ETHzlirich T R PR s ‘wemaan DINFK

TORSTEN HOEFLER

Performance Reproducibility —an Oxymoron? PRSP o
A nui ko'iko’i pilika e

'''''

v o en ETHzUrich

“In the good old days physicists repeated each other’s
experiments, just to be sure. Today they stick to
FORTRAN, so that they can share each other’s

programs, bugs included.” — Edsger Dijkstra (1930-
2002), Dutch computer scientist, Turing Award 1972

v o en ETHzUrich

Reproducibility and replicability? Nature, May 2016
HAVE YOU FAILED TO REPRODUCE

= Reproducibility — get the exact results AN EXPERIMENT?

. Replicability _ repeat the effect/i nsig ht Most scientists have experienced failure to reproduce results.
® Someone else’'s & My own

HOW MUCH PUBLISHED WORK IN YOUR .)
Chemistry ; 5

FIELD IS REPRODUCIBLE?

Physicists and chemists were most confident in the literature. _
PHYSICS AND o |nCIUdeS CS/H PC @ Blology T S R R
CHEMISTRY ENGINEERING OTHER : x S :

100 | U e e e
% Physics and [N . o
en gineering . ?» i ;;’ g a ’

-1

Medicine

Earth and
environment

% of published literature that
is reproducible (predicted)
/’)‘

Other i

o
N
o
B
o
o
0
o
(S
o
O P
N

25% of respondents

v o en ETHzUrich

Functional reproducibility is relatively simple — release the code!

docker

s
jupyter

Notebook

Single-threaded, if you don’t care much about performance

Gets a bit more complex when you share parallel codes (IEEE 754 is not associative)

IPDPS’14

Designing Bit-Reproducible Portable High-Performance Applications*

Andrea Arteaga Oliver Fuhrer Torsten Hoefler
ETH Zurich, Switzerland Federal Office for Meteorology and Climatology ETH Zurich, Switzerland
andrea.arteaga@env.ethz.ch MeteoSwiss, Zurich, Switzerland htor@ethz.ch

oliver.fuhrer @meteoswiss.ch

Abstract—Bit-reproducibility has many advantages in the
context of high-performance computing. Besides simplifying
and making more accurate the process of debugging and
testing the code, it can allow the deployment of applications
on heterogeneous systems, maintaining the consistency of the
computations. In this work we analyze the basic operations
performed by scientific applications and identify the possible
sources of non-reproducibility. In particular, we consider the
tasks of evaluating transcendental functions and performing
reductions using non-associative operators. We present a set

runs is often of key importance in order to locate and
isolate bugs. Especially, when refactoring an application in
a way that the results should not change, reproducibility
can significantly ease testing. However, debugging is only a
secondary use-case for us. Many applications being run on
large, parallel high performance computing facilities simu-
late the behavior of complex and highly non-linear systems.
Prominent examples can be found in molecular dynamics or
weather and climate simulation. For example, for weather

Number of MPI processes (22° values per process)
1 4 16 64 256 1024 4096 16384

I Local computation onhrmin mx sl v on os o
I Communication s e e s s s 0

N W A~ O
I I I I |

-

Time (normalized to conv)

o

Figure 8. Performance comparison of conventional reduction performed
with MKL (Conv), single-sweep reduction with two levels (Single2), with
three levels (Single3) and double-sweep reduction with 1 level (Double 1)
on varying number of processes, each owning 229 double-precision values,

v o en ETHzUrich

Reproducing performance results is hard! Is it even possible?

v o en ETHzUrich

Replicating performance results is possible but rare! Make it the default?

v oo en ETHzUrich

HPC Performance reproducibility — don’t even try?

= Repro
Replicabili

; i L=

\ ’ﬁ @t

;.

Small Quiz

L
f
/
T
Raise your hand if you believe one can reproduce
any Gordon Bell finalist from before 2013!

