electron). The elements of ψe are the wave
function coefficients relative to the plane wave basis ei·~k~r. The
Hamilton operator H takes the place of the gradient operator
G. The steepest descent search direction at a given position
ψe is given by (see equation (8))

χie = −(H − λie)ψie, (11)
λie = 〈ψie|H |ψie〉. (12)

We have to preserve the orthogonality constraint for total
energy band structure calculations. The easiest way to do this
is to orthogonalize the conjugate gradient vector to all bands.
This can be done by a simple projection of ψ on each band,

χ
′i
e = χie −

∑

j 6=e
〈ψj |χie〉ψj . (13)

A preconditioning scheme is used to accelerate the conver-
gence. This scheme is described in [40] and uses a diagonal
polynomial matrix ~p(f) with fipw = Ekin(ipw)

Eekin
. Ekin(ipw)

denotes the kinetic energy of the plane wave ipw. The pre-
conditioning is applied to the direction vector:

χ
′′i
e = ~p(f)χ

′i
e . (14)

The new direction vector χ
′′i
e is not orthogonal to all bands

(due to preconditioning) and requires a new orthogonalization
step identical to equation (13). Now the preconditioned steep-
est descent direction χ

′′i
e is calculated and used to aquire the

conjugate gradient direction. According to equation (9) and
(10), the conjugate gradient vector τ ie in iteration i equals to
(note that γie differs from (10) due to preconditioning)

τ ie = χ
′′i
e + γieτ

i−1
e , (15)

with γie =
〈χ′′ie |χ

′i
e 〉

〈χ′′i−1
e |χ′i−1

e 〉
. (16)

A next step includes the orthogonalization of τ ie to the current
band and the normalization of τ ie ,

τ
′i
e = τ ie − 〈ψie|τ ie〉ψie , (17)

and τ
′′i
e =

τ
′i
e√

〈τ ′ie |τ ′ie 〉
. (18)

The remaining steps to aquire the length of the conjugate gra-
dient vector are not discussed in detail because no new classes
of computational operations are added. A single application
of the Hamilton operator equivalent to equation (12), two dot

products (xDOT), and scaled vector additions (xAXPY) are
added in the last part of the computation. The reader may refer
to [38], [40] for a detailed description. Different linear algebra
operations are identified by their BLAS [31] abbreviations (e.g.
xDOT for dot product) in the following.

II. PARALLELIZATION

The band-by-band minimization as described in Section I
can be performed with standard linear algebra operations and
the application of the Hamilton operator. We come upon
four necessary basic operations, dot products (xDOT - equa-
tions (11,13,16,17,18)), vector scaling (xSCAL - equations
(13,14,15)), vector addition (xAXPY - equations (13,15,17))
and the application of the Hamilton operator. The Hamilton
operator can be split into the kinetic energy term and the local
and non-local operators,

H = Eekin + V eloc + V enl . (19)

The operators of Eekin and V eloc are applied in reciprocal space
(k-space), while the operator V enl is applied in real space. The
transition from reciprocal to real space is done with a 3D-FFT
which has to be performed on both directions (transform to real
space, apply potential operator, transform back to reciprocal
space).

Our parallelization scheme is distinct from already imple-
mented schemes as k-point parallelization or band paralleliza-
tion. We calculate the linear algebra and the 3D-FFT in parallel
by distributing the plane wave coefficients (vector elements)
and real space grid points among the different processors. This
scheme allows us to incorporate both available established
schemes (band, k-point) in a later stage of the development.
The parallelization strategy and scalability prediction is pre-
sented in the following sections.

