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with contributions by the whole SPCL deep learnmg team (M. Besta, N. Blach, T. Ben-Nun, and many others),
S. Scott, D. Goel, M. Castro) and collabgrators (D. Alistarh. an:B" others) e
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So this is all incredibly smart and super-advanced, isn’t it?

And didn’t you want to talk about federated learning?
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We cannot rely on data privacy if the model has seen the data!




=] o) = B e e PR Qev  ETHzirich

spcl.ethz.ch

How is this all really working?

Human-based supervision> Reward
> model
Human-based ‘ Model-generated data

Raw data supervision & data
l SFT . Fine-tuned
ddss . Pretrained LLM LLM Reinforcement LLM
bl Supervised | learning model- Model-based
Pretraining fine-tuning generated data supervision
H @ ) <
Replies Prompts
(,thoughts”)

This pipeline has massively

evolved in the past months
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The Emergence of the ,,Generative Al Ecosystem”

Human-based supervision} Reward
> model
Human-based | Model-generated data

Raw data supervision & data
SFT ) Fine-tuned
& I. Pretrained LLM LLM Reinforcement LLM
W 4 . Supervised learning model- Model-based
Pretraining fine-tuning generated data supervision
H @ — <
Replies

Prompts
(,thoughts”)



Q) @soc
YW @spcl_eth

ETH:zurich

spcl.ethz.ch

The Emergence of the ,,Generative Al Ecosystem”

Training related

Human-based supervision

@ Human-based

Raw data supervision & datal

»
Model-generated data

Fine-tuned
Ij::‘ l! Pretrained LLM Reinforcement LLM
N R Supervised learning model- Model-based
é @ Pretraining fine-tuning generated data @ supervision
~ — R \ — <
Inference related N B
(,,thoughts”)

Prompting Structures Psychology

®

Reward
model

Retrieval
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The Emergence of the ,,Generative Al Ecosystem”

Prompting Structures
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Prompting Paradigms

[Wang et al., [Kojima et al.,
March’22]

[Wei et al.,
Jan’22]

In-context
examples

[Yao et al,,
May’23]

[Long et al.,

May’22] May’23]

Standard Prompting

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many

tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples

u @spcl

YW @spcl_eth

ETHzurich

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples

do they have? j

A: The answer is 27. x

kdo they have? | at’s proceed step by step.

\

P

answeris 9. +/
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Let us try that in practice! . ... [

Pro tip: always ask Al to check its answers:

What is the capital of Australia?

(@ > CareerAdvice > Skills > How ToWrite ChatGPT Prompts: Your 2024 Guide

o You

today, Peter is 3 years older than Danny. Danny is 5 years younger than Jack and Jack is

H oW TO Write ChatG PT Prom pts: You r 2youngert‘han Peter. Peter is 30. How old is Jack?

. <2/2
2024 Guide
ChatGPT
Written by Coursera Staff - Updated on Feb 13, 2024 2 Share Jack is 28 years old. -

Discover foundational and advanced prompting strategies to unlock ChatGPT’s power.

° You

check your answer

< 2/2

ChatGPT

Let's verify the answer step by step based on the given information:

1. Peteris 30 years old.

BLOG » ARTIFICIAL INTELLIGENCE 2. Jack is 2 years younger than Peter. Given that Peter is 30, Jack would indeed be

30 — 2 — 28 yearsold.

How to Write Great ChatGPT ¢ ; 3. Danny is 5 years younger than Jack. Therefore, Danny would be 28 — 5 — 23 years
Prompts (Free Course & y . | old.

Cheat Sheet Included) —2 i

4. Peter is 3 years older than Danny. Given Danny's age as 23, Peter would be 23 +
3 = 26, but we initially stated Peter is 30.

Given the initial problem statement, there seems to be an inconsistency in my
SV e . 3 / explanation of verifying the solution due to a misinterpretation of the relationships. The
correct approach to verify should align all relationships coherently. However, based on

the direct calculation from the given relationships:

The ChatGPT Prompt Cheat Sheet: Tips, - IfPeteris 30,

* And if Jack is 2 years younger than Peter, Jack being 28 is correctly deduced from the

Tricks, and Examples for Crafting Effective

direct relationship provided.

Prom ts * The descriptions provided should interlock without contradiction when correctly
p interpreted.
@g Antonio Di Nicola Therefore, Jack being 28 years old is consistent with the information that Jack is 2

years younger than Peter, who is 30, despite the oversight in the step-by-step
Published on 7/31/2023

verification logic. The initial conclusion remains correct: Jack is 28 years old, based on

the specific relationships described.

2:17 AM - Feb 14, 2024 - 19.6K Views
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The Next Step — Graphical Reasoning

Inspired by human thoughts.
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Inspiration for Next Step: Brain Structure [1]

—

Recursion

Sparsity
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Prompting Paradigms: Graph of Thoughts

O

[

nAggregatE”
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Thought Transformations for Sorting

Why sorting? Because 146242498754
it is a fundamental ,Generate”

problem in CS, and it

still does pose a great 424 9 875 49
challenge for all other

baselines »Enhance” 1 1 1
2449 4578
This is a small
example; for real use »Aggregate”
cases, the size is much 122444456789

larger, and the graph
gets more complex




S e P Qe ETHzirich

spcl.ethz.ch

Graph of Thoughts: Architecture & Design

Goal: Initiate, coordinate, manage, C 1
and progress the GoT execution ——~ Lontroller

—

https://github.com/spcl/graph-of-thoughts vy 1.6kstars % 91 forks
Graph of Thoughts: Solving Elaborate Problems with Large Language Models

Maciej Besta'*, Nils Blach'*, Ales Kubicek', Robert Gerstenberger',
Lukas Gianinazzi', Joanna Gajda®, Tomasz Lehmann?, Michal Podstawski’,

Hubert Niewiadomski’, Piotr Nyczyk?”, Torsten Hoefler!

'ETH Zurich, *Cledar, *Warsaw University of Technology
bestam @inf.ethz.ch, nils.blach@inf.ethz.ch, htor@inf.ethz.ch
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How did we get to this amazing technology?

17
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Computation is the new oil!
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The trillion-dollar Al-hardware industry - just last month

“By the end of this year, we're going to have around 350K
Nividia H100s or around 600K H100 equivalents of
compute if you include other GPUs. “

Mark Zuckerberg Says Meta Will Own
Billions Worth of Nvidia H100 GPUs
by Year End

By Tae Kim

Updated Jan 19, 2024, 12:26 pm EST/ Original Jan 18, 2024, 5:19 pm EST

TECH

billion by the end of 2024

Kali Hays Jan 19,2024, 6:17 PM GMT+1

Zuck's GPU flex will cost Meta as much as $18

Audience question:
How many top500 lists is this?
0.1, 0.5, 1, 10?

