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Abstract

We describe the design and implementation of LibNBC a library that implements non-
blocking collective operations. Its main goals are high portability and high performance. The
library is written in ANSI C on top of MPI-1. This document describes the internal design,
implementation and various internal and external programming interfaces of LibNBC.

1 Introduction

The NBC (Non-Blocking Collective) library (short: LibNBC) is a portable implementation of the
non-blocking collective operations proposed as an addition to MPI-2 [7]. The main advantage
non-blocking collective operations is that they offer a high flexibility to enable the programmer
to use non-blocking semantics to overlap computation and communication, and to avoid pseudo-
synchronization of the user application. Non-blocking collective operations combine the advantages
of non-blocking point-to-point communication [1] and collective communication [3].

LibNBC is based on MPI-1 and written in ANSI C to enable high portability to many different
parallel systems. Some MPI implementations offer the possibility of overlapping communication
and computation with non-blocking point-to-point communication (e.g. Open MPI [2]). Using
LibNBC with such a library enables overlap for collective communications. However, most MPI
implementations can be used to avoid pseudo-synchronization [8].

The next section defines the main goals of LibNBC. Section 2 provides details about the current
implementation, followed by a description of the internal and external APIs in Section 3. The
last section provides some examples of the internal implementation of collective algorithms, which
indicate the extensibility of the library, and some examples for the usage of non-blocking collective
operations.
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1.1 Goals

The main goal of LibNBC is to provide a portable and stable implementation of non-blocking
collective operations on top of MPI-1. LibNBC should support all collective operations defined in
MPI-1 and should be easily extensible with new operations. The overhead added by the library
should be minimal so that a blocking execution (e.g. MPILIBCAST immediately followed by a
MPI_WAIT) should have the same performance as the blocking collective operation (MPI_BCAST).
The potential to overlap communication and computation should be as high as the lower commu-
nication layers support and support for special hardware operations should be easily addable.

2 Implementation

LibNBC is written in ANSI C (C90) to compile with gcc -W -Wall -ansi -pedantic without
warnings or errors. The library uses so called collective schedules to save the necessary operations
to complete a MPI collective communication. These schedules are built with helper functions and
executed by the scheduler to perform the operation.

2.1 The Collective Schedule

A collective schedule is a process specific ”execution plan” for a collective operation. It consists of
all necessary information to perform the operation. Collective schedules are designed to support
any collective communication scheme with arbitrary data dependencies. A schedule can consist of
multiple rounds to model the data dependencies. Operations in round r may depend on operations
in rounds 7 < r and are not executed by the scheduler before all operations in rounds j < r have
been finished. Each collective operation can be represented as a series of point-to-point operations
with one operation per round. Some operations are independent of each other (e.g. the data sent
in a simple linear MPI_BCAST), and some depend on previous ones (e.g. a non-root, and non-leaf
process in a tree implementation of MPI_LBCAST has to wait for the data before it can send to its
children). Independent operations can be in the same round and dependent operations have to be
in the right order in different rounds.

Definition 2.1: A collective schedule is a process specific plan to execute a collective operation.
It consists of r > 1 rounds and o > 0 operations.

Definition 2.2: A round is a building block of a collective schedule which may consist of o > 0
operations. Rounds are interdependent, round r will only be started if all operations in round r — 1
are finished. Round O can be started immediately.

Definition 2.3: An operation is the basic building block of a collective schedule. It is used to
progress collective operations. Operations are grouped in rounds and executed by the scheduler.
Possible data dependencies between operations are expressed in their grouping into rounds.

