Non-blocking Collective Operations for MPI

- Towards Coordinated Optimization of Computation and

Communication in Parallel Applications -

Torsten Hoe er

Open Systems Lab
Indiana University
Bloomington, IN, USA

Lawrence Livermore National Lab
Livermore, CA, USA
25th August 2008

Outline

Q Computer Architecture Past, Present & Future
e Why (Non blocking) Collectives?

e An Implementation - LibNBC

@ And Applications?

@ Ongoing Efforts

Computer Architecture Past, Present & Future

Outline

Q Computer Architecture Past, Present & Future

Computer Architecture Past, Present & Future

Fundamental Assumptions (1)

We need more powerful machines!

@ Solving real-world scienti ¢ problems needs huge
processing power (more than available)

Capabilities of single PEs have fundamental limits

@ The scaling/frequency race is currently stagnating
@ Moore's law is still valid (humber of transistors/chip)

@ Instruction level parallelism is limited (pipelining, VLIW,
multi-scalar)

4

Explicit parallelism seems to be the only solution

@ Single chips and transistors get cheaper

@ Implicit transistor use (ILP, branch prediction) have their
limits

Computer Architecture Past, Present & Future

Fundamental Assumptions (II)

Parallelism requires communication

@ Local or even global data-dependencies exist
@ Off-chip communication becomes necessary
@ Bridges a physical distance (many PES)

Communication latency is limited

@ It's widely accepted that the speed of light limits
data-transmission

@ Example: minimal O-byte latency for Im 3:3ns 13
cycles on a 4GHz PE

4

Bandwidth can hide latency only partially

@ Bandwidth is limited (physical constraints)
@ The problem of “scaling out” (especially iterative solvers)

Computer Architecture Past, Present & Future

Assumptions about Parallel Program Optimization

Collective Operations
@ Collective Operations (COs) are an optimization tool
@ CO performance in uences application performance
@ optimized implementation and analysis of CO is non-trivial

Hardware Parallelism

@ More PEs handle more tasks in parallel
@ Transistors/PEs take over communication processing
@ Communication and computation could run simultaneously

Overlap of Communication and Computation

@ Overlap can hide latency
@ Improves application performance

Computer Architecture Past, Present & Future

We need more (functional) parallelism in our
algorithms and codes!

This is hard work!

So, how much can we gain?

Computer Architecture Past, Present & Future

The LogGP Model

level 4
Sender Receiver
OS 0r
CPU [——— —4

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
Network ! L !
» 4

rn LAY

‘I Y . v

g+b g+ e

>
time

) sending message ofsizes: L+ 2 o+(s 1) G

Computer Architecture Past, Present & Future

Resulting Interconnect Trends

Ongoing Technology Change

@ modern interconnects of oad communication to
co-processors (Quadrics, In niBand, Myrinet)

@ Ethernet is optimized for lower overhead (e.g., Gamma)
@ many Ethernet adapters support protocol of oad

) L+g+m G>> o

) we prove our expectations with benchmarks of the user CPU
overhead

Computer Architecture Past, Present & Future

LogGP Model Examples - Gige/TCP

00 | GIgE/CP -L+G*stg |
GigE/TCP 0

500 *FFP&

400 thPtFH

300 FM

200 ﬁ
ﬁﬁ i

100 MW

0

0 10000 20000 30000 40000 50000 60000

Datasize in bytes (s)

Time in microseconds

Computer Architecture Past, Present & Future

LogGP Model Examples - Myrinet/GM

160 — \ \ \
Myrinet/GM - L+G*s+g ~ + T
140 - Myrinet/GM - o s .

120
mﬁﬁ
100

80 Al

60 ﬁfﬁ
40 ﬁﬁ
20 M a
0l

0 10000 20000 30000 40000 50000 60000
Datasize in bytes (s)

Time in microseconds

Computer Architecture Past, Present & Future

LogGP Model Examples - In niBand/OpeniB

70

OpeniB - L+G*s+g +

60 OpeniB -0 ++

50 1

40 =

30
e
+
20 o

Time in microseconds

10 e
+
<t

0 10000 20000 30000 40000 50000 60000
Datasize in bytes (s)

Why (Non blocking) Collectives?

Outline

9 Why (Non blocking) Collectives?

Why (Non blocking) Collectives?

Isend/lIrecv is there - Why Collectives?

