
Message Progression in Parallel Computing -

To Thread or not to Thread?

Torsten Hoefler and Andrew Lumsdaine

Open Systems Lab
Indiana University
Bloomington, USA

IEEE Cluster 2008

Tsukuba, Japan

September, 30th 2008

Torsten Hoefler and Andrew Lumsdaine To Thread or not to Thread?



Introduction

Non-blocking Interfaces

can help to hide latency

mitigate effects of process skew

reported application speedup up to 1.9

requires much effort at the algorithm and implementation

levels

Examples

MPI offers non-blocking point-to-point

non-blocking collectives are discussed for MPI-3

GASNet is fully non-blocking

Asynchronous I/O

Torsten Hoefler and Andrew Lumsdaine To Thread or not to Thread?



Non-blocking does not mean asynchronous!

Isend/Irecv (CPU)

Computation (CPU)

Wait (CPU)

Isend/Irecv (CPU)

time

time

Computation (CPU)

Wait (CPU)

Transmission (NIC)

Transmission (NIC)

Torsten Hoefler and Andrew Lumsdaine To Thread or not to Thread?



Non-blocking Middleware Implementation

Non-blocking Send/Receive

eager protocol/copy for small messages

→ uses a single message

rendezvous protocol/synchronize for large messages

→ uses multiple messages (two to three)

OS bypass networking

→ does not involve the kernel in send/receive

→ polling to check for messages

Non-blocking Collectives

similar issues as send/receive

much more complex tasks and protocols

multiple send/receive operations and dependencies in a

single collective operation

Torsten Hoefler and Andrew Lumsdaine To Thread or not to Thread?



Progression Strategies I/II

Manual Progression

simplest to implement in a middleware

user has to progress (e.g., calling MPI_Test)

number of necessary progress calls depends on protocol

best case: eager, worst case: pipelined protocols

our proposed black-box scheme: N = ⌊ size

interval
⌋ + 1

Isend/Irecv (CPU)

Transmission (NIC)

Test (CPU)

Computation (CPU)

Wait (CPU)

time

Torsten Hoefler and Andrew Lumsdaine To Thread or not to Thread?



Progression Strategies II/II

Hardware-based Progression

need to run full protocol in NIC

complicated to implement

full benefits to the user

mostly not supported

Threaded Progression

asynchronous threads

often stated as “silver bullet” but not widely used (?)

problem with manual progresssion: “fire at the right time”

threads could solve this problem (woken up correctly)

could enable fully asynchronous progression

OS influence (scheduler) is significant

Torsten Hoefler and Andrew Lumsdaine To Thread or not to Thread?



Threading Configurations

Spare Core vs. Fully Subscribed

two extreme scenarios

spare core: min P/2 cores are idle (one per process)

→ used in I/O or memory-bound applications

fully subscribed: no cores idle

→ used in compute-bound applications

core 0 core 1

CPU 0

core 0 core 1

CPU 1

core 0 core 1

CPU 0

core 0 core 1

CPU 1

MPI rank 1 MPI rank 2 MPI rank 3

"fully subscribed""spare core"

MPI rank 0MPI rank 1MPI rank 0

user thread

progress thread

Legend

Torsten Hoefler and Andrew Lumsdaine To Thread or not to Thread?



Implementation Possibilities

Polling vs. Interrupt vs. Real Time

progress
thread

compute
thread

progress
thread

compute
thread

progress
thread

compute
thread

network
interrupt

network
interrupt

network
interrupt

C
P

U
 U

sa
g

e 
T

im
e 

p
er

 C
o

re

a) interrupt/normal
C

P
U

 U
sa

g
e 

T
im

e 
p

er
 C

o
re

time slice

a) interrupt/real time

C
P

U
 U

sa
g

e 
T

im
e 

p
er

 C
o

re

a) polling

time slicetime slice

Torsten Hoefler and Andrew Lumsdaine To Thread or not to Thread?



