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Torsten Hoefler

Principles for coordinated Optimization of Computation
and Communication in large-scale Parallel Systems

Solving complex scientific problemswithmassively parallel distributed computer systems remains
a complex task. Data-dependencies in parallel applications enforce communication in addition to
the computation of the solution. We aim to optimize communication and computation to ideally
play together and minimize all overheads. Our work is based on the hypothesis that global knowl-
edge about communication patterns and techniques to overlap communication and computation
can be combined to decrease communication overhead and thus increase the scalability of parallel
algorithms. We therefore analyze the communication patterns of several real-world applications
and assess the detailed parameters of a particular interconnection network. Based on our find-
ings and application analyses, we propose two new classes of collective operations: non-blocking
collectives and topological (sparse) collectives. Theoretical analyses supported by an optimized im-
plementation support our hypothesis. We propose different techniques to apply the newly defined
operations to different application kernels, a parallel programming scheme and finally two real-
world applications. Practical experiments show that the new operations can be used to reduce the
communication overhead of the application kernels by up to 92%. The proposed pipelining tech-
niques can be used as an abstract mechanism to achieve higher performance for many algorithms.
We show reasonable performance improvements for the two analyzed real-world applications. We
have also been able to simplify the interface in case of sparse communication patterns. However,
we conclude that more fundamental changes to the algorithms and programming models are nec-
essary to take full advantage of the new semantics. We expect that our results will influence pro-
gramming models and parallel algorithm design. We conjecture that programmers and algorithm
designers will need to combine intelligent layout of communication patterns and overlapping of
computation and communication in order to achieve high performance and scalability.
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About this Document
This document is structured into five chapters. Each of the chapters covers a different main topic,
has a short introduction, and the most important findings are discussed in the conclusions of the
chapter. The reader might skim the introduction and conclusion to decide whether to read a chap-
ter. Although the dissertation is designed to be read from the beginning to the end, chapters are
mainly self-contained and can be skipped. Cross-references and dependencies are clearly men-
tioned in the text and are relatively rare. A good overview about the whole work can be gained by
reading introductions and conclusions of all chapters.

Chapter I introduces the problem and defines the “environment” for this thesis. Chapter II
discusses the influence of the interconnection network to application communication patterns and
shows several ways to optimize network architecture and communication patterns in order to im-
prove the performance. Chapter III proposes a new class of complex operations that enable over-
lapping of computation and communication in today’s high performance networks. Chapter IV
shows an optimized implementation of those operations for InfiniBandTM, analyzes several issues
and tradeoffs and shows that the assumptions about overlap are true. Chapter V discusses the ap-
plication of overlapping high-level communication routines to application kernels and real-world
applications. Chapter VI summarizes the dissertation and research performed.

Theses

This dissertation states and proves different theses (chapters addressing/showing the thesis are in
brackets):

i There is untapped potential for performance improvement through coordinated optimization
of computation and communication (II,III,IV)

ii Features of modern high-performance systems and networks provide particular opportuni-
ties for coordinated optimization (asynchronous message processing) (II,IV)

iii Non-blocking collective operations (NBC) are well suited to implement coordinated opti-
mization of computation and communication in parallel algorithms (III,V)

iv Even in coordinated optimization, individual pieces need to be well optimized: There is fur-
ther improvement than can be made to (blocking) collective algorithms (II,IV)

v One has to take into account numerous inter-related issues in providing coordinated opti-
mization capabilities through NBC (modeling becomes very important) (II,IV,V)

vi Applying NBC to parallel algorithms and codes involves combining communication and
computation into an optimized (coordinated) schedule (V)

vii Several important algorithms can overlap almost all communication latency with computa-
tion, resulting in significant performance improvements (V)

*) The picture on the front page represents the network graph of Thunderbird’s InfiniBand network. One of
the largest existing InfiniBand installations. The network layout was extracted and analyzed as part of this
dissertation.

Torsten Höfler ix



Chapter I

Introduction

“It is unworthy of excellent men to lose hours like slaves in the labor of calculation
which could be relegated to anyone else if machines were used.” – Gottfried Wilhelm von Leib-

nitz, (1646-1716) German Philosopher and Mathematician

Today’s High Performance Computing (HPC) is dominated by parallel computing. HPCmainly
aims at providing solutions to large computational problems. HPC comprises different branches

for different purposes. Some computations do not demand high computing power, but many inde-
pendent calculations have to be performed to solve a single problem. This is common in scientific
parameter studies. To enable such computations efficiently, parallel systems have to be tuned for
high job throughput. This is a scheduling problem and good heuristics exist to solve it. Other
computations need as much computing power as possible to solve a single algorithm with data-
dependencies. Systems where such computations are run have to be optimized for parallel appli-
cation performance. Those systems are often called capability computing systems. In this work,
we primarily focus on capability computing to enable the solution of large-scale computational
problems.

The most demanding computational problems, called Grand Challenges [159] are defined by a
US agency as:

“A Grand Challenge is a long-term science, engineering, or social advance, whose realization re-

quires innovative breakthroughs in information technology research and development (IT R&D)

and which will help address our country’s priorities”

In other words, those problems can not be solved with today’s computing systems. It is anticipated
that solving one or more of those problems will have a significant impact on human life in general.
However, solving such problems will require larger massively parallel computing systems than the
ones that exist today. Grand Challenge problems include huge physical, biological, cognitive and
other demanding tasks that yet have to be solved. Many problems require the efficient solution
of some basic equations, for example the Navier-Stokes Equation, the Maxwell Equations, large-
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scale Poisson Equations and the Schrödinger Equation. Solutions of those equations can usually
be found for smaller problems but problem-sizes needed in reality require long runs on large-scale
systems. The questions “How would the ideal computer for the solution of those problems look
like?” and “How do current computers compare to this ideal?” arise.

Large-scale capability computing, also called Supercomputing, is a fast-changing field of scien-
tific research. It is mainly driven by the pragmatic needs of computational scientists to run large
codes on current machines. A huge variety of different programmingmodels and languages, essen-
tially one language per architecture and vendor, was available in the early years of supercomputing.
Thus, the portability and programmability of parallel codes was limited. Programming models can
be categorized roughly into distributed and shared memory models. The shared memory model,
whose best known implementation today is OpenMP [161], has traditionally been used for small-
scale computations on single nodes. Approaches to use it in large-scale, shared memory machines
and even distributed memory machines have been made but did not find wide adoption. Thus, we
focus on the the distributed memory model. Two portable programming models, the Parallel Vir-
tual Machine (PVM) [194] and the Message Passing Interface (MPI) [151], were formed in the 90’s
to standardize programming of distributed memory machines. MPI is today’s most used program-
ming model in large-scale computations and is also available on nearly all parallel architectures.
MPI is often regarded the “assembler language” of parallel computing because it can be and is used
as a basic building block for higher level systems. Programming models, such as UPC [206] or the
HPCS languages X10 [212], Chapel [54] and Fortress [69] could use MPI as a compilation target.
Thus, all concepts that affect MPI will affect languages based on similar principles as well.

Basing on the experience with Supercomputing and the nearly 15 years of MPI, we see the
following shortcomings in today’s HPC systems and programming principles:

1. Communication overhead, i.e., the time spent to communicate data, often limits scalability of
parallel programs on large-scale machines due to Amdahl’s law [32].

2. Applications often use point-to-point communication where collective operations could pro-
vide more information and thus give more optimization potential to the communication mid-
dleware.

3. The MPI standard is inconsistent because some, but not all, communication operations offer
non-blocking interfaces.

4. TheMPI standard does not support a high level of abstraction for sparse collective operations
such as nearest neighbor exchange1.

5. Using overlapping and latency-hiding techniques to improve application performance is dif-
ficult in the current setting.

Most of those problems result from the changed environment in HPC systems. Supercomputers
grow in scale at different levels. Interconnection networks, CPU counts in network endpoints,
and even the number of processing elements on a single die increase. Those new systems offer a
hierarchical parallelism in different domains (shared and distributed memory) to the user. How-

1point-to-point implementations are possible but neither provide high abstraction to the user nor many optimization
possibilities to the middleware

Torsten Höfler 2
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ever, it is clear that already existing memory bottlenecks, where the latency is limited by the speed
of light and the bandwidth by space constraints, will prevent the use of all processing elements
for computation. Moore’s law predicts a doubling of transistors on die approximately every 18
months. Typically, those transistors have been used to implement additional parallelism in the
CPU by exploiting the relative independence of single instructions. Tomasulo’s algorithm [201]
helped to exploit this Instruction Level Parallelism (ILP) transparently for application developers.
Other ways to leverage the parallelism in user-codes are vector processors or vector extensions such
as Intel’s Streaming SIMD Extensions (SSE). However, the ILP of typical applications is limited to
4-5 instructions. The last possibility without leveraging explicit parallelism is to increase the clock
speed of today’s CPUs. This is also fundamentally limited by physical constraints such as leakage
current in the transistors. However, compiler research focused many years on optimizations that
enable as much implicit parallelism as possible.

Similarly to computer architecture, network architecture also evolved because Moore’s law also
applies to networking hardware. However, similar limitations as for CPUs apply. Exploiting paral-
lelism leads to a higher packet-rate and bandwith in the network. Some networks even come with
controllers that enable packet processing independently of the main CPU. The biggest limitation in
networking is latency, i.e., the transmission time of a single small message, which is ultimately lim-
ited by the speed of light. The options to leverage this architecture are clear: the application must
transmit much data in parallel. Also, more intelligent network hardware could be used to transmit
messages while the CPU proceeds with the computation. However, many programming interfaces
do not allow to post multiple outstanding network operations easily which effectively limits the ex-
ploitation of network parallelism. Thus, small changes to the networking side of supercomputing
could offer new optimization potential.

We conclude that we will face massive parallelism at multiple levels (host and network level)
and ubiquitous parallel programming in the near future. This observation leaves several open
questions:

1. How much CPU interaction is needed to communicate with current networking hardware?
or: How much potential for overlapping computation and communication do current net-
works offer?

2. Can overlapping techniques be efficiently combined with current network optimization tech-
niques such as collective communication?

3. How much effort is needed to support non-blocking collective communication?
4. Can applications benefit from collective overlapping techniques?

This dissertation focuses on finding possible solutions to the identified problems and on an-
swering the questions. We decided to investigate MPI in this work due to its basic nature and
because it is the most adopted and a highly portable parallel programming model. It is also well
analyzed and optimized and many applications build on MPI as a messaging layer. By using MPI,
we ensure that our results can be compared to the optimized implementations for current super-
computers and that current applications can directly benefit from our findings.

In the next Chapter of this dissertation, we show ways to model modern interconnection net-

Torsten Höfler 3
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works and to improve the parameter measurement for a particular network model. Furthermore,
we discuss a particular network in detail and show optimization potential for several collective
communication patterns. We also discuss the influence of large-scale networking tolologies and
routing to collective communication patterns and propose a way to optimize collective communi-
cation by using this information. In Chapter III, we propose new classes of collective operations
that promise to solve many of the mentioned problems. Non-blocking collective operations could
be used to hide latency by leveraging bandwidth and overlapping techniques. Sparse collective
operations enable the handling of scalable sparse communication patterns in the middleware. We
use our findings from Chapter II to derive models for the new collective operations and to gather
first hints for optimization principles. In Chapter IV, we show simple techniques that enable an
optimized implementation of our proposed operations. We also discuss a new benchmark scheme
for those operations. We conclude the chapter with the description of an optimized implementa-
tion for a particular network and the detailed discussion of message-progression issues. We show
different methods to use the new operations for the implementation of several application kernels
in the first part of Chapter V. In the second part, we discuss optimization possibilities for two real-
world applications: a quantum mechanical solver and a medical image reconstruction. Chapter VI
summarizes and conludes the results of our work.

The following sections of the introduction define the environment of our work and discuss some
common approaches used in HPC. We begin with a discussion of point-to-point communication
and collective communication.

1 Point-to-point vs. Collective Communication

“Make everything as simple as possible, but not simpler.” – Albert Einstein (1879-1955), German physicist, No-

bel Prize 1921

The message passing interface uses processes to denote a basic unit of execution. An MPI job
usually consists of multiple processes and each process runs on a single processing element (PE).
A PE can either be a CPU or a CPU core (depends on the system configuration). Processes can be
combined into process groups that can form a communication context (known as a Communicator
in MPI). Each process has a unique rank in all its communication contexts from 0 to P−1 where P

is the number of processes in the Communicator.
A central concept in MPI is, as the name suggests, message-passing. There are generally two

options to pass messages between a source process, called the sender, and a destination process,
called the receiver. The first option, two-sided communication, involves the receiver such that it
has to post a receive request to the MPI library in order to receive a message. Each message is
identified by the tuple (sender, receiver, tag, communicator) and matched in order of sending at
the receiver. The tag can be used to distinguish logical communication channels between the same
pair of processes (cf. TCP port numbers). The second option, called one-sided communication, aims
to provide communication that is initiated by the sender only (with or without minimal receiver
interaction). Point-to-point communications are often used for irregular communication patterns
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or communications in limited neighborhoods (communication peers per process).
Point-to-point messages can be used to build any complex communication pattern. However,

the performance of those communication patterns heavily depends on network parameters, such
as, for example, the physical topology. Even if all network parameters are known to the user,
it is not trivial to design optimal algorithms. Even if optimal algorithms could be found, they
would differ from system to system. To simplify the optimization process and overcome the related
portability problems, MPI defines a fixed set of collective communication patterns that match most
common application patterns. Those collective communication operations (“Collectives”) involve
all processes in a Communicator to perform a specific operation, such as a data broadcast.

Collective operations are beneficial in most scenarios. They take the burden of implementing an
optimized communication pattern from the application developer. They also enable performance
portability, i.e., the same application runs reasonably well on a wide variety of different architec-
tures and network topologies because the collective implementation varies. Furthermore, collective
operations are easy to use for common communication operations and also avoid errors made by
application developers in the implementation of those recurring patterns. Thus, application devel-
opers should use the predefined collective operations whenever possible.

In a wider scope, one could argue that all point-to-point communications should be replaced
by collective communications in order to produce well-structured parallel programs. Gorlatch [83]
discusses the following five benefits:

1. Simplicity: Collective operations substantially simplify the implementation of programming
patterns by supporting most common programming models like BSP [208] efficiently.

2. Programmability: Gorlatch defines several high-level program transformations that can be
used in systematic program design. For example, a Fast Fourier Transform can be expressed
as a series of (Map; All-to-all) operations.

3. Expressiveness: A broad class of communication patterns used in today’s algorithms is cov-
ered by collective communication. Furthermore, flexible operations like the vector variants
of all-to-all can be used to express arbitrary communication relations.

4. Performance: Even though many collective operations are implemented over point-to-point,
the effort put into finding optimal algorithms and the use of special hardware support out-
weighs any point-to-point mechanism. Several collective operations can also be supported in
hardware efficiently. We will demonstrate techniques for hardware-specific optimization of
collective operations in Chapter II.

5. Predictability: It has been shown that collective operation performance can be predicted with
roughly the same accuracy as point-to-point operations if the implementation is known. Fur-
thermore, collective operation models are significantly simpler to handle than point-to-point
models because they onlymodel a single operation instead ofO(P ) point-to-point operations.

We conclude this discussion by citing Sergei Gorlatch:

“The various kinds and modes of send-receive used in the MPI standard, buffered, synchronous,

ready, (non-)blocking, etc., are just too primitive; they are too much an invitation to make a mess

of one’s parallel program.”
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2 Optimizing Scalable Parallel Applications

“When there were no computers programming was no problem. When we had a few weak computers, it

became a mild problem. Now that we have gigantic computers, programming is a gigantic problem.” –

Edsger Dijkstra (1930-2002), Dutch computer scientist, Turing Award 1972

Optimization of parallel programs can be subdivided into two parts, serial (often compiler-
based) optimization and communication optimization, that are partially orthogonal. Serial opti-
mization deals with mapping the algorithm to the CPU architecture as efficiently as possible. This
is often done with optimizing compilers, restructuring the code to enable better cache utilization, or
by using special libraries that are optimized for the underlying architecture. Those methods have
been studied for decades and are rather mature.

“Now, that everybody has a parallel computer - and everything is a parallel computer - it is

everyone’s problem.”

