
Implementing a Hardware-Based Barrier in Open

MPI

- A Case Study -

Torsten Hoefler1, Jeffrey M. Squyres2, Torsten Mehlan1

Frank Mietke1 and Wolfgang Rehm1

1Technical University of Chemnitz 2Open Systems Laboratory

Dept. of Computer Science Indiana University

Chair of Computer Architecture 501 N. Morton Street

Chemnitz, 09107 GERMANY Bloomington, IN 47404 USA

{htor,tome,mief,rehm}@cs.tu-chemnitz.de jsquyres@open-mpi.org

April 15, 2006

Abstract

Open MPI is a recent open source development project which combines

features of different MPI implementations. These features include fault toler-

ance, multi network support, grid support and a component architecture which

ensures extensibility. The TUC Hardware Barrier is a special purpose low la-

tency barrier network based on commodity hardware. We show that the Open

MPI collective framework can easily be extended to support the special purpose

collective hardware without any changes in Open MPI itself.

1 Introduction

Many different MPI libraries are available to the user and each implementation has
its strengths and weaknesses. Many of them are based on the reference implementa-

1



1 INTRODUCTION 1.1 Short Introduction to Open MPI

tion MPICH [8] or its successor for MPI-2 MPICH2. Several MPI implementations
offer one specific functionality in their code-base, e.g. LAM/MPI offers an easily ex-
tensible framework, FT-MPI [4] offers fault tolerance, MPICH-G2 [7] grid support,
and LA-MPI [6] offers multiple network device support, but there is no MPI avail-
able which combines all of these aspects. Open MPI is intended to fill this gap and
combine different ideas into a single and extensible implementation (compare [5]).
Many developers with a MPI background combine their knowledge to create this
new framework and to add some remarkable features to Open MPI. These develop-
ers came from different directions and want to make a new design which is free from
old architectural constraints. FT-MPI [4] offers fault tolerance and design for chang-
ing environments, LA-MPI [6] offers multi-device support, LAM/MPI [3] offers the
framework and PACX-MPI the multi-cluster and grid support. Open MPI started
in January 2004 and was written from scratch to overcome several constraints and
fit the needs of all members. Roughly two years later, version 1.0 was presented to
the public.

1.1 Short Introduction to Open MPI

Regarding to Gabriel et. al. in [5], the main goals of Open MPI are to keep
the code open and extensible, to support MPI-2 with the maximum thread level
(MPI THREAD MULTIPLE) for all widely deployed communication networks. Ad-
ditionally, features like message fragmentation and striping across multiple interfaces
as well as fault recovery and tolerance, both totally transparent from the applica-
tions point of view, will be included in the implementation. The useability of the
Run-Time-Environment (RTE) should be as comfortable as possible to support the
user for execution his MPI programs. Additional features can be enabled optionally,
such as data integrity check, to recognize errors on internal data busses.

To reach all this goals stated above, Open MPI uses a special architecture, called
Modular Component Architecture compareable to the Common Component Archi-
tecture (CCA), described in [1]. This architecture offers a framework to implement
every needed functionality for MPI in a modular manner. The necessary functional
domains are derived from the goals and equipped with a clear interface as a frame-
work inside Open MPI. Each framework can host multiple modules which implement
the necessary functionality to serve the interface. Each module could support differ-
ent hardware or implement different algorithms to enable the user or the framework
to choose a special module for each run without recompiling or relinking the code.

Torsten Hoefler Page 2/8



1 INTRODUCTION 1.1 Short Introduction to Open MPI

The modular structure is shown in Figure 1.

Framework
component

component
component

component

component component

component

component

component

...
...

...
...

...

...

