
spcl.inf.ethz.ch

@spcl_eth

TORSTEN HOEFLER

Active RDMA - new tricks for an old dog
with M. Besta, R. Belli, S. di Girolamo @ SPCL

presented at Salishan Meeting, Gleneden Beach, OR, USA, April 2016

spcl.inf.ethz.ch

@spcl_eth

TORSTEN HOEFLER

Active RDMA - new tricks for an old dog
with M. Besta, R. Belli, S. di Girolamo @ SPCL

presented at Salishan Meeting, Salishan, OR, USA, April 2016

Alternative (better) title: Beyond RDMA

spcl.inf.ethz.ch

@spcl_eth

3

1980’s 2000’s 2020’s

Lossless Networks

RDMA

Full Device Programs

Offload

Lossy Networks

Ethernet

 partial control at target

Remote Matching

 put, get, atomics

Remote Operations

spcl.inf.ethz.ch

@spcl_eth

4

[IPDPS’15]

 Extend RMA semantics

 Fully one-sided (in HW)

 Synchronization

Remote Synchronization

[HPDC’15]

 Similar to HTM

 Extend across nodes

 Think active messages?

Remote Transactions

[ICS’15]

 Utilizes IOMMUs

 Control transfer

 Active memory

Remote Invocation

 partial control at target

Remote Matching

 put, get, atomics

Remote Operations

spcl.inf.ethz.ch

@spcl_eth

 PGAS and RMA are programming abstractions

 PGAS as language extension (e.g., UPC, CAF)

 RMA as library (integrated in MPI)

 Offer abstraction for

 Data placement, read, write, some atomic operations

 Target has very little control (none?)

 RDMA is a hardware mechanism

 Often accessible through a library (OFED, uGNI, DMAPP, libfabric, …)

 Specific to a (set of) hardware implementation(s)

 Offers varying levels of functionality

 Most common: read, write, simple atomics

 Address-space management is wildly varying

Common denominator is often virtual address access

5

RDMA vs. RMA vs. PGAS?

How to implement producer/consumer in passive mode?

IN CASE YOU WANT TO LEARN MORE ABOUT RMA

spcl.inf.ethz.ch

@spcl_eth

 Most important communication idiom

 Some examples:

 Perfectly supported by MPI-1 Message Passing

 But how does this actually work over RDMA?

PRODUCER-CONSUMER RELATIONS

Belli, Hoefler: Notified Access: Extending Remote Memory Access Programming Models for Producer-Consumer Synchronization, IPDPS’15 6

spcl.inf.ethz.ch

@spcl_eth

7

Remote Synchronization

spcl.inf.ethz.ch

@spcl_eth

ONE SIDED – PUT + SYNCHRONIZATION

Belli, Hoefler: Notified Access: Extending Remote Memory Access Programming Models for Producer-Consumer Synchronization, IPDPS’15 8

spcl.inf.ethz.ch

@spcl_eth

ONE SIDED – PUT + SYNCHRONIZATION

9Belli, Hoefler: Notified Access: Extending Remote Memory Access Programming Models for Producer-Consumer Synchronization, IPDPS’15

spcl.inf.ethz.ch

@spcl_eth

ONE SIDED – PUT + SYNCHRONIZATION

10Belli, Hoefler: Notified Access: Extending Remote Memory Access Programming Models for Producer-Consumer Synchronization, IPDPS’15

spcl.inf.ethz.ch

@spcl_eth

ONE SIDED – PUT + SYNCHRONIZATION

Critical path: 3 latencies
11Belli, Hoefler: Notified Access: Extending Remote Memory Access Programming Models for Producer-Consumer Synchronization, IPDPS’15

spcl.inf.ethz.ch

@spcl_eth

COMPARING APPROACHES

Message Passing

1 latency + copy /

3 latencies

One Sided

3 latencies

12Belli, Hoefler: Notified Access: Extending Remote Memory Access Programming Models for Producer-Consumer Synchronization, IPDPS’15

spcl.inf.ethz.ch

@spcl_eth

 First seen in Split-C (1992)

