
spcl.inf.ethz.ch

@spcl_eth

TORSTEN HOEFLER

Active RDMA - new tricks for an old dog
with M. Besta, R. Belli, S. di Girolamo @ SPCL

presented at Salishan Meeting, Gleneden Beach, OR, USA, April 2016

spcl.inf.ethz.ch

@spcl_eth

TORSTEN HOEFLER

Active RDMA - new tricks for an old dog
with M. Besta, R. Belli, S. di Girolamo @ SPCL

presented at Salishan Meeting, Salishan, OR, USA, April 2016

Alternative (better) title: Beyond RDMA

spcl.inf.ethz.ch

@spcl_eth

3

1980’s 2000’s 2020’s

Lossless Networks

RDMA

Full Device Programs

Offload

Lossy Networks

Ethernet

 partial control at target

Remote Matching

 put, get, atomics

Remote Operations

spcl.inf.ethz.ch

@spcl_eth

4

[IPDPS’15]

 Extend RMA semantics

 Fully one-sided (in HW)

 Synchronization

Remote Synchronization

[HPDC’15]

 Similar to HTM

 Extend across nodes

 Think active messages?

Remote Transactions

[ICS’15]

 Utilizes IOMMUs

 Control transfer

 Active memory

Remote Invocation

 partial control at target

Remote Matching

 put, get, atomics

Remote Operations

spcl.inf.ethz.ch

@spcl_eth

 PGAS and RMA are programming abstractions

 PGAS as language extension (e.g., UPC, CAF)

 RMA as library (integrated in MPI)

 Offer abstraction for

 Data placement, read, write, some atomic operations

 Target has very little control (none?)

 RDMA is a hardware mechanism

 Often accessible through a library (OFED, uGNI, DMAPP, libfabric, …)

 Specific to a (set of) hardware implementation(s)

 Offers varying levels of functionality

 Most common: read, write, simple atomics

 Address-space management is wildly varying

Common denominator is often virtual address access

5

RDMA vs. RMA vs. PGAS?

How to implement producer/consumer in passive mode?

IN CASE YOU WANT TO LEARN MORE ABOUT RMA

spcl.inf.ethz.ch

@spcl_eth

 Most important communication idiom

 Some examples:

 Perfectly supported by MPI-1 Message Passing

 But how does this actually work over RDMA?

PRODUCER-CONSUMER RELATIONS

Belli, Hoefler: Notified Access: Extending Remote Memory Access Programming Models for Producer-Consumer Synchronization, IPDPS’15 6

spcl.inf.ethz.ch

@spcl_eth

7

Remote Synchronization

spcl.inf.ethz.ch

@spcl_eth

ONE SIDED – PUT + SYNCHRONIZATION

Belli, Hoefler: Notified Access: Extending Remote Memory Access Programming Models for Producer-Consumer Synchronization, IPDPS’15 8

spcl.inf.ethz.ch

@spcl_eth

ONE SIDED – PUT + SYNCHRONIZATION

9Belli, Hoefler: Notified Access: Extending Remote Memory Access Programming Models for Producer-Consumer Synchronization, IPDPS’15

spcl.inf.ethz.ch

@spcl_eth

ONE SIDED – PUT + SYNCHRONIZATION

10Belli, Hoefler: Notified Access: Extending Remote Memory Access Programming Models for Producer-Consumer Synchronization, IPDPS’15

spcl.inf.ethz.ch

@spcl_eth

ONE SIDED – PUT + SYNCHRONIZATION

Critical path: 3 latencies
11Belli, Hoefler: Notified Access: Extending Remote Memory Access Programming Models for Producer-Consumer Synchronization, IPDPS’15

spcl.inf.ethz.ch

@spcl_eth

COMPARING APPROACHES

Message Passing

1 latency + copy /

3 latencies

One Sided

3 latencies

12Belli, Hoefler: Notified Access: Extending Remote Memory Access Programming Models for Producer-Consumer Synchronization, IPDPS’15

spcl.inf.ethz.ch

@spcl_eth

 First seen in Split-C (1992)