Interpretability: We call an experiment interpretable if it provides enough
information to allow scientists to understand the experiment, draw own
conclusions, assess their certainty, and possibly generalize results.

v e on EETH zUrich
How does Garth measure and report performance?

= We are interested in High Performance Computing
= We (want to) see it as a science — reproducing experiments is a major pillar of the scientific method

= When measuring performance, important questions are
» “How many iterations do | have to run per measurement?”
“How many measurements should | run?”
“Once | have all data, how do | summarize it into a single number?”
“How do | compare the performance of different systems?”
“How do | measure time in a parallel system?”

= |asked: “How are they answered in the field today?”
= “Experience”
= “Gut feeling”
= “Clever observation”

v o en ETHzUrich

The simplest networking question: ping pong latency!

1200

The latency of
Piz Dora is
1.77us!

How did you
get to this?

600 800 1000
1 | |

400
|

| averaged 106
tests, it must be
right! o

200
|

Why do you
think so? Can |
see the data?

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06
sample

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

v o en ETHzUrich

Thou shalt not trust your average textbook!

The confidence a) Original b) Log Norm ¢) Norm K=100
interval is 1.765us 5107 20- 30+ |H| Did you assume
to 1.775us @10- 201 || normality?
[} 10 ||
D 5‘ | J 10' || |
‘ | ;e' |
01— 0 ——— P ——
vYO® X 9O 0 &> A¥ o N A2 O \90 \9‘0
Latency (us)
06 a) Original b) Log Norm c) Norm K=100) Norm K=1000
2 r r *11.957 .
"35— : 1.6- ; -~
| © g ¢ 2.0 !
> . : ¥ [1.904
&4 e 1.2 :
. : P (1.9 !
B.S 2 0‘8_‘/ 1.85
2-“)” -
_ e il I N 2o s 1 < N
Ugs, the data is not Q 9 9 o 9 X 9 O 94 W Q@ 9 o e st o
normal at all! The real Theoretical Quantiles _
normality?

Cl is actually 1.6us to
1.9us!

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

v o en ETHzUrich

Thou shalt not trust your system!

Look what - \) Piz Dora
data | got! Min: 1.57 A\ Median Arithmetic Mean
6- Max:7.2 , \ e ol

99% Cl (Mean)
i o

—1—

\ | |

| 99% Cl{Median)
1.6 17 18 1.9 20
Pilatus
Median Arithmetic Mean
N — /

Clearly, the

mean/median are
not sufficient! 99% Cl (Median) —

/99% Cl (Mean)

Try quantile - - : , : -
regression! : 1.6 Tl T 1.8 1.9 2.0

AP

Quantile regression

Piz Dora

spcl.inf.ethz.ch

3y @spcl_eth

ETHziirich

Wow, so Pilatus is better for (worst-
case) latency-critical workloads even
though Dora is expected to be faster

Min: 1.57 N Median Arithmetic Mean
6- Max:7.2 £\ - sl
99% Cl (Mean)
-2
4- \ | l
v“" ‘.’.“ I I — —
5. / 99% Cl{Median)
ao‘ | 4‘.7../ - n\""»‘ - B | =t N
‘w 1.5 1.6 1.7 1.8 1.9
s B Pilatus
a iin: 1.48 Median _ Arithmetic N
9. Max:11.59 i s
6- 99% Cl
99% Cl (Median) R
3. ‘ H
o) S — =
15 1.6 1.7 . 1B 1.9
Time
TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

Piz Dora (intercept)

| e

01 02 03 04 05 _ 06 07 08 09
Quantiles

Pilatus (difference to Piz Dora)

..... 00000000 000000000000000000004400 cen,
L L

N
o * .