A. Linear Algebra

We use a simple and well understood distribution scheme
for the parallel conjugate gradient. The plane wave coefficients
are distributed among different processors. The maximum
number of plane waves is called npw and a single plane
wave is addressed as ipw. As we concentrate on an ideal
load balancing to avoid process skew during calculation, we
distribute the vectors equally. The number of processors is P
and each processor owns npw/P plane wave coefficients (a
processor may have less, if npw/P /∈ N). The analysis of the
different vector operations (xDOT,xSCAL,xAXPY) shows that
only xDOT requires communication. We used the collective
operation MPI ALLREDUCE on an isolated communicator
to perform this task. The parallel running time tlin can be
described as:

tlin = tcalc,lin + tred(P, 1)

with tcalc,lin =
npw

P
· nlin · tnpw. (20)

tred(P, count) represents the time to perform
MPI ALLREDUCE for count double complex values
on a communicator with P nodes, nlin the number of vector



operations between two communication steps and tnpw the
time to fetch, multiply and store two double complex
values. The vector distribution scheme is shown in Figure 1.
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Fig. 1. Plane wave coefficient vector distribution scheme for npw = 15 and
P = 4. Each Processing Element holds a group of coefficients.

B. 3D-FFT

The 3D-FFT implementation is based on Stefan Goedecker’s
serial implementation for Abinit [18] which leverages the
special properties of the ab initio FFT and avoids the trans-
formation of zeros (see Figure 2), thus saving a huge amount
(around 50%) of the computational time. This prevents the
usage of standard optimized FFT libraries as FFTW [14] or
vendor optimized FFT libraries because they can not take
advantage of the special properties of the FFT space. We
parallelized the serial FFT to work in two steps. The first
transformation is done over all z-planes of the FFT box in
parallel and the second one over all xy-lines in parallel. If
Nx, Ny, Nz denote the number of grid points in each direction,
every processor has Nz/P z-planes and Ny ·Nx/P xy-lines.
We need two global communication operations to implement
this. Each processor has to gather all needed plane wave
coefficients before transforming its z-planes. This communi-
cation operation may be unbalanced because each processor
needs a different amount of coefficients (see Figure 2), but
experimental results show that the effect of this commu-
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Fig. 2. Example of a 3D-FFT with Nx = Ny = Nz = 9 and 4 Processing
Elements

nication unbalance is negligible. Another global exchange
has to be performed between z-plane transformation and xy-
line transformation. We use MPI ALLTOALL with a seperate

communicator for this step to enable the MPI implementation
to optimize communications. The time of this computation
step can be assessed as

tges,fft = tcalc,fft + tcomm,fft

with tcalc,fft =
Nz
P
· tfft,z +

Nx ·Ny
P

· tfft,xy. (21)

The communication time for the irregular distribution is hard
to assess, we present a worst-case calculation with

tcomm,fft = ta2a(P, npw/P ) + ta2a(P,Nx ·Ny/P ) ,

where ta2a(P, count) is the MPI ALLTOALL communication
time of count double complex values between P partners.

C. Collective Communication

The running times of the collective communication op-
erations can be modelled with a simple network model.
Previous studies [25] showed that the LogP model (consisting
of the parameters Latency, overhead, gap and Number of
Processors, see [10]) is well suited to assess the running time
of collective communication for small messages. Additional
studies [39] show that the extended LogGP model (which
adds an extra Gap parameter to model the gap per byte for
bulk transfers, [2]) is well suited to model larger messages.
The used Open MPI [15] with the basic collective component
performs MPI ALLREDUCE as MPI REDUCE to node 0
followed by MPI BCAST to all nodes. MPI REDUCE and
the MPI BCAST are implemented as a binomial tree (∀P > 8)
and MPI ALLTOALL is implemented linearly. We use the
LogP model and assume a simple linear scaling with the mes-
sage size to simplify the model equations. This simplification
is valid because all communication operations used in the
linear algebra part (Section II-A) communicate only a single
double complex value. The number of communicated
values in the 3D-FFT is indirectly proportional to the number
of processors P . Thus, we can assume small message sizes
for a large number of processors. The running times of the
allreduce operation can be assessed as (see [25] Section 4.2
or Fig. 7)

tred(P, size) = 2 · size · (2o+ L+ (dlog2P e − 1) · (22)
max{g, 2o+ L}) .

