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1980’s 2000’s 2020’s

Lossless Networks

RDMA

Full Device Programs

Offload

Lossy Networks

Ethernet

 partial control at target

Remote Matching

 put, get, atomics

Remote Operations
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[IPDPS’15]

 Extend RMA semantics

 Fully one-sided  (in HW)

 Synchronization 

Remote Synchronization

[HPDC’15]

 Similar to HTM

 Extend across nodes

 Think active messages?

Remote Transactions

[ICS’15]

 Utilizes IOMMUs 

 Control transfer

 Active memory

Remote Invocation

 partial control at target

Remote Matching

 put, get, atomics

Remote Operations
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 PGAS and RMA are programming abstractions

 PGAS as language extension (e.g., UPC, CAF)

 RMA as library (integrated in MPI)

 Offer abstraction for

 Data placement, read, write, some atomic operations

 Target has very little control (none?)

 RDMA is a hardware mechanism

 Often accessible through a library (OFED, uGNI, DMAPP, libfabric, …)

 Specific to a (set of) hardware implementation(s)

 Offers varying levels of functionality

 Most common: read, write, simple atomics

 Address-space management is wildly varying

Common denominator is often virtual address access

5

RDMA vs. RMA vs. PGAS?

How to implement producer/consumer in passive mode?

IN CASE YOU WANT TO LEARN MORE ABOUT RMA
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 Most important communication idiom

 Some examples:

 Perfectly supported by MPI-1 Message Passing

 But how does this actually work over RDMA?

PRODUCER-CONSUMER RELATIONS

Belli, Hoefler: Notified Access: Extending Remote Memory Access Programming Models for Producer-Consumer Synchronization, IPDPS’15 6
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Remote Synchronization
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ONE SIDED – PUT + SYNCHRONIZATION

Belli, Hoefler: Notified Access: Extending Remote Memory Access Programming Models for Producer-Consumer Synchronization, IPDPS’15 8
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ONE SIDED – PUT + SYNCHRONIZATION

9Belli, Hoefler: Notified Access: Extending Remote Memory Access Programming Models for Producer-Consumer Synchronization, IPDPS’15
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ONE SIDED – PUT + SYNCHRONIZATION

10Belli, Hoefler: Notified Access: Extending Remote Memory Access Programming Models for Producer-Consumer Synchronization, IPDPS’15
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ONE SIDED – PUT + SYNCHRONIZATION

Critical path: 3 latencies
11Belli, Hoefler: Notified Access: Extending Remote Memory Access Programming Models for Producer-Consumer Synchronization, IPDPS’15



spcl.inf.ethz.ch

@spcl_eth

COMPARING APPROACHES

Message Passing

1 latency + copy  / 

3 latencies

One Sided

3 latencies

12Belli, Hoefler: Notified Access: Extending Remote Memory Access Programming Models for Producer-Consumer Synchronization, IPDPS’15
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 First seen in Split-C (1992)

 Combine communication and 

synchronization using RDMA

 RDMA networks can provide 

various notifications

 Flags

 Counters

 Event Queues

13

IDEA: RMA NOTIFICATIONS

Belli, Hoefler: Notified Access: Extending Remote Memory Access Programming Models for Producer-Consumer Synchronization, IPDPS’15
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Message Passing

1 latency + copy  / 

3 latencies

COMPARING APPROACHES

One Sided

3 latencies

Notified Access

1 latency

14Belli, Hoefler: Notified Access: Extending Remote Memory Access Programming Models for Producer-Consumer Synchronization, IPDPS’15
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 1000 repetitions, each timed separately, RDTSC timer

 95% confidence interval always within 1% of median

15

PING PONG PERFORMANCE (INTER-NODE)

(lower is better)

Belli, Hoefler: Notified Access: Extending Remote Memory Access Programming Models for Producer-Consumer Synchronization, IPDPS’15
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 1000 repetitions, each timed separately, RDTSC timer

 95% confidence interval always within 1% of median

16

PIPELINE – ONE-TO-ONE SYNCHRONIZATION

[1] https://github.com/intelesg/PRK2

(lower is better)
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 1000 repetitions, each timed separately, RDTSC timer

 95% confidence interval always within 10% of median

17

CHOLESKY – MANY-TO-MANY SYNCHRONIZATION

[1]: J. Kurzak, H. Ltaief, J. Dongarra, R. Badia: "Scheduling dense linear algebra operations on multicore processors“, CCPE 2010

(Higher is better)
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(Remote) Transactions
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 Becoming more important [1]

 Machine learning

 Computational science

 Social network analysis

LARGE-SCALE IRREGULAR GRAPH PROCESSING

[1] A. Lumsdaine et al. Challenges in Parallel Graph Processing. Parallel Processing Letters, 2007 19



spcl.inf.ethz.ch

@spcl_eth

Proc qProc p

Detrimental

performance

Simple 

protocols

SYNCHRONIZATION MECHANISMS

COARSE LOCKS

Serialization

An example 

graph

M. Kulkarni et al., Optimistic Parallelism Benefits from Data Partitioning, ASPLOS’08 20
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Proc qProc p

Complex 

protocols

Higher performance 

possible

Risk of 

deadlocks

Complex access 

patterns 

J. Yan et al., Exploiting fine-grained parallelism in graph traversal algorithms via lock virtualization on multi-core architecture, Journ. of Supercomp.