01 02 03 04 05 06 07 08 09
Quantiles

v o en ETHzUrich

A note on good scientific HPC practice © - HPL

= Rank-based measures (no assumption about distribution)
» Essentially always better than assuming normality

= Example: median (50t percentile) vs. mean for HPL
» Rather stable statistic for expectation
= Other percentiles (usually 25t and 75™) are also useful

fﬂin 3 }/\edianf/Arithmetic Mean 1/95% Quantile |
I I : May |

2 L 2 fa Sy

(% Q. N]/

0.15- &' § '8 :§ |3

= | B = b T3

s |lr @ % 3

- R N i% 9 o
G — 4 | = . : |
20'1 ¢ [l 999 c1 |1 : j
) I] (median) |]
Q | : : 1
0.05¢ ! T : : |
I MM 0] : ’:I
0001 - ! .

280 300 320 340

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15 Completlon Tlme (S)

v o en ETHzUrich

But it’s ok, HPC people can laugh about ourselves!

1991 — the classic!
~ : Twelve Ways to Fool the Masses When Giving
ﬁyﬂ Performance Results on Paralle] Computers
2012 — the shocking i
1= 1 .1 - . L 1- 1N

Abstract Ho 2013 — the extension

Many of us P |tfa |

quite difficy

supercompt

scientific pg

these result

Yes, this is a

T— Fooling the Masses with Performance

Results: Old Classics & Some New Ideas garlic press!

Gerhard Wellein®?), Georg Hager®@

_| (Department for Computer Science ARy
(@Erlangen Regional Computing Center E ST==="chlAncen-nunnsena

TECHNISCHE FAKULTA

Friedrich-Alexander-Universitit Erlangen-Niirnberg

v o en ETHzUrich

Our constructive approach: provide a set of (12) rules

= Attempt to emphasize interpretability of performance experiments

= Teach some basic statistics Nature. 2016
_ WHAT FACTORS COULD BOOST
= The set of 12 rules is not complete REPRODUCIBILITY?
= And probably never will be Respondents were positive about most proposed improvements

but emphasized training in particular.

= |ntended to serve as a solid start

_ _ ® Very likely Likely
= Call to the community to extend it : ;

Better understanding
of statistics

Better mentoring/supervision
Scientific Benchmarking of Parallel Computing Systems

Twelve ways to tell the masses when reporting performance results More robust design

Better teaching

Torsten Hoefler Roberto Belli
Dept. of Computer Science Dept. of Computer Science
ETH Zurich ETH Zurich N . :
Zurich, Switzerland Zurich, Switzerland More within-lab validation
htor@inf.ethz.ch bellir@inf.ethz.ch
ABSTRACT Reproducing experiments is one of the main principles of the sci- |ncent|ves fOT better praCtlce

entific method. It is well known that the performance of a computer
program depends on the application, the input, the compiler. the

Measuring and reporting performance of parallel computers con-

Incentives for formal
reproduction

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

v o en ETHzUrich

The most common issue: speedup plots
e . | can'’t tell if
Check out my YIRS B [s s useu
wonderful - 1o at alll
Speedup! o et '
5 60 | (- ‘;:;.‘;.;;g,’..‘,.
C% 40 | =)
20 1 Isa,.».—.;:g? =
O HENE
8 16 24 32 40 48 56 64 72 80 88 96
Number of CPUs

= Most common and oldest-known issue
= First seen 1988 — also included in Bailey’s 12 ways
= 39/120 checked papers reported speedups
15 (38%) did not specify the base-performance &
» Recently rediscovered in the “big data” universe
A. Rowstron et al.: Nobody ever got fired for using Hadoop on a cluster, HotCDP 2012

F. McSherry et al.: Scalability! but at what cost?, HotOS 2015

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

v o en ETHzUrich

Rule 1: When publishing parallel speedup, report if the base
case Is a single parallel process or best serial execution, as
well as the absolute execution performance of the base case.

= A simple generalization of this rule implies that one should never report ratios without
absolute values.

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

v o en ETHzUrich

Rule 2: Specify the reason for only reporting subsets of
standard benchmarks or applications or not using all system
resources.