@ Gorlach, '04: “Send-Receive Considered Harmful”
@ , Dijkstra, '68: “Go To Statement Considered Harmful”

point to point

if (rank == 0) then
call MPI_SEND(...)
else
call MPI_RECV(...)
end if

vs. collective
call MPI_GATHER(...)

) cmp. math libraries vs. loops

Why (Non blocking) Collectives?

Sparse Collectives/Topological Collectives

“But my algorithm needs nearest neighbor communication!?”
) this is a collective too, just sparse (cf. sparse BLAS)

@ sparse communication with neighbors on process
topologies
@ graph topology can make it generic

@ many optimization possibilities (process placing, overlap,
message scheduling/forwarding)

@ easy to implement
@ not part of MPI but fully implemented in LibNBC and
proposed to the MPI Forum

) give MPI details about you communication pattern!

Why (Non blocking) Collectives?

Performance Bene ts of (Non-Blocking) Collectives

Blocking/Non-Blocking - Abstraction

@ abstraction enables optimizations
@ ease of use, avoids implementation errors
@ performance portability

Non-Blocking - Overlap

@ leverage hardware parallelism (e.g. In niBand ™)
@ overlap similar to non-blocking point-to-point

4

Non-Blocking - Pseudo Synchronization

@ avoidance of explicit pseudo synchronization
@ limit the in uence of OS noise

Why (Non blocking) Collectives?

Quantifying the Bene ts - With LogGP

@ collectives scale typically with O(log,P) or O(P) sends
@ “wasted” CPU time: log,P (L+(s 1) G)

@ Gigabit Ethernet: L =15-20 s

@ InniBand: L=2-7 s

@ 1 s 6000 FLOP on a 3GHz Machine

@ synchronization overhead not easy to assess

Isend/Irecv (CPU) Isend/Irecv (CPU)
Transmission(NIC) Transmission(NIC)
Wait (CPU) [l Vait cPv)

time time

Why (Non blocki

ng) Collectives?

Overlap - Overhead Modelling

LogGP Model for Allreduce:
tared = 2 (20+ L+ m G) dog,Pe+ m

1000
100
= 10 gt
2
[0}
IS
(= 1
0.1

0.01

dlog,Pe

CPU overhead (1kiB) ——
Network time (1kiB)
15us non-blocking overhead

st
.

ety

10

100

1000

10000

Why (Non blocking) Collectives?

Overlap - Overhead Benchmarks

Allreduce, LAM/MPI1 7.1.2/TCP over GigE

CPU Usage (percent)

10 00 Data Size

Why (Non blocking) Collectives?

Synchronization - Process Skew

@ caused by OS interference or unbalanced application
@ worse if system is oversubscribed

@ interference multiplies on big systems

@ can cause dramatic performance decrease

@ all nodes wait for the last

Why (Non blocking) Collectives?

Synchronization - Process Skew

@ caused by OS interference or unbalanced application
@ worse if system is oversubscribed

@ interference multiplies on big systems

@ can cause dramatic performance decrease

@ all nodes wait for the last

Petrini et. al. (2003) "The Case of the Missing Supercomputer
Performance: Achieving Optimal Performance on the 8,192
Processors of ASCI Q”

Why (Non blocking) Collectives?

MPI_Bcast with PO delayed - Jumpshot

(%]
(5]
N
(%]
[)
(&)
(@)
S
o

time—s»

Why (Non blocking) Collectives?

MPI_Ibcast with PO delayed + overlap - Jumpshot

(%]
(5]
N
(%]
[)
(&)
(@)
S
o

time—s»

An Implementation - LibNBC

Outline

e An Implementation - LibNBC

An Implementation - LibNBC

LiIbNBC - Interface

@ extension to MPI
@ uses NBC_Requests and NBC_Test/NBC_Wait
@ IB/OFED optimized Transport Interface

@ fully threaded (blocking OFED or
MPI_THREAD_MULTIPLE)

NBC _lbcast(buf, count, MPI_INT, 0, comm, &req);
[* compute simultaneously to communication */
NBC_Wait(&req);

An Implementation - LibNBC

LiIbNBC - Interface

@ extension to MPI
@ uses NBC_Requests and NBC_Test/NBC_Wait
@ IB/OFED optimized Transport Interface

@ fully threaded (blocking OFED or
MPI_THREAD_MULTIPLE)

NBC _lbcast(buf, count, MPI_INT, 0, comm, &req);
[* compute simultaneously to communication */
NBC_Wait(&req);