MCA

Figure 1: Open MPI Architecture

The three entities MCA, framework and modules are explained in the following. The
MCA offers a link between the user, who is able to pass command line arguments or
MCA parameters to it, and the modules which receive the parameters. Each frame-
work is dedicated to a special task (functional domain) and discovers, loads, unloads
and uses all modules which implement its interface. The framework performs also
the module selection, which can be influenced by user (MCA) parameters. Source
code for modules is supported and configured/built by the MCA as well as binary
modules which are loaded by the framework via the GNU Libltdl. Current frame-
works include the Byte Transport Layer (BTL) which acts as a data transport driver
for each network, the BTL Management Layer which manages BTL modules and the
Point-to-Point Management Layer which performs higher level tasks as reliability,
scheduling or bookkeeping of messages. All these frameworks are directly related
to the transport of point-to-point messages (e.g. MPI SEND, MPI RECV). Other
frameworks, such as the topology framework (TOPO), the Parallel IO framework
(IO) offer additional functionality for other MPI related domains. Helper frame-
works, such as Rcache or MPool are available to BTL implementers to support the
pinned management of registered/pinned memory.

The collective framework (COLL) was used to implement a module which offers the
hardware barrier support. The layering and the interaction between the different
frameworks in the case of InfiniBand [10] communication is shown in Figure 2. The
framework is specially designed for HPC and optimized in all critical paths. Thus,
the overhead introduced compared to a static structure is less than 1% (cmp. [2]).

Torsten Hoefler Page 3/8



2 THE TUC HARDWARE BARRIER

OB1

MPI

...

Rcache MPool

IB TCP
BTL BTL

IB

Hardware
IB

R2
BML

COLLPML

Application

Figure 2: Interaction of Frameworks inside the MCA

2 The TUC Hardware Barrier

The TUC Hardware Barrier is a self-made barrier hardware based on commodity
hardware. The standard parallel port is used for communication between the nodes
and a central hardware controls all nodes. A schema of the pin-out of the parallel
port is given in Figure 3. The current prototype supports only a single barrier
operation between all nodes, thus it is only usable for the global communicator
MPI COMM WORLD. Each node has a single inbound and outbound channel which
can have the binary state ’0’ or ’1’ and is connected to the barrier hardware. The
prototypical barrier hardware consists of a ALTERA UP1 FPGA (shown in Figure
4) and is able to control 60 nodes. The FPGA implements a relatively easy Finite
State Machine with two states regarding to the two states of the input wire of each
node, ’0’ or ’1’. A transition between these two states is performed, when either all
output wires of all nodes are set to ’1’ or all output wires are set to ’0’. The graph
representing the state transitions is shown in Figure 5. When a single node reaches
its MPI BARRIER call, it reads the input wire, toggles the read bit and writes it
to the output wire. Then, the node waits until the input is toggled by the barrier
hardware, and leaves the barrier call (all nodes toggled their bit).

Torsten Hoefler Page 4/8



2 THE TUC HARDWARE BARRIER

25

127 6 5 4 3 0

127 6 5 4 3 0

127 6 5 4 3 0
Control Port (BASE + 2)

Status Port (BASE + 1) IRQ enable

17 16 14 1

13

14

11 10 12 13 15

Data Port (BASE + 0)

6 5 3 24789

1

outgoing

incoming

Figure 3: Parallel Port Pin-out

Figure 4: The prototypical Hardware

o = ’0’

i1 and i2 and i3 and i4 = ’1’

i1 or i2 or i3 or i4 = ’0’

o = ’1’

Figure 5: The implemented Finite State Machine

Torsten Hoefler Page 5/8



3 IMPLEMENTING MPI BARRIER

3 Implementing MPI BARRIER

The barrier is implemented inside the COLL framework, which is originally intro-
duced by Squyres et. al. in [9]. The framework finds and loads all components and
queries each component if it wants to run on this machine (the component is able
to check for specific hardware or other prerequisites). During the creation of a new
communicator, the framework initializes all runnable modules. Each module can
test for all its prerequisites on this specific communicator and return a priority to
the framework. This selects the best one according to MCA parameters or priori-
ties returned by the modules. When a communicator is destroyed, the framework
calls uninitialize functions of the active modules that all resources can be freed. In
particular, each COLL component implements three functions:

collm init query() Which is invoked during MPI INIT and tests if all prerequisites
are available,

collm comm query() Which is invoked for each new communicator and

collm comm unquery() Which instructs the component to free all used structures
for the communicator.

Once, a component is selected for a specific communicator, it is called module. There
are two basic functions for each module, coll module init() which can be used to ini-
tialize structures for each communicator and coll module finalize() which should free
all used resources. Additionally, a module can implement selected or all collective
functions. All collective functions which are not implemented are performed by a
reference implementation based on point-to-point messages.