Total performance top500
Nov. 2023: 8 EF

600.000 * (34+67) = 60 EF (7.6x)
600.000 * 67 = 40 EF (5x)
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“I think a lot of the credit for deep
learning goes to [... others ...] and
the people who made the
computers go fast.” (27:00)

“Really the deciding factor [for the
Al revolution] was the increase in
compute power” (26:50)

2018 ACM A. IVt
Turing Lecture

June 23, 2019
5:15pm MST

TURING
AWARD

Geoffrey Hinton Yann LeCun

https://www.youtube.com/watch?v=VsnQf7exv5I
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How do we “Make Computers go Fast”?

202 1 Turing award T JaCk Dongarra “Thara's phanty of room at the Top: YWhat will drive complbar

performance after Moore's law'™

The Take Away Ledserson of al, Sciener 368, 1079 (2020) 5 June 2020

The Top

- o B runnclicngy SLO10811 1180001 - f—r-tq‘
Supercomputers « HPC Hardware is Constantly Changing thiediis ssstot ﬁfr} el

1100101 SH384040

are very (>70%) « Scalar Software Algorithens Hardware architecture
efficient at dense « Vector R g i T
linear algebra! « Distributed e it e i e e

« Accelerated
« Mixed precision R
 Three computer revolutions AT
» High performance computing
« Deep learning
» Edge & Al
« Algorithm / Software advances follows hardware
» And there is “plenty of room at the top”

Letserson of al, Sciemor 368, WTH (0rH0) 5 Jung 2020

https://www.youtube.com/watch?v=IsnRP9akCDk
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FINANCIAL TIMES

Artificial intelligence <+ Add to myFT)

The billion-dollar bet to reach human-level Al

OpenAl believes that huge computing power is key driver

In the race to build a machine with human-level intelligence, it seems, size

really matters.

“We think the most benefits will go to whoever has the biggest computer,” said

Greg Brockman, chairman and chief technology officer of OpenAl.

The San Francisco-based Al research group, set up four years ago by tech

industry luminaries including Elon Musk, Peter Thiel and Reid Hoffman, has

just thrown down a challenge to the rest of the AI world.

Richard Waters in San Francisc AUGUST 32019 | D 140 E

source: ft.com
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Supercomputers fuel Modern Al [savstees Google artificial intelligence

supercomputer creates its own ‘Al child’
that can outperform its human-made rivals

The NASNet system was created by a neural network called AutoML earlier this year

Facebook parent Meta creates powerful Al
supercomputer
Mark Hodge

Facebook's parent company Meta says it has created what it believes is among the fastest artificial 15:22,5 Dec 2017 | Updated: 11:27, 6 Dec 2017
intelligence supercomputers running today

l|3-_.- TheuAiszoiiitf? E’ﬁs: o 7 Share
Microsoft invests $1 billion in
OpenAl to pursue holy grail of
Tesla unveils Dojo supercomputer: world’s new artificial intelligence
mos'l' powerful Al ‘I‘rc“n'ng moch'ne Building artificial general intelligence is OpenAl's ambitious goal
Fred Lambert - Aug. 20th 2021 3:08 am PT W By James Vincent | Jul 22, 2018, 10-95am FOT 10k GPUS
o f(x)
reddit _— > [ o [
o sometimes 0.28 sometimes 0.00
EW® >\ ey __injurea i |k . r\ | b X aways | oo aways | 500
Vol human pelng_or, = = E =1 8" m ; g E =1 |8 m o~ F never 0.04 never | 0.00
¢ Jthrough inaction, & =xlz[ EE[ = *°° =z 1z [E&|z] & and | 033 and | 0.00
allow a human "R B | B PRI R boat | 0.02 boat | 0.00
bemg to come house 0.02 house 0.00
to harm.
layer-wise weight update
= GPT-3: 500 billion tokens = GPT-3: 96 (complex) layers = GPT-3: 30-50k dictionaries
= |mageNet (22k): A few TB 175 bn parameters (700 GiB in fp32) = takes weeks to train
= Soon: the whole internet! 2048-token “sentences”

T. Ben-Nun, TH: Demystifying parallel and distributed deep learning: An in-depth concurrency analysis, ACM Computing Surveys (CSUR), 2019
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Large-Scale Al is the Future

We need a Principled Approach to it
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Three Systems Dimensions in Large-scale Super-learning ...
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High-Performance 1/0 High-Performance Compute High-Performance Communication

* Quickly growing data volumes « Deep learning is HPC * Use larger clusters (10k+ GPUs)
* Scientific computing! e Data movement! Model parallelism
* Use the specifics of machine « Quantization, Sparsification * Complex pipeline schemes
learning workloads  Drives modern accelerators! Optimized networks
* E.g., intelligent prefetching Data Movement Is All You Necd: A Case Study o Distribution and Parallelism
Optimizing Transformers Data Pipeline Operator

- Andrei Ivanov®, Nikoli Dryden®, Tal Ben-Nun, Shigang Li, Torsien Hoefler
CLAIRVOYANT PREFETCHING FOR DISTRIBUTED MACHINE LEARNING I/O ETH Ziirich

r C namefinf.ethz.ch
ual contribution

Roman Bihringer ! Nikoli Dryden’ Tal Ben-Nun' Torsten Hoefler '
e widely used for language  challenges such as artificial general intelligence [27). Thus,

improving transformer performance has been in the focus of
numerous research and industrial groups.