We conjecture that communication optimization becomes more relevant because the stagnation
in single processor speed will force developers to exploit explicit parallelism in order to achieve
higher performance. Running an algorithm in parallel usually requires communication between
the processing elements. Those communications can be expressed in terms of element-to-element
or point-to-point communications. However, this might lead to a limited view of the global com-
munication. Thus, higher-level approaches look at the more abstract notion of communication
patterns, for example broadcast. Those patterns can also be defined in terms of point-to-point op-
erations but they often allow optimized communication algorithms (e.g., a tree for small-message
broadcasting).

In order to achieve highest communication performance, it is necessary to match the communi-
cation pattern to the underlying communication network. Communication networks have several
important parameters (e.g., latency, bandwidth and topology) that are needed to find optimized
communication algorithms. For example, an optimized broadcast operation on a torus-topology is
different from a broadcast algorithm optimized for a star-topology. Network models are often used
in order to help designing and to prove algorithms for this mapping. Thus, network models need
to reflect the essential parts of the network. The following Chapter discusses the detailed influence
of communication networks to parallel applications.
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Chapter II

Influence of the Communication

Network

“An expert is a man who has made all the mistakes which can be made in a very narrow
field.” – Niels Bohr, (1885-1962) Danish physicist, Nobel Prize 1922.

As discussed in Chapter I, the performance of single processing elements does not increase
significantly and parallelism becomes more important for future computing systems. Large-

scale programs require large-scale parallelism and large-scale networks. Those communication
networks are the crucial factor in the performance and success of large-scale applications and com-
puter systems. Communication usually does not advance the computation, but it is necessary in or-
der to achieve correct results. Thus, communication times are often seen as overhead that has to be
reduced. The simplest way to reduce this overhead is to employ low-latency and high-bandwidth
networks. Using those networks represents today’s state of the art and we use this as a base for
further development.

In order to produce useful results and make our work practically relevant, we have to choose a
particular communication network. We implement our ideas with InfiniBandTM [199], mostly due
to its wide availability and large-scale deployment. Many newly designed cluster-based super-
computers use InfiniBandTM as their interconnection network. The InfiniBandTM network is able to
offer latencies as low as 1.3µs [65] and a bandwidth of up to 60Gb/s [197].

This chapter summarizes and extends results from the articles “Assessing Single-Message and
Multi-Node Communication Performance of InfiniBand” [20], “LogfP - A Model for small Mes-
sages in InfiniBand” [24], “A Communication Model for Small Messages with InfiniBand” [13],
“Fast Barrier Synchronization for InfiniBand” [23], “A practically constant-time MPI Broadcast Al-
gorithm for large-scale InfiniBand Clusters with Multicast” [17], and “Multistage Switches are not
Crossbars: Effects of Static Routing in High-Performance Networks” [16].

In order to understand all the network details, their implications and finally parametrize a
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network model, we need to analyze the network and all its options in detail. We developed a
microbenchmark tool named Netgauge [12] that implements all the different transport options
to measure all important parameters. The following section provides a detailed analysis of the
InfiniBandTM network. Then, we discuss different established models for parallel computation and
how accurately they model our needs. We select a particular model which reflects the InfiniBandTM

architecture well. Section 2.1.6 describes an extension to this model for increased accuracy and Sec-
tion 2.4 shows a novel benchmarking technique for the model’s parameters. Section 3 describes
optimization techniques for collective operations over InfiniBandTM. Section 4 and 5 analyze the
behavior of InfiniBandTM networks at large scale and with collective communication patterns, and
finally, Section 6 points out a path towards topology-aware collective operations.

1 A practical Analysis of InfiniBand

“There’s no sense in being precise when you don’t even know what you’re talking about.” – John von Neu-

mann, (1903-1957) Hungarian Mathematician

The analyses done in this section contribute to the understanding of the InfiniBandTM hard-
ware in terms of collective multi-node communication. We analyze the performance of 1:n and
n:1 communications over InfiniBandTM and provide detailed benchmark results for several cluster
systems. This section contains and extends results from the article “Assessing Single-Message and
Multi-Node Communication Performance of InfiniBand” [20].

The terms (MPI) process and node are used throughout this section. We consider a “process”
similarly to MPI as an activity that may join a multicast group and a “node” as a physical machine.
Although multiple processes are allowed on a single physical machine, we used only one process
per node for all benchmark results in this chapter.

Related Work Only a few microbenchmarks are available for InfiniBandTM. The most common
practice is to test the performance atopMPIwithMPI-level benchmarks (e.g., the PallasMicrobench-
marks [163]). The available MIBA Microbenchmark Suite [53] is able to measure point-to-point
communication performance for InfiniBandTM. Additional studies [141] used this benchmark suite
to measure communication and application performance on different systems. However, it does
not analyze the effects of node to multi-node communication patterns. We implemented a new
benchmark in Netgauge in order to evaluate the collective behavior with multi-node configura-
tions.

1.1 InfiniBand Transport Types

The InfiniBandTM standard offers different transport services like stream or datagram to the user.
Each transport service has special features and shows different communication times and over-
heads. Additionally, different transport functions can be performed with each transport service
(see Table 36 at Page 245 in the InfiniBandTM specification [199]). We call a combination of trans-
port function and transport service transport type. All different transport types have to be analyzed
in order to draw an accurate conclusion for the implementation of a parallel algorithm or a collec-
tive operation. The different transport types are briefly explained in the following.

Torsten Höfler 8



CHAPTER II. COMMUNICATION NETWORK 1. ANALYZING INFINIBAND

1.1.1 Transport Services

This section briefly explains the different transport services that are defined in the InfiniBandTM

specification.

Unreliable Connection The Unreliable Connection (UC) offers point-to-point transmission based
on unreliable connections without flow control. Packets may be silently discarded during trans-
mission. A queue pair (QP) has to be created at each host and connected to each other in order to
transmit any data. The queue pair acts as a connection and endpoint identifier.

Reliable Connection The Reliable Connection (RC) is basically identical to UC despite the fact
that the correct in-order transmission of packets is guaranteed by the InfiniBandTM hardware. An
automatic retransmission and flow control mechanism is used to ensure correct delivery even if
slight network errors occur. The role of the QPs remains the same as for UC.

Unreliable Datagram The Unreliable Datagram (UD) transport type offers connectionless data
delivery. The reception or in-order delivery is not guaranteed in this case. QPs are only used
to send or receive packets and each packet can have a different destination (they do not denote
a virtual channel as for UC/RC). A single datagram must not exceed the MTU of the network
(typically 2KiB).

Reliable Datagram The Reliable Datagram (RD) transport type adds a guaranteed reliable in
order delivery to UD. QPs can be used to reach any target as in the UD case. RD is currently not
supported in our test system.

RAW The RAW Transport type can be used to encapsulate other transmission protocols as Ether-
net or IPv6. It has nearly the same characteristics as UD and will not be discussed in the following.

1.1.2 Transport Functions

In this section, the possible transport functions are discussed and bound to a specific transport type
for the benchmark.

Send The simple send function is available for all IBA transport services and will be measured
for all of them.

RDMA Write The Remote Direct Memory Access Write (RDMA-W) can write to explicitly regis-
teredmemory at a target without the need to interrupt the target’s CPU. RDMA-W can be used atop
RC, UC and RD. We present results for RDMA-W atop RC because RD is currently not supported.

RDMARead The Remote Direct Memory Access Read (RDMA-R) can read from registeredmem-
ory at a target system without influencing the remote CPU. RDMA-R can be used atop RC and RD.
We present results for RDMA-R atop RC because RD is currently not supported.

Atomic Operations Atomic Operations (AO) can be useful to support interprocess synchroniza-
tion calls. Our current system does not support the optional AOs and we cannot present any mea-
surement values.
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Figure II.1: Illustrations of the used Benchmarking Schemes for 5 Hosts

Multicast Multicast (MC) is available for UD only and could be used to enhance collective pat-
terns like broadcast. Several studies [139, 121] have been conducted to leverage the multicast fea-
tures for different collective operations. Our measurements will provide a tool to give a theoretical
proof of their efficiency.

1.2 Benchmark Principle

We use four different benchmark scenarios to test the four different InfiniBandTM transport func-
tions. We use notified receives in the Send transport function such that each received packet creates
a Completion Queue (CQ) entry which can be consumed via the poll CQ Verbs API (VAPI) call. The
simple send-receive is tested with the following 1:n n:1 principle between P nodes numbered from
0..P−1:

1. Node 0 posts a request to each node 1..P−1 (ping).
2. Node 0 polls its CQ until all nodes answered.
3. Nodes 1..P−1 wait for the reception of a message (poll CQ).
4. Nodes 1..P−1 send the message back to node 0 (pong).

The resulting communication pattern for P =5 is depicted in Figure II.1(a).
The RDMA-W benchmark uses basically the same principle with unnotified receives (step 2 and

3) for performance reasons (i.e., no event is generated at the receiver). Polling a counter is the only
way to detect whether a message arrived. RDMA-W operation has been finished when the last
byte of the receive buffer is changed (in-order delivery is guaranteed in InfiniBandTM). The receive
buffer layout in node 0 is depicted in Figure II.1(b). Node 0 polls n bytes to check the reception
from n peers. Polling introduces some memory congestion overhead on node 0 which has to be
accepted because there is no faster method of testing whether a message has been received or not
(interrupts or CQ elements are too slow in this context).

The RDMA-R time for n nodes to read from a single node is measured in a different way:

1. Node 0 sends via RDMA-W to nodes 1..P−1 (ping).
2. Nodes 1..P−1 wait via polling for the RDMA-W from node 0.
3. Nodes 1..P−1 read via RDMA-R from node 0 (pong).
4. Nodes 1..P−1 take the used time for their RDMA-R operation.
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The multicast benchmark is performed by sending a single UD Multicast packet from node 0

to all other nodes. All other nodes wait for the CQ entry via polling the CQ. Each node returns a
unicast UD packet to node 0.

All round-trip-times (RTT) are measured at node 0 between the first send and the last receive
(except in the second stage of RDMA-R ). The 1:n n:1 benchmark principle also tests the perfor-
mance of the InfiniBandTM implementation (the switch as well as the HCA and the driver stack)
under heavy load and maximum congestion (n nodes send/receive to/from a single node).

To enable statistical analysis as well as the assessment of minimal and maximal transmission
times we use a different measurement scheme than most other benchmarks. Common benchmarks
(e.g., [53, 163]) often perform a defined number of repetitions s (e.g., s = 1000) in a loop and
divide the measured time of all tests by s. This prohibits a fine-grained statistical analysis (to find
outliers as well as determine absolute hardware limited minima). Our approach measures each
packet separately and stores the results. This makes it possible to find minimum and maximum
values and enables the calculation of the average and median. This measurement scheme has
also some impact on the measured values themselves. We measure each packet, which means
that the whole pipeline startup (in the network cards itself and in the network) is measured each
time. This results in poor performance compared to the usual fully pipelineable benchmarks (many
repetitions). However, we argue that parallel applications do not communicate smessages between
two hosts (usually this is done in a single biggermessage) and that our scheme represents the reality
better. All displayed curves are normalized to the number of addressed hosts. Thus, the RTT costs
or o costs per message, called RTT/n and o/n are plotted for different numbers of hosts n.

1.3 Benchmark Results

Round trip times (RTTs) for different message sizes and different numbers of participating nodes
of a specific InfiniBandTM cluster are presented in the following section. The cluster system consists
of 64 nodes with 3 GHz dual Xeon CPUs, 4GiB main memory, Mellanox “Cougar” (MTPB 23108)
HCAs running Red Hat Linux release 9 (Shrike) with kernel 2.4.27 SMP.

1.3.1 Scaling with Message Size

First, we analyze the RTT scaling with the message size for 1:1 communication (normal ping-pong
benchmark). The RTT scaling for increasing small message sizes up to 1KiB is shown in Fig-
ure II.2(a). The MTU has been adjusted to 2KiB so that every message fits into a single packet. The
communication latency (RTT/2) scales linearly with the message size as predicted by well-known
network models. A LogGP modeling of this scenario would predict accurate communication times
because G in the LogGP model predicts linear scaling with the message size (the detailed LogGP
model will be discussed later in this chapter). Themulticast latency is about twice as high as normal
point-to-point measurements. This is due to old hardware; newer systems have similar latencies
for multicast as for UD/Send. A second analysis, shown in Figure II.2(b), determines the latency
scaling up to 1KiB with the message size for a 1:15 communication. The measurement results
show the unexpected result that the single packet latencies to address 16 hosts are lower than the
according latencies in the 1:1 case. This leads us to the conclusion that the interface design ben-
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Figure II.2: Latency scaling with different communication options
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Figure II.3: Bandwidth scaling with different communication options

efits multiple successive packets. The only exception is the multicast result, which uses a single
multicast in the 1:15 direction and 15 UD in the 15:1 direction.

The bandwidth scaling (bandwidth = messagesize/(RTT/2)) for larger message sizes up to
1MiB in the 1:1 case is shown in Figure II.3(a) and the 1:15 case is shown in Figure II.3(b). Again,
this benchmark shows clearly that the full capacity of the HCA cannot be reached by sending
single packets and that a 1:n communication should be preferred over a 1:1 communication. This
shows that the accuracy of the LogGP model is limited for this type of communication because its
predicted communication times are directly proportional to the number of addressed hosts (a single
g is accounted for each host). These results are quite interesting for the optimization of collective
communication because they show that the sending of multiple packets in a single communication
round can increase the throughput significantly. Today’s collective algorithms [149] usually use
only a single communication partner per round. The bandwidth is much lower than the expected
1000MiB/s. This is due to the single message sends. We changed the benchmark to send multiple
messages successively and were able to achieve higher throughput (≈ 950MiB/s).
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Figure II.4: Scaling with the Number of Hosts

1.3.2 Scaling with the Number of Hosts

To further investigate this phenomenon, we change the number of hosts. Figure II.4(a) shows the
measured latency in relation to the host-number for the transmission of a single byte message. We
see that the latency is decreasing with a growing the number of addressed hosts for MC and UD.
Other transport services seem to have a local minimum around n = 10 and the latency is increasing
for higher processor counts. This may result from local congestion (polling the memory or creating
and/or polling CQ entries). This result shows clearly that one should send up to 10 messages in
parallel to achieve best results.

All measured parameters are highly system dependent. We have conducted these measure-
ments on different InfiniBandTM systems and saw similar results (consult [24] for details). This
makes it possible to use our benchmark suite to evaluate and compare the performance of differ-
ent InfiniBandTM implementations and to find bottlenecks during InfiniBandTM development. The
benchmark suite is also able to measure parameters like send and receive overhead and latencies
to poll the completion queue under different circumstances.

2 Modelling the InfiniBand Architecture

“All models are wrong; some models are useful.” – George Box, (1919) English Statistician

Communication models play an important role in designing and optimizing parallel algorithms
or applications. A model assists the programmer in understanding all important aspects of the un-
derlying architecture without knowing unnecessary details. This abstraction is useful to simplify
the algorithm design and to enable mathematical proofs and runtime assessments of algorithms.
Models also help non-computer scientists to understand everything they need for programming
and are useful for computer architects to give running time estimations for different architectures.
These models have to be as accurate as possible and should reflect all important underlying hard-
ware properties. But an architectural or communication model must also be feasible for program-
mers. This means that the number of parameters and the model functions must be relatively small.
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The programmer has to understand themodel and all its implications. It is easy to see that the accu-
racy and the ease of use are conflicting and the designer of a network model has to find the golden
mean. This section presents results published in the articles “A Communication Model for Small
Messages with InfiniBand” [13] and “LogfP - A Model for small Messages in InfiniBand” [24].

Related Work Many different models have been developed in the past. There are models for spe-
cific network architectures [131, 39] or for the shared memory paradigm such as CICO [128, 80].
Other models like the Parallel Random Access Machine (PRAM) [72, 115], BSP [208], C3 [91] or
LogP [61] aim to be architecture independent and to give a general estimation of programming
parallel systems. These are quite inaccurate due to their high level of abstraction. Several compara-
tive studies [144, 90, 37] and [22] are available for assessing the accuracy of subsets of these models.
Our comparative study [22] and the prediction of the MPI_BARRIER latency [21] with LogP shows
that the LogP model is quite accurate for small messages. Some groups are working on evaluat-
ing different models for different hardware architectures. For example Estefanel et al. has shown
in [70] that the LogP model is quite accurate for Fast Ethernet. Many efforts [29, 153, 107, 119] have
been made to enhance the LogP model in its accuracy for different network architectures and large
messages.

