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Abstract—This paper presents an in-depth analysis of the
impact of system noise on large-scale parallel application perfor-
mance in realistic settings. Our analytical model shows that not
only collective operations but also point-to-point communications
influence the application’s sensitivity to noise. We present a sim-
ulation toolchain that injects noise delays from traces gathered
on common large-scale architectures into a LogGPS simulation
and allows new insights into the scaling of applications in noisy
environments. We investigate collective operations with up to 1
million processes and three applications (Sweep3D, AMG, and
POP) with up to 32,000 processes. We show that the scale at which
noise becomes a bottleneck is system-specific and depends on the
structure of the noise. Simulations with different network speeds
show that a 10x faster network does not improve application
scalability. We quantify noise and conclude that our tools can be
utilized to tune the noise signatures of a specific system.

I. MOTIVATION AND BACKGROUND

The performance impact of operating system and architec-

tural overheads (system noise) at massive scale is increasingly

of concern. Even small local delays on compute nodes, which

can be caused by interrupts, operating system daemons, or

even cache or page misses, can affect global application

performance significantly [1]. Such local delays often cause

less than 1% overhead per process but severe performance

losses can occur if noise is propagated (amplified) through

communication or global synchronization. Previous analyses

generally assume that the performance impact of system noise

grows at scale and Tsafrir et al. [2] even suggest that the

impact of very low frequency noise scales linearly with the

system size.

A. Related Work

Petrini, Kerbyson, and Pakin [1] report that the parallel

performance of SAGE on a fixed number of ASCI Q nodes

was highest when SAGE used only three of the four CPUs

per node. It turned out that “resonance” between the applica-

tion’s collective communication and the misconfigured system

caused delays during each iteration. Jones, Brenner, and Fier

[3] observed similar effects with collective communication and

also report that, under certain circumstances, it is beneficial to

leave one CPU idle. A theoretical analysis of the influence of

noise on collective communication [4] suggests that the impact

of noise depends on the type of distribution and their pa-

rameters and can, in the worst case (exponential distribution),

scale linearly with the number of processes. Ferreira, Bridges,

and Brightwell use noise-injection techniques to assess the

impact of noise on several applications [5]. Beckman et al.

[6] analyzed the performance on BlueGene/L, concluding that

most sources of noise can be avoided in very specialized

systems.

Previous work was either limited to experimental analysis

on specific architectures with injection of artificially generated

noise (fixed frequency), or to purely theoretical analyses that

assume a particular collective pattern [4]. These previous

results show the severity of the problem but allow little

generalization and provide limited insight into application

behavior on real machines. Effects, such as absorption of

noise, are described but not further investigated [5]. One

common theme in all previous works is to look at collective

communications as the main problem and often model such

operations as strictly synchronizing opaque entities. However,

the Message Passing Interface (MPI) standard [7] states that

“[...] a collective communication call may, or may not, have

the effect of synchronizing all calling processes. This statement

excludes, of course, the barrier function.” This invalidates all

simple models in use today. The synchronization properties

of an application depend on the collective algorithm, point-to-

point messaging, and the system’s network parameters.

We chose a simulation approach similar to Sottile et al.’s [8]

and improve it by using noise traces from existing systems

combined with detailed simulation and extrapolation of collec-

tive operations and parallel application traces. Our simulator

enables us to simulate applications on HPC systems that

cannot be accessed easily at full scale or that do not exist

yet and it also allows us to investigate the effect of changing

network speeds and other system parameters.

B. Contributions

In this work, we introduce an open-source measurement

and simulation framework that measures OS noise and as-

sesses its impact on large-scale applications by simulation. We

build upon a detailed model for dependencies in applications

and synchronization (cf. Lamport’s happens-before relation)

that considers collective as well as point-to-point patterns

of real applications. We perform simulations for a set of

applications and systems, explain phenomena observed by
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other researchers, and show how the performance of collective

operations and applications is decreased by noise.

Such techniques are very helpful in evaluating system

software and parallel applications targeting to run on upcoming

Peta- and Exascale computers that are not yet available.

For example, asynchronous (threaded) progression or active

messages might be needed for programming such extreme-

scale systems but could increase noise on those systems. The

new approaches to implement parallel applications or new

concepts for the system software that will be needed to achieve

reasonable performance at this scale can be analyzed with our

toolchain.

Our approach combines theory and practice in that we use

a detailed network model to describe all synchronization at

the message level and analyze the global impact of node-local

system noise. The key contributions of this work are several:

• A detailed dependency and synchronization model for

noise propagation and absorption in parallel applications.

• A discrete-event simulation strategy to investigate the

impact of real-world and artificial OS noise on real

applications. The strategy accurately reproduces previous

experimental results and provides significant insight into

previous observations.

• Simulation results of up to 1 million processes using real-

world noise traces. The results show that the influence of

real-world noise on collective communication can be very

different from that of artificially generated noise.

• Simulation results showing that point-to-point messaging

influences the noise sensitivity of applications.

• Simulation results including the effects of co-scheduling

and network speed in the context of noise.

• A quantification of an effect that we call noise bottleneck

where increasing the network speeds does not improve

application performance due to noise.

In the next section, we discuss established measurement

techniques for system noise and present an enhanced noise

benchmark. In Section III, we model the synchronization prop-

erties of point-to-point messages and collective operations.

Then, we introduce the established LogGPS model to simulate

the behavior of collective operations under the influence of

noise in Section IV. In Section V, we simulate complete

applications with our collected noise traces from real systems.

Our methodology provides important insight into the effects

of noise on parallel applications and enables us to explain

various phenomena found in previous studies. For example,

our model shows that the impact of noise depends on the

type of collective operation (we are able to explain Ferreira,

Bridges, and Brightwell’s finding that broadcast is significantly

less sensitive to noise than allreduce [5]). Our model also

explains why small-message collectives are more affected by

noise than larger ones and why low-frequency noise with

higher amplitude degrades the performance significantly while

high-frequency noise has nearly no impact.