 Combine communication and

synchronization using RDMA

 RDMA networks can provide

various notifications

 Flags

 Counters

 Event Queues

13

IDEA: RMA NOTIFICATIONS

Belli, Hoefler: Notified Access: Extending Remote Memory Access Programming Models for Producer-Consumer Synchronization, IPDPS’15

spcl.inf.ethz.ch

@spcl_eth

Message Passing

1 latency + copy /

3 latencies

COMPARING APPROACHES

One Sided

3 latencies

Notified Access

1 latency

14Belli, Hoefler: Notified Access: Extending Remote Memory Access Programming Models for Producer-Consumer Synchronization, IPDPS’15

spcl.inf.ethz.ch

@spcl_eth

 1000 repetitions, each timed separately, RDTSC timer

 95% confidence interval always within 1% of median

15

PING PONG PERFORMANCE (INTER-NODE)

(lower is better)

Belli, Hoefler: Notified Access: Extending Remote Memory Access Programming Models for Producer-Consumer Synchronization, IPDPS’15

spcl.inf.ethz.ch

@spcl_eth

 1000 repetitions, each timed separately, RDTSC timer

 95% confidence interval always within 1% of median

16

PIPELINE – ONE-TO-ONE SYNCHRONIZATION

[1] https://github.com/intelesg/PRK2

(lower is better)

spcl.inf.ethz.ch

@spcl_eth

 1000 repetitions, each timed separately, RDTSC timer

 95% confidence interval always within 10% of median

17

CHOLESKY – MANY-TO-MANY SYNCHRONIZATION

[1]: J. Kurzak, H. Ltaief, J. Dongarra, R. Badia: "Scheduling dense linear algebra operations on multicore processors“, CCPE 2010

(Higher is better)

spcl.inf.ethz.ch

@spcl_eth

18

(Remote) Transactions

spcl.inf.ethz.ch

@spcl_eth

 Becoming more important [1]

 Machine learning

 Computational science

 Social network analysis

LARGE-SCALE IRREGULAR GRAPH PROCESSING

[1] A. Lumsdaine et al. Challenges in Parallel Graph Processing. Parallel Processing Letters, 2007 19

spcl.inf.ethz.ch

@spcl_eth

Proc qProc p

Detrimental

performance

Simple

protocols

SYNCHRONIZATION MECHANISMS

COARSE LOCKS

Serialization

An example

graph

M. Kulkarni et al., Optimistic Parallelism Benefits from Data Partitioning, ASPLOS’08 20

spcl.inf.ethz.ch

@spcl_eth

Proc qProc p

Complex

protocols

Higher performance

possible

Risk of

deadlocks

Complex access

patterns

J. Yan et al., Exploiting fine-grained parallelism in graph traversal algorithms via lock virtualization on multi-core architecture, Journ. of Supercomp.

SYNCHRONIZATION MECHANISMS

FINE LOCKS

21

spcl.inf.ethz.ch

@spcl_eth

Proc qProc p

Complex

protocols

High performance (may

be challenging to get)

Subtle issues

(ABA, ...)

Complex access

patterns

V. Agarwal et al., Scalable Graph Exploration on Multicore Processors, IEEE/ACM Supercomputing 2010 (SC10)

SYNCHRONIZATION MECHANISMS

ATOMIC OPERATIONS

22

spcl.inf.ethz.ch

@spcl_eth

SYNCHRONIZATION MECHANISMS

TRANSACTIONAL MEMORY (CF. DB TRANSACTIONS)

Software

overheads

Simple

protocols

N. Shavit and D. Touitou. Software transactional memory. PODC’95.

Proc qProc p

Conflicts solved with

rollbacks and/or

serialization.

Non-conflicting

accesses

Conflicting

accesses

R
o
llb

a
c
k

R
o
llb

a
c
k

C
o
m

m
it

C
o

m
m

it

23

spcl.inf.ethz.ch

@spcl_eth

SYNCHRONIZATION MECHANISMS

HARDWARE TRANSACTIONAL MEMORY (HTM)

High

performance?

For graphs? Simple

protocols

Conflicts solved with

rollbacks and/or HW

serialization.
Proc qProc p

Besta, Hoefler: Accelerating Irregular Computations with Hardware Transactional Memory and Active Messages, HPDC’15
24

spcl.inf.ethz.ch

@spcl_eth

 Can we amortize HTM startup/commit overheads with larger transaction sizes?

Haswell BlueGene/Q

PERFORMANCE MODEL

ATOMICS VS TRANSACTIONS

Yes, we

can!

Yes, we can!