2.1 Comparison of Established Models

This section discusses several established network models. To simplify the analysis, we choose
InfiniBandTM as an example network. Each mentioned model is described by its main character-
istics. A reference to the original publication is given if the reader is interested in further details
(e.g., detailed information about execution time estimation). Each model is analyzed with regards
to its advantages and disadvantages for modeling the InfiniBandTM architecture. A conclusion for
further usage in the design process of a new model is drawn. Different enhancements by third
authors that have only a small impact on the accuracy of the model are omitted.

2.1.1 The Parallel Random Access Machine Model

The PRAM model was proposed by Fortune et al. in 1978 [72]. It is the simplest parallel program-
ming model. It was mainly derived from the RAM model, which bases itself on the “Von Neu-
mannn” model. It is characterized by P processors sharing a common global memory. Thus it can
be seen as a MIMD1 machine. It is assumed that all processors run synchronously (e.g., with a cen-
tral clock) and that every processor can access an arbitrary memory location in one step. All costs
for parallelization are ignored; thus the model provides a measure for the ideal parallel complexity
of an algorithm.

The main advantage is the ease of applicability, but to achieve this simplicity, several disad-
vantages have to be accepted. Namely all processors are assumed to work synchronously, the
interprocessor communication is nearly free (zero latency and infinite bandwidth lead to exces-
sive fine-grained algorithms), and it neglects the contention when different cells in one memory
module are accessed. Thus, mainly because interprocessor communication is not free but orders of
magnitude slower than the CPU clock, this model is not suitable for modeling InfiniBandTM.

1Multiple Instruction Multiple Data

Torsten Höfler 14



CHAPTER II. COMMUNICATION NETWORK 2. A MODEL FOR INFINIBAND

2.1.2 The Bulk Synchronous Parallel Model

The Bulk Synchronous Parallel (BSP) model was proposed by Valiant in 1990 [208]. The BSP model
divides an algorithm into several consecutive supersteps. Each superstep consists of a computation
and a communication phase. All processors start synchronously at the beginning of each superstep.
In the computation phase, the processor can only perform calculations on data inside its local mem-
ory (if this is data from remote nodes, it has been received in one of the previous supersteps). The
processor can exchange data with other nodes in the communication phase. Each processor may
send at most h messages and receive at most h messages of a fixed size in each superstep. This is
called an h-relation. A cost of g · h (g is a bandwidth parameter) is charged for the communication.

Latency and (limited) bandwidth are modeled as well as asynchronous progress per processor.
Each superstep must be long enough to send and receive the h messages (the maximal h among all
nodes!). This may lead to idle-time in some of the nodes if the communication load is unbalanced.
Another problem is that messages received in a superstep cannot be used in the same superstep
even if the latency is smaller than the remaining superstep length. Even though the BSP model is
an excellent programming model for parallel algorithms, it is not suitable for our purposes because
communication algorithms have to be as asynchronous as possible in order to achieve the highest
performance.

2.1.3 The C
3 Model

The C3 model, proposed by Hambrusch et al. in 1994 [91], was also developed for coarse-grained
supercomputers. The model works also by partitioning an algorithm into several supersteps.
Each superstep consists of local computation followed by communication. Supersteps start syn-
chronously directly after the preceding superstep is finished, this implies that a barrier without
any costs is necessary (see also the BSP model in Section 2.1.2).

The C3 model evaluates complexity of communication, computation and congestion of the in-
terconnect for coarse-grained machines. Store-and-forward, as well as cut-through routing can be
modeled and the difference between blocking and non-blocking receives is also considered. Draw-
backs are that the message exchange can be performed only in fixed-length packets and that the
clock speed and bandwidth parameters are not included, so that the model is only valid when the
processor bandwidth and the network bandwidth are equal (e.g., Intel Touchstone Delta). There-
fore, this model cannot be used to model InfiniBandTM networks and is not investigated further.

2.1.4 The Hockney Model

The Hockney model [101] simply models the network transmission time as the latency α and the
message-size s multiplied by the reciprocal of the bandwidth β.

It is reasonably accurate on today’s networks but the simple modeling approach ignores ar-
chitectural details of offloading-based networks like InfiniBandTM. It also does not distinguish
between the CPU and network parts of the network transmission and is thus oblivious of the hard-
ware parallelism.

Torsten Höfler 15



CHAPTER II. COMMUNICATION NETWORK 2. A MODEL FOR INFINIBAND

2.1.5 The LogP Model Family

The LogP Model [61] was proposed by Culler et al. in 1993. It was developed as an addition to
the PRAM model (see Section 2.1.1) to consider the changed conditions for parallel computing. It
reflects different aspects of coarse grainedmachines which are seen as a collection of complete com-
puters, each consisting of one or more processors, cache, main memory and a network interconnect
(e.g., the Intel Delta or Paragon, Thinking Machines CM-5). It is based on four main parameters:

• L - communication delay (upper bound to the latency for NIC-to-NIC messages from one
processor to another).

• o - communication overhead (time that a processor is engaged in transmission or reception of
a single message, can be refined to os for send overhead and or for receive overhead).

• g - gap (indirect communication bandwidth, minimum interval between consecutive mes-
sages, bandwidth ∼ 1

g ).
• P - number of processors.

Several additions to the original LogP model exist and are discussed later.
The LogP model has several advantages over other models. It is designed for distributed mem-

ory processors and the fact that network speed is far smaller than CPU speed. It is easily applicable
for a flat network model (central switch based, diameter = 1) and it encourages careful scheduling
of computation and overlapping communication as well as balanced network operations (no single
processor is “flooded”). This is profitable for accuracy of determining the run time of many appli-
cations. It is easy to understand that developing and programming in the PRAM model is easier
than in the LogP model, but the higher accuracy of this model justifies the additional effort. Some
drawbacks are that the whole communication model consists only of point-to-point messages. This
does not respect the fact that some networks (especially InfiniBandTM ) are able to perform collec-
tive operations (e.g., Multicast) ideally in O(1).

The different LogP model extensions aim at improving the prediction accuracy of the standard
LogP model by taking different network effects into consideration. The LogGP model by Alexan-
drov et al. [29] models large messages with the new G parameter that indicates bulk-transfer rates.
The LoGPC model by Moritz et al. [153] discusses the effects of network contention in the LogGP
model. Synchronization overhead during the sending of large messages in high-level communica-
tion libraries such as MPI is modeled in the LogGPS model. To address the hardware parallelism
(e.g., pipelining, super-scalar principles) in current high-performance networks like InfiniBandTM,
the LogfP model [24] adds the new parameter f , which represents the number of consecutive small
messages that can be sent for “free”. All those different models can be combined to predict the
performance of a specific network. We decided to use the LogGP model for this work because it
has been proved accurate and it is general enough to ensure the applicability of our measurement
method for many networks.

The models of the LogP family have been used by different research groups to derive new
algorithms for parallel computing, predict the performance of existing algorithms, or prove an
algorithm’s optimality [36, 60, 104, 116, 149]. While the derivation of new algorithms and the proof
of optimality can be done without the real parameter values, accurate measurement methods for
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the single parameters are necessary to predict performance of algorithms or message transmission
processes.

2.1.6 Choosing a Model

As described in 2.1.5, the LogP model family is the most accurate model for our specific scenario.
Thus, we use it for all running time estimations.

Several simplifying architectural assumptions can be made without lowering the asymptotic
accuracy of the model. Based on the fact that most clusters operate a central switch hierarchy
which connects all nodes, the properties of this interconnect can be assumed as follows:

• Full bisection bandwidth (will be discussed later in this chapter).
• Full duplex operation (parallel send/receive).
• The forwarding rate is unlimited and packets are forwarded in a non-blocking manner.
• The latency (L from LogP model) is constant above all messages.
• The overhead (o) is constant for single messages (for simplicity: os = or = o).

The parameters of the LogP model can be divided into two layers, the CPU-Layer and the
Network-Layer. The o-parameter can also be subdivided into one parameter on the receiver side
(or) and another one on the sender side (os). The according visualization of the different parameters
for a LogP compliant network (e.g., Ethernet) can be seen in Figure II.5.

CPU

Network

o s L
o

r

level

time

g

Sender Receiver

g

Figure II.5: Visualization of the LogP parameters in a simple point-to-point message transmission
from a “Sender” process to a “Receiver” process. The ordinate (level) shows the shows CPU and
Network.

The following constraints also apply to the model:

•
⌈

L
g

⌉

- count of messages that can be in transmission on the network from one to any other
processor in parallel (network capacity).

• L, o and g are measured as multiples of the processor cycle.

An additional study [62] describes options of assessing the network parameters for real-life super-
computers.

2.2 Verifying the LogGP Model on InfiniBand

In order to verify the LogGP model for InfiniBandTM, we compare the 1:n n:1 InfiniBandTM bench-
mark results from the previous section with the LogGP prediction. Our benchmark measures trans-
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Figure II.6: LogP Graph and Prediction for Ping-Pong Benchmark Scheme

mission latencies and CPU send overheads for posting the send request. We examine only RDMA-
W because the previous section and other studies [142, 138] showed that it is the fastest way to
transmit data over InfiniBandTM, and it causes no CPU overhead on the receiver side. The LogP
model predicts a constant o and

RTT = o + (n− 1) ·max{o, g}+ L + o + L

= 2L + 2o + (n− 1) ·max{o, g} (II.1)

needed for transmitting a single packet to n hosts and back. The LogP communication diagram is
shown in Figure II.6(a). The expected graph signature of the RTT/n (cf. Equation (II.1)) normalized
by n is shown in Figure II.6(b).

Our InfiniBandTM 1:n n:1 overhead (o) benchmark results are shown in Figure II.7(a) for 1 byte
and 1KiB. It can be assumed that there is no difference, and the overhead does not depend on
the size of the posted message (ignoring InfiniBandTM’s memory registration costs). The LogP
prediction for o, shown in Figure II.6(b), is constant and cannot express the benchmarked function
signature properly. The RTT/n latency benchmark results for 1 byte messages on different cluster
systems are shown in Figure II.7(b). We show results for an AMD Opteron Cluster where the HCA
is connected with PCI-X and two Xeon clusters with PCI-express- and PCI-X-connected HCAs to
evaluate different architectures. The small message function has a totally different signature than
the LogP prediction (the time per message has a global minimum at n ≈ 10). This special behavior
of InfiniBandTM has been analyzed and modeled in “A Communication Model for Small Messages
with InfiniBand” [13]. Large messages are modeled well with LogGP. The next section will discuss
a slight modification to the LogGP model for small messages that takes the hardware parallelism
into account.

2.3 Modeling small Messages over InfiniBand

In order to increase the prediction accuracy of the LogGPmodel, we parametrized a detailedmodel,
called LoP. However, this model has multiple non-linear parameters and is thus very hard to apply.
In this section, we introduce the slighly less accurate LogfGP model which is much easier to use.
The LogfGP model is a simplified version of the original LoP model which is defined in [13] and is
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Figure II.7: o and 1:n n:1 Benchmark Results

derived from the original LogGPmodel. Themain characteristics and the ease of use are retained in
the new design. The f parameter indicates the number of messages where no g has to be charged,
which are essentially for free. Since only g is affected, we explain the model based on the LogP
model. However, the gap per byte parameter G can be added to this model without any changes.

2.3.1 Overhead Model

The overhead can be modeled with a simple pipeline startup function. We assume that this is due
to cache effects in the HCA and CPU (instruction) cache effects. The parameters are chosen to be
more mnemonic:

o(P ) = omin +
omax

P
(II.2)

Where omin is the lowest achievable (fully “warmed up”) o(P ) for P → ∞ which is 0.18µs on
our system. The maximal value for o(P ), omax is exactly o(1) and 1.6µs in our example. Both
parameters are easy to derive if you have just two measurement results, o(1) and o(inf)(≈ o(x) for
a sufficiently large x). This model is relatively accurate and easy to use. The model’s prediction and
themeasured values are shown in Figure II.8(a). The o(P ) parameter is important to assess the CPU
load for each send operation. It does not play a big role for the send process itself because the L

parameter is usually 10 to 100 times bigger for InfiniBandTM. Thus, the o(P ) could be replaced with
the scalar o from the LogP model for network transmissions (this introduces a slight inaccuracy but
reduces the number of parameters).

2.3.2 AModel for the Round Trip Time

Our RTT model is similar to the LogP model. The difference is that the g parameter is not charged
for every message. We assume that multiple small messages can be processed in parallel by the
network hardware (as discussed in the previous section) and sent nearly simultaneously to the
network. Thus, g is only paid for every message after f messages have been sent, which means
that the first f small messages are essentially for free in our model. It is obvious that this cannot
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hold for large messages, due to the limited bandwidth. Thus, the RTT (P ) can be modeled as:

∀(P ≤ f) RTT (P ) = 2L + P · os(P ) + os(1) (II.3)

∀(P > f) RTT (P ) = 2L + o(P ) + os(1) + (II.4)

max{(P − 1) · o(P ), (P − f) · g}

The benchmark results show that our simple modification of introducing the f parameter enhances
the accuracy of the model significantly. The LogfP model is quite accurate for the prediction of
small messages while the LogP model overestimates all RTTs. The introduction of the omin,max

parameters enhances the o modeling of the LogP model. LogP underestimates the needed CPU
time to send a message because it models it as constant.

2.3.3 LogfP Parameter Assessment

All LogfP parameters can be gathered from the 1:n n:1 benchmark described in the previous section.
They are explained in the following:

• omin - equals o(∞)/P of the o(P ) benchmark
• omax - equals o(1)/P of the o(P ) benchmark
• L - equals RTT (1)−2omin−2omax

2P of the RTT (P ) benchmark
• g - equals RTT (∞)/P of the RTT (P ) benchmark
• f - is the global minimum of the RTT (P )/P curve
• P - number of processors

These parameters can easily be measured and used for modeling the running time of parallel algo-
rithms which use small messages (e.g., the MPI_Barrier algorithm).

As already stated earlier in this chapter, the LogfGP model only introduces f and changes o

slightly and all other parameters remain identical. We discussed this change with the easier LogfP
model, but G can simply be added to derive the LogfGP model. After we defined the assessment
of the f parameters, we will discuss accurate schemes to measure the other parameters below.
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2.4 Accurately Parametrizing the LogGP Model

Network models can also be used to modify algorithms in changing environments adaptively. This
is important for wide-area networks as they are typically used in grid computing. Another applica-
tion field is multi-interface message scheduling, i.e., schedule messages across multiple, probably
homogeneous, network interfaces to minimize the cumulative transmission time. Those methods
need to assess the model parameters during the running time of the application. This makes a
low-overhead measurement method for the LogGP parameters necessary (a method that avoids
network flooding or saturation).

Another pitfall for the parametermeasurement is the fact that most modern communication sys-
tems use message-size dependent protocols to optimize communication (e.g., [76, 85, 142]). Small
messages are often copied to prepared (i.e., pre-registered in case of InfiniBandTM cf. [152]) local
send or remote receive buffers to speed up the communication. This method is commonly named
“eager protocol”. Larger messages can not be copied to a buffer on the receiver side (because there
may not be enough space), and a local copy would introduce too much overhead. Those messages
force a synchronization, and the protocol type is often called “rendezvous protocol”. More pro-
tocol types can be introduced by the developer of the communication subsystem as needed. The
switch between those protocol types is usually transparent to the user, i.e., he does not realize it
explicitly. Our method is able to recognize protocol switches automatically since changes in the
message transmission times can be detected. We compute different parameter sets for all identified
protocol ranges. This section contains and extends results from the article “Low-Overhead LogGP
Parameter Assessment for Modern Interconnection Networks” [5].

The following section describes relatedwork to assess LogGP parameters and discusses positive
and negative effects of the proposed methods.

2.4.1 Existing Approaches and Related Work

Previous works used different strategies and changes of the original model to assess the single
parameters as accurately as possible. We discuss the well-known approaches below.