= This implies: Show results even if your code/approach stops scaling!

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

v o en ETH zUrich

Rule 3: Use the arithmetic mean only for summarizing costs.
Use the harmonic mean for summarizing rates.

Rule 4: Avoid summarizing ratios; summarize the costs or
rates that the ratios base on instead. Only if these are not
available use the geometric mean for summarizing ratios.

= 51 papers use means to summarize data, only four (!) specify which mean was used
= Asingle paper correctly specifies the use of the harmonic mean
= Two use geometric means, without reason

= Similar issues in other communities (PLDI, CGO, LCTES) — see N. Amaral’s report
= harmonic mean < geometric mean < arithmetic mean

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

v o en ETHzUrich

Rule 5: Report if the measurement values are deterministic.
For nondeterministic data, report confidence intervals of the
measurement.

= Most papers report nondeterministic measurement results
= Only 15 mention some measure of variance
= Only two (!) report confidence intervals

= Cls allow us to compute the number of required measurements!

= Can be very simple, e.g., single sentence in evaluation:
“We collected measurements until the 99% confidence interval was within 5% of our reported means.”

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

v o en ETHzUrich

Rule 6: Do not assume normality of collected data (e.g.,
based on the number of samples) without diagnostic checking.

= Most events will slow down performance
= Heavy right-tailed distributions

= The Central Limit Theorem only applies asymptotically
= Some papers/textbook mention “30-40 samples”, don’t trust them!

= Two papers used Cls around the mean without testing for normality

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

v o en ETHzUrich

How many measurements are needed?

= Measurements can be expensive!
» Yet necessary to reach certain confidence

= How to determine the minimal number of measurements?
= Measure until the confidence interval has a certain acceptable width
» For example, measure until the 95% CI is within 5% of the mean/median
= Can be computed analytically assuming normal data
= Compute iteratively for nonparametric statistics

= Often heard: “we cannot afford more than a single measurement”
= E.g., Gordon Bell runs
= Well, then one cannot say anything about the variance
Even 3-4 measurement can provide very tight Cl (assuming normality)
Can also exploit repetitive nature of many applications

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

v o en ETHzUrich

Time in parallel systems

That's nonsense!
My simple
broadcast takes
only one latency!

But | measured it N e y ,'_'_.A'.;, ,.'.'...’.‘ y f.'...‘.‘ AR WR— I—
so it must be true! : . ;

’ ‘. . ’ .
.
‘. ’ 4 ‘. ‘.
. M
.......................... 2l SR alis PEESR FAARREERA] IRt SRT Ottt SRRy PSRk oy eaS re eaC
. ’ ’ . ’
.

t = -MPI_Wtime(): | - ,__, ________________________ operation

for(i=0; i<1000; i++) { s lag” o G | separately!
MPI_Bcast(...);

}

t += MPI_Wtime();

t /= 1000;

v o en ETHzUrich

Rule 10: For parallel time measurements, report all
measurement, (optional) synchronization, and summarization
techniques.

= Measure events separately
» Use high-precision timers
= Synchronize processes

= Summarize across processes:
» Min/max (unstable), average, median — depends on use-case

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

v o en ETHzUrich

We have the (statistically sound) data, now what?

0.7 [. | | 1(n=2100)?
"~ |dgemm + L —
0.6 £
-4
0.5 " i
— +
_ t(n=1510)? I\
», 04t | | x .
=+
i: 0.3 B ' ++ -
+
0.2 - +++ .
+
++
01 B : +++ 7 . -
++t Matrix Multiply
0 lllll:J_—-!-|-+++++++J 1 1 I i t(n):a*n3
0 300 600 900 1200 1500 1800 2100
Size (N)

The 99% confidence interval is within 1% of the reported median.