 Combine communication and

synchronization using RDMA

 RDMA networks can provide

various notifications

 Flags

 Counters

 Event Queues

13

IDEA: RMA NOTIFICATIONS

Belli, Hoefler: Notified Access: Extending Remote Memory Access Programming Models for Producer-Consumer Synchronization, IPDPS’15

spcl.inf.ethz.ch

@spcl_eth

Message Passing

1 latency + copy /

3 latencies

COMPARING APPROACHES

One Sided

3 latencies

Notified Access

1 latency

14Belli, Hoefler: Notified Access: Extending Remote Memory Access Programming Models for Producer-Consumer Synchronization, IPDPS’15

spcl.inf.ethz.ch

@spcl_eth

 1000 repetitions, each timed separately, RDTSC timer

 95% confidence interval always within 1% of median

15

PING PONG PERFORMANCE (INTER-NODE)

(lower is better)

Belli, Hoefler: Notified Access: Extending Remote Memory Access Programming Models for Producer-Consumer Synchronization, IPDPS’15

spcl.inf.ethz.ch

@spcl_eth

 1000 repetitions, each timed separately, RDTSC timer

 95% confidence interval always within 1% of median

16

PIPELINE – ONE-TO-ONE SYNCHRONIZATION

[1] https://github.com/intelesg/PRK2

(lower is better)

spcl.inf.ethz.ch

@spcl_eth

 1000 repetitions, each timed separately, RDTSC timer

 95% confidence interval always within 10% of median

17

CHOLESKY – MANY-TO-MANY SYNCHRONIZATION

[1]: J. Kurzak, H. Ltaief, J. Dongarra, R. Badia: "Scheduling dense linear algebra operations on multicore processors“, CCPE 2010

(Higher is better)

spcl.inf.ethz.ch

@spcl_eth

18

(Remote) Transactions

spcl.inf.ethz.ch

@spcl_eth

 Becoming more important [1]

 Machine learning

 Computational science

 Social network analysis

LARGE-SCALE IRREGULAR GRAPH PROCESSING

[1] A. Lumsdaine et al. Challenges in Parallel Graph Processing. Parallel Processing Letters, 2007 19

spcl.inf.ethz.ch

@spcl_eth

Proc qProc p

Detrimental

performance

Simple

protocols

SYNCHRONIZATION MECHANISMS

COARSE LOCKS

Serialization

An example

graph

M. Kulkarni et al., Optimistic Parallelism Benefits from Data Partitioning, ASPLOS’08 20

spcl.inf.ethz.ch

@spcl_eth

Proc qProc p

Complex

protocols

Higher performance

possible

Risk of

deadlocks

Complex access

patterns 

J. Yan et al., Exploiting fine-grained parallelism in graph traversal algorithms via lock virtualization on multi-core architecture, Journ. of Supercomp.

SYNCHRONIZATION MECHANISMS

FINE LOCKS

21

spcl.inf.ethz.ch

@spcl_eth

Proc qProc p

Complex

protocols

High performance (may

be challenging to get)

Subtle issues

(ABA, ...)

Complex access

patterns 

V. Agarwal et al., Scalable Graph Exploration on Multicore Processors, IEEE/ACM Supercomputing 2010 (SC10)

SYNCHRONIZATION MECHANISMS

ATOMIC OPERATIONS

22

spcl.inf.ethz.ch

@spcl_eth

SYNCHRONIZATION MECHANISMS

TRANSACTIONAL MEMORY (CF. DB TRANSACTIONS)

Software

overheads

Simple

protocols

N. Shavit and D. Touitou. Software transactional memory. PODC’95.

Proc qProc p

Conflicts solved with

rollbacks and/or

serialization.

Non-conflicting

accesses

Conflicting

accesses

R
o
llb

a
c
k

R
o
llb

a
c
k

C
o
m

m
it

C
o

m
m

it

23

spcl.inf.ethz.ch

@spcl_eth

SYNCHRONIZATION MECHANISMS

HARDWARE TRANSACTIONAL MEMORY (HTM)

High

performance?

For graphs? Simple

protocols

Conflicts solved with

rollbacks and/or HW

serialization.
Proc qProc p

Besta, Hoefler: Accelerating Irregular Computations with Hardware Transactional Memory and Active Messages, HPDC’15
24

spcl.inf.ethz.ch

@spcl_eth

 Can we amortize HTM startup/commit overheads with larger transaction sizes?

Haswell BlueGene/Q

PERFORMANCE MODEL

ATOMICS VS TRANSACTIONS

Yes, we

can!

Yes, we can!