The first measurement method for the LogP model was proposed by Culler et al. [62]. They dif-
ferentiate between os on the sender side and or on the receiver side - which complicates the model
slightly. To assess os, he measured the time to issue a small number (n) of send operations and
divided it by n. This could be problematic on modern architectures, because they tend to copy the
message to a temporary buffer and send it later (e.g., TCP). This would make the measurement of
os depend on n and only realistic for large n when all buffers are filled. But this is not possible
because a large number of n would effectively measure g. Culler et al. use a delay between mes-
sages that is larger than a single round trip time (RTT) to assess or, based on the measurement of os,
which makes the result dependent on the accuracy of os and introduces second-order errors. The
g parameter is simply benchmarked by flooding the network with many small messages and di-
viding the time by the number of messages. Finally, L can be computed from the other parameters
L = RTT/2− or − os.

A second, similar approach was used by Ianello et al. in [105]. He uses similar techniques to
assess the LogP parameters for Myrinet.
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Kielmann et al. used heavy model changes and proposed a solution to assess parameters for his
pLogP (parametrized LogP) model in [119]. He uses the time for a single send operation to assess
os. This could be influenced by caching effects similar to the original idea in [62]. He defines or

as the time to copy the message from the receive buffer. This clearly neglects the time in which
the system is busy to copy the message from temporary buffer (cf. TCP). The g assessment sends n

messages to a peer and the peer sends a single message back after it receives n. The time between
the first send and the reception of the final answer divided by n is used as g. Those n messages
and a single reply message need (n · g + L) + (L + g) in pLogP. An error of (2L + g)/n is made if
one simply divides this sum by n. The impact of this error can be reduced if n is large enough so
that (2L + g)/n << g. If we try to reach 1% accuracy, we need n > (2L + g)/(g · 0.01), which is
19640 for the LogGP parameters gained for TCP (see Section 2.4.3). L is computed from the RTT
of a zero-byte message L = (RTT (0) − 2g(0))/2. The fact that every parameter depends on the
message size slightly complicates the model and the predictions.

The latest work, the only one that assesses all LogGP parameters besides L, was proposed by
Bell et al. in [34]. The parameter os is measured with a delay between message sends. This delay d

is adjusted until d + o fits g + (s − 1)G for a specific message size s exactly. This requires multiple
measurement steps to adjust the correct d. Now, os is computed via g+(s−1)G−d, which relies on
the correctness of g and G. The method to assess or is similar to the method used by Culler in [62],
but he delays the transmission of the answer on the receiver side. He uses a similar technique as
Kielmann to measure g. This method suffers from the same problem that it has to send a huge
number of packets (n) to get an accurate measurement - the network is effectively flooded. L can
not be measured because modern networks tend to start the message transmission before the CPU
is done (L is started before o ends). Bell et al. introduce the end-to-end latency (EEL) which denotes
the RTT for a small packet.

All proposed schemes use messages with a fixed size to derive all parameters, which could be
inaccurate for some networks that show anomalies at specific message sizes. The second problem
with some methods is that the accuracy depends on the number of sent messages, which makes
network flooding necessary to achieve good predictions. However, flooding causes unnecessary
network contention and should not be used during application runs. We propose a new mea-
surement scheme that avoids flooding as much as possible and delivers accurate parameters. The
following section describes the working principle of our new measurement method.

2.4.2 Low Overhead Parameter Measurement

Wedescribe a new low-overhead LogGP parameter assessment method in the following. We imple-
mented our approach as a new “communication pattern” in the extensible open source Netgauge
tool [12]. Netgauge is a modular network benchmarking tool that uses high-precision timers to
benchmark network times. The difference from other tools like NetPipe [203], coNCePTuaL [162]
or the Pallas Micro Benchmarks (PMB) [163] is that the the framework offers the possibility of using
MPI as infrastructure to distribute needed protocol or connection information for other low-level
APIs (e.g., Sockets, InfiniBandTM, SCI, Myrinet/GM) or to benchmark MPI_Send/MPI_Recv itself.
This is important to compare low-level performance with MPI performance and enables the user
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to assess the quality and overheads of a specific MPI implementation. Our LogGP communication
pattern enables a detailed analysis of the introduced software overhead.

Transmission modules for MPI, TCP, UDP, InfiniBandTM, and several other networks are in-
cluded in Netgauge and enable us to compare the performance of MPI with the underlying low-
level API’s performance. More low-level modules (e.g., SCI) are under development. We followed
the useful hints provided by Gropp et al. [86] to achieve reproducible and accurate benchmark
results.

2.4.2.1 General Definitions

Many parallel systems do not have an accurately synchronized clock with a resolution that is high
enough to measure network transmissions (in the order of microseconds). This shortcoming forces
developers of network benchmarks to do all timemeasurement on only onemachine andmeasure a
round trip time (RTT). Many benchmarks (e.g., NetPipe, PMB) use the so called ping-pong scheme.
This scheme uses two hosts, the client that initiates the communication and measures needed RTTs
and the server that mirrors all received packets back to the client. This common scheme is depicted
in the left part of Figure II.9. Other schemes, like our simplified “ping-ping” (originally mentioned
in [163]), depicted in the right part of Figure II.9, can be used to get the performance of multiple
consecutive message sends. However, one has to be aware that a ping-ping with many packets is
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Figure II.9: Left: ping-pong micro-benchmark scheme for 1 byte messages in the LogGP model;
Right: ping-ping micro-benchmark scheme for 1 byte messages in the LogGP model.

able to saturate the network and introduce contention easily. An additional possibility to influence
the benchmark is a ping-ping scheme with an artificial delay between each message send. The
delay can easily be achieved with calculation on the CPU.

We combine all those possibilities and use them to assess all LogGP parameters as unintrusively
as possible. We introduce the notion of the parametrized round trip time (from now on PRTT) to
define a specific parameter combination for the RTT. The possible parameters are the number of
ping-ping packets (n), the delay between each packet (d) and the message size (s). A measurement
result of a specific combination of n, d and s is denoted as PRTT(n,d,s).

A pseudocode for server and client to measure a single PRTT(n,d,s) is given in Listing II.1. The
following subsections show that the notion of PRTT(n,d,s) is sufficient to assess all LogGP parame-
ters accurately without network flooding or unnecessary contention. The parametrized round trip
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1 void server ( int n, int s ) {
for ( int i=0; i<n; i++)
/∗ receive s bytes from client ∗/
recv( client , s ) ;

5 /∗ send s bytes to client ∗/
send( client , s ) ;

}

double client ( int n, int d, int s ) {
10 t = −time ( ) ; /∗ get time ∗/

/∗ send s bytes to server ∗/
send(server , s ) ;
for ( int i=0; i<n−1; i++) {
wait(d) ; /∗ wait d microseconds ∗/

15 /∗ send s bytes to server ∗/
send(server , s ) ;

}
/∗ receive s bytes from server ∗/
recv(server , s ) ;

20 t += time ( ) ; /∗ get time ∗/
return t ;

}

Listing II.1: Pseudocode to measure PRTT(n,d,s)

time for a single ping-ping message without delay can be expressed in terms of the LogGP model
as follows:

PRTT (1, 0, s) = 2 · (L + 2o + (s− 1)G). (II.5)

If we define the cumulative hardware gap Gall as

Gall = g + (s− 1)G , (II.6)

n ping-ping messages can be modeled as (remember that the LogGP model defines o < Gall)

PRTT (n, 0, s) = 2 · (L + 2o + (s− 1) ·G) +

(n− 1) ·Gall . (II.7)

With (II.5), we get

PRTT (n, 0, s) = PRTT (1, 0, s) +

(n− 1) ·Gall . (II.8)
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This equation can easily be extended to the general case with a variable delay d as

PRTT (n, d, s) = PRTT (1, 0, s) +

(n− 1) ·max{o + d,Gall} . (II.9)

The following section uses the PRTT to assess the LogGP parameters of different network inter-
faces.

2.4.2.2 Assessment of the Overhead o

If we rewrite Equation II.9 to

PRTT (n, d, s)− PRTT (1, 0, s)

n− 1
= max{o + d,Gall} ,

and choose d, such that d > Gall, we get

PRTT (n, d, s)− PRTT (1, 0, s)

n− 1
= o + d . (II.10)

This enables us to compute o from the measured PRTT (n, d, s) and PRTT (1, 0, s). We chose
PRTT (1, 0, s) for d to ensure that d > Gall. This assumption has been proved to be valid for all
tested networks. However, if a network with a very low latency L and a very high gap g exists,
one can fall back to d = PRTT (2, 0, s) to guarantee d > Gall. We chose PRTT (1, 0, s) to avoid
unnecessarily long benchmark times.

The measurement of o for n = 3 is illustrated in Figure II.10. The whole figure represents a
LogGP model for PRTT (3, d, s), it is easy to see that the last part is a simple PRTT (1, 0, s). If we
subtract PRTT (1, 0, s) from PRTT (3, d, s), we get 2d+2o which equals to (n−1)(d+o) (remember
that n = 3 in our example) as shown in Equation (II.10).

This measurement method enables us to get an accurate value of o for each message size s. It
needs only a small number of messages (we used n = 16 in our tests) that does not saturate or
flood the network unnecessarily to measure o. Furthermore, we are able to compute o directly
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from a single measurement and without inter-dependencies to other LogGP parameters (that are
computed themselves and contain already an error of first order). We do also not need to adjust d

stepwise to fit other values.

2.4.2.3 Assessment of the Gap Parameters g,G

Using Equation (II.8), we get a linear function in the form f(s) = G · s + g:

G(s− 1) + g =
PRTT (n, 0, s)− PRTT (1, 0, s)

n− 1
(II.11)

One could simply measure PRTT (n, 0, s) and PRTT (1, 0, s) for two different s and solve the
resulting system of linear equations directly. However, several networks have anomalies or a huge
deviation between different data sizes. Another problem is that this method would not allow us to
detect protocol changes in the lower levels that influence the LogGP parameters.

We chose to measure PRTT (n, 0, s) and PRTT (1, 0, s) for many different s and fit a linear func-
tion to these values. The function value for s = 1 is our g and the slope of this function represents
our G.

We use the least squares method [38], which can be solved directly for the needed two degrees
of freedom (g and G), to perform the fit. This method gives us an accurate tool to assess g and G

with multiple different message sizes and to detect protocol/parameter changes in the underlying
transport layers (see Section 2.4.2.5). By using this scheme, we also avoid mispredictions and detect
anomalies at specific message sizes.

We use only a small n (n = 16 for our tests) to benchmark every single message size. Thus, we
do not need to flood or overload the network and our results are not influenced by anomalies for
specific message sizes (as we experienced with TCP). Furthermore, we are able to use our method
to detect changes in the underlying communication protocol, as described in Section 2.4.2.5.

A graphical representation of our method with Open MPI over InfiniBandTM is shown in Fig-
ure II.11.
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2.4.2.4 Assessment of the Latency Parameter L

Bell et al. discussed the interesting phenomenon that the occurrence of L and o is not ordered. It
happens on modern interconnect networks that o and a part of L overlap (some message process-
ing is done after the sending of the message is started). This is due to the fact that the network
developers want to minimize the round trip time and try to move all the bookkeeping after the
message send. This effect does not allow us to measure a useful L (L may even be negative in
certain situations). We take a similar approach as [34] and report half of the round trip time (EEL

in [34]) of a small message as latency. We use PRTT (1, 0, 1)/2 for this purpose.

2.4.2.5 Detection of Protocol Changes

Modern network APIs are complex systems and try to deliver the highest performance to the user.
This requires the use of different transport protocols for different message sizes. It is obvious that
each transport protocol has its own unique set of LogGP parameters. The problem is that the net-
work APIs aim to be transparent to the user and often do not indicate protocol switches directly.
These facts can make LogGP benchmarks inaccurate if one does not differentiate between the trans-
port modes used. Our approach is to detect those protocol changes automatically and provide a
different set of LogGP parameters for each transport type to the user.

We define the mean least squares deviation from measurement point k to l and the fit-function
f(s) = G · s + g as

lsq(k, l) =

∑l
i=k (G · size(i) + g − val(i))2

l − k − 2
, (II.12)

where val(i) is the measured value at point i and size(i) is the message-size at point i. The subtrac-
tion of 2 in the denominator is because we have 2 degrees of freedom for the solution of the least
squares problem.

We take an x point look-ahead method and compare the mean least squares deviation of the
intervals [lastchange : current] with the deviation of the interval [lastchange : current + 1],
[lastchange : current+2], ..., [lastchange : current+x]. We define lastchange as the first point of the
actual protocol (the point after the last protocol change, initially 0) and current as our current point
to test for a protocol change. If current is the last measured value of a protocol, and a new protocol
begins at current + 1, the mean least squares deviation rises from this point on. We consider the
next x (typically 3-5) points to reduce the effect of single outliers. If lsq(lastchange, current + j)

∀1 ≤ j ≤ x is larger than lsq(lastchange, current) · pfact, we assume that a protocol change hap-
pened at current. The factor pfact determines the sensitivity of this method. Empirical studies un-
veiled that pfact = 2.0 was a reasonable value for our experiments. However, this factor is highly
network dependent and further network-specific tuning may be necessary to detect all protocol
changes accurately.

2.4.3 Applying the Method

This section discusses first results of the application of our measurement methods with the tool
Netgauge. We analyzed different interconnect technologies and parallel systems to evaluate their
performance in the LogGP model. The used test-systems are described in Table II.1. All systems
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Transport CPU Additional Information

MPICH2 Opteron 246, 2GHz MPICH2 1.0.2, BCM5704 GigE
NMPI/SCI Xeon 2.4GHz NMPI-1.2, SCI-Adapter PSB66 D33x
Open MPI/OpenIB Opteron 244 Open MPI 1.1.2, OFED-1.0, MT25208
Open MPI/gm Athlon MP 1.4GHz Open MPI 1.1.2, GM 2.0.23, Myrinet 2000
Open MPI/10GigE Xeon 5160 3.0GHz Open MPI 1.2.6, Chelsio T3 iWARP, cxgb3_0
Open MPI/ConnectX Xeon 5160 3.0GHz Open MPI 1.2.6, ConnectX, mlx4_0

Table II.1: Details about the test systems.

ran the Linux 2.6.9 operating system.
We benchmarked TCP over Gigabit Ethernet andMPICH2 1.0.3, SCIwithNMPI 1.2, InfiniBandTM

with Open MPI/OpenIB and Myrinet with Open MPI/GM. The graphs for G · (s− 1)+ g (cf. Equa-
tion (II.11)) for InfiniBandTM and Myrinet are shown in Figure II.12.
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Figure II.12: Measurement results for GigE/TCP, SCI, InfiniBandTM and Myrinet/GM (in this or-
der). The graphs show f(s) = G · (s − 1) + g, such that the slope indicates G and f(1) = g. The
parameters of the fitted functions for g and G can be found in Table II.2.

Table II.2 shows the numerical results for the LogGPmeasurements on the different systems. We
used blocking MPI_Send and MPI_Recv to measure those values. The TCP results show that o, g

and G are nearly identical for MPICH2 and RAW TCP (they are not distinguishable in the diagram
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Transport Protocol Interval (bytes) L (µs) o(1) (µs) g (µs) G (µs/byte)

MPICH2/TCP 1 ≤ s 45.74 3.46 0.915 0.00849
NMPI/SCI 1 ≤ s < 12289 5.48 6.10 7.78 0.0045

12289 ≤ s 5.48 6.10 13.34 0.0037
Open MPI/openib 1 ≤ s < 12289 5.96 4.72 5.14 0.00073

12289 ≤ s 5.96 4.72 21.39 0.00103
Open MPI/gm 1 ≤ s < 32769 10.53 1.27 9.44 0.0092

32769 ≤ s 10.53 1.27 52.01 0.0042
Open MPI/ConnectX 1 ≤ s < 12289 2.98 2.01 2.88 0.0031

12289 ≤ s 2.98 2.01 11.60 0.00101
Open MPI/10GigE 1 ≤ s < 12289 10.97 5.05 5.00 0.0023

12289 ≤ s 10.97 5.05 42.00 0.00101

Table II.2: LogGP Parameters for different Transport Protocols

because they lie practically on the same line). We also see that o is not constant as assumed in
the LogGP model, but rather has a linear slope. We encounter no protocol change for TCP in the
interval [1, 65536] bytes. The SCI results indicate that the implementation uses polling to send and
receive messages because o ≈ Gall.