II. MEASURING SYSTEM NOISE

A straightforward noise measurement technique, called

fixed work quantum (FWQ), measures the time ti to compute

several fixed workloads. FWQ assumes that the minimum

time tmin represents the noiseless execution and all other

times ti are perturbed by ti − tmin. The main problem with

this approach is that the sampling frequency is not constant

because each perturbation influences the start of the next

sample. Sottile and Minnich [9] propose an inverse measure-

ment technique, fixed time quantum (FTQ), which counts the

number of fixed-work computations that can be performed in

a specific time and thus enables the application of techniques

from signal analysis.

But we argue that both methods fail to record noise with

high frequency because the fixed workload needs tmin to

compute. This effectively means that the sampling frequency

is limited to 1/tmin and all noise that has a higher frequency

simply elevates tmin and underestimates noise. Additionally, if

the Nyquist-Shannon sampling theorem is not satisfied , then

aliasing could lead to wrong (Moiré) observations. Thus, we

conclude that to capture all noise frequencies accurately, the

workload has to be chosen as small as possible (tmin → 0).
For our experiments, we choose a FWQ benchmark with a

workload close to zero.1 To manage the huge number of

measurements, we only store the time of the perturbed mea-

surements similar to Beckman’s “selfish detour” benchmark

[6] which also uses a tight loop to measure perturbations.

The first difference from “selfish detour” is that we define

the threshold relative to tmin (instead of a fixed threshold)

and thus allow the benchmark to run on a wide variety of

systems. We used 9 · tmin as threshold to filter cache misses

that are caused by recording the data. Such cache misses

occurred on all systems and caused a detour between 6 · tmin

(Opteron) and 8·tmin (BlueGene/P). Another difference is that

we assess tmin in a separate step such that we do not need to

update tmin in the benchmark loop. This removes one of the

three branches in the critical loop and increased the sampling

frequency (benchmark resolution) by approximately 30% in

our tests. We measured all times with architecture-dependent

high-resolution timers (RDTSC on x86, MFTB on PowerPC,

AR.ITC on IA64). All benchmarks are implemented in the

publicly available tool Netgauge [10]2.

A. Analyzing Real-World Architectures

We analyze four different systems that represent today’s

common large-scale system architectures, often scaling to tens

or even hundreds of thousands of processing cores. The first

system represents Linux clusters with InfiniBand such as the

Ranger system at TACC that run a default Linux kernel.

The other three systems represent specialized machines with

custom operating system kernels: SGI Altix 4700, Cray XT-4,

and BlueGene/P. For our benchmarks, we used the standard

batch mechanisms without special tuning to run our jobs (as
1We use a tight loop and tmin denotes loop overhead.
2http://www.unixer.de/research/netgauge/osnoise



System/Architecture Rpeak OS tmin 1 ppn c ppn
CHiC Cluster, diskless, 2152 Opteron 2.6 GHz cores 11.2 TFlop/s Linux 2.6.18 3.74 ns 0.26% 0.21%
SGI Altix 4700, 2048 Itanium II 1.6 GHz cores 13.1 TFlop/s Linux 2.6.16 25.1 ns 0.05% n/a
Jugene, BlueGene/P, 295k PPC 450 850 MHz cores 825.5 TFlop/s CNK 2.6.19.2 29.4 ns 0% 0%
Intrepid, BlueGene/P, 164k PPC 450 cores 458.6 TFlop/s ZeptoOS 2.6.19.2 29.12 ns 0.02% 0.08%
Jaguar, Cray XT-4, 150k Opteron 2.1 GHz cores 1.38 PFlop/s Linux 2.6.16 CNL 32.9 ns 0.02% 0.02%

TABLE I
SYSTEM PARAMETERS AND SERIAL NOISE OVERHEAD FOR ALL INVESTIGATED MACHINES WITH EITHER ONE CORE OR ALL CORES PER

NODE USED. tmin REPRESENTS THE MINIMUM LOOP TIME (MEASUREMENT ACCURACY).
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Fig. 1. Scatter plot of 105 detours on the different machines using all cores per node.

a typical user would do). We ran the noise benchmark three

times on each system, recording 105 events, and chose the

result with the lowest total detour (all runs differed by less

than 0.1%). On systems with c processing cores per node, we

executed our benchmark with 1 process per node (ppn) as well

as with c ppn.

Table I shows the configuration of all test systems. Over-

heads of the sampling loop and timer access limit the sampling

frequency on real systems, even if the workload is zero. Such

loop overheads are system dependent and vary between a few

CPU cycles (3.74 ns) and 32.9 ns, as listed in Table I. As

discussed before, we cannot reliably measure noise frequencies

higher than 1

2tmin

Hz (134MHz on our most accurate system).

However, we assume that this limit is only of theoretical

interest because most noise has a much lower frequency. In

the following, we use the configuration where all cores on a

node are used by the application (as most parallel codes are

executed). Figure 1 shows scatter plots of the noise patterns

for some of our investigated systems.

Figure 1(a) shows the diskless CHiC system with low

regular noise but reproducible longer interruptions (as seen

around 23 seconds in the plot).3 Figure 1(b) shows that

most detours on the SGI Altix lie in the 1–8µs range while

220µs interruptions occur approximately every 2 seconds.

We measured absolutely no system noise on the BlueGene/P

system running CNK (the benchmark ran for several hours

and did not collect a single detour). This is consistent with the

results by Yoshii et al. [11] who also report CNK as absolutely

noiseless. ZeptoOS on BlueGene/P, however, causes low noise

in a regular pattern as shown in Figure 1(c). The XT-4 part

of the Jaguar system, number one in the current top-500 list

(06/10), also shows high and infrequent random detours in

addition to two baselines.

3Other investigated large Linux systems (e.g., Ranger and Juropa) show
show structurally similar noise patterns and are omitted for brevity.

III. AN ANALYTICAL MODEL FOR NOISE PROPAGATION

Now, we present a suitable model to analyze noise effects on

applications. Noise (or “detours” as discussed in the previous

section) can either be absorbed or propagated by synchroniza-

tion. Processes are often synchronized implicitly by remote

data dependencies (cf. happens-before relation). For example,

a receive cannot finish before the corresponding (matching)

send has been posted and the network transmission cost has

been paid (recv/send dependency). We analyze those effects in

detail by utilizing the LogGOPS network model to characterize

all situations where noise is transported or absorbed.