Significant attention has been given to optimizing transform-
and fixed-window attention [28]-[32], more general
ity [34]-[36], and other

ABSTRACT
1/0 is emerging as a major bottleneck for machine learning training, especially in distributed environments such
as clouds and supercomputers. Optimal data ingestion pipelines differ between systems, and inc
nd remote workers:

ers: loc
structured sparsity [33], learned spa 3
algorithmic techniques [19], [37] improve the performance of

y— requires a delicate balance between access 1o local storage, external Iﬂu} Gl
ol i Tinaributed (eep Learming: An
- transformers. Major hardware efforts, such as Tensor Cores
- pattern for traini e clairvoyance and can exactly predict when a Further, existing frameworks use suboptimal data lay und TPUs [38] have accelerated tensor operations like matrix
o these insights, we present a recipe for globally optimi and 1FUs L @ atrix-
b We combine this with a theoretical nn.ll}\h of access patterns in training and performance modeli " matrix multiplication (MMM), a core transformer operation.
= novel machine 1 — achieve a 1.30x performance improve-  Despite this, existing implementations do not efficiently
— flexible, and scalable solution that delivers better performance than state-of-the-art approaches while requiring ment over state-of-the-art frameworks when (raining BERT. g GPUs. Even optimized implemeniations such as Mega-
: very few changes to existing codebases and supporting a broad range of environments. Our_approach is applicable more broadly to optimizing deep 0 |18] report achieving only 30% of peak GPU flopls
— ! neural networks, and offers insight into how 1o tackle emerging ; Ny
~ . We find that the key bottleneck when training transform-
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Three Systems Dimensions in Large-scale Super-learning ...

- P | e— ) . ;1 pe—
Thatisin a ’ N B " 2| [ 1
. 2> o o > o e
longer version Eg%*g Sallal ... Eg%_j,; §m| o]
. : 2|z & "z 2= |z & "z
of this talk E SR : 2R :
(On yOUtUbe — \ ] J L y o \ y J
High-Performance Compute High-Performance Communication
 Deep learning is HPC * Use larger clusters (10k+ GPUs)
* Data movement! * Model parallelism
* Quantization, Sparsification * Complex pipeline schemes
* Drives modern accelerators! * Optimized networks
Data Movement Is All You Need: A Case Study on Distribution and Parallelism
| O_p“mlz"“g‘ Tra“f"“?"jrs @ Data Pipeline Operator

|.||\||| | ld

2020
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n (MMM),
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etworks, and offers insight into how to tackle emerging
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Data Movement Is All You Need: A Case Study on Optimizing Transformers

BERT encoder Output highly
e ™ .
dijear optimized )
3 ~ladd & LaVerNO"m] Operator class % flop % Runtime
[ Concatenate ] [Feedf”‘”ard ”et] £ Tensor contraction 99.80 61.0
(XY z
£ g
Scaled dot-product attention 0 2 eyt £ Statistical normalization 0.17 25.5
softmax = z
,-H_']ﬁ ,-H_']ﬁ H-'a—'] [ Sy ] E Element-wise 0.03 13.5
L|near Lmear Lmear attention .
0.2% 39%
o I
U J
Positional
3
[ input embedding | Our performance improvement for BERT-large
’ 0
Input - 30% over PyTorch
= 20% over Tensorflow + XLA
S S L e - 8% over DeepSpeed

Last week, OpenAl published a paper detailing GPT-3, a machine learning model that achieves

strong results on a number of natural language benchmarks. Ay 175 billion parameters
where a parameter affects data’s prominence in an overall prediction, it's the largest of its est. SaVingS on AWS over PyTO rch:
kind. And with a memory size exceeding 350GB, it's one of the priciest, costing an estimated $85k for BERT S3 6|V| G PT_3

; 2

$12 million to train.
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Data Movement Is All You Need: A Case Study on Optimizing Transformers

° /\ Tensor contraction ‘b , ( :”: )
§V> % [] Normalization §© % different data dxlin2, linl

(O Elementwise 910 9G M: 4096, N: 4096, K: 1024, B: 1
whi,ibk->whbk phl ibk- >phbk phl ibj- >phbj - layouts worst: 2.46 ms best: 0.37 ms

l \ . Tensor Cores -_ e

4M 34M - worst: 3.29 ms best: 2.32 ms a C e
bias [wh] dropout . L6.bit FPUS —0—“
blas [ph] blas [ph] . . | | . https://github.com/spcl/dace
, ' ' 0 25 50 75 100
G d ifferent fusion % of peak performance
4 @
whbk,hbjk- >thj strategies
A v @ AIB BAIB : : i
@ D Aphbk,phbj->hbj< 10 = op P EE— Configuration selection graph
v 10 < flop QKV-fused AlB
9G 910 0751
- hi hb'->'b @ A infout out
AW I,whbj->ibj flop / 10 @ N
| 168M = 050- —
IS
i

target

ftmax [
@ bias [} | M HA i {} 0.25-

0- pest:0.065 0.00- best 0.033

Full BERT encoder layer performance (ms)

data layout
TF+XLA PyTorch DeepSpeed Ours
Forward 3.2 3.45 2.8 2.63 '
Backward 5.2 5.69 4.8 4.38 fusion strategy
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Moving Data is Most Expensive!

Techniques to Shrink ML Data
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Quantization — Running Gigantic LLMs on Reasonable Systems ﬁ

= Brains have limited precision! Why are we computing with FP32?
= For technical reasons (SGD, optimization, how we quantize)
= Neurons in Hippocampus can “reliably distinguish 24 strengths” [1]

4.6 bits of information! L s,
=  GPT-3 has up to 175 billion parameters
= 700 GiB in FP32, 350 GiB in FP16/BF16 ®
S
= Rounding to <5 bits is not so simple '
= Requires some foundation and many tricks N
= Consider “error landscape” of a trained model with weights w [2] xl)
oE\" 1 0°E 1 x,
0E = |—)] ow +=aw! [ ——]ow + O0(Jow|?)
ow 2 02w
ot / h >
“Curvature” of error Higher-order terms
(aka. “sensitivity”) (=0 for quadratic loss)
X1
>

[1] Bartol et al., “Hippocampal Spine Head Sizes Are Highly Precise”, eLife 2015
[2] LeCun, Denker, Solla: “Optimal Brain Damage”, NIPS’90
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Quantization — Running Gigantic LLMs on Reasonable Systems

= Quantization objective for low precision rounded weights w

argming, ||lwx — wx||?

= Solve PTQ optimization problem row by row of w

= Round row and push the error forward using the inverse Hessian

= Update Hessian for each column
=  Tricks

= Block updates for better locality (10x speedup)
= Use Cholesky to invert Hessian (higher stability)

= Work one transformer block at a time (6 operators fit in memory)

= Use quantized input from previous blocks for block i
=  Results

= Generative inference 2-4x faster

= 3 bits = 66 GiB, fits in a single (high-end) A100 GPU!

| Model | FP16 | 1024 512 256 128 o4 32 | 3-bit |
OPT-175B | 8.34 | 11.84 10.85 10.00 9.58 9.18 8.94 | 8.68
BLOOM 11 | 11.80 10.84 10.13 955 09.17 8.83 | 8.64

Table 6: 2-bit GPTQ quantization results with varying group-sizes; perplexity on WikiText2.