InfiniBandTM also shows an interesting behavior. The Open MPI OpenIB component uses
polling to send or receive messages. A protocol change at approximately 12KiB leads to a large
increase of g. This is due to the rendezvous protocol which introduces an additional RTT of a small
status message, which costs ≈ 2L + 4o in LogGP, before the actual transmission begins. The block-
ing MPI_Send charges this to g because it has to wait until a message is sent before it sends the next
one. G is nearly identical across all message-sizes. The low-level OpenIB API has a small g and G

which exhibits no protocol change. The low-level overhead to post a send request is independent
of the message size. Open MPI introduces an additional overhead which is due to the local copy
(for eager send) or InfiniBandTM memory registration (cf. [152], for rendezvous).

Myrinet appears to be using no polling for small messages (o < Gall) and polling for messages
larger than 32kiB (o ≈ Gall). The protocol change is again clearly visible in the graph and is
correctly recognized by our method. The low-level API delivers a slightly lower G and a similar
g in the measured interval. The overhead o of the GM API is constant as for InfiniBandTM. We
achieve similar results as Pjesivac-Grbovic in [171] (Table 4.13 on Page 60). However, our latencies
are higher because we do not subtract o (as discussed by Bell et al. in [34]).

We used the same method to benchmark Mellanox ConnectX (MT_04A0120002) and Chelsio 10
Gigabit Ethernet adapters supporting iWARP [111] (Chelsio T3 iWARP). The iWARP protocol uses
the Open Fabrics Verbs interface to access the hardware. This makes it similar to InfiniBandTM and
enables the same optimizations. The measured parameters are shown in Table II.2
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3 Improving Collective Communication Performance

“If you were plowing a field, which would you rather use? Two strong oxen or 1024 chickens?” – Seymore

Cray, (1925-1996) US Engineer

We can draw three main conclusions from the previous sections:

1. Sending multiple messages can benefit the small-message latency substantially.
2. Multicast operations are beneficial when the number of addressed hosts is huge (at least for

small messages).
3. A huge potential lies in overlapping computation and communication because the CPU parts

in the LogGP parameters are small in comparison to the network portions.

This section uses the first two findings and derives new ways to leverage them for collective
operations. Even though there has been a bulk of work that deals with optimizing collective op-
erations for InfiniBandTM [88, 138, 121, 139, 142, 140, 146, 147], we are still able to find two new
principles that improve the performance of MPI-standardized collective operations further. Since
we derive general optimization principles for networks with similar properties than InfiniBandTM

and not InfiniBandTM-specific “hacks”, we concentrate on two MPI operations MPI_Barrier and
MPI_Bcast. We are also convinced that even though optimized collective operations can benefit
applications substantially, the fundamental limits (e.g., logarithmic scaling) are still a limiting fac-
tor that leads us to the use of overlapping techniques later in this work. However, the following
two optimization principles apply to standard collective operations without any changes to the
application.

3.1 A Fast Barrier Implementation for InfiniBand

Our goal is to decrease the latency of the MPI_Barrier operation over the InfiniBandTM network
by using the findings from the previous sections. We leverage the implicit parallelism of today’s
InfiniBandTM adapters to improve the performance of the barrier operation.

3.1.1 Related Work

Several barrier implementations and algorithms have been developed and could be used to per-
form the MPI_Barrier operation over the InfiniBandTM network. These include the Central Counter
approach [73, 82], several tree-based barriers as the Combining Tree Barrier [216], the MCS Bar-
rier [184], the Tournament Barrier [93], the BST Barrier [205] and butterfly or dissemination based
barriers [46, 93]. We compared all these different approaches in [22] with the result that the dis-
semination algorithm is the most promising algorithm for cluster networks. Several studies have
also been made to find special barrier solutions, either with additional hardware [190] or with
programmable Network Interface Cards [218]. Our approach uses only the InfiniBandTM network
which does not offer programmable NIC support or special hardware barrier features. A similar
study has been done by Kini et al. in [121] and implemented in MVAPICH. Our study shows that
the use of implicit parallelism of the InfiniBandTM network and maybe also other offloading based
networks can lower the barrier latency significantly.
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3.1.2 The n-way Dissemination Principle

The Dissemination Barrier, proposed by Hengsen et al. in 1988 [93] was proved to be the best bar-
rier solution for single-port LogP compliant systems [21]. The n-way dissemination algorithm is
a generalization of the dissemination principle for multi-port networks and can be proved to be
optimal for this task. The main change is the additional parameter n which defines the number
of communication partners in each round to leverage the hardware parallelism. The n-parameter
should refer to the number of messages which can be sent in parallel (cf. LogfP model Section 2.3).
The InfiniBandTM network, and probably more offloading based networks do not offer this par-
allelism explicitly, but because of hardware design, an implicit parallelism is implemented. This
means that the n-way dissemination barrier can use this parallelism to speed the barrier operation
up. The original algorithm typifies the 1-way Dissemination Barrier (n = 1) in this context.

The algorithm is described in the following: Every node p sends n packets to notify n other
nodes that it reached its barrier function in each round and waits for the notification of n other
nodes. Subsequently, at the beginning of a new round r, node p calculates all its peer nodes (the
sendpeer - speeri and the receive peer - rpeeri, {i ∈ N; 0 < i ≤ n}) as follows:

speeri = (p + i · (n + 1)r) mod P (II.13)

whereby P is the number of nodes participating in the barrier. The peers to receive from are also
determined each round:

rpeeri = (p− i · (n + 1)r) mod P (II.14)

For the original algorithm (n = 1), the peer calculation gives the same rules as stated in the original
paper [93].

speer = (p + 2r) mod P (II.15)

rpeer = (p− 2r) mod P (II.16)

An example for n = 2 and P = 9 is given in Figure II.13.
A possible pseudo-code for a RDMA based implementation (e.g.,InfiniBandTM ) is given in List-

ing II.2.

3.1.3 Implementation Details

The n-way dissemination barrier is implemented as an Open MPI collective component. It uses
the Mellanox Verbs API to communicate directly with the InfiniBandTM hardware. The general
Open MPI framework and the component framework are introduced in [76, 193]. The collective
framework offers space to implement MPI collective routines. The ibbarr component is an opti-
mized MPI_Barrier implementation for the InfiniBandTM architecture using RDMA-W . A caching
strategy precomputes the communication partners for each round in advance (during the commu-
nicator initialization) to reduce the amount of calculation during the critical MPI_Barrier path.
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1 2 3 4 5 6 7 80

0 1 2 3 4 5 6 7 8

Round 0:

Round 1:

Figure II.13: Example of the 2-way Dissemination Barrier

1 // parameters (given by environment)
set n = 2 // parameter
set P = number of participating processors
set rank = my local id

5 // phase 1 − initialization (only once)
// the barrier counter − avoid race conditions
set x = 0
reserve array with P entries as shared
for i in 0 . .P−1 do

10 set array[ i ] = 0
forend
// barrier − done for every barrier
set round = −1
set x = x + 1

15 // repeat log_n(P) times
repeat

set round = round + 1

for i in 1 . .n do
20 set sendpeer = (rank + i ∗(n+1)^round) mod P

set array[rank] in node sendpeer to x
forend
for i in 1 . .n do

set recvpeer = (rank − i ∗(n+1)^round) mod P
25 wait until array[recvpeer] >= x

forend
until round = ceil ( log(P)/log(n))

Listing II.2: Pseudocode for the n-way Dissemination Barrier
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Figure II.14: Comparison of different MPI_Barrier Algorithms

3.1.4 Benchmark Results

Different MPI implementations for InfiniBandTM have been taken and compared with regards to
their MPI_Barrier latency to evaluate the new approach. The results show that the OpenMPI ibbarr
component is faster than all open-source MPI implementations, even faster than the current leader
MVAPICH [138] for which much research has been done to enhance the barrier performance of
InfiniBandTM [88, 121]. The 1-way dissemination barrier is already faster than the dissemination
barrier of MVAPICH. This can be explained with the precomputed communication partners and
the lower latency of the Open MPI framework. The results are shown in Figure II.14 and show that
the optimized n-way dissemination algorithm can be up to 40% better than the fastest algorithm,
implemented in MVAPICH. The performance gain from the n > 1 parameter can be seen between
the IBBARR-1 and the IBBARR-n graphs. The gain increases with the node count. However, if
the n parameter is too big, the memory congestion effects on the receiver side increase the latency.
Thus, the task to deduce the optimal n-parameter for InfiniBandTM is not easy and will be done in a
self-tuned fashion (cp. [207]), where different n parameters are benchmarked during communicator
initialization and the best one is chosen for the MPI_Barrier.

3.2 A Practically Constant-Time Broadcast for InfiniBand

A key property of many interconnects used in cluster systems is the ability to perform a hardware-
supported multicast operation. Ni discusses the advantages of hardware multicast for cluster sys-
tems and concludes that it is important for cluster networks [156]. This feature is common for
Ethernet-based systems and is supported by the TCP/IP protocol suite. Other widely used high-
performance networks like Myrinet or Quadrics use similar approaches to perform multicast oper-
ations [78, 210, 219, 217]. The new emerging InfiniBandTM [199] network technology offers such a
hardware-supported multicast operation too. Multicast is commonly based on an unreliable data-
gram transport that broadcasts data to a predefined group of processes in almost constant time,
i.e., independent of the number of physical hosts in this group. Multicast groups are typically
addressed by network-wide unique multicast addresses in a special address range. The multicast
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operation can be utilized to implement the MPI_Bcast function, however, there are four main prob-
lems:

1. The transport is usually unreliable.
2. There is no guarantee for in-order delivery.
3. The datagram size is limited to the Maximum Transmission Tnit (MTU).
4. Each multicast group has to be network-wide unique (i.e., even for different MPI jobs!).

We examine and resolve all those problems in this section and introduce a fast scheme that
ensures reliability and makes the implementation of MPI_Bcast over InfiniBandTM viable.

Node-locally, the underlying communication library is responsible for delivering the received
hardware multicast datagrams efficiently to all registered processes. Furthermore, this work ad-
dresses mainly cluster systems with flat unrouted InfiniBandTM networks. We assume, and we
show with our benchmarks, that the multicast operation finishes in an almost constant time on
such networks. However, the ideas are also applicable to huge routed networks, but the hardware
multicast might lose its constant-time property on such systems. Anyhow, it is still reasonable to
assume that the hardware multicast operation is, even on routed InfiniBandTM networks, faster
than equivalent software-initiated point-to-point communication.

3.2.1 Related Work

Some of the alreadymentioned issues have been addressed by other authors. However, all schemes
use some kind of acknowledgment (positive or negative) to ensure reliability. Positive acknowledg-
ments (ACK) lead to “ACK implosion” [139] on large systems. Liu et al. proposed a co-root scheme
that aims at reducing the ACK traffic at a single process. This scheme lowers the impact of ACK im-
plosion but does not solve the problem in general (the co-roots act as roots for smaller subgroups).
The necessary reliable broadcast to the co-roots introduces a logarithmic running time. This scheme
could be used for large messages where the ACK latency is not significant. Other schemes, that
use a tree-based ACK, also introduce a logarithmic waiting time at the root process. Negative ac-
knowledgment (NACK) based schemes usually not have this problem because they contact the
root process only in case of an error. However, this means that the root has to wait, or at least
store the data, until it is guaranteed that all processes have received the data correctly. This waiting
time is not easy to determine and usually introduces unnecessary process skew at the root process.
Sliding window schemes can help to mitigate the negative influence of the acknowledgment-based
algorithms, but they do not solve the related problems.

Multicast group management schemes have been proposed by Mamidala et al. [147] and Yuan
et al. [220]. Both approaches do not consider having multiple MPI jobs running concurrently in
the same subnet. Different jobs that use the same multicast group receive mismatched packets
from each other. Although errors can be prevented by using additional header fields, a negative
performance impact is usually inevitable.

Multicast group management should be done with the standardized MADCAP protocol [92].
However, the lack of available implementations induced us to search for amore convenient scheme.

The multicast operation has also been applied to implement other collective operations like
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MPI_Barrier, MPI_Allreduce or MPI_Scatter [55, 121, 146]. We use the scheme proposed in [189] for
MPI_Bcast and adapt it for the use with the InfiniBandTM multicast technology.

3.2.2 The Multicast-Based Broadcast Algorithm

Several multicast-based broadcast algorithms have been proposed. The most time-critical problem,
especially for smaller broadcast messages, is the re-establishment of the reliability which is needed
by MPI_Bcast but usually not supported by hardware multicast. We propose a two-stage broadcast
algorithm as illustrated in Figure II.15. The unreliable multicast feature of the underlying network
technology is used in a first phase to deliver the message to as manyMPI processes as possible. The
second phase of the algorithm ensures that all MPI processes finally receive the broadcast message
in a reliable way, even if the first stage fails partially or completely.
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Figure II.15: The two-stage broadcast algorithm

3.2.2.1 Stage 1: Unreliable Broadcast

Multicast datagrams usually get lost when either the corresponding recipient is not ready to
receive them or when there is network congestion. Therefore, a common approach is to use a
synchronizing operation (similar to MPI_Barrier) that waits until all P processes are prepared to
receive the datagrams. If such an operation is built on top of reliable point-to-point communication
this synchronization will need Ω(log P ) communication rounds to complete. Instead of targeting
at a 100% rate of ready-to-receive processes, it is more than sufficient if only a subset of all MPI
processes is already prepared, provided that a customized second stage is used for the broadcast
algorithm. A further disadvantage of such a complete synchronization operation is the fact that
real-world applications are usually subject to process skew which can lead to a further increment
of the operation’s time consumption.

We conjecture that a wide variety of applications works perfectly without any synchronization
operation during this stage. However, if the root process was the first process that calls MPI_Bcast,
all non-root processes are not be ready to receive the multicast message and therefore an immedi-
ately executed multicast operation might become totally useless. This remaining fraction of appli-
cations, with such a worst-case broadcast usage pattern, can be handled by explicitly delaying the
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root process. A user-controlled delay variable (e.g., MCA parameter for Open MPI) is not only the
simplest solution for implementers of this algorithm, but also effective because an optimal value for
a given application can be determined using a small number of test runs. Adaptive delay parame-
ter adjustments at run-time, e.g., based on heuristic functions, might be feasible too. A randomized
single-process synchronization (instead of a complete MPI_Barrier synchronization) is a third solu-
tion to this problem: a seed value is distributed at communicator creation time to all MPI processes.
Within each MPI_Bcast operation, a certain non-root process is chosen globally with the help of a
pseudo-random number generator and the current seed. The root process than waits until this
single non-root process joins this collective operation. On average, such a procedure prevents the
worst broadcast scenarios and is thereby independent of the application type. However, the first
solution (without any delay) offers naturally the highest performance for applications where the
root process rarely arrives too soon.

The first phase of the new broadcast algorithm starts with this optional root-delay and uses
multicast to transmit the complete message (fragmenting it if necessary) from the root process to
all recipients. A process-local status bitmap can be utilized to keep track of correctly received data
fragments.

3.2.2.2 Stage 2: Reliable Broadcast Completion

Even without any preceding synchronization, it is not unusual for a large proportion (typi-
cally about 50%) of all MPI processes to have correctly received the broadcast message during the
unreliable broadcast stage. The third synchronization method ensures this 50% proportion in the
average case even if the application processes always arrive in the worst-case broadcast pattern.
This second stage of our new algorithm guarantees that those MPI processes which have not yet
received the data (whether partially or completely) will accomplish this eventually. The common
approach is to use some kind of acknowledgment scheme to detect which processes have failed
and to retransmit the message to these recipients. Unfortunately, existing ACK schemes (positive
or negative ones) are quite expensive because of the introduced performance bottleneck at the root
process and the necessary time-out values.

Instead of using this kind of “feedback” channel, which can be efficient for large messages
where those overheads are negligible, it is more efficient for smaller messages to send themessage a
second time using a fragmented chain broadcast algorithm. This means that every MPI process has
a predefined predecessor and successor in a virtual ring topology. The root process does not need
to receive the message because it is the original source of this broadcast. Therefore, the connection
with its predecessor (e.g., 8 → 1 in Figure II.15) is redundant and can be omitted. As soon as a
process owns a correct fragment of the broadcast message, it sends it in a reliable way to its direct
successor. Whether a fragment has been received via multicast or via reliable send is not important
- the second receive request can be canceled or ignored.