A. The LogGOPS Model

The LogGPS model [12] is a member of the LogP model

family. LogP models are often used to model parallel applica-

tions and network transmissions.

Multiple researchers have shown that the LogP model fam-

ily is able to model many parallel algorithms and architectures

accurately (e.g., [13]). LogGPS additionally offers support for

modeling the synchronization effects of rendezvous messages.

We use the extended LogGOPS model in our simulation

which includes an additional parameter O [14] that models

the overhead per byte. Table II describes all parameters of the

LogGOPS model briefly (see [12], [14] for details).

L maximum latency between any two endpoints
o CPU overhead, os for send and or for receive
g inter-message gap, the minimum delay between two mes-

sages (1/g ≡ message-rate)
G gap per byte (1/G ≡ bandwidth)
O overhead per byte
P number of communicating processes
S threshold for eager messages that are buffered on the

receiver. Messages larger than S block the sender in the
rendezvous protocol until the receive has been posted, while
messages smaller than S are sent immediately

TABLE II
LOGGOPS PARAMETERS
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Fig. 2. Examples for blocking (a) and nonblocking (b) point-to-point synchronization and noise absorption (c).

The LogGOPS model ignores contention in the network

and might thus underestimate communication costs. Our

simulations are mostly targeted towards investigating noise

propagation and one could see a congestion-free execution

as showing the worst effect of noise. If necessary, average

network contention can be modeled by increasing G in the

LogGOPS model. We chose this approach to limit simulation

resources and allow for larger process counts, cf. [14]. We

discuss the influence of the network parameters to noise

propagation and absorption in Section V-B.

In the following, we describe synchronization effects in

parallel applications and derive an analytical model for noise

propagation (sometimes also called amplification) and absorp-

tion. This model allows reasoning about the effects of noise

and forms a base for our simulation. We discuss blocking

and nonblocking point-to-point messages in detail before we

proceed to more complex collective communication patterns.

B. Blocking Point-to-Point Communication

If the receive of a message is started too early, then the

receiver must wait until the message is sent. Likewise, if the

send of k bytes (and k > S, i.e., a rendezvous-send) is started
too early then the sender must wait until the receiver is ready.

Now let us discuss what “too early” means.

Figure 2(a) shows the scenario of a late sender and the

associated synchronization overhead Xr. Both, the sender and

receiver are assumed to start at time t = 0. Ts denotes the

time when the send is started and Tr the time when the

receive is posted. We assume that all other time is spent with

computation that advances the algorithm (that is, no polling or

testing). Let N = os +L+(k− 1)G+ or denote the network

overhead in the LogGP model. We define the synchronization

overhead on the receiver as Xr = max{Ts +N − Tr, 0}.

For k > S (rendezvous protocol), the synchronization

overhead Xs can also occur on the sender Xs = max{Tr −
N−Ts, 0}. In this case, the only scenario where neither sender

nor the receiver are delayed is Tr = Ts+N , that is, the receive

is posted exactly at the right moment. Such timing is very

unlikely and blocking communication often propagates noise.

C. Nonblocking Point-to-Point Communication

A common method to avoid synchronization overheads

and to reduce communication costs in general is nonblock-

ing communication. Figure 2(b) shows the communication

diagram for a nonblocking send/receive pair. Nonblocking

transfers are split into two phases, the posting of the operation

and the waiting for completion. Synchronization and data

transfer can now happen in the background and the associated

overheads can be hidden. However, nonblocking transfers

underlie several restrictions and synchronization overheads

can still occur if operations are waited for too early. Fig-

ure 2(b) shows an example where the receiver waits for an

operation before the message arrives. The rendezvous-send and

receive synchronization overheads are Xr = max{Ts +N −
Twr

, 0} and Xs = max{Tr −N − Tws
, 0} respectively. The

main difference from the blocking case is that, if the time

between a send or receive and the respective wait is large

enough, then synchronization can be avoided. Informally, no

synchronization overhead occurs on the receiver, when the

received data is needed late enough, that is, Twr
≥ Ts + N .

Synchronization overhead on the sender (rendezvous protocol)

can be avoided if the send has enough time to complete, that

is, Tws
≥ Tr −N .

D. Noise Propagation and Absorption

As discussed before, system noise occurs locally at each

process and usually has little impact on the process itself (<
0.25%, cf. Table I). However, the synchronization described

before can lead to noise propagation. But noise can also be

consumed in existing synchronization delays and disappear

completely (cf. [15]). Figure 2(c) shows an example where

noise on the receiver is completely absorbed in Xr. However,

if the system noise had happened at the same time on the

sender, then noise would have been propagated and Xr would

have been increased. Generally, only a limited amount of noise

can be subsumed in a synchronization phase. We use σα to

denote the noise that happens before time α.

If blocking communication is used, then σTs
propagates

to the receiver but might be absorbed if the receive is posted

late enough, that is, Tr ≥ Ts + σTs
+ N . The synchroniza-

tion overheads (including noise propagation) on receiver and

rendezvous-sender are Xr = max{Ts+σTs
+N−Tr, 0}, and

Xs = max{Tr+σTr
−N−Ts, 0}, respectively. The condition

for Xr = Xs = 0 (execution without synchronization

overhead) is now Tr = Ts + N +
σTs

−σTr

2
. If the detours

on sender and receiver are identical, then Xs = Xr = 0 iff

Tr = Ts +N as in the noiseless case.

We expect applications that use nonblocking communi-

cation to be relatively resistant to system noise due to the

possibility to hide some synchronization overheads. The syn-

chronization overhead on receiver and rendezvous-sender can

be modeled as Xr = max{Ts+σTs
+N −Twr

, 0} andXs =
max{Tr + σTr

−N −Tws
, 0}, respectively. We conclude that

no synchronization overhead occurs on the receiver and all

noise on the sender is absorbed if Twr
≥ Ts + σTs

+N . The



noise at the receiver can be absorbed on the sender (rendezvous

protocol) if Tws
≥ Tr + σTr

− N . Thus, nonblocking point-

to-point communication has a higher potential to absorb noise

than blocking communication.