Proposal
Hoe er et. al.: "Non-Blocking Collective Operations for MPI-2”

An Implementation - LibNBC

Non-Blocking Collectives - Implementation

@ implementation available with LibNBC

@ written in ANSI-C and uses only MPI-1

@ central element: collective schedule

@ every coll. algorithm can be represented as a schedule
@ trivial addition of new algorithms

Example: dissemination barrier, 4 nodes, node 0:

sendtol recv from# enb send toz* recv fror+|2 %

LibNBC download: http://www.unixer.de/NBC

An Implementation - LibNBC

Benchmarks - Gather with In niBand on 64 nodes

30000 : : —
Open MPI/blocking —+—
LibNBC/Open MPI ----¢--- A+
25000 LioNBC/LIbOF -
2 20000
(2]
2
® 15000
(O]
£ /
2 10000
o)
5000
.......................... X
e *

100 150 200 250 300
Message Size (kilobytes)

An Implementation - LibNBC

Benchmarks - Alltoall with In niBand on 64 nodes

Open MPI/blocking —+— n
LibNBC/Open MPI ----3¢--- /
50000 | LibNBC/LIDOF - /
2 40000 e
(2]
2 yd
T 30000 e
) /
<
g e
g 20000 /
10000 i
gx .
0 gE TR PV L TR S § ¥

0 50 100 150 200 250 300
Message Size (kilobytes)

An Implementation - LibNBC

Progression Issues

Threaded Progression

@ works with MPI_THREAD_MULTIPLE and In niBand ™
@ thread “blocks” on MPI_Wait or IB le descriptor
@ different OS scheduling issues (see Cluster 2008 article)

Manual Progression

@ call NBC_Test to progress communication

@ is necessary to advance in schedule (rounds)
@ necessary frequency depends on the collective

\

) progression issues are not trivial!

And Applications?

Outline

@ And Applications?

And Applications?

Independent Computation Exists in Algorithm

1) Linear Solvers - Domain Decomposition

@ iterative linear solvers are used in many scienti ¢ kernels
@ often used operation is vector-matrix-multiply

@ matrix is domain-decomposed (e.g., 3D)

@ only outer (border) elements need to be communicated
@ can be overlapped

2) Medical Image Reconstruction - Loop Iteration Pipelining

@ iterations have independent parts

@ communication of iteration i can be overlapped with parts
ofi+ 1

And Applications?

1) Linear Solver - Domain Decomposition

@ nearest neighbor communication
@ can be implemented with sparse/topological collectives

PO P1 P2 P3

P4 P5 P6 p7

P8 P9 P10 P11

[0 Process-local datal-} 2D Domain
[0 Halo-data

And Applications?

1) Linear Solver - Parallel Speedup (Best Case)

IB blocking —+—

L Eth blocking - L
100 Eth non-blocking & o 100 IB non-blocking -3
80 e 80 ot -
= A * =]
% 60 % S R T 60
3 L e g
» 40 e © 40
QEE """" e d
20 20
" /
FE) (x)
0 : 0
8 16 24 32 40 48 56 64 72 80 88 96 8 16 24 32 40 48 56 64 72 80 88 96
Number of CPUs Number of CPUs

@ Cluster: 128 2 GHz Opteron 246 nodes
@ Interconnect: Gigabit Ethernet, In niBand ™
@ System size 800x800x800 (1 node 5300s)

And Applications?

2) Medical Image Reconstruction

@ OpenMP + MPI (collectives only) parallelized
@ compute Aj; ; while communciating ¢

for each(iteration k){
for each(subiteration 1){
for (event i2S))
__. Point of compute A
annihilation compute ¢+ = (Ai)ti
Aifk
allreduce ¢}
flf—lz f|kCI}
fo't =11}

And Applications?

2) Medical Image Reconstruction (32 Nodes)

25
MPI_Allreduce() ===
NBC_lallreduce() ==
NBC_lallreduce() (thread) s
20 |
) -
: ,,,,, —
S 1508 B B —
>
°
n
=]
o 10
E
|_
5
0

1 thread 2 threads 3 threads 4 threads

Data-parallel Computations

Automated Pipelining with C++ Templates

@ loop tiling

And Applications?

@ automated overlap with window of outstanding
communications

@ optimizing tiling factor and window size

Computation

reads

- input_reference

+ operator() (int, Buffer

Communication

- output_reference

writes
OutData

+ operator() (Buffer)
+ wait(int, Buffer)
+ test(Buffer)

writes

sends

Buffer

+ handle

+ tile_size()

1

BufferVector

- . Buffer

+ size()
+ operator()

Data-parallel Examples

And Applications?