Besta, Hoefler: Accelerating Irregular Computations with Hardware Transactional Memory and Active Messages, HPDC’15
25

spcl.inf.ethz.ch

@spcl_eth

MULTI-VERTEX TRANSACTIONS IN A BFS (GRAPH 500)
MARKING VERTICES AS VISITED

Startup and

commit

overheads

Abort and

rollback

overheads

The sweetspot!

(144 vertices)

Besta, Hoefler: Accelerating Irregular Computations with Hardware Transactional Memory and Active Messages, HPDC’15
26

spcl.inf.ethz.ch

@spcl_eth

REAL-GRAPH PERFORMANCE

 No, you don’t have to read it.

 Here: just a summary.

27

spcl.inf.ethz.ch

@spcl_eth

Average overall speedup (geomean) over

Graph 500: 1.07,

Galois [1]: 1.40, HAMA: ~1000

1.85x on average, up to 4.3x

[1]: Satish et al.: Navigating the Maze of Graph Analytics Frameworks Using Massive Graph Datasets, SIGMOD’14

REAL-GRAPH PERFORMANCE

28

spcl.inf.ethz.ch

@spcl_eth

29

Remote Invocation

spcl.inf.ethz.ch

@spcl_eth

IMAGINE A SIMPLE DISTRIBUTED HASH-TABLE

No collision:

[1] R. Gerstenberger et al. Enabling Highly-Scalable Remote Memory Access Programming with MPI-3 One-Sided, SC13

A collision:

 1 remote atomic

Up to 5x speedup over MP [1]

 4 remote atomics + 2 remote puts

Significant performance drops

Proc qProc p

Local execution; triggered by an

active access. In RMA?

30

spcl.inf.ethz.ch

@spcl_eth

USE INPUT/OUTPUT MEMORY MANAGEMENT UNITS

+

Main memory

IOMMU MMU

TLBIOTLB

CPUI/O devices

Virtual

addresses

Physical

addresses

Device

addresses

Physical

addresses

M. Besta and T. Hoefler, Active Access: A Mechanism for High-Performance Distributed Data-Centric Computations, ICS’15 31

spcl.inf.ethz.ch

@spcl_eth

ACTIVE PUTS

IOMMU
Process p

Process q

CPU
Main memory

Accessed

page

W = 0

WL = 1

WLD = 1

Access log

Attempt to

write(X)

Page fault!

(W = 0)

Move(X)

Process(X)

1

2

3

4

5

X

Do not modify

the page

Log both the entry and the

data of an incoming put

M. Besta and T. Hoefler, Active Access: A Mechanism for High-Performance Distributed Data-Centric Computations, ICS’15 32

spcl.inf.ethz.ch

@spcl_eth

ACTIVE GETS

IOMMU
Process p

Process q

CPU
Main memory

Accessed

page

R = 1

RL = 1

RLD = 1

Access log
Copy(X)

Process(X)

1

2

3

4

X

Enable reading

from the page

Log both the entry and the

data accessed by a get

M. Besta and T. Hoefler, Active Access: A Mechanism for High-Performance Distributed Data-Centric Computations, ICS’15 33

spcl.inf.ethz.ch

@spcl_eth

INTERACTIONS WITH THE CPU

IOMMU CPU

IOTLB

Dev-to-PT

cache
...

SMT cores

Access log table

MSI

Scratchpad memory

Handler A
Hyper

thread

+

+

+

 Interrupts

 Polling

 Direct notifications via scratchpads

Var

M. Besta and T. Hoefler, Active Access: A Mechanism for High-Performance Distributed Data-Centric Computations, ICS’15 34

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE: LARGE-SCALE CODES

DISTRIBUTED HASHTABLE

Collisions: 5% Collisions: 25%

M. Besta and T. Hoefler, Active Access: A Mechanism for High-Performance Distributed Data-Centric Computations, ICS’15 35

spcl.inf.ethz.ch

@spcl_eth

36

Towards a Network Instruction Set

Architecture (NISA)
An example for offloading

spcl.inf.ethz.ch

@spcl_eth

OFFLOAD

37

ComputationsCommunications
(non-blocking)

Dependencies

Offload Engine

L0: recv a from P1;

L1: b = compute f(buff, a);

L2: send b to P1;