E. Collective Operations

Collective operations often have more complex dataflow

dependencies than point-to-point messages.We can, however,

identify the following dependence classes in MPI:

1) broadcast, scatter: all non-root processes depend on

the root process

2) reduce, gather: the root process depends on all non-root

processes

3) scan, exscan: each process depends on all processes

with a lower rank

4) alltoall, allgather, allreduce, barrier, reduce scatter:

each process depends on all other processes

Those semantic dependencies are lower bounds for syn-

chronization and noise propagation, which means for example

that an eager broadcast (at least) propagates all noise that

happened on the root before the call (σTs
) to all other

processes. This model assumes a linear implementation of

the algorithm and would perform asymptotically worse than a

binomial-tree implementation [runtime of Ω(P ) vs. Ω(logP )].
Thus, at large scale, optimized algorithms must be used

to implement collective operations. Such algorithms usually

add recv/send (data) dependencies to the (minimal) semantic

dependencies, which can cause additional noise propagation

from intermediate processes. For example, the binomial tree

shown in Figure 3 has multiple paths from the root node

to the destinations and additional recv/send dependencies are
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Fig. 3. LogGOP diagram for a binomial broadcast tree (P = 15).

introduced along each path. The longest paths in the 15-

process example are (0, 1, 3, 7), (0, 2, 6, 14), (0, 1, 5, 13), and
(0, 1, 3, 11) with four recv/send dependencies along each path.

Each detour σTs
that precedes any send along these paths

might delay all following processes. On the other hand, if all

processes post the broadcast operation at the same global time,

all but the root (process 0 in our example) can absorb some

detour. Some processes (e.g., process 13) could even absorb

three times as much as others. Also, if we take a detailed look

at the longest paths, on all but the root node (e.g., processes 1,

2, or 3), noise that happens before the message is received is

likely to be absorbed, and only detours during the short period

between the receive and the send will delay the operation. Thus

the binomial broadcast is relatively insensitive to noise.

The binomial-tree argument shows that the influence of

noise and its propagation can, even for simple algorithms, not

easily be assessed analytically. Even the globally dependent

algorithms in the fourth category depend on the details of

the underlying point-to-point algorithm. Figure 4 shows the

LogGP diagram of two barrier operations with a compute
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Fig. 4. LogGP diagram of two barriers with process 4 delayed (P = 8).

phase between them. We assume that the barrier is imple-

mented with the dissemination algorithm and process 4 is

delayed during the compute phase. All processes leave the

second barrier at different times due to recv/send dependencies

and process 3 is delayed most. This example shows clearly

that current models, which model the collective operation as

a black box (and assume that all processes are delayed in

the same way, e.g., [2]) cannot be used to assess the effects of

noise propagation accurately. An accurate analytical model has

to account for the whole communication and synchronization

of each send/receive pair and all recv/send dependencies to

account for each noise propagation and absorption correctly.

Finding such models for complex communication patterns

seems infeasible. Thus, we propose a full LogGOPS simulator

that enables accurate simulation of large-scale systems.

IV. LOGGOPS SIMULATION FRAMEWORK

The LogGOPS simulation toolchain consists of a trace col-

lector, a schedule generator, an optimized LogGOPS discrete-

event simulator similar to [16], and a visualizer.

The trace collector is a library that uses the MPI profiling

interface [7, §14] in order to record all MPI calls of an

application with minimal overhead.

The schedule generator reads the MPI traces and represents

the control- and dataflow in our happens-before application.

Collective operations are replaced with suitable point-to-point

algorithms. The generator supports state-of-the-art collective

algorithms, such as n-ary (binomial) trees, dissemination,

recursive doubling, and pipelined trees. A mapping from

collective operation to algorithm (e.g., allreduce 7→ binary tree

reduce + binary tree broadcast, or barrier 7→ dissemination)

can be specified in the schedule generation phase. In this

work, we used the dissemination algorithm for small allreduce,

allgather, alltoall, and barrier calls and the binomial tree

algorithm for small scatter, gather, and broadcast calls.

The simulator reads the schedule, performs the full Log-

GOPS simulation (cf. Section III) and reports the end times

for each process. The simulator was shown to predict collective

operations up to 128 processes with an average error of

less than 1% and full MPI applications with an error below

2%. A complete description of the simulator and a detailed

performance and accuracy study is available in [14] and the
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Fig. 5. Boxplots for 1-byte dissemination-based collectives (e.g., allreduce) on different architectures.

whole open-source toolchain is available online4.

In the following simulations, we used LogGP parameters

that reflect each system accurately. The parameters are shown

in Table III and were measured with the method described

in [17] using the default MPI library and settings on each

system and we assume S = 65 kiB and O = 0 (high overlap,

see [14]).

System L o g G
CHiC 5.33µs 0.77 µs 1.56µs 0.00125 µs

Altix 1.64µs 0.99 µs 0.90µs 0.00123 µs
CNL 4.77µs 2.87 µs 2.04µs 0.00267 µs

ZeptoOS 8.67µs 3.42 µs 2.81µs 0.00269 µs
XT-4 9.9µs 1.75 µs 3.40µs 0.00058 µs

TABLE III
LOGGP PARAMETERS FOR ALL MACHINES.

A. System Noise Input

The simulator supports the injection of system noise into all

computations that are performed on the CPU: the application

computation, the LogGOPS overheads os, or, and O, and

the reductions in collective operations. We use the selfish

detour traces that we gathered with Netgauge (cf. Section II)

as input. Each trace contains 105 detour events and spans

several minutes of benchmarking time. We also produced

artificial (fixed frequency and detour) noise traces to reproduce

previously published experiments. At startup, the simulator

assigns a random time offset in the trace to each process.

This process-specific time offset is increased during each local

computation and all detours that occurred during the event are

added to the simulation time.