TH, W. Gropp, M. Snir, W. Kramer: Performance Modeling for Systematic Performance Tuning, IEEE/ACM SC11

v o en ETHzUrich

TH, W. Gropp, M. Snir, W. Kramer: Performance Modeling for Systematic Performance Tuning, IEEE/ACM SC11

Conclusions and call for action

HPC performance is not reproducible

Interpretability fosters scientific progress
= Enables to build on results

» Sounds statistics is the biggest gap today

We need to foster interpretability

= Do it ourselves (this is not easy)

= Teach young students

= Maybe even enforce in TPCs

See the 12 rules as a start

= Need to be extended (or concretized)

= Much is implemented in LibSciBench [1]

My inner mathematician to the HPC crowd:
Landau really thought about this hard ©

O(100) = O(10) = O(105) = O(0.5) = O(1)

.~ Mahalo Keli’i!

[1]: http://spcl.inf.ethz.ch/Research/Performance/LibLSB/

[

spcl.inf.ethz.ch

3y @spcl_eth

and a shameless plug!

Demystifying Parallel and Distributed Deep Learning: An In-Depth
Concurrency Analysis

TAL BEN-NUN" and TORSTEN HOEFLER, ETH Zurich

Deep Neural Networks (DNNs) are becoming an important tool in modern computing applications. Accelerating
their training is a major challenge and techniques range from distributed algorithms to low-level circuit
design. In this survey, we describe the problem from a theoretical perspective, followed by approaches
for its parallelization. Specifically, we present trends in DNN architectures and the resulting implications
on parallelization strategies. We discuss the different types of concurrency in DNNs; synchronous and
asynchronous stochastic gradient descent; distributed system architectures; communication schemes; and
performance modeling. Based on these approaches, we extrapolate potential directions for parallelism in deep
learning.

CCS Concepts: » General and reference — Surveys and overviews; - Computing methodologies — Neu-
ral networks; Distributed computing methodologies: Parallel computing methodologies: Machine
learning;

Additional Key Words and Phrases: Deep Learning, Distributed Computing, Parallel Algorithms

ACM Reference format:
Tal Ben-Nun and Torsten Hoefler. 2018. Demystifying Parallel and Distributed Deep Learning: An In-Depth
Concurrency Analysis. 60 pages.

1 INTRODUCTION

Machine Learning, and in particular Deep Learning [LeCun et al. 2015], is a field that is rapidly
taking over a variety of aspects in our daily lives. In the core of deep learning lies the Deep Neural
Network (DNN), a construct inspired by the interconnected nature of the human brain. Trained
properly, the expressiveness of DNNs provides accurate solutions for problems previously thought
to be unsolvable, simply by observing large amounts of data. Deep learning has been successfully
implemented for a plethora of subjects, ranging from image classification [Huang et al. 2017],
through speech recognition [Amodei et al. 2016] and medical diagnosis [Ciresan et al. 2013], to
autonomous driving [Bojarski et al. 2016] and defeating human players in complex games [Silver
et al. 2017] (see Fig. 1 for more examples).

ETH:zurich

http://spcl.inf.ethz.ch/Research/Performance/LibLSB/

v o en ETHzUrich

28

v o en ETHzUrich

Rule 11: If possible, show upper performance bounds to
facilitate interpretability of the measured results.

= Model computer system as k-dimensional space
= Each dimension represents a capability
Floating point, Integer, memory bandwidth, cache bandwidth, etc.
» Features are typical rates
= Determine maximum rate for each dimension
E.g., from documentation or benchmarks

= Can be used to proof optimality of implementation
= |f the requirements of the bottleneck dimension are minimal

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

v o en ETHzUrich

Rule 12: Plot as much information as needed to interpret the
experimental results. Only connect measurements by lines if
they indicate trends and the interpolation is valid.

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

v o en ETHzUrich

Part II: Model r ™
|
o Model e
£ A
) C mc \/‘2\\

U[)
N
s

Burnham, Anderson: “A model is a simplification or approximation of
reality and hence will not reflect all of reality. ... Box noted that “all
models are wrong, but some are useful.” While a model can never

be “truth,” a model might be ranked from very useful, to useful, to
somewhat useful to, finally, essentially useless.”