Using this technique, each MPI process that gets the message via multicast serves as a new
“root” within the virtual ring topology. After forwarding this message to its single successor, a
process can immediately finalize its broadcast participation. Only those processes that have failed
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to receive the multicast datagram(s) need to wait until they get the message in the second stage.
If its predecessor received the message via multicast then only a single further message transfer
operation, called “penalty round” in the following, is necessary. But the predecessors might have
failed too in the first stage and the number of “penalty rounds” would increase further. For a given
failure probability ǫ of a single message transmission, the chance that P processes fail in a row is
ǫP . Therefore, the average number of “penalty rounds” is reasonably small (given that ǫ = 50%,
the number of penalty rounds is just 1.0). Nevertheless, the worst-case (i.e., all processes failed to
receive the multicast message) leads to a number of “penalty rounds” (and therewith time) that
scales linearly with the communicator size. However, real-world applications that call MPI_Bcast

multiple times are mainly affected by the average case time and only rarely by this worst-case time.
A different kind of virtual distribution topology (e.g., a tree-based topology) for the second

stage could help to reduce this worst-case running time. However, with the knowledge about the
applications broadcast usage-pattern or a proper synchronization method, this worst-case scenario
will rarely occur. While a process in the virtual ring topology needs to forward the message only to
a single successor, a process in a virtual tree-based topology would need to serve several successors
(e.g., two in a binary tree) which usually increases the time for the second stage by this fan-out
factor. In addition, the broadcast duration per process would not be as balanced as in the proposed
chain broadcast. When a single MPI process enters the collective operation late, it can not delay
more than one other process in the ring topology but it will delay all its direct successors in a
tree-based topology.

3.2.3 Performance Evaluation

We evaluated our implementationwith the IntelMicrobenchmark suite version 3.0 (formerly known
and introduced as Pallas Microbenchmark [163]) and a second, more realistic, microbenchmark
that uses the principles mentioned in [157]. The following results show a comparison of our collec-
tive component called “IB” with the existing “TUNED” component in Open MPI 1.2b3. We focus
on small messages because their performance is extremely important for the parallel speedup of
strong scaling problems (a constant problem size with an increasing number of processes causes
small messages) and the new broadcast is especially suited for this use case.

A broadcast along a binomial tree has two main disadvantages. First, the communication time
is clearly unbalanced when the communicator size is not a proper power of two. And even if it is,
the root process might return immediately from a call to MPI_BCAST when the outgoing messages
are cached by the underlying communication system (e.g., in eager buffers), while the last process
(e.g., rank #4 in the example Figure III.6(c) in Chapter III) needs ⌈log2P ⌉ communication rounds to
complete the operation (cf. [171]). This introduces an artificial process skew regardless of the initial
process skew (the MPI processes might have been completely synchronized). Second, the overall
duration of the broadcast operation increases logarithmically with the number of participatingMPI
processes. On the contrary, our new broadcast algorithm is able to overcome both disadvantages.

3.2.3.1 Benchmark Environment

Our measurements were executed on the Odin cluster which is located at Indiana University. This
system consists of 128 compute nodes, each equipped with dual 2.0 GHz Opterons 246 and 4 GB
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Figure II.16: MPI_Bcast latencies

RAM. The single Mellanox MT23108 HCA on each node connects to a central switch fabric and
is accessed through the MVAPI interface. We used one MPI process per node for all presented
runs. Our implementation has also been tested successfully on different smaller systems using the
MVAPI and OpenFabrics interface.

3.2.3.2 Results

The results gathered with the IMB and a 2 byte message are shown in Figure II.16(a). The small-
message latency is, as expected, independent of the communicator size2. Our implementation out-
performs the “TUNED” Open MPI broadcast for communicators larger than 20 processes with the
IMB microbenchmark.

For this reason, our collective module calls the “TUNED” component if the communicator con-
tains less than 20 MPI processes (this value is system-dependent and therefore adjustable by the
user with an Open MPI MCA parameter to tune for the maximum performance).

Our own (more comprehensive) broadcast benchmark gives a detailed insight into the perfor-
mance of the new implementation. We measured the time that every single process needs to per-
form the MPI_Bcast operation with a 2 byte message. The result for a fixed communicator size of
116 is shown in Figure II.16(b). It can be seen that the “TUNED” broadcast introduces a significant
process skew (rank #1 finishes 79.4% earlier than rank #98), which can have a disastrous impact
on applications that rely on synchronicity or make use of different collective operations (that cause
different skew patterns). On the contrary, our multicast-based implementation delivers the data
to all processes in almost the same time (only a 14% deviation from the median), minimizing the
skew between parallel processes. Several (e.g., round-based) applications derive benefit from this
characteristic that reduces waiting time in consecutive communication operations.

Figure II.17(a) shows the MPI_Bcast latency of rank 1 for different communicator sizes (the
sudden change at 64 nodes has to be attributed to the fact that we had to take the measurements
for 1 − 64 processes and 64 − 116 processes separately due to technical problems). Figure II.17(b)

2the IB outlier with two processes exists because the virtual ring topology is split up before the root process (this opti-
mization saves a single send operation at the last process in the chain)

Torsten Höfler 38



CHAPTER II. COMMUNICATION NETWORK 4. STATIC ROUTING AND TOPOLOGY

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0  20  40  60  80  100  120

T
im

e
 i
n
 m

ic
ro

s
e
c
o
n
d
s

Communicator Size

IB
TUNED

(a) Broadcast latency of rank #1 of a 2 byte message broad-
casted from rank #0 for varying communicator sizes

 0

 10

 20

 30

 40

 50

 60

 70

 0  20  40  60  80  100  120

T
im

e
 i
n
 m

ic
ro

s
e
c
o
n
d
s

Communicator Size

IB
TUNED

(b) Broadcast latency of rank #N-1 of a 2 byte message
broadcasted from rank #0 for varying communicator sizes
N
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shows the latency of the MPI_Bcast operation at the last node in the communicator. The increasing
running time can be easily seen. With the “TUNED” component, rank #1 leaves the operation after
receiving the message from the root process - much earlier than it finishes in our implementation.
However, process 1 is the only exception for this component that achieves a constant behavior
like in our implementation. Apart from that, the latency to the last rank (like to all other processes)
steadily increases with the size of the communicator. Whereas our “IB” component reveals a similar
latency for each process, without any noticeable influence of the communicator size.

4 Network Topologies and the Impact of Static Routing

“We can only see a short distance ahead, but we can see plenty there that needs to be done” – Alan Turing,

(1912-1954) English Mathematician

Commodity-based clusters with central-switch-based networks have become an established ar-
chitecture for high-performance computing. The use of a central switch significantly simplifies the
communication model for such systems. Compared to other interconnection network topologies,
such as tori or rings, the central-switch-based structure has the advantage of being able to effi-
ciently embed structured communication patterns and to support unstructured patterns as well.
A network with a true crossbar as its central switch has almost ideal network properties: constant
latency between all pairs of endpoints as well as full bisection bandwidth (any half of the endpoints
can simultaneously communicate with the other half at full line rate).

However, although they are often treated as if they were true crossbar switches, practical cen-
tral switches are generally implemented as multistage interconnection network (MINs). As a result,
MINs are able to approximate, but not truly provide, the latency and bisection bandwidth charac-
teristics of crossbars. The point-to-point latency in a MIN is not constant for all port combinations
(although it is usually the case that the variance is relatively low). Less obvious, but more impor-
tant to application performance, is the effect of MIN architecture on network bisection bandwidth,
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particularly as it is seen by applications.
As with other networks, MINs can be characterized by their bisection bandwidth, which, fol-

lowing [95] we define as the total bandwidth between the two halves of the worst-case segmen-
tations of a network. However, this definition of bisection bandwidth only considers the capacity
provided by the hardware. It does not consider how the usage of that capacity may be affected by
routing policies. That is, unlike with a true crossbar, connections must be routed in a MIN and dif-
ferent communication patterns may require different routing in order to achieve the rated bisection
bandwidth for a MIN. If proper routing is not established in the MIN for a given communication
pattern, that pattern may not be able to achieve satisfactory performance.

This issue is particularly problematic in networks, such as InfiniBand, that employ static routing
schemes because of the potential for mismatch between the static routes and the communication
requirements of running applications. Applications can be oblivious to network parameters if the
network can provide its rated bisection bandwidth for all communication patterns. Indeed, most
applications and communication libraries today are written using this assumption. However, dif-
ferent applications have different communication patterns (and communication patterns may even
vary significantly within a single application).

Given the prevalence ofMINs in high-performance computing, a more thorough understanding
of their characteristics is an important step towards more effective utilization of these resources.

Contributions Therefore, in this section we assess the impact of static routing on the expected
bisection bandwidth for arbitrary patterns and for real applications on large-scale production clus-
ters. We address several myths about the definition of bisection bandwidth (and full bisection
bandwidth) and introduce the new application-driven definition of effective bisection bandwidth. Fur-
thermore, we provide a methodology and tool for cluster and network designers to characterize
the theoretical performance of applications running on InfiniBand (and potentially other) MIN net-
works. More generally, we argue that the scalability of MINs is limited due to practical constraints
(routing, hot spots).

4.1 Background

4.1.1 Network Topologies

Different network topologies with different properties have been proposed to be used in parallel
computers: trees [47, 133], Benes networks [35], Clos networks [58] and many more— consult [131]
for a complete overview. Crossbar switches are often used as basic building blocks today. Cross-
bar circuits usually implement a symmetric crossbar, i.e., the number of input ports is equal to
the number of output ports. Available HPC networks, such as Myrinet, InfiniBand and Quadrics
implement crossbars of sizes 32, 24 and 8 respectively. A fully connected network is not scalable
because the number of necessary links grows with O(P 2) for P endpoints.

The Clos network The Clos network was designed by Clos in order to build telecommunica-
tion networks with switch elements of limited size [58]. It is used today in many InfiniBand and
Myrinet switches. The typical Clos network consists of three stages and is described by three pa-
rameters. Those parameters n and m and r describe the input and output port count and number
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of switches in the first layer respectively. The m switches in the middle stage are used to connect
input to output ports. Clos networks are “strictly non-blocking” if m ≥ +2n − 1 and rearrangably
non-blocking if m ≥ n. Most of todays networks are built with n = m which makes those Clos
topologies “rearrangably non-blocking” (see [58] for details). They can have the full bisection band-
width but only for certain combinations of routing and traffic patterns. An easy routing algorithm
(up*/down* [183]) can be used to ensure deadlock-free routing and multiple paths between any
pair of nodes exist (failover possible).

The (fat) tree network The tree network has a fixed tree topology and has been used to con-
nect the TMC CM-5 and Meiko CS-2 machines and many InfiniBand-based cluster systems, such
as the world’s largest unclassified InfiniBand system (Thunderbird) at Sandia National Labora-
tories. The nodes are connected at the leaves and routing is simple (go up until the target node
is reachable on a down route). However, this introduces congestion near the root and limits the
bisection bandwidth. Leiserson simply increased the link width at every level to avoid this conges-
tion [133]. The resulting “Fat Tree” network can be designed to offer full bisection bandwidth and
can be efficiently implemented in an on-chip network. However, it is not possible to construct it
easily from fixed-size crossbar elements with fixed link bandwidths. A tree-like network topology
that can be constructed with equally sized crossbar switches has been proposed in [132]. Similar to
Clos networks, the k-ary n-tree networks [166] retain the theoretical full bisection bandwidth in a
rearrangable way.

Practical installations Most modern networks, such as Myrinet, Quadrics and InfiniBand al-
low arbitrary network layouts but usually use Clos networks or Fat Trees. The main difference
lies in the size of the crossbar elements and the routing strategy. Myrinet employs 16 or 32 port
crossbar switches. InfiniBand and Quadrics build on 24 and 8 port switch elements respectively.
The routing strategy is also important. Myrinet uses source-based routing where every packet can
define a different route. InfiniBand uses a static switch based routing scheme and Quadrics uses a
non-disclosed adaptive scheme [164].

4.1.2 The InfiniBand Network Architecture

We focus on a practical analysis of deployed InfiniBand networks in this section. However, our
results also apply to other statically routed networks with similar topologies. The InfiniBand stan-
dard does not define a particular network topology, i.e., switches can be connected in an arbitrary
way to each other. The switches have a simple static routing table which is programmed by a central
entity, called the subnet manager (SM). The SM uses special packets to explore the network topol-
ogy in the initialization phase. Then it computes the routing table for every switch. The routing
algorithm can be freely chosen by the SM. This initialization usually requires network downtime
and is not performed often. Thus, the routing can be seen as static.

4.1.2.1 Hot-spot problems in the InfiniBand Network

Most large-scale InfiniBand networks use the k-ary n-tree topology to connect high node-counts.
This topology is able to provide full bisection bandwidth, but is limited to a fixed routing table.
This means that, for a given balanced routing, there is at least one pattern that delivers full bi-
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Figure II.18: Statically routed Fat Tree example with 16 nodes and 8 port crossbars

section bandwidth, but all other communication patterns might perform significantly worse. The
problem is not the number of available physical links, which is sufficient for any communication
pattern, it is the routing which might oversubscribe physical links even though other links remain
idle. This problem has been discussed as a source for performance loss in [221, 167]. Zahavi [221]
uses specialized routing tables in the switches to avoid hot-spots in the network for a certain com-
munication pattern. This method only works if the processes are carefully placed in the network,
the application pattern is known well in advance, and the system can be taken down to re-program
the switches before the application run. This scenario is unlikely; applications have to run with
the pre-installed routing table that might not support their specific traffic pattern. Most routing
algorithms try to distribute routes evenly over the available links, leading to a so called “balanced
routing” scheme. We will illustrate the congestion with a small 16 node example network built
from 8 port crossbar elements using ideally balanced routing. Figure II.18 shows the network and
the fixed routing tables as attributes on the physical connections (up and down routes). Figure II.18
also shows a congestion case where node 4 sends packet 1 to node 14 and node 1 sends packet 2 to
node 6. Even though those two node pairs are distinct and the down-route is contention-free, the
static routes to the upper-left switch send both packets over a single link which causes congestion.

We call a set of n/2 communication partners a communication pattern. Our example network
allows us to create some patterns that have full bisection bandwidth, such as (1,5), (2,6), (3,7),
(4,8), (9,13), (10,14), (11,15), (12,16). But other patterns, for example (1,5), (2,9), (3,13), (4,6), (7,8),
(10,11), (12,14), (15,16) show different characteristics such that every connection has a different
bandwidth/oversubscription. The connections (1,5), (2,9) and (3,13) have an oversubscription of 3
and thus only one third of the bandwidth available. Other connections, such as (7,8), (10,11) and
(15,16) have the full bandwidth available. The congestion points in the network (in our example
the up-link between the lower and upper left switches) are called hot spots [168]. Some techniques
have been introduced to avoid those hot spots, such as adaptive source-based routing or multi-
path routing [136]. However, those techniques often use simple round-robin schemes to disperse
the network traffic, which is limited. Other techniques require a global view of the network [67] or
significant changes to the InfiniBand network [148, 179].
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Figure II.19: InfiniBand bandwidth and Latency in different Congestion Situations

4.1.2.2 Measuring the Effects of Fabric Congestion

To analyze the impact of the hot-spot and congestion, we performed several benchmarks on the
CHiC cluster, a 528 node InfiniBand system offering full bisection bandwidth. The network topol-
ogy of this system is a Fat Tree network built from 44 24 port leaf switches (crossbar) and two
288 port top switches (internal Clos network). We queried the routing tables and topologies of
the switches with the tools ibnetdiscover and ibdiagnet and chose pairs of communicating
peers that cause congestion in the Fat Tree such that every node is in exactly one pair (no endpoint
congestion). We benchmarked the point-to-point latency and bandwidth between a pair of nodes
while adding more congestion (we did this by adding sending 8MB ping-pong MPI messages be-
tween the other node pairs). To achieve comparable results, we used the well-known Netpipe [204]
MPI benchmark with Open MPI 1.2.5 and OFED 1.3 to perform those measurements.