B. Simulating Collective Operations

Our first experiment strives to reproduce the benchmark

results presented by Beckman et al. [6] who used noise

injection on BlueGene/L (BG/L) and investigated the behavior

of barrier, allreduce and alltoall at large scale. While barrier

is supported directly by the BG/L hardware, allreduce used

a pattern similar to the dissemination pattern. We use LogGP

parameters from BlueGene/P running CNL because we do not

have access to a BlueGene/L. Thus, we expect the impact to

be slightly lower, but asymptotically similar. Like Beckman

et al., we used unsynchronized noise with a fixed frequency

of 1,000, 100, and 10 Hz causing detours of 16, 50, 100, and
4http://www.unixer.de/LogGOPSim (2010)

200µs. We reproduced the two key observations: (1) The

maximum slowdown of collective operations involving many

processes scales linearly with the injected noise and (2) the

maximum slowdown of the collective operation (in our case a

factor of 13 on 32,768 processes where [6] reported a factor

of 18) scales logarithmically with the number of processes.

We also certified that a detour of 16µs does not affect the

operation significantly. In addition to that, we were able to

analyze the statistical distribution of the latency for every

single collective operation. Figure 5(a) shows a boxplot of

the results of 1,000 simulations per process count for 100µs
noise with a frequency of 1,000 Hz (we remark that this is an

extreme case of 10% noise overhead).

We chose boxplots [18] to present our results because,

contrary to simpler line plots, they allow us to display the

statistical effects that are crucial to understand the influence

of noise. The boxes in the plot show the upper and lower

quartile and small circles represent statistical outliers. The

noise-less performance is plotted as a lowest (red) line in

the diagrams. The first observation is alarming: The outliers

at small process counts quickly become the median at large

process counts and converge at a high level. This means that

noise occasionally increases the latency for small runs but

slows down large runs deterministically as one can see in

Figure 5(a). This deterministic slowdown of single collective

operations becomes a bottleneck that is relatively independent

of the network parameters at large scale.

Our experiments with fixed noise also show that the (rooted)

tree-based operations (e.g., broadcast and reduce) are less

affected than (all-to-all) dissemination-based operations (e.g.,

barrier, allreduce, alltoall) as conjectured in [5]. However,

the maximum detour for both types of operations scales

logarithmically with the number of processes.

1) Simulation of Real-World Systems: Having shown that

our simulation reproduces previous benchmark results with

artificial noise well, we proceed to simulate the systems

discussed in Section II-A. We remark that all previous studies

only considered noise with fixed frequency and amplitude. In

this experiment, we use our measured noise traces as input for

the simulation. Our traces reflect detours on the real machines

over several seconds. The results of 1,000 simulations per

process of a dissemination-based algorithm (e.g., barrier or
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Fig. 6. Different experiments: (a) dissemination pattern on Jaguar (b) broadcast vs. allreduce, (c) large messages with fixed 1,000 Hz, 100µs noise

allreduce) are shown in Boxplots 5(b), 5(c), 6(a). Results of

the Altix system show a similar shape and are omitted due to

space constraints.

Despite a small number of outliers, noise has a very low

influence on small-scale jobs on the CHiC and Jaguar systems.

The most interesting observation is that each system seems to

have a characteristic number of processes where the influence

of noise rapidly raises to a very high level and stabilizes at

a high latency. We predict that, due to this system-specific

noise-bottleneck, applications will not scale well beyond 512,
4,096 and 8,192 processes on CHiC, Altix and Jaguar, respec-

tively. ZeptoOS however, affects collective communications

only slightly and does not exhibit the noise-bottleneck. The

maximum slowdown at large scale (1 million processes) is

148.05, 6.45, 0.41 and 24.73 for CHiC, Altix, ZeptoOS and

Jaguar, respectively.

2) Different Collective Operations: We simulated allreduce

and broadcast with 2.5ms detours at 10 Hz as benchmarked

by Ferreira, Bridges, and Brightwell [5]. Ferreira et al. report

a slowdown of 32 for allreduce and our simulation predicts

a factor of 30. Our simulation also certifies that broadcast is

significantly less influenced by noise than allreduce. However,

we argue that artificial noise with a fixed frequency does not

reflect real-world systems accurately. Figure 6(b) shows the

median latency increase due to noise for 1,000 allreduce and

broadcast simulations for our real-world noise traces. Again,

we see the noise bottleneck, a clear inflection point at certain

node counts. We also note that all systems seem to operate very

smoothly with jobs smaller than 512 processes. We omitted the

ZeptoOS system in the plot because collective are nearly not

affected by its noise, even though it has, with 0.08%, a much

higher serial noise than Jaguar (0.02%). This is because the

noise on the ZeptoOS is very well balanced and regular. The

maximum slowdown of the binomial-tree pattern at large scale

(1 million processes) is 59.96, 1.93, 0.02 and 9.01 for CHiC,

Altix, ZeptoOS and Jaguar, respectively. We clearly see that

the specific noise pattern of a system (cf. Figure 1) is more

important than the serial noise overhead.

Our identified noise bottlenecks explain Petrini’s previous

observations (Figure 2 in [1]) where the application scales

as expected up to 256 processes and then the execution time

suddenly jumped (if all processors on each node are used).

It seems interesting that each noise pattern (system) has such

a precise and specific inflection point. We recommend using

our simulation to tune the operating system such that the noise

bottleneck lies beyond the maximum job size.

3) Noise and Large Message Transfers: Our simulations

show that large messages are much less affected. This is be-

cause noise can be absorbed in the message transmission time

(while paying (k−1)G in the LogGOPS model). We repeated

the experiments with the artificial noise (Figure 5(a)) with

1 MiB messages and we saw no significant slowdown for this

configuration as shown in Figure 6(c). Our real-world traces

showed similar behavior: Figure 7(a) shows the influence of

noise on 1 MiB messages in Jaguar (cf. Figure 6(a)). Similar

behavior has also been shown with the injection of artificial

noise in [5]. The simulator can be used to analyze the exact

relation between message size and noise propagation but this

is outside of the scope of this work.