The alltoall communication time can be estimated by

ta2a(P, size) = size · (P · (2o+ L) + (P − 1) · g) .(23)

III. IMPLEMENTATION AND MEASUREMENTS

We used Kielmann’s logp-mpi benchmark [29] to assess
the LogP parameters for the used InfiniBandTM network and a
data size of 16 bytes (a single double complex value). The
benchmark returned L = 9.78µs, o = 0.05µs and g = 0.01µs.
As a test system we used a typical supercell which is employed
to model electronic properties of the silicon (Si) - silicon oxide
(SiO2) interface in microelectronic devices.

The parametrized functions are shown together with col-
lective benchmark results returned by the Pallas Microbench-
mark [37] in the upper part of Figure 3. We see that our
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LogP model for the collective operations (equations (22) and
(23)) overestimates the real results slightly. This is due to
a special property of the used InfiniBandTM interconnect.
We investigated this behavior and proposed a more accurate
model for InfiniBandTM in [24], [27] but we accept this small
overestimation for this study to ensure simplicity.

We implemented our proposed scheme in ABINIT 4.6.5 by
modifying the routine cgwf. Only collective communication
operations are used to exchange data. This enhances optimiza-
tion possibilities and readability (cf. [21]) of the code. The
strong scaling results for two small Si−SiO2 systems with 43
atoms, 126 bands, 48728 plane waves and a 61x61x256 FFT
grid as well as 86 atoms, 251 bands, 97624 and a 81x81x256
FFT grid are shown in the lower part of Figure 3. The diagram
shows that the parallel speedup saturates around P = 22 for 43
atoms and around P = 40 for 86 atoms. We used MPE2 and
Jumpshot [42] to measure the communication overhead of the
calculations with 43 atoms. The upper part of Figure 4 shows
the predicted and measured overhead. The predicted functions
for tred and ta2a were deduced from (22) and (23). Our code
issues 9 reduction operations with a single element per band
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(double complex, see (11,16,17,18)). Two times nband
reduction operations are issued to orthogonalize the direction
vector to all other bands (see (13)). Alltogether all mentioned
operations have to be performed for each band per SCF cycle.
Thus, nband · (9 + 2 ·nband) reduction operations have to be
performed:

ored(P ) = nband · (9 + 2 · nband) · tred(P, 1) .(24)

For 126 bands and with (22) combined with our measured
LogP parameters we get

ored(P ) = 126 · (9 + 2 · 126) · 2 · (dlog2P e · 9.88)

= 65772 · (dlog2P e · 9.88) (25)

The overhead prediction for oa2a(P ) can be assessed similarly.
The prediction underestimates the real overhead because it
does not take the process skew and additional synchronization
overheads into account. The measured overhead shows the
maximal overhead for all processes. We see that the additional
synchronization overhead is not neglegible and slows down the
collective communication. However, the scaling predictions
of the communication overhead are correct (MPI ALLTOALL



remains constant and MPI ALLREDUCE grows logarithmi-
cally). The lower part of Figure 4 shows the accumulated
predicted overhead (ored(P ) + oa2a(P )) and the ideal scaling
curve of cgwf (t(P = 1)/P ). The overhead crosses the
ideal scaling at P ≈ 52. At this point saturation is reached
and additional parallelization can not lead to any speedup (t
increases due to logarithmic scaling of ared(P )). We see the
same saturation effect in the lower part of Figure 3. We have
to solve the following equation to deduce the exact crossing
point:

tidealscal = oges
t(P = 1)

P
=

ta2a(P, count) + tred(P, count)

t(P = 1)
(26)

In the 86 atom example (omitted due to space restrictions)
the saturation occurs around P ≈ 120. However, since at
this point the scaling is already far from ideal, using P =
120 would mean a waste of resources. Usually one has to
define a overhead which is still meaningful (e.g. 50%) and
solve (26) for o

′
ges = 50% · oges. Doing so for our 43 atom

example results in P50% ≈ 28 which is a reasonable number
of processors for this problem size.