The results in Figure II.19(a) show the transmission curves for different numbers of pairs caus-
ing congestion even though all communications have been done among independent pairs of
nodes. This shows clearly that congestion and routing-based hot-spots in the fabric can have a
significant impact on the communication performance. However, from a user perspective it is not
trivial to know if congestion occurs because the fabric looks homogeneous.

Figure II.19(b) shows the latency for all possible hot spot congestions for the CHiC network. The
congestion might vary from 0 (no congestion) to 11 (maximum congestion) because every crossbar
has 12 down- and 12 up-links. Thus, a maximum of 12 nodes can be connected to a single crossbar.
We see a nearly linear increase in 0-byte transmission latency and a significant reduction of the
available link bandwidth.

4.1.2.3 InfiniBand’s Lid Mask Control

InfiniBand’s Lid Mask Control (LMC) mechanism has been discussed as a solution to the hot-spot
problem. It assigns multiple LIDs (InfiniBand’s endpoint identifiers) to hosts and thus enables mul-
tiple routes for every pair of peers. However, the ordering constraints of the InfiniBand network
prevent dispersion at the connection (queue pair) level. Thus only whole messages can be sched-
uled to different routes. Simple round-robin schemes have been shown to improve the worst-case
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network performance slightly in [213]. This “blind” way of dispersing routes does not provide
near-optimal performance but finds some average performance and has not been analyzed well. It
is thus unclear how much the difference to optimal routing is. Another problem with multi-path
routing is that the switches need to store and evaluate the potentially high number of routes for
every pair of endpoints. The worst problem however, is the growing number of endpoints (queue
pairs) per process (especially on SMP or multicore systems) which is not scalable to higher node
counts. Much work has been invested to limit the number of queues [185, 196] or even use alter-
native communication methods such as Unreliable Datagram [74, 125]. Thus, LMC-based mecha-
nisms can be seen as counter-productive at large scale.

We focus on the analysis of single-path routed InfiniBand systems to analyze the impact of the
static routing.

4.2 Hot Spot Analysis

While we have demonstrated that hot-spot problems exist in current InfiniBand networks, it is still
not known how big the negative influence on real applications is. Our first step is to check the
assumption that every communication pattern can be embedded in the network efficiently. Thus,
we have to assume the hardest class of parallel applications with randomly changing arbitrary
communication patterns .

To examine bisection bandwidth under this assumption, we have to split P nodes into two
equally sized partitions A and B. There are

(
P
P
2

)
possibilities to select sets of size P

2 as A. For each
selection of A, we sort the remaining P/2 nodes into B. Since the sets A and B can be exchanged
and still represent the same partitioning, half of the possibilities are identical (can be derived by
exchanging A and B). Thus, we have 1

2 ·
(

P
P
2

)
possibilities to partition P nodes into two equally

sized partitions. Furthermore we have to decide which node of partition A communicates to which
node from partition B. The first node in partition A has P

2 possible partners in partition B, the
second has P

2 − 1 left and so on. This yields to a total of P
2 ! pairing schemes.

If we combine all different possibilities to split the P nodes into two groups and all different
pairings between the two groups, we get

(
P
P
2

)

· (P/2)!

2
=

P ! · (P/2)!

2 · (P/2)!2
=

P !

2 · (P/2)!
=

1

2

P∏

i= P
2

i

possible communication patterns; which is already 259, 459, 200 in our simple 16 port network.
Only a small fraction of those patterns has full bisection bandwidth. Due to the huge number of
possible patterns, there is no possibility of benchmarking reasonably-sized networks exhaustively.
Our approach is to simulate the network contention of a huge (statistically significant) number of
communication patterns because this is significantly faster and easier than benchmarking.

4.2.1 Choosing a Network Model

Our congestion model is based on the measurement results of Section 4.1.2.2. We model the net-
work as a topology of fully connected, contention-free crossbar switches with limited port count
interconnected by physical wires with bandwidth/capacity γ. Each crossbar switch has a static
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routing table that defines an output port to every node in the network. If we assume a specific
communication pattern, we assign a usage count π to every physical connection that indicates
how many connections are routed over this link. This usage count models the congestion factor
in 4.1.2.2. The throughput per cable is thus defined as γ

π . In the following, we only discuss relative
bandwidths and thus set γ = 1.

This simple model can be used to derive parameters for more complex models. The LogGP [29]
model for example can be parametrized for a point-to-point connection while G is multiplied with
π. The latency can be modeled as a linear function L(π). The parameters o and g are independent
of the congestion.

4.2.2 The Network Simulator

The design goal of our simulator is to simulate real existing InfiniBand systems (topologies + rout-
ing tables) to investigate contention effects on applications running on those systems. The simula-
tor thus accepts a network structure (queried from the running system with ibnetdiscover and
ibdiagnet, represented as a directed acyclic graph) and a specific communication pattern (repre-
sented by P/2 communication pairs) as inputs. The output is the maximum usage count σ along
each of the P/2 routes (each route might use multiple physical cables but the maximum congested
cable mandates the transmission speed and thus the route’s overall congestion). For example, the
pattern (1,5), (2,9), (3,13), (4,6), (7,8), (10,11), (12,14), (15,16) would lead to the congestions 3, 3, 3, 1,
1, 1, 1, 1 respectively. The simulator assumes full duplex communication, i.e., messages using the
same link in different directions do not cause congestion.

4.2.2.1 Related Work

Several publications, such as [41, 67, 136, 148, 166, 167], rely on network simulations. The ability to
read arbitrary communication patterns and real-world topologies (not limited to Fat Tree or Clos)
distinguishes our work from all earlier network simulations that used predefined patterns. Those
predefined patterns do often not reflect the communication patterns used in high performance
applications. Patterns are:

• “uniform traffic” [67, 136] which might cause congestion at the endpoints (destinations are
chosen uniformly, i.e., two or more nodes might send to the same destination).

• “complement traffic” [166] where node i sends to the node with the number that equals the
bit-wise (one-) complement of i. This pattern reflects a possible bisection of the network.

• “bit reversal” and “transpose” [166] are patterns that reflect all-to-all like communications
which are used for some problems.

• “hot-spot traffic” [136, 167] is traffic where some percentage of the traffic is targeted at single
nodes, so called hot-spots. Hot-spots should be avoided in high performance computing,
thus, this pattern does not reflect typical applications.

• “localized traffic” [41] might reflect nearest neighbor communication schemes in real-world
applications but the definition is vague.

Another problem with former simulations is that for each pattern, usually only the average packet
latency and bandwidth are reported. However, the average values might have little meaning. Some
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applications can accept a wide variety of bandwidths in the communications, others can not. Fine-
grained applications running tightly synchronized with collective communication (lock-step) are
usually only as fast as the slowest link. In application modeling, the average values might mislead
to assume uniform bandwidth on every link and thus misinterpret those simulations. A more
detailed application model is presented in Section 4.3.

4.2.2.2 Simulated Cluster Systems

Throughout this section, we use four of the biggest InfiniBand cluster installations available to per-
form our simulations. The “CHiC” at the University of Technology Chemnitz has 528 nodes con-
nected to 44 24-port leaf switches which are connected to two 288 port switches in the second level.
The CHiC network is able to deliver full bisection bandwidth. The second larger input system is the
“Atlas” system located at the Lawrence Livermore National Lab has 1142 nodes and a Fat Tree net-
work with full bisection bandwidth. The “Ranger” system at the TACC uses two Sun “Magnum”
3456 port switches to connect 3936 nodes with full bisection bandwidth. The largest simulated sys-
tem, the “Thunderbird” (short: Tbird) cluster, is also the largest InfiniBand installation (with the
biggest number of endpoints) and its network has 4391 InfiniBand endpoints arranged in a Fat Tree
network with 1/2 bisection bandwidth.

4.2.2.3 Simulator Verification

To verify our simulation results, we implemented a benchmark that measures randomly changing
“bisect” communication patterns and records the achieved bandwidths on every connection into
several bandwidth classes. A “bisect” communication pattern is created as follows:

• split the network of size P into two equally sized groups A and B

• create P/2 pairs such that every pair consists of a node from A and B

• guarantee that no node is in more than a single pair (has more than one partner in the other
group)

Our benchmark generates a random “bisect” pattern at process 0, scatters it to all P processes
and synchronizes the time on all nodes with a tree-based algorithm as described in [15]. Process
0 broadcasts a starting time to all processes. All processes start simultaneously and benchmark
the time needed to send 100 fixed-size packets between the pairs. Process 0 gathers all P/2 timing
results and scatters a new random “bisect” pattern. This procedure is repeated for 5000 random
bisect patterns. We use the Mersenne Twister [150] algorithm to generate the random patterns. The
root node records all 5000 · P/2 point-to-point bandwidth results and sorts them into 50 equally-
sized bins.

The benchmark results of the full CHiC system are shown in Figure II.20(a). This benchmark,
using the full system, showed clean results with only 4 of the 50 possible bins filled. The measured
link bandwidth with MPI between two nodes in the CHiC system is γ = 630MiB/s for 1MiB

messages. Our simple model γ
π would predict 315MiB/s, 210MiB/s, 157.5MiB/s for a congestion

π of 2, 3 and 4 respectively. The benchmark results are slightly lower than that but still reflect our
expectations. Runs with fewer nodes also supported our thesis; however, the results were scattered
across many bins due to background communication during those jobs.
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Figure II.20: “bisect” Simulation Results for different InfiniBand Systems

These experiments show that our simulator design accurately reflects a real-world environment.
It is usually not easily possible to performmeasurements at full scale, thus we will show the effects
of the network contention to applications by simulating the application traffic patterns. This will
give us some estimation of how real applications are influenced by the network topology.

4.2.2.4 Simulating the Effective Bisection Bandwidth

To get an estimation of how much bandwidth can be expected from a random “bisect” pattern, we
ran N (N = 106 for our simulation) simulations with different patterns for our three systems. Each
pattern simulation resulted in P/2 oversubscription factors π (one per channel).

Many applications are round-based and every round exhibits a potentially different communi-
cation pattern. To model this behavior, we chose to evaluate every pattern as an entity by plotting
the pattern-specific average bandwidths in a histogram. Thus, we compute the pattern-specific
average oversubscriptions as

(
∑P/2

i=1 πi

)

· 2
P and sorted these N results into bins. The normalized

height of any histogram bin shows the fraction of mappings which showed the specific effective
bandwidth. Figure II.20(b) shows the histograms of the bandwidth-distribution. The achieved av-
erage bandwidths are interestingly stable (nearly all patterns exhibit a similar average bandwidth)
and only two bins are (nearly equally) filled for all simulated systems.

Based on the observation that all bisect patterns seem to have a pretty stable average bandwidth,
we define the application-oriented network parameter effective bisection bandwidth as the average
bandwidth for an arbitrary communication pattern. This most generic definition reflects applica-
tions with non-predictable and irregular communication patterns such as parallel graph algorithms
as a single number. This parameter is unfortunately not easy to measure for a given network. It
might be assessed by an exhaustive search or in combination with statistical methods.

The simulated effective bisection bandwidths are 57.6%, 55.6% and 40.6% of the full bandwidth for
Ranger, Atlas and Tbird, respectively. An interesting observation is that the large Tbird systemwith
half bisection bandwidth does not deliver a significantly worse effective bisection bandwidth than the
Atlas system with full bisection bandwidth.
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However, this analysis still does not reflect many real-world applications well. The next section
explains an analysis of 5 real world application codes and simulates their communication patterns.

4.3 Parallel Applications Communication

To understand how the network affects applications, we analyze four large open-source applica-
tions for the main sources of communication overhead. Later, we will use those results to derive
communication patterns as input for the simulation.

Most parallel high-performance applications are written with the Message Passing Interface
standard (MPI). Thus, we used the MPI profiling interface to record application communications
and measure their running time as a share of the application’s running time. We analyzed point-
to-point collective communication by representing the neighborhood relations in a directed graph.
Collective communication calls can not be recorded that easily because the used pattern depends
on the implementation. Thus, we just recorded the communicator size on which the collective
operations were run. All runs were done on 64 processes with InfiniBand as the interconnection
network.

Massively Parallel Quantum Chemistry Program The Massively Parallel Quantum Chem-
istry (MPQC) Program [110] is an open-source implementation that solves the Schrödinger equa-
tion to compute several properties of atoms and molecules. The MPQC run took 852 seconds and
had 9.2% communication overhead. We were able to identify three collective routines that caused
nearly all communication overhead: MPI_Reduce (67.4%), MPI_Bcast (19.6%) and MPI_Allreduce
(11.9%). All routines used the full set of processes (64) as communication group.

MIMD Lattice Computation The MIMD Lattice Computation (MILC) code is used to study
quantum chromodynamics, the theory of the strong interactions of subatomic physics as used in
high energy and nuclear physics. We benchmarked a 9.4% communication overhead running the
MILC code for 10884 seconds. More then 86% of the overhead was caused by point-to-point com-
munication (MPI_Isend/MPI_recv/MPI_Wait) and 3.2% by MPI_Allreduce in the complete pro-
cess group. We analyzed the send/receive pattern and found that every process communicates
with exactly 6 other processes (neighbors).

Parallel Ocean Program The Parallel Ocean Program (POP) is an ocean circulation model. It
is the ocean component of the Community Climate System Model and has been used extensively
in ocean-only mode for eddy-resolving simulations of the global ocean. We measured 32.6% com-
munication overhead for a 2294-second run. About 84% of this overhead are due to point-to-point
communications and 14.1% are caused by a global MPI_Allreduce. Every process uses the point-
to-point operations to communicate with 4, 5 or 6 neighbors and rank 0.

Octopus The last analyzed application, Octopus, is a part of the Time-dependent density func-
tional theory (TDDFT) package which solved the time-dependent Schrödinger equation in real-
space. The application ran on 64 nodes for 258 seconds and a communication overhead of 10.5%
was measured. Most of this time was spent in MPI_Allreduce (61.9%) and MPI_Alltoallv (21.9%)
on all processors.
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Application Conclusions and Summary The five analyzed applications spend most of their
communication time in regular neighbor or collective communications. Used collective communi-
cations are reductions, broadcasts, reductions-to-all and all-to-all and are usually performed with
all processes in the communication context (communicator). We also identified point-to-point pat-
terns with 4 to 6 neighbors. Thus, we conclude that we can express the network patterns of many
real-world applications that exist today by simulating collective communication and nearest neigh-
bor point-to-point patterns. The following section describes common patterns for the implementa-
tion of collective communications based on point-to-point messages.

4.4 Application Communication Simulation

A common way to implement collective operations is to use algorithms based on point-to-point
communication. Multiple algorithms exist and are used in different scenarios. A general rule for al-
gorithm selection is that small-message all-to-one or one-to-all operations (e.g., broadcast or reduc-
tions) use tree-like communication schemes and large versions of those operations use double-trees
or pipelined (ring) communication schemes. All-to-all communication schemes (e.g., reduce-to-all
or personalized all-to-all) usually implement the dissemination algorithm [93] or also a pipelined
ring scheme. A more detailed analysis of algorithm selection can be found in [171].

4.4.1 Simulating Collective Patterns

To examine the effect of fabric congestion on applications we simulate different collective traffic
patterns and record the oversubscription π per route. Most optimized collective communication
patterns consist of multiple communication stages r (a.k.a. “rounds”, e.g., the dissemination algo-
rithm uses ⌈log2P ⌉ rounds). Figure III.8(a) in Chapter III shows the communication pattern of the
dissemination and tree algorithm for 7 processes as an example. Every of those rounds reflects a
different communication pattern that is performed on the network.

We extended the pattern generator to also generate collective communication patterns such as
dissemination, pairwise exchange, tree, pipeline, ring, scatter and gather patterns. Those patterns
usually have multiple communication rounds with a specific pattern for each round.

Our simulator accepts a pattern and generates a random mapping from each rank in the in-
put pattern to an endpoint3 in the network. Then it simulates all communication rounds for this
mapping. However, the merging of the r · P/2 results for each multi-round pattern is not trivial
because each link might have a different oversubscription factor π. Thus, we apply two strategies
that determine an upper and lower bound to the communication bandwidth:
1) we use the maximum congestion factor π for every round and sum it up to the final result.

πsum_max =
1

r
·

r∑

i=1

max
k

(πi,k)

This represents the most pessimistic case where all processes have to synchronize (wait for the
slowest link) at the end of each round.