SYNCHRONIZATION MECHANISMS

FINE LOCKS

21
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Proc qProc p

Complex 

protocols

High performance (may 

be challenging to get)

Subtle issues 

(ABA, ...)

Complex access 

patterns 

V. Agarwal et al., Scalable Graph Exploration on Multicore Processors, IEEE/ACM Supercomputing 2010 (SC10)

SYNCHRONIZATION MECHANISMS

ATOMIC OPERATIONS

22
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SYNCHRONIZATION MECHANISMS

TRANSACTIONAL MEMORY (CF. DB TRANSACTIONS)

Software 

overheads

Simple 

protocols

N. Shavit and D. Touitou. Software transactional memory. PODC’95.

Proc qProc p

Conflicts solved with 

rollbacks and/or 

serialization.

Non-conflicting 

accesses

Conflicting 

accesses

R
o
llb

a
c
k

R
o
llb

a
c
k

C
o
m

m
it

C
o

m
m

it

23
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SYNCHRONIZATION MECHANISMS

HARDWARE TRANSACTIONAL MEMORY (HTM)

High 

performance?

For graphs? Simple 

protocols

Conflicts solved with 

rollbacks and/or HW 

serialization.
Proc qProc p

Besta, Hoefler: Accelerating Irregular Computations with Hardware Transactional Memory and Active Messages, HPDC’15
24
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 Can we amortize HTM startup/commit overheads with larger transaction sizes?

Haswell                        BlueGene/Q

PERFORMANCE MODEL

ATOMICS VS TRANSACTIONS

Yes, we 

can!

Yes, we can!

Besta, Hoefler: Accelerating Irregular Computations with Hardware Transactional Memory and Active Messages, HPDC’15
25
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MULTI-VERTEX TRANSACTIONS IN A BFS (GRAPH 500)
MARKING VERTICES AS VISITED

Startup and 

commit 

overheads

Abort and 

rollback 

overheads

The sweetspot! 

(144 vertices)

Besta, Hoefler: Accelerating Irregular Computations with Hardware Transactional Memory and Active Messages, HPDC’15
26
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REAL-GRAPH PERFORMANCE

 No, you don’t have to read it. 

 Here: just a summary.

27



spcl.inf.ethz.ch

@spcl_eth

Average overall speedup (geomean) over 

Graph 500: 1.07, 

Galois [1]: 1.40, HAMA: ~1000

1.85x on average, up to 4.3x

[1]: Satish et al.: Navigating the Maze of Graph Analytics Frameworks Using Massive Graph Datasets, SIGMOD’14

REAL-GRAPH PERFORMANCE

28
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Remote Invocation
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IMAGINE A SIMPLE DISTRIBUTED HASH-TABLE

No collision:

[1] R. Gerstenberger et al. Enabling Highly-Scalable Remote Memory Access Programming with MPI-3 One-Sided, SC13

A collision:

 1 remote atomic

Up to 5x speedup over MP [1]

 4 remote atomics + 2 remote puts

Significant performance drops

Proc qProc p

Local execution; triggered by an 

active access. In RMA?

30
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USE INPUT/OUTPUT MEMORY MANAGEMENT UNITS

+

Main memory

IOMMU MMU

TLBIOTLB

CPUI/O devices

Virtual

addresses

Physical

addresses

Device

addresses

Physical

addresses

M. Besta and T. Hoefler, Active Access: A Mechanism for High-Performance Distributed Data-Centric Computations, ICS’15 31



spcl.inf.ethz.ch

@spcl_eth

ACTIVE PUTS

IOMMU
Process p

Process q

CPU
Main memory

Accessed 

page

W = 0

WL = 1

WLD = 1

Access log

Attempt to

write(X)

Page fault!

(W = 0)

Move(X)

Process(X)

1

2

3

4

5

X

Do not modify 

the page

Log both the entry and the 

data of an incoming put

M. Besta and T. Hoefler, Active Access: A Mechanism for High-Performance Distributed Data-Centric Computations, ICS’15 32
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ACTIVE GETS

IOMMU
Process p

Process q

CPU
Main memory

Accessed 

page

R = 1

RL = 1

RLD = 1

Access log
Copy(X)

Process(X)

1

2

3

4

X

Enable reading 

from the page

Log both the entry and the 

data accessed by a get

M. Besta and T. Hoefler, Active Access: A Mechanism for High-Performance Distributed Data-Centric Computations, ICS’15 33
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INTERACTIONS WITH THE CPU

IOMMU CPU

IOTLB

Dev-to-PT 

cache
...