Our hwbarr component utilizes the component functions in the following way (note
that OMPI SUCCESS indicates the successful completion of a function to the frame-
work):

collm init query() Checks for the appropriate access rights (IN,OUT CPU calls)
and returns OMPI SUCCESS if they are available

collm comm query() Returns a priority if the communicator is MPI COMM WORLD,
or refuses to run otherwise

collm comm unquery() Returns OMPI SUCCESS

The module functions are used as stated in the following:

Torsten Hoefler Page 6/8



REFERENCES

coll module init() Returns OMPI SUCCESS

coll module finalize() Returns OMPI SUCCESS

coll barrier() Performs the barrier call as described in section 2 by reading the
input, writing the toggled value to the output and waiting until the input also
toggles

Other collective functions have not been implemented and the framework uses the
standard implementation if they are called.

4 Conclusions

We showed that it is easy to add support for a special hardware to support collective
operations in Open MPI. The application or Open MPI installation has neither to be
recompiled nor to be relinked, the module has to implement the interface functions
and has to be copied to the right directory in the library path. The architecture
of Open MPI adds also nearly no overhead which makes the collective framework
very attractive to programmers of collective operations. The TUC Hardware Bar-
rier and the according COLL component has to be extended to support multiple
communicators and allow non-root processes to use the hardware.

References

[1] Rob Armstrong, Dennis Gannon, Al Geist, Katarzyna Keahey, Scott R. Kohn,
Lois McInnes, Steve R. Parker, and Brent A. Smolinski. Toward a common
component architecture for high-performance scientific computing. In HPDC,
1999.

[2] B. Barrett, J. M. Squyres, A. Lumsdaine, R. L. Graham, and G. Bosilca. Anal-
ysis of the Component Architecture Overhead in Open MPI. In Proceedings,
12th European PVM/MPI Users’ Group Meeting, Sorrento, Italy, September
2005.

[3] Greg Burns, Raja Daoud, and James Vaigl. LAM: An Open Cluster Environ-
ment for MPI. In Proceedings of Supercomputing Symposium, pages 379–386,
1994.

Torsten Hoefler Page 7/8



REFERENCES REFERENCES

[4] G. Fagg and J. Dongarra. FT-MPI: Fault Tolerant MPI, Supporting Dynamic
Applications in a Dynamic World. In Lecture Notes in Computer Science: Pro-
ceedings of EuroPVM-MPI 2000, volume 1908, pages 346–353. Springer Verlag,
2000, 2000.

[5] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J. Don-
garra, Jeffrey M. Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett,
Andrew Lumsdaine, Ralph H. Castain, David J. Daniel, Richard L. Graham,
and Timothy S. Woodall. Open MPI: Goals, Concept, and Design of a Next
Generation MPI Implementation. In Proceedings, 11th European PVM/MPI
Users’ Group Meeting, Budapest, Hungary, September 2004.

[6] Richard L. Graham, Sung-Eun Choi, David J. Daniel, Nehal N. Desai,
Ronald G. Minnich, Craig E. Rasmussen, L. Dean Risinger, and Mitchel W.
Sukalski. A network-failure-tolerant message-passing system for terascale clus-
ters. In ICS ’02: Proceedings of the 16th international conference on Super-
computing, pages 77–83, New York, NY, USA, 2002. ACM Press.

[7] N. Karonis, B. Toonen, and I. Foster. MPICH-G2: A Grid-Enabled Implemen-
tation of the Message Passing Interface. Journal of Parallel and Distributed
Computing (JPDC), 63(5):551–563, 2003.

[8] MPICH2 Developers. http://www-unix.mcs.anl.gov/mpi/mpich2/.

[9] Jeffrey M. Squyres and Andrew Lumsdaine. The Component Architecture of
Open MPI: Enabling Third-Party Collective Algorithms. In Proceedings, 18th
ACM International Conference on Supercomputing, Workshop on Component
Models and Systems for Grid Applications, St. Malo, France, July 2004.

[10] The InfiniBand Trade Association. Infiniband Architecture Specification Volume
1, Release 1.2. InfiniBand Trade Association, 2003.

Torsten Hoefler Page 8/8