4) Experiments with Co-Scheduling: The simulator can be

used to analyze the influence of co-scheduling all noise on

all processes. Co-scheduling has been discussed as a possible

solution to the noise problem [1], [19]. In our model, we

assume that all noise in the systems is perfectly synchronized

(that is, all simulated processes start at the same random

position in the noise-trace). Figure 7(b) shows a dissemination-

based collective operation in a co-scheduled Altix system. We

see that the median collapses into the minimum and the noise

bottleneck vanishes. However, the system is not completely

immune to noise (we see two outliers), but the probability

of noise propagation is much less than in asynchronously

scheduled systems. All other systems show a similar behavior

and plots are omitted due to space restrictions.

5) Influence of the Network Parameters: Several previous

studies suggest that the influence of noise is tightly coupled

to the network parameters. Our model in Section III also

indicates that slower networks can absorb more noise in g,
G and L than faster networks. Our simulation framework

provides an excellent tool to study the influence of the network

parameters on the noise-sensitivity of parallel programs. Here,

we investigate collective operations with 10 times faster and

10 times slower networks. We multiply or divide L, g, and G
with/by the factors and leave the host overhead o constant.

We observe in Figures 7(d)-7(f) that the increase and
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Fig. 7. Different boxplots for dissemination-based collectives on Altix and Jaguar systems (Figs. 7(d)-7(f) show 10x faster and 10x slower network).

reduction in network speed translates directly into reduced

or increased latency at small process counts. However, the

difference vanishes at large process counts due to the same

characteristic noise bottleneck that we observed in the previous

sections. We also see that a slower network is able to absorb

more noise than a faster network. It is thus very important

to analyze OS noise together with the network parameters

in large-scale networks. We will discuss the influence of the

network on the noise sensitivity of applications in detail in the

next section.

Collective microbenchmarks (or microsimulations) can give

a rough estimation of the scaling of parallel applications that

heavily use collective communication. However, the timing of

collective calls and point-to-point operations is characteristic

to each application. Successive collective and point-to-point

operations might interfere with each other (e.g., the times

when processes leave one operation might influence the fol-

lowing collective operations leading to more amplification).

Thus, we analyze real-world applications in the following

and use communication/computation traces as input for our

simulation.

V. PARALLEL APPLICATIONS

We choose three scalable applications with different com-

munication characteristics. All investigated applications are

bulk synchronous and consist of multiple computation phases

separated by global collective communications. The computa-

tion phases often include localized (nearest-neighbor) point-

to-point communication. The main characteristics in bulk

synchronous parallel applications are the types and sizes of

communication operations and the time between the calls. We

analyzed our example applications and found characteristic

patterns of computation/communication phases.

Figure 8(a) shows those patterns for the three analyzed

applications. The horizontal lines represent normalized ap-

plication run time and the points indicate calls to collective

operations. Only Sweep3D has a regular structure (fixed fre-

quency) of collective calls. We conclude that, in order to model

applications accurately, we have to consider the particular

(characteristic) collective and point-to-point call pattern for

each application.

We ran the applications on 100 (Sweep3D), 125
(AMG2006), or 128 (POP) nodes of a quad-core low-noise

system5 with 1 process per node. The overhead caused by

the trace collection was less than 1% in our experiments

and simulations with the system’s LogGOPS parameters were

within ±1.5% of the real application runtime.

We use our framework as described in Section IV. The

schedule generator is able to extrapolate the application traces

in order to simulate larger runs. Therefore, it replicates the

original trace multiple times, renames the processes accord-

ingly, and recomputes the collective operation patterns. We as-

sume sparse communication in the point-to-point patterns and

keep (renamed) partners and timings identical in all replicas of

the trace. This replication technique retains many characteristic

properties of the application (collective and point-to-point

operation types, sizes and duration of the computation) and

models a weak-scaling execution [14].

a) Sweep3D: Sweep3D [20] solves a neutron transport

problem on a 3D Cartesian geometry. The problem is solved in

two nested iterative loops until convergence. The inner loop

5The system had 0.02% highly regular serial noise.
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Fig. 8. Collective communication call pattern (a) and full application simulation results for different noise patterns (b,c).

employs a wavefront algorithm where each grid cell cannot

be computed before all previous cells in the dimension have

been computed. The outer loop uses an allreduction to check

for convergence.

Sweep3D had 17.2% communication overhead in our run,

and spent 7.6% of it in various collective operations (4 broad-

cast, 3 barrier, 32 allreduce). All point-to-point communication

is blocking. Our largest simulation with 16,000 processes

processed more than 289 million messages. Figure 8(b) shows

the slowdown due to noise on all systems. The CHiC system

causes the highest influence with a slowdown of up to 0.7%.

Altix and ZeptoOS show nearly no noise propagation while

the slowdown of Jaguar starts at its serial noise level and

increases due to propagation. However, we see that Sweep3D

is practically immune to noise, even at large runs.

b) AMG2006: The Algebraic Multigrid [21] (AMG)

2006 benchmark represents the core computation of several

AMG solvers. We used a three-dimensional Laplace type

problem on an unstructured domain with 512 unknowns on

125 processors, arranged as a cube, with a refinement factor

of 6 in each dimension. Nearest neighbor communication and

the global convergence checks dominate the communication

load. Similar Algebraic Multigrid Solvers have been reported

to scale up to 125,000 processors on BlueGene/L.6

AMG2006 spends 9.72% of the runtime in collective com-

munication functions (24 allgather(v), 356 allreduce, 1 barrier,

23 broadcast, 8 scan). 45% of the communication is mostly

spent with nonblocking point-to-point communication. Our

largest simulation with 16,000 processes simulated more than

222 million messages. Figure 8(c) shows the influence of

the different noise patterns to AMG2006. The slowdown for

16,000 processes nearly reaches 5% on CHiC. Jaguar starts

very low at the serial overhead (0.02%) but passes the constant

ZeptoOS and Altix quickly. However the slowdown of the

three systems remains less than 1%.

c) POP: The Parallel Ocean Program [22] (POP) models

general ocean circulation and is used in several climate mod-

eling applications. The logically (mostly) rectangular problem

domain is decomposed into two-dimensional blocks with halo-

zones for parallel execution. It uses nearest neighbor commu-

nication together with global data exchanges. POP was shown

to scale up 10,000 processes by Ferreira et al. in [5].
6See the “ASC Sequoia Benchmark Codes”.