SMT cores

Access log table

MSI

Scratchpad memory

Handler A
Hyper

thread

+

+

+

 Interrupts

 Polling

 Direct notifications via scratchpads

Var

M. Besta and T. Hoefler, Active Access: A Mechanism for High-Performance Distributed Data-Centric Computations, ICS’15 34
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PERFORMANCE: LARGE-SCALE CODES

DISTRIBUTED HASHTABLE

Collisions: 5% Collisions: 25%

M. Besta and T. Hoefler, Active Access: A Mechanism for High-Performance Distributed Data-Centric Computations, ICS’15 35
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Towards a Network Instruction Set 

Architecture (NISA)
An example for offloading
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ComputationsCommunications
(non-blocking)

Dependencies

Offload Engine

L0: recv a from P1; 

L1: b = compute f(buff, a); 

L2: send b to P1;

L0 and CPU-> L1

L1 -> L2

CPU

recv

send

comp EXPRESS

S. di Girolamo, P. Jolivet, K. D. Underwood, T. Hoefler: Exploiting Offload Enabled Network Interfaces, HOTI’
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Collective communication: A communication that involves a group of processes

P5P4

P7

P1

Fully Offloaded Collectives

P0

P2 P3

P6

Non-blocking collective: Once initiated the operation may progress independently of any computation or other 

communication at participating processes

S. di Girolamo, P. Jolivet, K. D. Underwood, T. Hoefler: Exploiting Offload Enabled Network Interfaces, HOTI’



spcl.inf.ethz.ch

@spcl_eth

39

Collective communication: A communication that involves a group of processes

P5P4

P7

P1

Fully Offloaded Collectives

P0

P2 P3

C C

S

P6

Non-blocking collective: Once initiated the operation may progress independently of any computation or other 

communication at participating processes

R R

Fully Offloading:

1. No synchronization is required in order to start the collective operation

2. Once a collective operation is started, no further CPU intervention is 

required in order to progress or complete it.

S. di Girolamo, P. Jolivet, K. D. Underwood, T. Hoefler: Exploiting Offload Enabled Network Interfaces, HOTI’
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TargetInitiator

40

A Case Study: Portals 4

[2] The Portal 4.0.2 Network Programming Interface

Portals Table 

Priority List Overflow List

ME

ME

ME
Discard

ME

ME

NIMD

MD

MD

MD

Interconnection

Network
NI

 Based on the one-sided communication model

 Matching/Non-Matching semantics can be adopted
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x yct ct

x

z

y

ct ct

41

x y

x

z

y

Communication primitives

 Put/Get operations are natively supported by Portals 4

 One-sided + matching semantic

A Case Study: Portals 4

Atomic operations

 Operands are the data specified by the MD at the initiator and by the ME 

at the target

 Available operators: min, max, sum, prod, swap, and, or, …

Counters 

 Associated with MDs or MEs

 Count specific events  (e.g., operation completion)

Triggered operations

 Put/Get/Atomic associated with a counter

 Executed when the associated counter reaches the specified threshold
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FFlib: An Example

C C

S

R R

ff_schedule_h sched = ff_schedule_create(…);

ff_op_h r1 = ff_op_create_recv(tmp + blocksize, blocksize, child1, tag);

ff_op_h r2 = ff_op_create_recv(tmp + 2*blocksize, blocksize, child2, tag);

ff_op_h c1 = ff_op_create_computation(rbuff, blocksize, tmp + blocksize, blocksize, operator, datatype, tag)

ff_op_h c2 = ff_op_create_computation(rbuff, blocksize, tmp + 2*blocksize, blocksize, operator, datatype, tag)

ff_op_h s = ff_op_create_send(rbuff, blocksize, parent, tag)

ff_op_hb(r1, c1)

ff_op_hb(r2, c2)

ff_op_hb(c1, s)

ff_op_hb(c2, s)

ff_schedule_add(sched, r1)

ff_schedule_add(sched, r2)

ff_schedule_add(sched, c1)

ff_schedule_add(sched, c2)

ff_schedule_add(sched, s)

Proof of concept library implemented on top of Portals 4

S. di Girolamo, P. Jolivet, K. D. Underwood, T. Hoefler: Exploiting Offload Enabled Network Interfaces, HOTI’
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Experimental Results: Latency/Overhead

Broadcast

OMPI/P4: Open MPI 1.8.4 + Portals 4 RL

FFLIB: proof of concept library

Target machine: Curie
5,040 nodes

2 eight-core Intel Sandy Bridge processors

Full fat-tree Infiniband QDR More about FFLIB at : http://spcl.inf.ethz.ch/Research/Parallel_Programming/FFlib/

Allreduce



spcl.inf.ethz.ch

@spcl_eth

44

Active RDMA – what could it be?

[ICS’15]

 Utilizes IOMMUs 

 Control transfer

 Active memory

Remote Invocation

Network 

Instruction Set 

Architecture

(NISA)

NISA: Process the data while it moves! 