YW @spcl_eth

&

GPTQ: ACCURATE POST-TRAINING QUANTIZATION FOR
GENERATIVE PRE-TRAINED TRANSFORMERS

A PREPRINT

Elias Frantar*
IST Austria
Klosterneuburg, Austria
elias.frantar@ist.ac.at

Saleh Ashkboos
ETH Zurich
Switzerland
saleh.ashkboos@inf.ethz.ch

Torsten Hoefler
ETH Zurich
Switzerland

htor@inf.ethz.ch

Dan Alistarh
IST Austria & Neural Magic, Inc.
Klosterneuburg, Austria
dan.alistarh@ist.ac.at

ABSTRACT

Generative Pre-trained Transformer (GPT) models set themselves apart through breakthrough per-
formance across complex language modelling tasks, but also by their extremely high computational
and storage costs. Specifically, due to their massive size, even inference for large. highly-accurate
GPT models may require multiple performant GPUs to execute, which limits the usability of such
models. While there is emerging work on relieving this pressure via model compression, the appli-
cability and performance of existing compression techniques is limited by the scale and complex-
ity of GPT models. In this paper, we address this challenge, and propose GPTQ, a new one-shot
weight quantization method based on approximate second-order information, that is both highly-
accurate and highly-efficient. Specifically, GPTQ can quantize GPT models with 175 billion pa-
rameters _in approximately four GPU hours, reducing the bitwidth down to 3 or 4 bits per weight.

Perplexity on WikiText2

Figure 1: Quantizing OPT models to 4 and BLOOM models to 3 bit precision, comparing GPTQ with the FP16
baseline and round-to-nearest (RTN) [34, 5].

OPT Model Family

BLOOM Model Family

30
25

L, : T :
o H : 601
i 110!
: : o 50
L} Ej
., 2
™
= 40 3bit RTN
g 3bit GPTQ
>
230 e FP16 e
% Y cal
3 F20f Ssal ng
1 = abitRTN ~ i of
m  4bit GPTQ "'-o.._____:_. ! ng
e FP16 10 R == I3
at.
1071 10° 10! 10? 10° 10! 102 ng

#params in billions

#params in billions
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Quantization Reduces Data by an Order of Magnitude

10X

How to Go Further?
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Model Sparsification ...

= Brains are not densely connected! Why are DNN computations dense?
= For technical reasons (training, implementation etc.) L)

= We may want to shift towards sparse!

Sparsity in Deep Learning: Pruning and growth for efficient
inference and training in neural networks

Intuition: not all features
are always relevant!

TORSTEN HOEFLER, ETH Ziirich, Switzerland

A, DAN ALISTARH, IST Austria, Austria
1 TAL BEN-NUN, ETH Ziirich, Switzerland
o Represent as (sparse Wig 1 NIKOLI DRYDEN, ETH Ziirich, Switzerland
. (@]
: ~  ALEXANDRA PESTE, IST Austria, Austria
ve Cto r S pa Ce W34 2 The grow| a7 o/ = & ETH:ziirich o ] hce the size
\/ H H of neural Back to data science — overview of approaches y o LS, sparse
LeSS Ove rfl ttl n g (: networks reduce the
' memory f Sparsification er growing
11 networks| - live tutorial
v Interpretability o] S ot conemers oary @RS fments of
\/ P 1 neural nef o iy ——  |sparsity in
tice. titi
arsimony Dracce. (i T T ]

% fal =2t €1 State
include tH $ B T J gradient-based optimization Imena such
4

nstructured  structured
as carly s utﬁne—‘;rai:ed] (blocked) “f“"i"ﬂ:‘s and show
i (e.2., Rel .
th e f t re Wi I b s rs technique atfects inference + forward pass - r efficiency
p that could ng on how
— — — — — —
sparsity ¢
=N
wforonces n Hosflo et al, “Sparsity n Pruning networks’, arki 210200554, |
K |t . The Su] Sparsity in Deep Learning: Pruning + growth for efficient inference and training in neural networks as fEW as
ey resuits: possible ze, Scalsble Parallel computing Lab QETHZu.. - (Y B P Hswe =tsme - Prience -

tein, 1933

71K views 1 yearago SPCL Lab talks
Torsten Hoefler presents an overview of sparsity in deep leaming. Check the markers for various parts of the talk

- 95% sparse ResNet-52,
BERT, or GPT models

- Esse ntla I Iy same q ua I |ty Deep learning shows unparalleled promise for solving very complex real-world problems in areas

such as computer vision, natural language processing, knowledge representation, recommendation

- U p to 2 OX C h ea p er ! systems, drug discovery, and many more. With this development, the field of machine learning

is moving from traditional feature engineering to neural architecture engineering. However, still

Hoefler et al. “Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks”, arXiv 2102.00554, Jan 2021

1 INTRODUCTION

irXiv:2102.00554v1 [cs.LG]

P
C
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Sparse ML Computations — Very Different from Scientific Computing!

Sparsity: 0.01
0 200 400 600 800 1000

A ™ — ‘ % N Sparsified BERT
. E L T | WK and WQ matrices

800 S

(37 encoder)

Sparse Matrices from Scientific Computing | IR
are quite structured! WK . sesivon

0 200 400 600 800 1000
'If 1"||‘ t;\ T
o s I
4 e
A
\ .-
.l
.\:I
1

Sparse Matrices in Deep Learning

"o are quite uniform(ly random)!

vv_
Ly

Source: Suite Sparse (sparse.tamu.edu)

600 N

500 - TR

WQ

1000 - T
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Performance of Sparse Models (PyTorch Sten)
[:13 --------------- L N BERT (base) from HuggingFace
e ‘\LMVEFNOW] = batch size 8
Custom implementation of [ concatenate | Wm k sc.go!uenc.:e length 128 |
matrix multiplication: - f1 1 EOLZLE > Sparsified linear layer weights
sparse @ dense -> dense E[“""'i‘iﬁiﬂi}‘ﬁ’é‘iﬁi?ﬁf‘"”]J {Add&Layer}@/ Intel i7-4770 CPU
Linear layer:y=x W + b B e e N =
/ /" \ \ ;[Linear]_] [Linear]_] [Linear]J/r//rattention ]
Lot ! t 1 O Sl A A
Qo K. v X Y

dense dense sparse dense

2:6 sparse format

VENOM - 10x speedup on V100 GPUs!