POP called 608 allreductions, 575 barriers and 703 broad-

casts in our modified X1 benchmark and spent, on 128

CPUs, 77.2% of the time in communication. 77% of this

time is spend in collective calls and 0.2% of the time in

nonblocking point-to-point communication. POP is commonly

run with such high communication overheads [5]. Our largest

simulation with 32,000 processes simulated more than 625

million messages. POP is well known for its noise sensitivity

and shows slowdowns of more than 100% on CHiC. ZeptoOS

shows no noise propagation while Altix raises above 1%.

Jaguar again dominates the lower league with up to 5% noise

overhead as shown in Figure 9(a).

We remark that BlueGene/P shows no noise and applications

running on it are not affected at all. We also simulated all

applications and systems with co-scheduling as described in

Section IV-B4. Co-scheduling eliminated nearly all noise prop-

agation and showed excellent scaling behavior so that results

were omitted from the graphs (less than 0.5% slowdown).

A. Influence of Point-to-Point Communications

Point-to-point messages are commonly ignored in noise

analysis. However, as seen in Section III, they can propagate

or eliminate noise. To assess the influence of point-to-point

messages in isolation, we repeated all simulations (which

simulated all communications) and either ignored point-to-

point (“nop2p”) or collective (“nocolls”) calls during the

schedule generation. Figures 9(b) and 9(c) show those detailed

simulations. Simulations with point-to-point and collective

calls are marked as “all”. We see that point-to-point messages

increase the noise sensitivity at large scale. The results also

show that the influence on point-to-point messages grows with

a significantly smaller slope than for collective operations. The

influence is also clearly depending on the application commu-

nication characteristics such that POP is less affected by its

(rare) point-to-point communication than AMG. However, our

results show that point-to-point messages cannot be ignored

in careful noise analyses.

B. Influence of Network Parameters

We also investigated the effect of faster and slower net-

works by manipulating the LogGP parameters as described

in Section IV-B5. Figure 10 shows the influence of increased

and decreased network speeds to POP running on the CHiC



0
2

4

# Processes

128 256 512 1024 2048 4096 8192 16384

0
4
0

8
0

1
2
0

S
lo

w
d
o
w

n
 [
%

]

Altix Jaguar ZeptoOS CHiC

(a) POP

0
.1

0
.3

# Processes

125 250 500 1000 2000 4000 8000 16000

all nocolls nop2p

1
2

3
4

5
S

lo
w

d
o
w

n
 [
%

]

Altix Jaguar CHiC

(b) AMG

0
2

4

# Processes

128 256 512 1024 2048 4096 8192 16384

all nocolls nop2p

2
0

4
0

6
0

8
0

S
lo

w
d
o
w

n
 [
%

]

Altix Jaguar CHiC

(c) POP

Fig. 9. Simulation results for POP and comparison of the influence of point-to-point vs. collective operations on AMG (b) and POP (c).
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Fig. 10. Network influence on POP

system. The left side shows the total running time with noise

and the right side shows the relative slowdown. We observe a

similar effect as in Section IV-B5 that slower networks tend to

be less affected by noise. Also, at large-scale, faster networks

are not able to improve the application speed significantly

because noise propagation is becoming a bottleneck.

VI. SUMMARY AND CONCLUSIONS

In this work we discussed how to analyze the influence

of OS noise on applications with analytical modeling and

simulation. We show that synchronization of point-to-point and

collective communication and OS noise are tightly entangled

and can not be discussed in isolation.

In order to assess the more complex interactions in collec-

tive communication, we present a LogGOPS-based simulation

scheme. Our simulator is able to simulate single collective

operations with one million processes in the order of minutes,

and full applications with up to 32,768 processes and more

than 625 million messages in the order of a day on a single

CPU. By comparing the simulation results to previous works,

we found that the method accurately reflects effects on large-

scale benchmarks. One of our key results is that the influence

of noise to collective operations depends on the noise pattern

(structure) on the particular machine and is not represented

well by static noise models. Based on this, we found that

each collective algorithm has a specific inflection point where

the slowdown caused by noise suddenly increases and noise

becomes a significant bottleneck. Earlier publications about

the effects of noise [1] noticed this but did not quantify it or

explore it in detail.

We show that the discussions of effects on applications also

need to consider the history (arrival patterns) from previous

communication operations because the invocation pattern of

collective operations and point-to-point transfers are specific

to each application and can not be captured by simple (fixed

frequency) models. We show detailed simulation results for

three applications in different settings and are able to assess

the noise-sensitivity of those applications. We found that appli-

cation scalability is mostly determined by the noise pattern and

not the serial noise intensity. Interestingly, we see that Jaguar

which has only 0.02% serial noise performs significantly worse

then ZeptoOS with four times as much (0.08%) noise. This is

due to the fact that ZeptoOS’ noise pattern is very balanced

while Jaguar shows spurious high detours.

We also study how noise influences applications with dif-

ferent network speeds. We show that noise impacts slower

networks less than faster ones. At scale, when it becomes a

bottleneck, it eliminates all advantages of a faster network in

collective operations as well as full applications. This finding

is crucial for the design of large-scale systems because the

noise bottleneck must be considered in system design. In

addition, we show that co-scheduling would eliminate most

noise propagation.

Our simulation toolchain offers multiple new perspectives:

(1) the application developer can investigate her application at

different scales and systems and find “noise bottlenecks”, (2)

the system designer can adjust the OS noise level and pattern

such that the inflection point is above the typical job size,

and (3) novel techniques, such as non-blocking collectives or

co-scheduling can be investigated with simulations.

Our proposed model (Section III) suggests that nonblocking

operations can be used to relax the synchronization and

mitigate noise propagation. A possible direction for future

research is the use of nonblocking collective operations that

separate starting the operation and waiting for the data.