This is generally true for all kinds of modeling.
We focus on performance modeling in the following!

Cited by 33599

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

v o en ETHzUrich

TH: Bridging Performance Analysis Tools and Analytic Performance Modeling for HPC

Requirements modeling I. Six-step performance modeling

Input
parameters

Communication
parameters

Describe application
kernels

25000

v o en ETHzUrich

e

_ _ Communication —
Fit sequential pattern

baseline 15000

Serial Model ------

Model P=1024 ——
|| Comm Overhead 80
Pack Overhead —

Communication / 10000
computation overlap

5000

10-20% speedup [2] —

0 -

0

[1] TH, W. Gropp, M. Snir and W. Kramer: Performance Modeling for Systematic Performance Tuning, SC11 0
[2] TH and S. Gottlieb: Parallel Zero-Copy Algorithms for Fast Fourier Transform and Conjugate Gradient using MPI Datatypes, EuroMPI’10

500 1000 1500
Gnd Points per Process (L)

2000

Communication Overhead %]

33

v o on ETHzUrich
Requirements modeling Il: Automated best-fit modeling
= Manual kernel selection and hypothesis generation is time consuming (boring and tricky)

= |dea: Automatically select best (scalability) model from predefined search space
n «— number of terms

/\ . . et
_ | J n TN
werot— f(p) =2 ¢, p*-logz (p) T
k=1 \(model) constant Jx TJ@
1,J 1
N
n=1
1={0,1,2}
J ={0,1}

[1]: A. Calotoiu, TH, M. Poke, F. Wolf: Using Automated Performance Modeling to Find Scalability Bugs in Complex Codes, IEEE/ACM SC13

v o en ETHzUrich

Requirements modeling Il: Automated best-fit modeling

= Manual kernel selection and hypothesis generation is time consuming (and boring)
= |dea: Automatically select best model from predefined space

n /,Iﬁ
= : i 1N
— k . 3
f(p)=ac,*p**log; (p) A
k=1 Cl-log(p)+cz-p Jk 1J
c -lo c,-p-lo I,J1
,-log(p) +c, p2 g(p) Q
c,-log(p)+c,-p
n=2 arels c,-log(p) +c, - p* -log(p)
7={0172 arep c,-p+c,- p-log(p)
{042} ¢, + ¢, xlog(p) C,-p+C,-p°
J_{O,l} ~ ¢ tc,xprlog(p) Cl-p+C2-p2-Iog(p) \
¢, +c, p*rlog(p) c,- p-log(p)+c,- p°
c,- p-log(p)+c,- p*-log(p)
N c,-p°+c,-p°-log(p)

[1]: A. Calotoiu, T. Hoefler, M. Poke, F. Wolf: Using Automated Performance Modeting to Find Scalability Bugs in Complex Codes, IEEE/ACM/SC13

spcl.inf.ethz.ch

¥ @spcl_eth E'HZUfiCh
Tool support: Extra-P for automated best-fit modeling [1]

TECHNISCHE
UNIVERSITAT
DARMSTADT

s e
0 e
:-‘AM 9]
£
P %
§
3

Sweep3d Lulesh Milc

[1] Download Extra-P at: http://www.scalasca.org/software/extra-p/download.html
[2] A. Calotoiu, D. Beckingsale, C. W. Earl TH, I. Karlin, M. Schulz, F. Wolf: Fast Multi-Parameter Performance Modeling, IEEE Cluster 2016

http://www.scalasca.org/software/extra-p/download.html

Extra-P selects model based on best fit to the data

= What if the data is not sufficient or too noisy?

= Backto

first principles

» The source code describes all possible executions

for (J = 1;

j <=n; j= 3*2)

Parallel program

for (k = j; k <= n; k = k++)
OperationInBody (], k) ;

j>=1 j<=n

“| ke

n —+ —-o——---,f,---'k<=n

4y . N=(n+1)log,n—n+?2
[} /, |

2-1¢ A !