R. Castro et al.: “VENOM: A Vectorized N:M Format for Unleashing the
Power of Sparse Tensor Cores”, presented at Supercomputing 2023




A SPCL TRl RN Qe ETHiirich

Quantization and Model Compression Together Enable

100x

More Efficient Processing

Which Makes Data Movement Even More Important!

Especially in the Network!
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Three Systems Dimensions in Large-scale Super-learning ...

N e} = g 5} p— 2
2 25 J. 2 > § J. 2
b -

— '

/

High-Performance Communication

* Use larger clusters (10k+ GPUs)
* Model parallelism

e Complex pipeline schemes
* Optimized networks
Distribution and Parallelism
Data Pipeline Operator

Iullwll‘lmll.‘l.‘l

el O
— A
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The Three Dimensions of Parallelism in Deep Learning (arxiv:1802.09941)

S

Data Parallelism

T. Ben-Nun, T. Hoefler: Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis, arXiv Feb 2018 32
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Data-parallel Gradient Sparsification — Top-k SGD @

=  Turns out 90-99.9% of the smallest gradient values can be skipped in the summation — at similar accuracy
= Accumulate the skipped values locally (convergence proof, similar to async. SGD with implicit staleness bounds [1])

ResNet-110 on CIFAR10
2.0
Assum ve:
I tn 1.5 -
L=
=
c
£ 1.0 |
©
—

. 0.5 )
Discuss tasks in
Section

0.0 1
] ] ] ] ] ] 1 ] ]
0 20 a0 60 80 100 120 140 160
Epoch
—— Baseline —— TopK [K=0.025%] —— TopK [K=0.1%] —— TopK [K=0.2%]

[1] Dan Alistarh, TH, et al.: “The Convergence of Sparsified Gradient Methods”, NIPS’18
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The Three Dimensions of Parallelism in Deep Learning (arxiv:1802.09941)

(e = |
> 2w = |

Pipeline Parallelism

T. Ben-Nun, T. Hoefler: Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis, arXiv Feb 2018 43
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Bidirectional Pipelines — Meet Chimera (arxiv: 2107.06925v3)

model replica0
Ny P1 q

P2 0
v | P3 } O ‘ / d . I.

N /2 = 2 micro-batches, where N=D =4 own pipeline
flush
1
P1 (stage2) Z 3 | 2 U 3 1

w

P2 stagel 2(0]3 o 211
1 2 3 0 1 2 3

P3 stageO .
Chimera (backward is 2x workload of forward) »

S. Li, T. Hoefler: Chimera: Efficiently Training Large-Scale Neural Networks with Bidirectional Pipelines, best paper candidate at Supercomputing, SC21
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Chimera Weak Scaling (arxiv: 2107.06925v3)

e 1.38x - 2.34x speedup over
synchronous approaches

PipeDream (D=8, B=[128, 512], R) (Gpipe’ GEMS’ DAPPLE)
B PipeDream-2BW (D=16, B=1, R) e Less bubbles

" GPipe (D= [8,16], B=1, R)

Pcens (=5, B=2) * More balanced memory
" DAPPLE (D=16, B=1, R)

B chimera (D=32, B=1) I

(&)
o
o

AN
o
o

thus no recomputation

w
o
o

N
o
o

1.16x - 2.01x speedup over

asynchronous approaches

(PipeDream-2BW, PipeDream)
* More balanced memory

RN
o
o

Throughput (sequences/s)

512 nodes 1024 nodes 2048 nodes thus no recomputation
Weak scaling for GPT-2 on Piz Daint * Gradient accumulation thus
(512 to 2048 GPU nodes) low synch frequency

45

S. Li, T. Hoefler: Chimera: Efficiently Training Large-Scale Neural Networks with Bidirectional Pipelines, best paper candidate at Supercomputing, SC21
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The Three Dimensions of Parallelism in Deep Learning (arxiv:1802.09941)

Operator Parallelism

S &9 = |
> a® = |
> 2% = |

T. Ben-Nun, T. Hoefler: Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis, arXiv Feb 2018 46
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Operator Parallelism, i.e., Parallel Matrix Matrix Multipli 58

Remember those?
All MMM

= Large MMMs dominate large language models! ,
Operator class % flop % Runtime

= e.g., GPT-3 multiples 12,288x12,288 matrices

600 MiB in fp32 and 1.9 Tf/op Tensor contraction 99.80 61.0
= generative inference multiplies tall & skinny matrices Statistical normalization 0.17 255
Element-wise 0.03 13.5

= Distribute as operator parallelism
= Heaviest communication dimension!

Requires most optimization! = CARMA = Scal APACK wen CTF e COSMA (this work)
§ 100 SQUARE MATRICES TALL MATRICES maximum
[4e}
= COSMA [1] communication-optimal distributed MMM g ® geometrlc
. . _ (2mnk mnk \ 2 = mean
= Achieves tight I/O lower bound of 0= mm{ v +5,3(7) } g 6
. . . . =~
= Uses partial replication with an outer-product schedule T 0
o
See paper for details and proofs! 5
. . S
= AutoDDL [2] combines operator-parallel models into s 0 I it e
communication-avoiding data distribution STRONS  MEMORY  MEMORY  SCALNG  MEMORY  MEMORY

[1] G. Kwasniewski et al.: “Red-Blue Pebbling Revisited: Near Optimal Parallel Matrix-Matrix Multiplication”, best student paper at Supercomputing SC19
[2] ). Chen et al.: “AutoDDL: Automatic Distributed Deep Learning with Asymptotically Optimal Communication”, arXiv
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The Three Dimensions of Parallelism in Deep Learning

Operator Parallelism Data Parallelism
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T. Ben-Nun, T. Hoefler: Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis, arXiv Feb 2018
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Communications in 3D Parallelism in Deep Learning (arXiv:2209.01346)

- ol - [ :
Data Parallelism @ Pipeline Parallelism g Operator Parallelism 288
allreduce ring

communication
1

N e

‘ N/
Pk

7

1 2

P 1

N7 N Z \w
-4 -
A\ a

P

A fat tree with 16k
accelerators and 1.6T

2

Sl g7 gl
e

W W
L7 g SN\ 7)"&

N X7
Dot
UK

A

would cost S680M!
AR

Communication
is (largely) a
logical 3D Torus

Al bandwidth today / yesterday (and growing!)
* Google TPUV2 (‘21): 1T
* AWS Trainium (‘21): 1.6T
 DGX-2 (A100, ‘21): 4.8T (islands of NVLINK)
* Tesla Dojo (‘22): 128T
- Broadcom TH5 / NVIDIA Spectrum 4: 51.2T