Non-blocking Collectives and InfiniBand

Issues with Non-blocking Collectives

NBCs introduce dependencies

→ e.g., sending a message in a tree

dependencies might lead to synchronization

Case-study InfiniBand

supports polling and interrupt

polling bad without non-spare core, else fastest

interrupts are slow and cause overhead

scheduler issues! (timeslice 4ms, latency 3µs)

Real-Time Threads in Linux

highest priority

scheduled immediately

no preemption

Torsten Hoefler and Andrew Lumsdaine To Thread or not to Thread?



Overhead of Threading

Real time vs. Normal

normal threads: interrupts coalesc, low (no) progression

RT-threads: each interrupt pays full overhead

SQ

RQ

RQ

SQ

SQ

RQ

SQ

RQ

RTR

send completion event

receive completion event

Sender Receiver Sender Receiver

a) eager b) rendezvous

Data

Data

Torsten Hoefler and Andrew Lumsdaine To Thread or not to Thread?



Point-to-point overhead

 1

 10

 100

 1  10  100  1000  10000  100000  1e+06

O
v
e

rh
e

a
d

 (
u

s
e

c
)

Message Size (bytes)

Open MPI/65536
LibOF/no thread

LibOF/thread

Torsten Hoefler and Andrew Lumsdaine To Thread or not to Thread?



NBC_Iallreduce Overhead on 32 Nodes - spare core

 10

 100

 1000

 10000

 1  10  100  1000  10000  100000

O
v
e

rh
e

a
d

 (
u

s
e

c
)

Message Size (bytes)

no thread, no test
no thread, t=1024

thread, no test
rt thread, no test

Torsten Hoefler and Andrew Lumsdaine To Thread or not to Thread?



NBC_Iallreduce Overhead on 32 Nodes - fully subscribed

 10

 100

 1000

 10000

 10  100  1000  10000

O
v
e

rh
e

a
d

 (
u

s
e

c
)

Message Size (kilobytes)

no thread, no tests
no thread, t=1024

thread, no test
rt thread, no test

Torsten Hoefler and Andrew Lumsdaine To Thread or not to Thread?



Nice Results ... but wrong Metric

Wrong Metric?

often used time-based benchmark

hides interrupt overhead costs!

overhead ≈ 3.4µs per interrupt

many many interrupts in an NBC; 1016 in pipelined case

Work-based benchmark

compute fixed work quantum

results account for interrupt overhead

should be used for any threaded progression analysis!

Torsten Hoefler and Andrew Lumsdaine To Thread or not to Thread?



Work-based results - fully subscribed - not so nice

 100

 1000

 10000

 10  100  1000  10000

O
v
e

rh
e

a
d

 (
u

s
e

c
)

Message Size (bytes)

no thread, no test
no thread, t=1024

thread, no test
rt thread, no test

Torsten Hoefler and Andrew Lumsdaine To Thread or not to Thread?



Summary and Future Work

Summary

we developed fully threaded LibNBC for IB

→ high overhead

tested implementation with RT threads

→ lower overhead (better than theory?)

implemented new work-based benchmarking metric

→ realistic (high) overhead

Conclusions and Future Work

threaded implementation makes sense with spare cores

very tricky without spare cores → manual again?

investigate other options

→ signalled progression (not safe/realistic!)

→ OS involvement (opposite to OS bypass)

→ hardware progression

Torsten Hoefler and Andrew Lumsdaine To Thread or not to Thread?



Summary and Future Work

Summary

we developed fully threaded LibNBC for IB

→ high overhead

tested implementation with RT threads

→ lower overhead (better than theory?)

implemented new work-based benchmarking metric

→ realistic (high) overhead

Conclusions and Future Work

threaded implementation makes sense with spare cores

very tricky without spare cores → manual again?

investigate other options

→ signalled progression (not safe/realistic!)

→ OS involvement (opposite to OS bypass)

→ hardware progression

Torsten Hoefler and Andrew Lumsdaine To Thread or not to Thread?