Besta, Hoefler: Accelerating Irregular Computations with Hardware Transactional Memory and Active Messages, HPDC’15
25

spcl.inf.ethz.ch

@spcl_eth

MULTI-VERTEX TRANSACTIONS IN A BFS (GRAPH 500)
MARKING VERTICES AS VISITED

Startup and

commit

overheads

Abort and

rollback

overheads

The sweetspot!

(144 vertices)

Besta, Hoefler: Accelerating Irregular Computations with Hardware Transactional Memory and Active Messages, HPDC’15
26

spcl.inf.ethz.ch

@spcl_eth

REAL-GRAPH PERFORMANCE

 No, you don’t have to read it.

 Here: just a summary.

27

spcl.inf.ethz.ch

@spcl_eth

Average overall speedup (geomean) over

Graph 500: 1.07,

Galois [1]: 1.40, HAMA: ~1000

1.85x on average, up to 4.3x

[1]: Satish et al.: Navigating the Maze of Graph Analytics Frameworks Using Massive Graph Datasets, SIGMOD’14

REAL-GRAPH PERFORMANCE

28

spcl.inf.ethz.ch

@spcl_eth

29

Remote Invocation

spcl.inf.ethz.ch

@spcl_eth

IMAGINE A SIMPLE DISTRIBUTED HASH-TABLE

No collision:

[1] R. Gerstenberger et al. Enabling Highly-Scalable Remote Memory Access Programming with MPI-3 One-Sided, SC13

A collision:

 1 remote atomic

Up to 5x speedup over MP [1]

 4 remote atomics + 2 remote puts

Significant performance drops

Proc qProc p

Local execution; triggered by an

active access. In RMA?

30

spcl.inf.ethz.ch

@spcl_eth

USE INPUT/OUTPUT MEMORY MANAGEMENT UNITS

+

Main memory

IOMMU MMU

TLBIOTLB

CPUI/O devices

Virtual

addresses

Physical

addresses

Device

addresses

Physical

addresses

M. Besta and T. Hoefler, Active Access: A Mechanism for High-Performance Distributed Data-Centric Computations, ICS’15 31

spcl.inf.ethz.ch

@spcl_eth

ACTIVE PUTS

IOMMU
Process p

Process q

CPU
Main memory

Accessed

page

W = 0

WL = 1

WLD = 1

Access log

Attempt to

write(X)

Page fault!

(W = 0)

Move(X)

Process(X)

1

2

3

4

5

X

Do not modify

the page

Log both the entry and the

data of an incoming put

M. Besta and T. Hoefler, Active Access: A Mechanism for High-Performance Distributed Data-Centric Computations, ICS’15 32

spcl.inf.ethz.ch

@spcl_eth

ACTIVE GETS

IOMMU
Process p

Process q

CPU
Main memory

Accessed

page

R = 1

RL = 1

RLD = 1

Access log
Copy(X)

Process(X)

1

2

3

4

X

Enable reading

from the page

Log both the entry and the

data accessed by a get

M. Besta and T. Hoefler, Active Access: A Mechanism for High-Performance Distributed Data-Centric Computations, ICS’15 33

spcl.inf.ethz.ch

@spcl_eth

INTERACTIONS WITH THE CPU

IOMMU CPU

IOTLB

Dev-to-PT

cache
...

SMT cores

Access log table

MSI

Scratchpad memory

Handler A
Hyper

thread

+

+

+

 Interrupts

 Polling

 Direct notifications via scratchpads

Var

M. Besta and T. Hoefler, Active Access: A Mechanism for High-Performance Distributed Data-Centric Computations, ICS’15 34

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE: LARGE-SCALE CODES

DISTRIBUTED HASHTABLE

Collisions: 5% Collisions: 25%

M. Besta and T. Hoefler, Active Access: A Mechanism for High-Performance Distributed Data-Centric Computations, ICS’15 35

spcl.inf.ethz.ch

@spcl_eth

36

Towards a Network Instruction Set

Architecture (NISA)
An example for offloading

spcl.inf.ethz.ch

@spcl_eth

OFFLOAD

37

ComputationsCommunications
(non-blocking)

Dependencies

Offload Engine

L0: recv a from P1;

L1: b = compute f(buff, a);

L2: send b to P1;