Acknowledgments: The authors want to thank (alpha-

betically) Franck Capello, Steven Gottlieb, William Gropp,

William Kramer, and Marc Snir for helpful comments that im-

proved the quality of the manuscript. This work was supported

by the Department of Energy project FastOS II (LAB 07-23)

and the Blue Waters sustained-petascale computing project,

which is supported by the National Science Foundation (award

number OCI 07-25070) and the state of Illinois.



REFERENCES

[1] Fabrizio Petrini, Darren J. Kerbyson, and Scott Pakin. The Case of the
Missing Supercomputer Performance: Achieving Optimal Performance
on the 8,192 Processors of ASCI Q. In Proc. of the ACM/IEEE Conf.

on High Performance Networking and Computing, page 55. IEEE/ACM,
November 2003.

[2] Dan Tsafrir, Yoav Etsion, Dror G. Feitelson, and Scott Kirkpatrick.
System noise, OS clock ticks, and fine-grained parallel applications. In
Proc. of the 19th Intl. Conf. on Supercomputing, pages 303–312, 2005.

[3] T.R. Jones, L.B. Brenner, and J.M. Fier. Impacts of Operating Systems
on the Scalability of Parallel Applications. Technical report, Lawrence
Livermore National Laboratory, 03 2003.

[4] Saurabh Agarwal, Rahul Garg, and Nisheeth Vishnoi. The Impact of
Noise on the Scaling of Collectives: A Theoretical Approach. In 12th

Annual IEEE Intl. Conf. on High Performance Computing, 2005.

[5] Kurt B. Ferreira, Patrick Bridges, and Ron Brightwell. Characterizing
application sensitivity to OS interference using kernel-level noise injec-
tion. In Proc. of the 2008 ACM/IEEE Conf. on Supercomputing, pages
1–12, 2008.

[6] Pete Beckman, Kamil Iskra, Kazutomo Yoshii, and Susan Coghlan.
The Influence of Operating Systems on the Performance of Collective
Operations at Extreme Scale. In Proceedings of IEEE Cluster2006,
2007.

[7] MPI Forum. MPI: A Message-Passing Interface Standard. Version 2.2,
September 4th 2009.

[8] Matthew J. Sottile, Vaddadi P. Chandu, and David A. Bader. Perfor-
mance analysis of parallel programs via message-passing graph traversal.
In 20th International Parallel and Distributed Processing Symposium

(IPDPS 2006), Proceedings, 25-29 April 2006, Rhodes Island, Greece.
IEEE, 2006.

[9] M. Sottile and R. Minnich. Analysis of microbenchmarks for per-
formance tuning of clusters. In Proceedings of IEEE Cluster2004

International Conference on Cluster Computing, pages 371–377, 2004.

[10] T. Hoefler, T. Mehlan, A. Lumsdaine, and W. Rehm. Netgauge:
A Network Performance Measurement Framework. In High Perfor-

mance Computing and Communications, Third International Confer-

ence, HPCC 2007, Houston, USA, September 26-28, 2007, Proceedings,
volume 4782, pages 659–671. Springer, 9 2007.

[11] K. Yoshii, K. Iskra, P. C. Broekema, H. Naik, and P. Beckman.
Characterizing the Performance of Big Memory on Blue Gene Linux.

Technical report, Argonne National Lab, March 2009. ANL/MCS-
P1589-0309.

[12] Fumihiko Ino, Noriyuki Fujimoto, and Kenichi Hagihara. LogGPS: A
Parallel Computational Model for Synchronization Analysis. In PPoPP

’01: Proceedings of the eighth ACM SIGPLAN symposium on Principles

and practices of parallel programming, pages 133–142, 2001.

[13] Gihan R. Mudalige, Mary K. Vernon, and Stephen A. Jarvis. A
plug-and-play model for evaluating wavefront computations on parallel
architectures. In IEEE Intl. Symp. on Par. and Distr. Proc., pages 1–14,
2008.

[14] T. Hoefler, T. Schneider, and A. Lumsdaine. LogGOPSim - Simulating
Large-Scale Applications in the LogGOPS Model. Jun. 2010. ACM
Workshop on Large-Scale System and Application Performance (LSAP
2010).

[15] Aroon Nataraj, Alan Morris, Allen D. Malony, Matthew Sottile, and Pete
Beckman. The ghost in the machine: observing the effects of kernel
operation on parallel application performance. In Proc. of the 2007

ACM/IEEE conference on Supercomputing, pages 1–12, New York, NY,
USA, 2007. ACM.

[16] Radu Rugina and Klaus Erik Schauser. Predicting the Running Times
of Parallel Programs by Simulation. In 12th International Parallel

Processing Symp., page 654, 1998.

[17] T. Hoefler, A. Lichei, and W. Rehm. Low-Overhead LogGP Parameter
Assessment for Modern Interconnection Networks. In 21st IEEE Inter-

national Parallel & Distributed Processing Symposium. IEEE Computer
Society, March 2007.

[18] J. D. Emerson and H. Strenio. Box-plots and batch comparison.
Understanding Robust and Exploratory Data Analysis, 1983.

[19] Terry Jones et al. Improving the Scalability of Parallel Jobs by adding
Parallel Awareness to the Operating System. In Proc. of the 2003

ACM/IEEE Conf. on Supercomputing, page 10, 2003.
[20] K. R. Koch, R.S. Baker, and R.E. Alcouffe. Solution of the first order

form of three-dimensional discrete ordinates equations on a massively
parallel machine. In Trans. of Am. Nucl. Soc., volume 65, pages 198–
199, 1992.

[21] Van Emden Henson and Ulrike Meier Yang. BoomerAMG: a parallel
algebraic multigrid solver and preconditioner. Appl. Numer. Math.,
41(1):155–177, 2002.

[22] P. W. Jones, P. H. Worley, Y. Yoshida, J. B. White, III, and J. Levesque.
Practical performance portability in the Parallel Ocean Program (POP).
Concurr. Comput.: Pract. Exper., 17(10):1317–1327, 2005.