1—4-------- r - k>=1
T T 1 ~
1 2 n J

de 1 = |, procCols
call mpi irecv(buff,
i, mpi_comm world, request, ierr)
call mpi_send(buff2,
i, mpi_comm world, ierr)
call mpi wait(request, status, ierr)
enddo

do 1 = id *n/p, (id +1)* n/p
do j = |, nsSize
call compute

, dp_type, reduce exch proc(i),

7 dpitype, reduce_exch_proc({i),

spcl.inf.ethz.ch

y @spcl_eth E'HZUrICh
Requirements modeling Ill: Source-code analysis [1]

= Describing all possibilities is too expensive, focus on counting loop iterations symbolically

Loop extraction

o

Requirements Models
W = N\pzl

D=N

o

[1]: TH, G. Kwasniewski: Automatic Complexity Analysis of Explicitly Parallel Programs, ACM SPAA’14

Number of iterations

ni1(zo,1) n2(zo,2) nr—1(T0,r—1)

N = Z Z Z il |88)

i1=0 ip=0 ip_1=0

1

v o en ETHzUrich

o
ements Model

Requir

sequentl
al

v o en ETHzUrich

TH: Bridging Performance Analysis Tools and Analytic Performance Modeling for HPC

v o en ETH zUrich

Capability models for network communication

The LogP model family and the LogGOPS model [1]

A new parallel machine model reflects the critical technology

Bt Ping-pong in simplified LogP (g<o, P=2)

4 PracTIcAL MODEL of Source [—- -
ParaLLEL COMPUTATION 0 L L

Dest.
O o
Finding LogGOPS parameters Large scale LogGOPS Simulation

Netgauge [2], model from first principles, fit to data LogGOPSIim [1], simulates LogGOPS with 10
using special v ¢ T ¢ . s T million MPI ranks . .
kernels T ekl clelal s ceegl A £ [

Network N R \\\\\\ \\\ ////////// <5% error ‘:‘é :s E ssa.:

Server \\\‘4 \.\\.\\ (ﬁ ¥Q‘(_GJI g :Z i i? 58

o ra - | £ (s1re - : 2 (16 - ::01:0: (s1)°G L) = 20 40 Nu,:sem,;z::z;;kedm: 1o o2 20 40 60 Bengirs“'ﬂ?g2:1mTwzo

[1]: TH, T. Schneider and A. Lumsdaine: LogGOPSIim - Simulating Large-Scale Applications in the LogGOPS Model, LSAP 2010, https://spcl.inf.ethz.ch/Research/Performance/LogGOPSim/
[2]: TH, T. Mehlan, A. Lumsdaine and W. Rehm: Netgauge: A Network Performance Measurement Framework, HPCC 2007, https://spcl.inf.ethz.ch/Research/Performance/Netgauge/

https://spcl.inf.ethz.ch/Research/Performance/LogGOPSim/
https://spcl.inf.ethz.ch/Research/Performance/Netgauge/

v o en ETHzUrich

2) Design optimal algorithms — small broadcast in LogP |\, 0
L=2, 0=1, P=7 0
80 . , .
70 | 1
60 B I)]
I
@« 50 f !
E 40%
o 40 -
£ — ,)
— 30 i -
binary tree
10 | binomial tree 1
: | . optimal tree
0 10000 20000 30000 40000 50000

Numbers of Processes (P)

TH, D. Moor: Energy, Memory, and Runtime Tradeoffs for Implementing Collective Communication Operations, JSFI 2015

v o en ETHzUrich

Core 1 ///’—_‘\\‘~ Core 2
IRegistersI |Registers|

Yy
oy

\
XN
WL
| RVIC
AT
\

Line 1 Line 1
: Bus -

Line 2 Line 2

Line 3 Line 3

0x0000
0x0001

.
.