L0 and CPU-> L1

L1 -> L2

CPU

recv

send

comp EXPRESS

S. di Girolamo, P. Jolivet, K. D. Underwood, T. Hoefler: Exploiting Offload Enabled Network Interfaces, HOTI’

spcl.inf.ethz.ch

@spcl_eth

38

Collective communication: A communication that involves a group of processes

P5P4

P7

P1

Fully Offloaded Collectives

P0

P2 P3

P6

Non-blocking collective: Once initiated the operation may progress independently of any computation or other

communication at participating processes

S. di Girolamo, P. Jolivet, K. D. Underwood, T. Hoefler: Exploiting Offload Enabled Network Interfaces, HOTI’

spcl.inf.ethz.ch

@spcl_eth

39

Collective communication: A communication that involves a group of processes

P5P4

P7

P1

Fully Offloaded Collectives

P0

P2 P3

C C

S

P6

Non-blocking collective: Once initiated the operation may progress independently of any computation or other

communication at participating processes

R R

Fully Offloading:

1. No synchronization is required in order to start the collective operation

2. Once a collective operation is started, no further CPU intervention is

required in order to progress or complete it.

S. di Girolamo, P. Jolivet, K. D. Underwood, T. Hoefler: Exploiting Offload Enabled Network Interfaces, HOTI’

spcl.inf.ethz.ch

@spcl_eth

TargetInitiator

40

A Case Study: Portals 4

[2] The Portal 4.0.2 Network Programming Interface

Portals Table

Priority List Overflow List

ME

ME

ME
Discard

ME

ME

NIMD

MD

MD

MD

Interconnection

Network
NI

 Based on the one-sided communication model

 Matching/Non-Matching semantics can be adopted

spcl.inf.ethz.ch

@spcl_eth

x yct ct

x

z

y

ct ct

41

x y

x

z

y

Communication primitives

 Put/Get operations are natively supported by Portals 4

 One-sided + matching semantic

A Case Study: Portals 4

Atomic operations

 Operands are the data specified by the MD at the initiator and by the ME

at the target

 Available operators: min, max, sum, prod, swap, and, or, …

Counters

 Associated with MDs or MEs

 Count specific events (e.g., operation completion)

Triggered operations

 Put/Get/Atomic associated with a counter

 Executed when the associated counter reaches the specified threshold

spcl.inf.ethz.ch

@spcl_eth

42

FFlib: An Example

C C

S

R R

ff_schedule_h sched = ff_schedule_create(…);

ff_op_h r1 = ff_op_create_recv(tmp + blocksize, blocksize, child1, tag);

ff_op_h r2 = ff_op_create_recv(tmp + 2*blocksize, blocksize, child2, tag);

ff_op_h c1 = ff_op_create_computation(rbuff, blocksize, tmp + blocksize, blocksize, operator, datatype, tag)

ff_op_h c2 = ff_op_create_computation(rbuff, blocksize, tmp + 2*blocksize, blocksize, operator, datatype, tag)

ff_op_h s = ff_op_create_send(rbuff, blocksize, parent, tag)

ff_op_hb(r1, c1)

ff_op_hb(r2, c2)

ff_op_hb(c1, s)

ff_op_hb(c2, s)

ff_schedule_add(sched, r1)

ff_schedule_add(sched, r2)

ff_schedule_add(sched, c1)

ff_schedule_add(sched, c2)

ff_schedule_add(sched, s)

Proof of concept library implemented on top of Portals 4

S. di Girolamo, P. Jolivet, K. D. Underwood, T. Hoefler: Exploiting Offload Enabled Network Interfaces, HOTI’

spcl.inf.ethz.ch

@spcl_eth

43

Experimental Results: Latency/Overhead

Broadcast

OMPI/P4: Open MPI 1.8.4 + Portals 4 RL

FFLIB: proof of concept library

Target machine: Curie
5,040 nodes

2 eight-core Intel Sandy Bridge processors

Full fat-tree Infiniband QDR More about FFLIB at : http://spcl.inf.ethz.ch/Research/Parallel_Programming/FFlib/

Allreduce

spcl.inf.ethz.ch

@spcl_eth

44

Active RDMA – what could it be?

[ICS’15]

 Utilizes IOMMUs

 Control transfer

 Active memory

Remote Invocation

Network

Instruction Set

Architecture

(NISA)

NISA: Process the data while it moves!