FN /N A\

WV e\
Y4 & &

LA 71 N\ /N1 -,

T

R X
W

<

N~
P
[

o

N7

<]

A
£

\Z

| AN

TH et. al.: HammingMesh: A Network Topology for Large-Scale Deep Learning, SC22 (best reproducibility award recipient) and arXiv (2209.01346) 43
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Co-designing an Al Supercomputer with Unprecedented and Cheap Bandwidth

accelerator N1 N2 N3 N4 packet
package P switch
/
w1 & E1
w2 E2
W3 & E3
7z & E4
S1 S3 $4
2x2
board

1|

1| |

1T T T/

| L

TH et. al.: HammingMesh: A Network Topology for Large-Scale Deep Learning, SC22 (best reproducibility award recipient) and arXiv (2209.01346)

:Hi',, ] 7HH,,JHI7
1317])/| I32:
Tuym e
7\H|,,JH7 :HH,,JHi
vl y2 o

=

1l ) Ll

each plane fully-connected in x

A u1 pa303uu0d-A||n} sueld yoes

four directions
per plane (N,S,E,W)

four planes
per accelerator

axb accelerators

per board

N
X -
N
O
(o]
Q
ﬂ.
o

R &R

inexpensive short
PCB connections
on board
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Bandwidth-cost-flexibility Tradeoffs

Globa 10-15x.cheaper HammingMesh
(e.g! bandwidth than . .
) ) (many configurations)
today’s topologies!
= ~ ¢l “. ‘5'

/\/\@<§é é%
® & e e 8 8 & & L &<
& - &

e

/N

~
(large) reduce bandwidth

oy ey e €y oy ey

global bandwidth €y ey &y €y €

placement flexibility 'Er/t 'Er/t 'Er/t {:/f {i/" - {:/f {:/f {i/"
injection bandwidth s s s s s - s s

TH et. al.: HammingMesh: A Network Topology for Large-Scale Deep Learning, SC22 (best reproducibility award recipient) and arXiv (2209.01346)

Qev  ETHziirich

Local Topology
(e.g., 2D Torus)

- - -
R - -® -
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Three Systems Dimensions in Large-scale Super-learning ...

I
uany
H-BINN

R

premiog
£l

PESH-IINA
pad
WION ¥ PPV

| ULION ¥ PPV

2
AN
. gzl [z & "z
_ LII" ”

Altogether, we discussed a cost / performance improvement of

1,000x

What will the (near future bring)?
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Prediction 1: Accelerators Converge

Al is a gravity well — HPC will follow
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Domain-Specific Computation Enables Workload
Optimization which Drives Performance and Efficiency

Future Accelerators ...

=  Most of the performance will be low precision arithmetic!
= | would predict (C)FP8 or smaller
= We can be lucky if we get some fp64!

nific:

ISSCC’23

. o . o . H100
= They will support quantization and sparsity in hardware SXM
= Vector scaling and zero points FPod 34TFLOPS
FP64 Tensor Core 67 TFLOPS
FP32 67 TFLOPS
. . . . TF32 Tensor Cpre 989 TFLOPS*
= They will heavily be optimized towards data movement srLoatie \ 30X™1.979 TFLOPS"

Tensor Core

= Physical limits and cost introduce two fundamental constraints:
FP16 Tensor Core 1,979 TFLOPS*

Latency will become a problem FP8 Tensor Core  |* 3,958 TFLOPS*
Locality and sparse connectivity INTE Tensor Core | 3,358 TOPS
= Potentially hard to program
11 111 111 111
SRR e

Optimized topologies and network
technologies.

E.g., HammingMesh
https://www.youtube.com/watch?v=xxwT45|jG40

L R ) B 9,@)5::“.

B. Wisniewski (Samsung)
Memory-coupled Compute

SPCL_Bcast 01/19/23
https://www.youtube.com/watch?v=KCrQtpx31CQ

(RRRR N
%:::%f::_?@f::m
mr

L . ) - -3
Wit oo Wy
I

11
1
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Sparse-Quantized Representations - SpQR

SpQR: A Sparse-Quantized Representation for
Near-Lossless LLM Weight Compression

Tim Dettmers* Ruslan Svirschevski* Vage Egiazarian*
University of Washington HSE University & Yandex HSE University & Yandex

Denis Kuznedelev* Elias Frantar Saleh Ashkboos Alexander Borzunov
Yandex & Skoltech IST Austria ETH Zurich HSE University & Yandex
Torsten Hoefler Dan Alistarh
ETH Zurich IST Austria & NeuralMagic

Abstract to appear at ICLR’24

Recent advances in large language model (LLM) pretraining have led to high-
quality LLMs with impressive abilities. By compressing such LLMs via quanti-
zation to 3-4 bits per parameter, they can fit into memory-limited devices such
as laptops and mobile phones, enabling personalized use. However, quantiza-
tion down to 3-4 bits per parameter usually leads to moderate-to-high accuracy
losses, especially for smaller models in the 1-10B parameter range, which are
well-suited for edge deployments. To address this accuracy issue, we introduce the
Sparse-Quantized Representation (SpQR), a new compressed format and quantiza-
tion technique which enables for the first time near-lossless compression of LLMs
across model scales, while reaching similar compression levels to previous methods.
SpQR works by identifying and isolating outlier weights, which cause particularly-
large quantization errors, and storing them in higher precision, while compressing
all other weights to 3-4 bits, and achieves relative accuracy losses of less than
1% in perplexity for highly-accurate LLaMA and Falcon LLMs. This makes it
possible to run 33B parameter LLM on a single 24 GB consumer GPU without any
performance degradation at 15% speedup thus making powerful LLMs available to
consumer without any downsides. SpQR comes with efficient algorithms for both
encoding weights into its format, as well as decoding them efficiently at runtime?.
Specifically, we provide an efficient GPU inference algorithm for SpQR which
yields faster inference than 16-bit baselines at similar accuracy, while enabling
memory compression gains of more than 4x.

irxXiv:2306.03078v1 [cs.CL] 5 Jun 2023

«
C
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Prediction 2: Programming and Tools Converge

Data Science as a gravity well — HPC will follow
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Scientific Computing is Moving to Python (as language frontend/ecosystem) e