1) Parallel Data Transformation (e.g., Compression)

@ scatter from source, transformation, gather to destination

(*]
o

scatter/gather step pipelined
example uses bzip2 algorithm

2) 3d Fast Fourier Transformation

)

6 ¢ ¢ ¢ ¢

1d-distribution identical to “normal” parallel 3d-FFT
start communication as early as possible

start MPI_lalltoall as soon as rst xz-plane is ready
calculate next xz-plane

start next communication accordingly ...

collect multiple xz-planes (tile factor)

And Applications?

1) Parallel Compression

my_size = 0;

for (i=0; i < N/P; i++) {
my_size += compress(i, outptr);
outptr += my_size;

}

gather(sizes, my_size);

gatherv(outbuf, sizes);

for (i=0; i < N/P; i++) {
my_size = compress(i, outptr);
gather(sizes, my_size);
igatherv (outbuf, sizes, hndl[i]);
if (i>0) waitall(hndI[i 1], 1);

}
waitall (hndI[N/P], 1);

And Applications?

1) Parallel Compression Communication Overhead

Communication Overhead (s)

0.5

0.4

0.3

0.2

0.1

MPI/BL
MPI/NBC
OF/NBC

(B

And Applications?

Transformation in z Direction

Data already transformed in y direction

y X
1 block = 1 double value (3x3x3 grid)

And Applications?

Transformation in z Direction

Transform rst xz plane in z direction

y X

pattern means that data was transformed in y and z direction

And Applications?

Transformation in z Direction

start MPI_lalltoall of rst xz plane and transform second pl ane

y X

cyan color means that data is communicated in the background

And Applications?

Transformation in z Direction

start MPI_lalltoall of second xz plane and transform third plane

y X

data of two planes is not accessible due to communication

And Applications?

Transformation in x Direction

start communication of the third plane and ...

y X

we need the rst xz plane to go on ...

And Applications?

Transformation in x Direction

... S0 MPI_Wait for the rst MPI_lalltoall!

y X

and transform rst plane (new pattern means xyz transformed)

And Applications?

Transformation in x Direction

Wait and transform second xz plane

y X

rst plane's data could be accessed for next operation

And Applications?

Transformation in x Direction

wait and transform last xz plane

y X

done! ! 1 complete 1D-FFT overlaps a communication

And Applications?

2) 10243 3d-FFT over In niBand

MPI/BL s I

FFT Time (s)

1

0 1 ppn 2 ppn

P=128, “Coyote’@LANL - 128/64 dual socket 2.6GHz Opteron nodes

And Applications?

2) 10243 3d-FFT on XT4

MPI/BL s
18 NBC/NB
16
14
2 12
g
= 10
T
o
6
4 _
2
0 32 procs 64 procs 128 procs

“Jaguar’@ORNL - Cray XT4, dual socket dual core 2.6GHz Opteron

And Applications?

2) 10243 3d-FFT on XT4 (Communication Overhead)

MPI/BL ===
4 = NBC/NB

Communication Overhead (s)

32 procs 64 procs 128 procs
“Jaguar’@ORNL - Cray XT4, dual socket dual core 2.6GHz Opteron

And Applications?

2) 6403 3d-FFT In niBand (Communication Overhead)

0.7 MPI/BL mmmm |

' MPI/NBC
@ m OF/INBC mww
L 06 -
(]
£ =
F 05 B
S o
S -
g 04 1
c 1 1
g I |
g 0.3 B
3 o
© 02 T -
mn | b o
i b b |
- b b b

. J] I B I

0= R F

“Odin"@IU - dual socket dual core 2.0GHz Opteron In niBand

Outline

e Ongoing Efforts

Ongoing Work

LibNBC

@ optimized collectives and modeling
@ more low-level transports (e.g., MX)
@ analyze of oading/onloading collectives

MPI-Forum (MPI-3) Efforts

@ proposed non-blocking collectives
@ proposed sparse collective
@ several proposals to enhance library support

Applications

@ work on more applications (apply C++ templates?)
@) interested in collaborations (ask me!)

Discussion

THE END

Questions?

Thank you for your attention!

	Computer Architecture Past, Present & Future
	Why (Non blocking) Collectives?
	An Implementation - LibNBC
	And Applications?