L0 and CPU-> L1

L1 -> L2

CPU

recv

send

comp EXPRESS

S. di Girolamo, P. Jolivet, K. D. Underwood, T. Hoefler: Exploiting Offload Enabled Network Interfaces, HOTI’

spcl.inf.ethz.ch

@spcl_eth

38

Collective communication: A communication that involves a group of processes

P5P4

P7

P1

Fully Offloaded Collectives

P0

P2 P3

P6

Non-blocking collective: Once initiated the operation may progress independently of any computation or other

communication at participating processes

S. di Girolamo, P. Jolivet, K. D. Underwood, T. Hoefler: Exploiting Offload Enabled Network Interfaces, HOTI’

spcl.inf.ethz.ch

@spcl_eth

39

Collective communication: A communication that involves a group of processes

P5P4

P7

P1

Fully Offloaded Collectives

P0

P2 P3

C C

S

P6

Non-blocking collective: Once initiated the operation may progress independently of any computation or other

communication at participating processes

R R

Fully Offloading:

1. No synchronization is required in order to start the collective operation

2. Once a collective operation is started, no further CPU intervention is

required in order to progress or complete it.

S. di Girolamo, P. Jolivet, K. D. Underwood, T. Hoefler: Exploiting Offload Enabled Network Interfaces, HOTI’

spcl.inf.ethz.ch

@spcl_eth

TargetInitiator

40

A Case Study: Portals 4

[2] The Portal 4.0.2 Network Programming Interface

Portals Table

Priority List Overflow List

ME

ME

ME
Discard

ME

ME

NIMD

MD

MD

MD

Interconnection

Network
NI

 Based on the one-sided communication model

 Matching/Non-Matching semantics can be adopted

spcl.inf.ethz.ch

@spcl_eth

x yct ct

x

z

y

ct ct

41

x y

x

z

y

Communication primitives

 Put/Get operations are natively supported by Portals 4

 One-sided + matching semantic

A Case Study: Portals 4

Atomic operations

 Operands are the data specified by the MD at the initiator and by the ME

at the target

 Available operators: min, max, sum, prod, swap, and, or, …

Counters

 Associated with MDs or MEs

 Count specific events (e.g., operation completion)

Triggered operations

 Put/Get/Atomic associated with a counter

 Executed when the associated counter reaches the specified threshold

spcl.inf.ethz.ch

@spcl_eth

42

FFlib: An Example

C C

S

R R

ff_schedule_h sched = ff_schedule_create(…);

ff_op_h r1 = ff_op_create_recv(tmp + blocksize, blocksize, child1, tag);

ff_op_h r2 = ff_op_create_recv(tmp + 2*blocksize, blocksize, child2, tag);

ff_op_h c1 = ff_op_create_computation(rbuff, blocksize, tmp + blocksize, blocksize, operator, datatype, tag)

ff_op_h c2 = ff_op_create_computation(rbuff, blocksize, tmp + 2*blocksize, blocksize, operator, datatype, tag)

ff_op_h s = ff_op_create_send(rbuff, blocksize, parent, tag)

ff_op_hb(r1, c1)

ff_op_hb(r2, c2)

ff_op_hb(c1, s)

ff_op_hb(c2, s)

ff_schedule_add(sched, r1)

ff_schedule_add(sched, r2)

ff_schedule_add(sched, c1)

ff_schedule_add(sched, c2)

ff_schedule_add(sched, s)

Proof of concept library implemented on top of Portals 4

S. di Girolamo, P. Jolivet, K. D. Underwood, T. Hoefler: Exploiting Offload Enabled Network Interfaces, HOTI’

spcl.inf.ethz.ch

@spcl_eth

43

Experimental Results: Latency/Overhead

Broadcast

OMPI/P4: Open MPI 1.8.4 + Portals 4 RL

FFLIB: proof of concept library

Target machine: Curie
5,040 nodes

2 eight-core Intel Sandy Bridge processors

Full fat-tree Infiniband QDR More about FFLIB at : http://spcl.inf.ethz.ch/Research/Parallel_Programming/FFlib/

Allreduce

spcl.inf.ethz.ch

@spcl_eth

44

Active RDMA – what could it be?

[ICS’15]

 Utilizes IOMMUs

 Control transfer

 Active memory

Remote Invocation

Network

Instruction Set

Architecture

(NISA)

NISA: Process the data while it moves!