The schedule design enables coarse-grained dependencies which allow some degree of parallelism
and an optimized implementation of the schedule. It is possible to implement automatic and
transparent segmentation and pipelining.
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1 | schedule = size, {round, delimiter}, round, end | size, end;
round = num, {type, type-args};

size = ’size of the schedule (int)’;

num = ’number of operations in round (int)’;

6 |type = ’operation type (enum NBC_Fn_type)’;

type-args = ’operation specific arguments (struct NBC_Args_<type>)’;
delimiter = ’1’; (char), indicates next round;

end = ’0’; (char), indicates next round;

Listing 1: EBNF of the Schedule Array

2.1.1 Memory Layout of a Schedule

The easy round-based design of a schedule allows the schedule to be stored contiguously in mem-
ory. This design is very cache-friendly; the fetch of the first operation of the round will most
likely also load the following operations. This special design has been used previously to optimize
MPI_BARRIER synchronization for InfiniBand™ where the calculation of the communication peers
during the execution was too costly and had been done in advance [6].

The first element of each schedule is the size in bytes, stored as an int. At least one round follows
the size element. A round consists of a number of operations, o, stored as int, and o operation
argument structures. The operation argument structures consist of all operation-specific arguments
and vary in size. A delimiter, stored as char, follows the last operation of each round. A delimiter
may be followed by another round or indicates the end of the schedule. An EBNF of the schedule
array is given in Listing 1.

2.2 Identifying a Running Collective Operation

A handle (NBC_HANDLE) is used to identify running collective operations, which are called in-
stances in the following.

Definition 2.4: An instance of a collective operation is a currently running operation which has
not been completed by Test or Wait.

The handle identifies the current state, the schedule and all necessary information to progress the
collective operation. Each handle is linked to a user communicator. Each user communicator is
duplicated at the first use into a so called shadow communicator. All communication done by
LibNBC is performed on the shadow communicator to prevent tag collisions on the user comm.
A tag, specific to each communicator-instance pair, is also saved at the handle to distinguish
between different ongoing collective operations on the shadow communicator. The handle holds all
information related to outstanding requests (in the current implementation MPI_LREQUESTS, but
other (e.g., hardware specific) request types are also possible) and a void pointer to store arbitrary
information needed by the collective routines (e.g., temporary buffers for reductions).
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The current state of an instance is determined by the pending requests and the current round in
the schedule. The open requests are attached to the handle and the current round is saved as
an integer offset (bytes) in the schedule array. This means that a single schedule could be used
by many instances at the same time (i.e., can be attached to multiple handles) and may remain
cached at the communicator for future usage (this is not implemented yet).

2.3 The Non-Blocking Schedule Execution

The execution of a schedule is implemented in the internal function NBC_START. It checks if
a shadow communicator exists for the passed user communicator and creates one if necessary.
MPI_ATTRIBUTES attached to the user communicator are used to store communicator specific
data (shadow comm and tag). Tags are reset to 71" if they reach ”32767” or if a new shadow
communicator is constructed. The NBC_START function sets the schedule offset at the handle to
the first round and starts the round with a call to NBC_START_ROUND.

2.3.1 Starting the Execution of a Round

The function NBC_START_ROUND issues all operations for the next round (indicated by the han-
dles offset). All requests returned by non-blocking operations (like Isend, Irecv) are attached to
the handle and all blocking (local) operations (like Copy, Operation) are executed at this point.
The progress function is called to check if the round can already be finished (e.g., if it only had
local operations).

2.4 Progressing a Non-Blocking Instance

We differentiate two kinds of progress. The first kind of progress is done inside the library (e.g.,
to send the next fragments). The MPI progress may be asynchronous (e.g., separate thread), or
synchronous (user has to call MPI_TEST to achieve progress) depending on the MPI implemen-
tation. The second progress is the transition from one round to another. This is currently only
implemented in a synchronous fashion, which means that users should call NBC_TEST if they want
the operation to progress in the background.

However, the current version of LibNBC implements the synchronous fashion and performs the
progress in NBC_PROGRESS or NBC_PROGRESS_BLOCK, which call MPI progress functions.
These functions test all outstanding requests for completion. A successful completion of all re-
quests means that the active round is finished and the instance can be moved to the next round.
The whole operation is finished if the current round is the last round and NBC_OK is returned.
If a next round exists, NBC_.START_ROUND is called after adjusting the handles offset to the
new round. The function returns NBC_CONTINUE if there are still outstanding requests in this
round. NBC_PROGRESS_BLOCK behaves identically but blocks (uses MPI'WAITALL instead of
MPI_TESTALL) until the instance is finished.
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3 API Definition

This section defines the internal API to add new non-blocking collective algorithms and new
collective functionality (e.g., new operations) to LibNBC and the external API for end-users to
use the non-blocking operations. All functions return NBC error codes, defined in nbc.h.