IP[yl pmé?' : P

e rogramming Language atings on %, M v
eyt MOS8 % GridTools

1F TensorFlow

seaborn

Tiobe Index June’23

1 @  Python 15.16%

2 O C 10.97%
3 @ C++ 10.53%

4 4 Java 8.88%

I::I pandas matpl:tlib

thon’ _ O .
PN @ oo O PYTorch

® Network Analysis in Python

439,100 projects
57
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Upleveling Programming in the 215t Century — Performance Metaprogramming
Scientist ng Performance Engineer

AFD g

‘u=0 100s of reusable
Performance
Metaprogram SLOC

N NumPy DSLs Transformed Specialized
Dataflow Code Generation

TensorFlow ‘\ O PyTorch
MATLAB IR — e.g., Parametric _
" Dataflow Graphs (SDFG)
CPU Code

10s of
Program SLOC

1000s of auto-
generated SLOC

e . @
Applied Scientist !i_. O
L R S\ Performance S
translate DSL into /" Results = GPU Code
an Internal Representation » T N\ CID &
—y = FPGA Code
SDFG Builder API g —C__—
Li';"r:'rt"hec:’jés Graph Transformations C++ code
! (API, Interactive) generation/runtime

Ben-Nun, de Fine Licht, Ziogas, TH: Stateful Dataflow Multigraphs: A Data-Centric Model for High-Performance Parallel Programs, SC19
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Prediction 3: Networks Converge

Cloud as a gravity well — HPC will follow
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COVER FETURE TECHNOLOGY PREDICTIONS CIoud HPC On Prem HPC
P AN latency 19 us 1.7us 10us 1.7 us|3.0us 2.4us
E 100 T T e T —Q— —0— O
S 75 A e
ECOVER FEATURE TECHNOLOGY PREDICTIONS
5
o S 2
< O
-
;The Convergence of ;

|

" Hyperscale Data Center i
- and High-Performance —
- Computing Networks

Torsten Hoefler, ETH Zurich

Ariel Hendel, Scola Computing | at H ypersca le 7/

Duncan Roweth, Hewlett Packard Enterprise

and Remote Direct & %

Memory Access: Issues

sDa’ra Center E’rherne’r '!allk_

We discuss the differences and commonalities between Torsten Hoefler'”, ETH Ziirich

Duncan Roweth, Keith Underwood, and Robert Alverson, Hewlett Packard Enterprise

network teChnO[ogleS Used n SuperfomDUTETS Oﬂd dOtG Mark Griswold, Vahid Tabatabaee, Mohan Kalkunte, and Surendra Anubolu, Broadcom
centers and outline a path to convergence at multiple Siyuan Shen, ETH Ziirich
. . . Moray McLaren, Google
layers. We predict that emerging smart networking BB b it andTERey ot fiferesti
solutions will accelerate that convergence.

[1] De Sensi et al.: “Noise in the Clouds: Influence of Network Performance Variability on Application Scalability”, SIGMETRICS’23

60
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Ultra Ethernet Set Out to Create the Best Al/ML and HPC Interconnect!

COVER FEATURE TECHNOLOGY PREDICTIONS

W%

Data Center Ethernet 212 11R
and Remote Direct &

Memory Access: Issues
at Hyperscale ¥ |

Torsten Hoefler, ETH Zlirich

Duncan Roweth, Keith Underwood, and Robert Alverson, Hewlett Packard Enterprise
Mark Griswold, Vahid Tabatabaee, Mohan Kalkunte, and Surendra Anubolu, Broadcom
Siyuan Shen, ETH Zirich

Moray McLaren, Google

Abdul Kabbani and Steve Scott, Microso ft

U/tl’Oil.llc'l r1el

———Consortium

Founding Members
i

ARISTA  ©BRoADCOM £VIDEN
AMDZV Cleco EVIDE
E;ﬁ;ackard i n te I 0\ Meta B® Microsoft
Ultra inernel

nnnnnnnnn

white Paper on ultraethernet.org

Overview of and Motivation for the Forthcoming Ultra Ethernet
Consortium Specification

Networking Demands of Modern Al Jobs

Networking is increasingly important for efficient and cost-effective training of Al models. Large
Language Models (LLMs) such as GPT-3, Chinchilla, and PALM, as well as recommendation
systems like DLRM and DHEN, are trained on clusters of thousands of GPUs.
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Key Points and Conclusions More of SPCL’s research:

u youtube.com/@spcl 180+ Talks
ETHziirich T =

Qe . ETHziirich

: u twitter.com/spcl_eth € 80ICH 0| IV
Programming Sparse Models — Meet PyTorch Sten O
Sparsity Layouts

Qperators

Sparsifiers .
ipurs i O github.com/spcl 2K+ Stars
Dimensions Blocked
Strides Matenauzeu
Dense values b

Output
High-Performance I/0

—'E-’ (]

Layout
O Layaut
High-Performance Compute High-Performance Communication

Sparse Tensor
* Quickly growing data volumes

Dimensions T
* Deep learning is HPC = Use larger clusters (10k+ GPUs) Sparsity Format 5 b2 i
. Sclentlﬂf:: computlng.! + Data movement! * Model parallelis‘m . Cnessed vallias Implementation Randuenel[::cuon o r S CI et h Z c h
* Use the specifics of machine + Quantization, Sparsification = Complex pipeline schemes defined by input/output S S— eee . °
learning workloads « Drives modern acceleraters! * Optimized networks sparsity layout
» E.g., intelligent pr Distribution and Parallelism - -
- Selected Available Sparsifiers:
Data | Pipeline | Operator

Per block fraction

L)
I >E B » 0
Find b uek oy

quantic o below

Blocked

Want to join our efforts?