Ty, read
(T, read
KT, read)

:
|
|

d1,S)D¥

To, RFO

To, read
(T, read)

T,, RFO

“% Invalid read R,;= 135 ns

N
T;, RFO™~_
evict =

— (|J*p Local read: R,= 3.8 ns

5 Remote read Ry = 115 ns

T,, read
T,, read

U (T, read)
Ry

S. Ramos, TH: “Modelina Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “ ACM HPDC’13

v o en ETHzUrich

- ’
Model-tuned Barrier and Reduce vs. Intel’s OpenMP and MPI
" Intel MPI T -~ IntellmPI - o T
N tntel OpentP LN el
S IthMP - A Intel OpenMP
cintel Dpenkv : : T. ; ; ; :
: : : R : Model_tuned 8_ 8_
N L | ~Intel OpenMP @MO;dEI_tﬁune;d
o | :Model-tuned |} | o |l | | | S Lo
< 1 = © Min-Max Model | 7| — o — Min-Max Model 1
2 S 2 : 1NE 3 - Model-tuned |} 7 | 4 : |
g Min-Max Model g ‘*;: 3_‘ “; Q -
e o | e o o Min-Max Model Q
_.G_J, o T 9 o T o : : S
(4] (4] 'E; 'E"
- - - - I
o | o | & - & - o R
o ol : T &
o — : o o T P I
! ! ! I I | I [[| | | [[| | | |
2 4 8 16 32 64 2 4 8 16 32 64 2 4 8 16 32 64
lem'ber Of threads Number of threads Number of threads Number of threads
(a) Filling Tiles. (b) Scatter. (a) Filling Tiles. (b) Scatter.

Barrier (7x faster than OpenMP) Reduce (5x faster then OpenMP)

v o en ETHzUrich

Performance Model

v o en ETHzUrich

High Performance Computing

Performance IS nondeterministic and not Mmodular

. ETHziirich

HPC is used to solve complex problems!

inf.ethz cth E'qurlch

Scientific Performance Engineering

1) Observe Y
N

0 P~
A _ O
LS NI —

3) Understand

/
)
g

N

47

v o en ETHzUrich

Part I: Observe

Experimental design
Measure systems P J

Collect data

Examine documentation

Gather statistics

“ { f,,,
9\;5 Document process

/\ Factorial design

r"ﬂmq.—-mm
|

48

v o en ETHzUrich

Disclaimer(s)

= This is an experience talk (published at SC 15 — State of the Practice)!
= Explained in SC15 FAQ:

“‘generalizable insights as gained from experiences with particular HPC
machines/operations/applications/benchmarks, overall analysis
of the status quo of a particular metric of the entire field or
historical reviews of the progress of the field.”

= Don’t expect novel insights
Given the papers | read, much of what | say may be new for many

CAUTION:

USE THESE
WORDS WITH
DISCRETION

= My musings shall not offend anybody
= Everything is (now) anonymized

= Criticism may be rhetorically exaggerated
= \Watch for tropes!

= This talk should be entertaining!

v o en ETHzUrich

State of the Practice in HPC

= Stratified random sample of three top-conferences over four years
= HPDC, PPoPP, SC (years: 2011, 2012, 2013, 2014)
= 10 random papers from each (10-50% of population)
= 120 total papers, 20% (25) did not report performance (were excluded)

= Main results:
1. Most papers report details about the hardware but fail to describe the software environment.
Important details for reproducibility missing
2. The average paper’s results are hard to interpret and easy to question
Measurements and data not well explained
3. No statistically significant evidence for improvement over the years ®

= Qur main thesis:

Performance results are often nearly impossible to reproduce! Thus, we need to provide enough
information to allow scientists to understand the experiment, draw own conclusions, assess their

certainty, and possibly generalize results.

This is especially important for HPC conferences and activities such as the Gordon Bell award!