3.1 Internal API - Building a Schedule

This section describes all the functions that can be used to build a schedule for a collective opera-
tion.

NBC_Sched_create (NBC_Schedule* schedule) allocates a new empty schedule array for later us-
age.

NBC_Free (NBC_Handle *handle) deallocates a schedule and all related allocated memory.

NBC_Sched_send(void* buf, int count, MPI Datatype datatype, int dest, NBC_Schedule
*schedule) adds a non-blocking send operation to the schedule

NBC_Sched recv(void* buf, int count, MPI Datatype datatype, int source, NBC_Schedule
xschedule) adds a non-blocking receive operation to the schedule

NBC_Sched_op(void* tgt, void* srcl, void* src2, int count, MPI Datatype datatype,
MPI Op op, NBC_Schedule *schedule) adds a blocking local reduction operation of the buffers
xsrcl and *src2 into *tgt to the schedule.

NBC_Sched_copy(void *src, int srccount, MPI Datatype srctype, void *tgt, int
tgtcount, MPI Datatype tgttype, NBC_Schedule *schedule) adds a blocking local copy oper-
ation from *src to *tgt to the schedule.

NBC_Sched_barrier (NBC_Schedule *schedule) ends the current round in the schedule and adds
a new round.

NBC_Sched_commit (NBC_Schedule *schedule) ends the schedule. The commit function could
be used to apply further optimization to the schedule, e.g., to add automatic segmentation and
pipelining (currently not done).

3.2 Internal API - Executing a Schedule

This section describes all internal functions that are used to execute a schedule.

NBC_Start (NBC_Handle *handle, MPI_Comm comm, NBC_Schedule *schedule) starts the execu-
tion of a schedule, see Section 2.3. NOTE: NBC_START_ROUND should never be called directly,
it is only called by NBC_START and NBC_PROGRESS!

NBC Progress (NBC Handle *handle) progresses the instance identified by the handle. Returns
NBC_OK if the instance (collective operation) is finished or NBC_CONTINUE if there are still open
requests.
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3.3 Internal API - Performing Local Operations

This section describes all internal functions that are used to perform local (blocking) operations.

NBC_Copy(void *src, int srccount, MPI Datatype srctype, void *tgt, int tgtcount,
MPI Datatype tgttype, MPI_Comm comm) copies a message from a source to a destination buffer
(from *src to *tgt).

NBC_Operation(void *tgt, void *srcl, void *src2, MPI_Op op, MPI Datatype type, int
count) performs a reduction operation from *srcl and *src2 into *tgt.

3.4 External API

The external APT is similar to the standard proposal in [7]. Differences are:
1. Names are prefixed with NBC_ instead of MPI_ to avoid confusion with standardized MPI calls.

2. Environmental attributes are not defined, the maximum number of running instances is
32767.

3. Testall, Waitall, Testsome, Waitsome, Testany, and Waitany are not implemented yet.

4. NBC_TEST and NBC_WAIT take only a single argument (NBC_HANDLE - no status or flag
is returned, the return-value indicates completion)

5. Fortran bindings are not implemented yet.
6. User defined operations are not supported yet.

7. NBC collective operations cannot be mixed with MPI collective operations

4 Examples

This section presents two examples. Section 4.1 is for implementers who want to implement new
non-blocking collective algorithms using the NBC scheduler. Section 4.2 is for MPI programmers
which want to use the non-blocking collective operations to optimize their program.