We're looking for excellent
o 1 Accaleratons Comveree Postdocs, PhD students, and Visitors.
Co-designing an Al Supercomputer with Unprecedented and Cheap Bandwidth ' &

e

ETHziirich

Talk to me!

o N WE 2w puser Y e Al is a gravity well — HPC will follow
e A e T TR Q.. ETHzirich

il
Wi & 1
w2 & 2
wa & [=]
W a

Prediction 2: Programming and Tools Converge

am oo ETHziirich

Data Science as a gravity well — |

¥ The Convergence o.f. i
Hyperscale Data Center

: and High-Performance
Cloud as a gravity well — HPC will follow - Computing Networks

Prediction 3: Networks Converge

and Remote Direct &
Memory Access: Issues

TH b, 5k HommineMeshi A Netwark Topoingy for Lsree Scale Deep Leainink, e appes at S022 and arkiy (2205.01335)
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Main goal: show that GoT successfully
harnesses the graph abstraction to
enable more efficient queries
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Sorting Numbers The longer the sequence, the higher the gain
32 elements
5 16 - GoT: Figure 4
% o - 1.6
214- -
2P R
8 147 3
:g 1.2%
g 10 1.0 5 L (#levels)
2 5. 5
o - 0.8%
© . n
£ 67 0.6 %
: 5
% 4 - 0.48 v
o g
S 2- L 0.2F k (#children)
£
0 - 0.0

IO CoT ToT ToT2GoT_
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Intersecting Sets of Numbers The longer the sequence, the higher the gain
32 elements 64 elements 128 elements
Sred| 76 31 29 43 3]0 0 0 0 4 6 0 0 00

Total Cost ($); the lower the better

#incorrect elements: the lower the better

10 CoT ToT ToT2GoT I0 CoT ToTToT2GoT 10 CoT ToTToT2GoT
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Merging Documents

Aggregation of fully
merged NDAs

0
1.

AT

—{ i

0 0]
—{ [ o

- r12
0 _GAg?rega_tion
o of partially
merged
. NDAs

N

N
Total Cost ($); the lower the better

Score (out of 10); the higher the better

o

[0] CoT ToT GoT GoT2
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Why does structured prompting work?

Prompting Structures
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Why Does Structured Prompting Work?

Assume a fixed thought size (#tokens) and a fixed context size
(#thoughts in the LLM context, denoted with N)

Volume — for a given thought t —is the

number of preceding LLM thoughts that
could have impacted t
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Why Does Structured Prompting Work?

Assume a fixed thought size (#tokens) and a fixed context size
(#thoughts in the LLM context, denoted with N)

Chain-of- Multiple CoTs (CoT-SC) Tree of Thoughts (ToT)

-Thought
(CoT)

Graph of Thoughts (GoT) [This work]

Refining

Backtracking

Branching out from a chain

from a chain

Aggregating
thoughts

~\

arge volume: N Output

O
Low volume: O(log,N) Ccmediad
Large latency: N

\ )

_‘ houghts are
) also scored

Low volume: N/k

Low latency: N/k

v iP5 latency: O(log,N)

ow latency: log,N
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Why Does Structured Prompting Work? Probabilistic Graphical Models [1]

Likelihood of generating a chain of thoughts, basing on a
pre-prompt with input / and with N CoT in-context
examples, but without access to the true context.

Likelihood of generating the same chain of
thoughts as above, but using the true language
(and context) conditioned on the same input /

PTrue = PTrue (C0T'|1, True-Context)

N
— <
‘pLLM mee| =P A function of
Messages the language

ambiguities”, < 1

[1] R. Tatunov et al. Why Can Large Language Models Generate Correct Chain-of-Thoughts? Arxiv, 30 October 2023.
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The Emergence of the ,,Generative Al Ecosystem”: Training

Training related

Human-based supervision> Reward
> model
Human-based | Model-generated data

Raw data supervision & data
| N A1 . Fine-tuned
gy I! Pretrained LLM LLM Reinforcement LLM
N > Supervised learning model- Model-based
Pretraining ra B -\ fine-tuning generated data supervision
)@ ) (7)) —) —) <
Inference related Replies prompts

(,thoughts”)

Psychology

Retrieval

®
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The Emergence of the ,,Generative Al Ecosystem”: Training

Training related

Fine-tuning

Graphs as

mOda I it Human-based supervision
y > Reward
> model
Human-based | Model-generated data

with graphs

Raw data supervision & data
| N A1 . Fine-tuned
gy l! Pretrained LLM LLM Reinforcement LLM
N > Supervised learning model- Model-based
Pretraining fine-tuning generated data supervision
H @ ) (7)) —) —) <
Inference related Replies promps

(,thoughts”)

Prompting Structures Psychology EGEE]

®
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Graph Foundation Models & Graph Prompting

Training related

Graphs as input raw data

Human-based supervision

®

Pretraining

Human-based
supervision & data
SFT
LLM Reinforcement

Pretrained LLM
learning model-

generated data

Supervised
fine-tuning

-G

Inference related

Replies

> §

Model-based
supervision

Model-generated data

Fine-tuned
LLM

Prompts

(,thoughts”)

Prompting Structures Psychology

®

Reward
model

Retrieval
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M. BESTA, T. HOEFLER WITH N. BLACH, A. KUBICEK, R. GERSTENBERGER, AND MANY OTHERS

T

Graph of Thoughts: Solving Elaborate Problems with Large Language Models
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Prompting Example: Sorting

Hello. I want to sort the following input sequence of numbers: {input}
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Prompting Example: Sorting 146242498754

<Instruction> Split the following list of 64 numbers into 4 lists of 1 g 1462 4249 8754

A
/

numbers each, the first list should contain the first 16 numbers, the 1 l
second list the second 16 numbers, the third list the third 16 numbers v
and the fourth list the fourth 16 numbers. Only output the final 4 lists 1246 2449 4578
in the following format without any additional text or thoughts! \ /
{{ v

"List 1": [3,4,3,5,7,8, 1, .../, 122444456789

"List 2": [2,9,2, 4,7, 1,5, ...],

"List 3": [6, 9,8, 1,9, 2,4, ...],

"List 4": [9,0, 7, 6, 5, 6, 6, ...]

M} </nstruction>



PASIECL e P Qe ETHziirich

spcl.ethz.ch

Prompting Example: Sorting

146242498754
A/ \
a g’ 1462 4249 8754
<Instruction> Merge the following 2 sorted lists of length {lengthl} each, 1 v l
into one sorted list of length {length2} using a merge sort style approach. 1246 2449 4578
Only output the final merged list without any additional text or thoughts! \ | /

</Instruction> 122444456789
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Prompting Example: Sorting 146242498754

‘”'.—b\é.: 1462‘/42'49 \‘8754

SN N

122444456789
<Instruction> Sort the following list of numbers in ascending order. 9

Output only the sorted list of numbers, no additional text. </Instruction>

<Example>

Input: [3,7,0,2,8 1,2,2,2,47,8 5 5 3,943,506 06,445,
2,09 3,3,9 2 1]

Output: [0,0,1,1,2,2,2,2,2,2,3,3,3,3,3,44,4,4,35, 35,5, 5,

6,6,7,7,828, 99 9]
e The input .
thoughtt "3

Input: {input}
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