A practical Approach to the Rating of Barrier Algorithms using the LogP Model and Open MPI

Torsten Höfler, Wolfgang Rehm TU Chemnitz, Germany

24.05.2005

Outline

- Motivation
- LogP Predictions
- 2 Implementation
- 3 Conclusions

Outline

- Motivation
- LogP Predictions
- 2 Implementation
- 3 Conclusions

Motivation

- optimal solution for the barrier problem
- barrier time complexity studies
- exhaustive comparison of different algorithms
- framework for general comparison studies
- Open MPI is easily extensible
- Question: is LogP accurate enough?

Problems

- unlimited number of architectures
 - generic optimal solution = holy grail?
- definition of several constraints for a given architecure
 - Fast Ethernet, Extreme Black Diamond Switch, 512 nodes
- new architectures have to be added by hand
- several models available -> LogP should be accurate enough

Principles

- one architecture as example
- easy testing of new architectures
- framework to implement and test new algorithms

Architectural Assumptions

- full bisectional bandwidth
- full duplex operation
- unlimited switch forwarding rate
- constant latency
- overhead bigger than gap
- overhead is constant ($o_s = o_r$)

Base Equations

```
basic equations and variables:
   several
         f_r = max\{o_r, g\}
         f_s = max\{o_s, g\}
         t_r = max\{f_r, o_s + L + o_r\}
             = \max\{\max\{g, o_r\}, o_s + L + o_r\}
             = max\{g, o_s + L + o_r\}
simplifying assumptions:
         f_r = f_s = 0
         t_r = t_s = 20 + L
```


Model Predictions

- algorithms are divided into different complexity classes
 - $O(P) \Rightarrow$ Central Counter
 - $O(n \cdot log_n P) \Rightarrow$ Combinig Tree, f-way Tournament, MCS
 - O(log₂P) + Bcast ⇒ Tournament, BST
 - O(log₂P) ⇒ Butterfly, Pairwise Exchange, Dissemination
- O(log₂P) within the LogP is an optimal solution
- prove is trivial
- Assumption: Dissemination Barrier should perform best

$$rt = max\{t_r, t_s\} \cdot \lceil log_2 P \rceil$$

$$(t_r = max\{g, o_s + L + o_r\})$$

assume:
$$o > g$$

 $rt = (2o + L) \cdot \lceil log_2 P \rceil$

Algorithm	128 nodes	256 nodes
Central Counter	4594.50μ <i>s</i>	4909.67 μ s
Combining Tree	$4009.79 \mu s$	4343.63 μ s
Tournament	3642.54 <i>μs</i>	4378.77μ <i>s</i>
Dissemination	1904.57 <i>μs</i>	1977.12 <i>μs</i>
Open MPI	$3559.88 \mu s$	4226.88 <i>μs</i>

Open MPI

- also useable for production environments
- ullet \Rightarrow Open MPI as MPI framework

Open MPI

- also useable for production environments
- ⇒ Open MPI as MPI framework

Component Implementation

- initialization returns user-defined priority
- algorithm selection:
 - 0: automatic benchmark
 - 1: Central Counter
 - 2: Combining Tree
 - 3: Tournament
 - 4: Dissemination
 - 5: Binomial Tree
 - 6: n-way Dissemination
- Checkpoint/Restart is handled by lower layers

Conclusions

- taken assumptions are valid
- LogP model is accurate
- Dissemination is optimal for given scenario
- different networks exhibit different behavior
- derivation of new algorithms for different hardware (e.g. offloading based HW) could require detailed models
- ⇒ general methodology for developing optimal barrier algorithms has been shown

Future Work

- new model for small messages for offloading based NICs (LoP)
- new barrier algorithms to support hardware parallelism
- simplification of the LoP model (non linear, >6 parameters)