4.1 Implementing Collective Algorithms in LibNBC

New collective algorithms can easily be added to LibNBC. We present an example of the imple-
mentation of the dissemination barrier, that has been proposed in [4] and a pseudo-code is given in
[5]. The implementation with the NBC scheduler can be found in nbc_ibarrier.c in the LibNBC
sources. An excerpt of the code is show in Listing 2

Line 13 creates a new schedule. The algorithm consists of logs P rounds and processes synchronize
pairwise in each round. This means that each process sends and receives to/from other processes
each round and it has to wait until the messages have been received. The rank-specific schedule
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int NBC_Ibarrier(MPI_Comm comm, NBC_Handle* handle) {

int round, rank, p, maxround, res, recvpeer, sendpeer;
NBC_Schedule *schedule;

res = MPI_Comm_rank(comm, &rank) ;
res = MPI_Comm_size(comm, &p);

schedule = malloc(sizeof (NBC_Schedule));

round = -1;
handle->tmpbuf=NULL;

res = NBC_Sched_create(schedule);
maxround = (int)ceil((log(p)/L0G2)-1);

do {
round++;
sendpeer = (rank + (1<<round)) % p;
/* add p because modulo does not work with negative values */
recvpeer = ((rank - (1<<round))+p) % p;

/* send msg to sendpeer */
res = NBC_Sched_send(NULL, O, MPI_BYTE, sendpeer, schedule);

/* recv msg from recupeer */
res = NBC_Sched_recv(NULL, O, MPI_BYTE, recvpeer, schedule);

/* end communication round */
if (round < maxround){

res = NBC_Sched_barrier(schedule);
T

} while (round < maxround);

res = NBC_Sched_commit(schedule);

res = NBC_Start(handle, comm, schedule);

return NBC_OK;

Listing 2: Dissemination Barrier in LibNBC (error checks removed)

4 EXAMPLES
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int function() {
buffer comm, comp;

do {
5 /* do some computation on comm buffer */

MPI_Bcast(comm, 1, MPI_DOUBLE, O, MPI_COMM_WORLD) ;

/* do some computation on comp buffer */
10
while (problem_not_solved);

}

Listing 3: Code example with blocking MPI_BCAST

is built in the do-loop (Line 17-32). The schedule is committed in Line 36 and ready for use
afterwards. Line 27 starts the scheduler to execute the schedule (non-blocking).

A schedule of rank 0 in a 4-process communicator would consist of two rounds. Each round consists
of a send and a receive operation, and its representation in memory is shown in Figure 1.

size send to 1 recv from 3 |delim| send to 2 recv from 2 | end

Figure 1: Schedule for Rank 0 of 4 for a Dissemination Barrier

4.2 Using Non-Blocking Collective Operations from a MPI Program

The transition from blocking MPI collective operations to non-blocking NBC collective operations
is simple. The NBC interface is similar to the blocking MPI collective operations and adds only
a NBC_HANDLE as last parameter. The transition for a code using MPI_BCAST to a code using
NBC_IBCAST is shown in Listing 3 and Listing 4.

Listing 3 uses a blocking MPI_BCAST, but the computation in the comp buffer is independent
of the communication of the comm buffer. This enables the user to use overlap techniques with
non-blocking collective operations. Listing 4 shows a possible way to leverage overlapping.

To ensure progress in the background, the user should call NBC_TEST on active handles as shown
in Listing 5.
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int function() {
buffer comm, comp;
3 NBC_Handle handle;

do {
/* do some computation on comm buffer */

8 NBC_Ibcast(comm, 1, MPI_DOUBLE, O, MPI_COMM_WORLD, &handle);
/* do some computation on comp buffer */
NBC_Wait(&handle) ;

13 while (problem_not_solved);
}

Listing 4: Code example with non-blocking NBC_IBCAST

1 |int function() {
buffer comm, comp;
NBC_Handle handle;

do {
6 /* do some computation on comm buffer */

NBC_Ibcast(comm, 1, MPI_DOUBLE, O, MPI_COMM_WORLD, &handle);

/* do some computation on comp buffer */

11

NBC_Test(&handle) ;

/* do some computation on comp buffer */
16 NBC_Wait(&handle) ;

while (problem_not_solved);

}

Listing 5: Code example with non-blocking NBC_IBCAST with NBC_TEST
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