A. Scaling with the System Size

The three basic parameters nband, npw and nfft = Nx ·
Ny · Nz scale linearly with the number of atoms natom. If
we assume this linear dependency, the calculation time

tcalc,ges ∼ nband · (tprojbd + tcalc,lin + tcalc,fft) (27)

(see (13,20,21)) with tprojbd = nband · tcalc,lin scales with
O(natom3/P ). The communication overhead

ocomm,ges ∼ nband ·
(nband · tred(P, 1) + ta2a(P, 1)) (28)

scales with O(log2P · natom2) in P and natom. We see
that, for a fixed number of processors, P , the communication
complexity (O(natom2)) is much lower than the computation
complexity (O(natom3)). Thus we should be able to reach
a very high reasonable speedup (e.g. 50% communication
overhead) by slightly scaling the system. Typical systems we
would like to calculate have about 500 atoms and should not
be limited in theoretical scaling with today’s supercomputers.

B. Overlap of Computation and Communication

This section analyzes if and how our proposed paralleliza-
tion scheme can benefit from the overlapping of communica-
tion and computation. This is meant as an outlook to possible
future work to reduce the overhead caused by the collective
operations. Overlapping of computation and communication
is a common tool to increase the scalability of parallel ap-
plications by lowering their communication overhead (cf. [1],
[3], [5], [11], [12], [33]). However, this scheme does only
apply to point-to-point communication operations because
non-blocking collective operations are not defined in the de-
facto standards of parallel computing (MPI [35]/PVM [16]).
We are currently developing an extension to the MPI standard

to support non-blocking collective operations [23]. First results
(cf. [22], [32]) indicate a reasonable potential for overlapping.

To assess the potential of overlapping for our paralleliza-
tion of the Teter scheme, we can distiguish between the
linear algebra parallelization of the dot-products that uses
MPI ALLREDUCE to perform this operation and the 3D-FFT
that uses MPI ALLTOALL.

The MPI ALLREDUCE can not be overlapped for the
calculation for a single band because the result is needed
immediately after the operation. There is no calculation which
can be performed without having the reduced value. However,
ABINIT is able to calculate more than a single band in parallel.
This could be used, together with a double-buffering technique
which calculates more than a single band on one process
in ”parallel”, to enable overlapping of communication and
computation.

The MPI ALLTOALL can be overlapped with a pipelined
technique of the parallel 3D-FFT which uses the available
network bandwidth more efficiently (cf. [19]).

The potential to increase the efficiency of overlapping com-
munication and computation while retaining all the advantages
of collective communication is given and can be applied to
our parallelization. However, the implementation requires new
programming concepts which have to be tested with smaller
examples before it can be applied to a complex real-world
application like ABINIT.

IV. SUMMARY AND CONCLUSIONS

We show a parallel implementation of Teter’s band-by-
band conjugate gradient scheme which uses only collective
communication (cf. [21]). The analysis of the parallel scaling
and the communication overhead and the provided model
for the used collective communications shows that our im-
plementation is scalable. Our model is also able to predict
the number of processors to run specific calculations with
a reasonable overhead. Comparisons of the prediction with
the real scaling show the accuracy. We show that the simple
LogP model is able to predict communication latencies quite
accurately and that the parallel scaling of our implementation
is mainly limited by the communication overhead. A new
concept of non-blocking collective communication would help
to overlap communication with computation and lead to lower
overheads and better scaling. That could benefit especially
cluster computers with restricted communication performance.
In the future we are going to evaluate the suitability of non-
blocking collective communication and provide a proof of
concept code. So far, our code scales up to 28 processors for
a small 43 atom system and up to ≈ 50 processors for a larger
86 atom system.
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