3we focus on networking effects in this chapter and thus we only simulate the single process per node case
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Figure II.21: Collective Pattern Simulation Results for different Cluster Systems

2) we use the average congestion factor of each round and sum them up to the final result.

πsum_avg =
1

r
·

r∑

i=1

2

P
·

P/2
∑

k=1

πi,k

This represents, similar to our definition of the effective bisection bandwidth, the optimistic case where
no synchronization overhead occurs and every process can proceed to the next round without
waiting for other processes.

The results of N different rank-to-node mappings are then combined into equally sized bins
and plotted as histograms (we used N = 105 in our simulations). The normalized height of any
histogram bin shows the fraction of mappings which showed the specific effective bandwidth.

The dissemination, ring and recursive doubling simulation results are rather similar and we
present only the dissemination pattern in Figure II.21(a). The dissemination pattern uses ⌈log2P ⌉
communication rounds to perform the operation as shown in Figure III.8(a). The lower bound in
the histogram shows that the average of the minimum bandwidths of all rounds (strategy 1) is as
small as 10-15%. The upper bound shows the bandwidths with around 40-50% in the optimistic
estimation (strategy 2). The “effective bandwidth” (the average of the “upper” simulations) for
random rank-to-node mappings of the dissemination pattern is 41.9%, 40.2% and 27.4% for the
Ranger, Atlas and Tbird systems respectively.

The tree pattern, depicted in Figure II.21(b), shows the best results because it does not leverage
the network fully (each one of the ⌈log2P ⌉ rounds doubles the number of communicating peers be-
ginning from 1 while all peers communicate from round 1 in most other patterns, cf. Figure III.8(a)
in Page 76). The “effective bandwidths” of the tree pattern for the CHiC, Atlas and Tbird system
were 69.9%, 71.3% and 57.4% respectively.

The nearest-neighbor communication simulation results — assuming 6 simultaneous neighbor
communications — are shown in Figure II.22. This limits the bandwidth due to congestion at the
endpoints to 1/6. Thus, we scaled the results by a factor of 6 to isolate the effect of fabric congestion.
We see a huge gap between the tightly synchronized communication (lower) and the optimistic
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Figure II.22: Nearest neighbor communication with 6 neighbors

measure (upper). The “effective bandwidths” are about 62.4%, 60.7% and 37.4% for the Ranger,
Atlas and Tbird system respectively.

4.4.2 Influence on Applications

With our simulation results and with several simplifying assumptions, we can make some approx-
imate statements about the performance penalty due to the routing effects of the four analyzed
applications. We assume that the applications are written in a scalable way such that a weak scal-
ing problem keeps the communication overhead approximately constant at large scale and that
collective algorithms like reductions, broadcast and alltoall operations are implemented in a tree-
based scheme to favor small messages. We use our simulation results to extrapolate the measured
communication overhead to the full effective bisection bandwidth case. Then, we calculate the dif-
ference in running time of each application. For example POP spent 27.4% of its execution time
in neighbor communications with up to 6 neighbors and 4.6% in an allreduce operation. The av-
erage bandwidths for those communication patterns on the largest simulated system (Tbird) are
about 37.4% and 57.4%. This means that this communication for those patterns would be 2.6 and
1.74 times faster with real full bisection bandwidth. This would decrease a hypothetical application
running time of 100s to only 80.89s, i.e., would reduce the application running time to 80.89% of the
original time. The following table shows an estimation of the possible application improvements
on the three simulated systems (using the whole network with one process per node) assuming
they could leverage full effective bisection bandwidth:

Application Overhead Ranger Atlas Tbird

MPQC 9.2% 97.23% 97.36% 96.08%

MIMD 9.4% 96.87% 97.73% 94.81%

POP 32.6% 88.32% 87.91% 80.89%

Octopus 10.5% 97.18% 97.23% 95.79%

The rated bandwidth of the Tbird system is only 1/2 bisection bandwidth. However, we would
still argue that the nearest neighbor and tree-based communication can be efficiently embedded
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into the network (assuming a good node-to-host mapping) such that the application effectively has
(for this pattern/mapping) full bandwidth. Thus, we compare in the results in the table to full
bandwidth. However, if we assume an arbitrary mapping (i.e., that the rated bandwidth is a strict
limit), then the gain in application performance for all application on the Tbird system halves.

We can conclude that the effect on application performance is significant and that the usage of
hot-spot avoiding routing schemes would be beneficial for real-world applications.

In the next section, we extend this work by analysing the theoretical design-space of Fat Tree
networks.

5 Searching for the Ideal Fat Tree Network Design

“The whole is more than the sum of the parts” – Aristotle, (384-322 BC) Greek Philosopher

We have seen in the previous section that rearrangable non-blocking Clos networks, as they are
used today in most HPC systems, are not able to deliver full bandwidth for all communication
patterns. We introduced the effective bisection bandwidth as a more accurate measure than bisec-
tion bandwidth of real-world applications. Simulation results for the effective bisection bandwidth
show that even though one network has half of the bisection bandwidth of another, the effective

bisection bandwidth was significantly more than a half. That leads us to the conclusion that cost-
effective networks with relatively low bisection bandwidths could achieve a similar effective band-
width as more expensive topologies.

To explore this new network design space, we begin with the design and simulation of different
rearrangable non-blocking Clos networks and fat trees. We chose this setup, rather than a fully non-
blocking Clos networks or other topologies, because it represents common practice used to design
and build many HPC networks today. Thus, we develop a network creation tool that generates
recursive Clos networks from an abstract definition (such as recursion depth and crossbar-size).
This tool consists of two steps. Step one generates a physical topology description and step two
adds the distributed routing tables to the physical topology by analyzing the topology. The result
is an abstract network definition (a directed graph in the dot-language) that can be used as an input
for the network simulator described in Section 4.

5.1 Generating Recursive Fat Tree Networks

In this section, we discuss the generation of recursive Fat Tree networks with different bisection
bandwidth characteristics. The bisection bandwidth is defined as the minimal number of cables
between any two equally-sized partitions of a network multiplied by the capacity of a link. One can
define an oversubscription factor for each network that indicates what share of the full bandwidth
is achieved. An oversubscription of 1:1 means full bisection bandwidth, 1:2 half, 1:3 one third and
5:11 means 0.455 of the bisection bandwidth respectively. Figure II.23(a) shows a Fat Tree network
with 32 ports built from 8 port crossbar switches with full bisection bandwidth (1:1). Figure II.23(b)
shows a 48 port network with similar base-switches with 1

3 bisection bandwidth (1:3).
We can define a cost-assessment with the number of switches τ and the number of backplane-

connections ν per port. The number of switches per port is τ1:1 = 12
32 = 0.375 and τ1:3 = 10

48 = 0.208

in the 1:1 and 1:3 examples respectively. The number of connections per port is ν1:1 = 32
32 = 1 and
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Figure II.23: Different Fat Tree Network Layouts with 8 port switches

ν1:3 = 16
48 = 1

3 . It can be shown that ν equals the oversubscription-factor for non-recursive Fat Tree
networks.

Now, we can begin to construct different Fat Tree networks with this strategy, but we’ll face the
major limitation that the number of ports is defined by the oversubscription factor. For example,
one can not build a 1:1 Clos network with 16 ports from 8 port crossbars. This was addressed by
Leiserson in [134] who generalized Clos networks to Fat Tree networks that enable more flexibility
with port-counts. For example, a 16-port 1:1 Fat Tree can be constructed from six 8-port crossbars
(2 in the top, 4 leaf switches), i.e., by “halving” the network shown in Figure II.23(a). However, this
works only to decrease the port count for a given crossbar-size and oversubscription factor. A new
strategy has to be found in order to increase the port count.

Recursive, or multi-stage Fat Tree networks are a natural extension to increase the port count
with a given crossbar size. For example, to build a 1:1 512-port network from 8-port crossbars, one
can use 48 1:1 32-port Clos networks (16 in the top, 32 leaf switches - cf. Figure II.23(a)). To build a
1:3 528-port Fat Tree from 8-port crossbars, one can use 33 1:3 48-port Fat Tree networks (11 in the
top, 22 leaf switches, combined in a 1:1 way). One could also use 32 port crossbars and wire them
up respectively. In this dissertation, we use only 1:x base switches wired up in an 1:1 manner to
build 1:x Fat Tree networks. The huge design-space of other topologies will be explored in future
works.

We analyze different network sizes with different oversubscription factors and crossbar-sizes.
We generate fat-tree networks with approximately 500, 3000, 7000 and 10000 ports from crossbars
(CB) of size 8, 16, 24 and 32. We analyze oversubscription of 1:1, 1:2 and 1:3. However, the port-
counts and oversubscription factors are often not exactly 500, 3000, 7000 or 10000 or 1:2, 1:3 because
of the restriction discussed before. The exact simulated networks are shown in Table II.24.

5.2 Generating Distributed Routing Tables

The next step in the generation of a functional network model is to populate the switch routing ta-
bles in the network. This task is similar to the function of the subnet manager (SM) in InfiniBandTM.
However, we assume that we have much more time to find an ideal solution than the SM has under
real-world conditions.

We define the ideal routing table according to effective bisection bandwidth metric that we dis-
cussed in Section 4. That means that an ideal set of routing tables T leads to minimal congestion in
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factor ports/d τ ν E σ min max eff bisect bw
1:1 512/2 1.125 5.00 541.3 94.2 194 858 0.599
3:5 520/2 0.825 3.80 667.5 132.2 207 932 0.562
1:3 528/2 0.625 3.00 749.7 125.2 411 1062 0.536
1:1 3072/3 3.375 14.0 2954 623.0 417 4395 0.632
3:5 3200/3 2.475 10.4 3013 523.6 590 4576 0.598
1:3 3456/3 1.875 8.00 3825 852.5 839 6158 0.555
1:1 7168/3 3.375 14.0 7365 1115 1133 10208 0.594
3:5 7200/3 2.475 10.4 -7969 1569 1945 12090 0.570
1:3 6912/3 1.875 8.00 8448 1329 1582 12581 0.503
1:1 10240/3 3.375 14.0 10627 1444 1556 14900 0.569
3:5 10400/3 2.475 10.4 11471 2009 3092 19487 0.557
1:3 10368/3 1.875 8.00 12240 1905 3125 18774 0.502

(a) 8 port crossbar

factor ports/d τ ν E σ min max eff bisect bw
1:1 512/2 0.562 5.00 467.4 110.9 156 732 0.717
5:11 528/2 0.375 3.36 498.7 89.63 280 771 0.685
1:3 576/2 0.312 3.00 611.5 96.17 408 1068 0.635
1:1 3072/2 0.562 5.00 3241 403.5 1004 4956 0.596
5:11 2992/2 0.375 3.36 3266 398.5 1530 4767 0.584
1:3 3072/2 0.312 3.00 4491 549.3 2604 6222 0.493
1:1 7040/2 0.562 5.00 7595 982.9 2000 11520 0.555
5:11 7040/2 0.375 3.36 9969 1280 5589 17035 0.486
1:3 6912/2 0.312 3.00 9569 1188 7032 15006 0.472
1:1 8192/2 0.562 5.00 9193 1406 2692 14244 0.542
5:11 10032/2 0.375 3.36 18984 3839 6903 27743 0.442
1:3 9984/2 0.312 3.00 25375 5155 7320 37770 0.391

(b) 16 port crossbar

factor ports/d τ ν E σ min max eff bisect bw
1:1 576/2 0.375 5.00 431.9 127.9 144 690 0.777
1:2 384/1 0.083 1.50 736.0 0.00 736 736 0.581
1:3 432/1 0.069 1.33 1242 0.00 1242 1242 0.455
1:1 3168/2 0.375 5.00 3165 490.3 654 4764 0.668
1:2 3072/2 0.250 3.50 3269 415.4 2288 4992 0.601
1:3 3024/2 0.208 3.00 3357 555.4 2313 5805 0.597
1:1 6912/2 0.375 5.00 7565 1230 2460 11142 0.574
1:2 6912/2 0.250 3.50 7298 739.2 4520 10088 0.584
1:3 6912/2 0.208 3.00 9307 1375 5337 14121 0.531
1:1 10080/2 0.375 5.00 10964 2589 2406 20994 0.579
1:2 9984/2 0.250 3.50 10819 1159 5616 16408 0.568
1:3 9936/2 0.208 3.00 11278 1365 7083 17244 0.548

(c) 24 port crossbar

factor ports/d τ ν E σ min max eff bisect bw
1:1 512/1 0.093 2.00 496.0 0.00 496 496 0.812
11:21 672/1 0.063 1.52 1282 63.04 1071 1491 0.583
1:3 768/1 0.052 1.333 7803 996.0 5340 13260 0.443
1:1 3072/2 0.281 5.00 2881 572.1 728 4600 0.684
11:21 3360/2 0.191 3.57 3329 592.0 1617 5467 0.650
1:3 3072/2 0.156 3.00 3622 497.6 2208 5400 0.582
1:1 7168/2 0.281 5.00 7139 996.0 1616 10600 0.658
11:21 7392/2 0.191 3.57 7762 1277 3364 12841 0.628
1:3 6912/2 0.156 3.00 7803 1208 5340 13260 0.584
1:1 10240/2 0.281 5.00 10323 1169 2888 14248 0.638
11:21 10080/2 0.191 3.57 10480 1376 4608 17047 0.619
1:3 9984/2 0.156 3.00 11422 1731 7464 18684 0.578

(d) 32 port crossbar

Figure II.24: Constructed Fat Tree Network Layouts and their Parameters
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a sufficiently large number of random bisect communication patterns. For regular networks like Fat
Tree networks, we can assess the route quality bymeasuring the expected value E and standard de-
viation σ in the maximum number of routes of all links connecting all P 2 possible communication
pairs.

Chung et al. define the forwarding index ξ which describes the number of routes that lead
through a given edge in [56]. It is clear that a reduction of this forwarding index will lead to an
increased effective bisection bandwidth of the network. Several researchers analyzed the problem of
minimizing the routing index [98, 97]. However, Saad showed that the problem is NP-complete for
arbitrary graphs [176]. We will focus on the edge forwarding index π, introduced by Heydemann
et al. in [98]. However, we argue that the expected value E is more meaningful than the maximum
value π in the real-world settings we analyze.

Since solving this problem optimally is NP-complete, we propose the following abstract greedy
algorithm to find a reasonable approximation:

1. For all P 2 pairs of nodes as S (source) and T (target).
2. Find all circle-free paths p from S to P .
3. Choose the set of shortest paths ps from p.
4. Delete all paths in ps that conflict with the current set of distributed routes.
5. Find the maximum number of routes (R) of all paths that use elements of this path.
6. Find the path pST that has the lowest R.
7. Update all routing tables t along path pST .

This abstract greedy algorithm not feasible due to it’s time complexity of at least O(P 4) (all
P 2 paths have to be traversed twice). Thus, we introduce another simplification by employing
Dijkstra’s single-source shortest-paths algorithm P times:

1. For all P nodes as S find shortest paths to all P − 1 other nodes ps.
2. Delete all paths in ps that conflict with the current set of distributed routes.
3. Update all routing tables t along paths pST , ∀T ∈ {P\S}.

Using Dijkstra’s algorithm might introduce more congestion than the original algorithm because
paths near the source node will likely be shared. However, our experiments showed that this
averages out in mid-scale networks. Step (3) in the previous algorithm can be very costly. In our
case of an undirected graph, we can invert the shortest paths by changing s and t after finding the
routes and so avoid conflicts and save the checking costs. This leads to the final algorithm:

1. For all P nodes as S find shortest paths to all P − 1 other nodes ps.
2. Update all routing tables t along inverted paths pTS , ∀T ∈ {P\S}.

We assessed quality of the routing tables of our generated and queried networks. In order to
do this, we needed to determine the forwarding index for every edge by simulating all P (P − 1)

connections in the network. After we generated the forwarding index for each edge, we ran P (P −
1) simulations in order to assess the maximum forwarding index along each route. The results for
the average edge forwarding index E, it’s standard deviation σ and its minimum and maximum
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along all routes are shown in Table II.24. The results for some real-world systems are shown in the
following table:

Name # Nodes τ ν E σ min max eff bisect bw

Odin 128 0.141 2.109 138.67 34.79 40 262 0.746

CHiC 566 0.222 3.078 645.93 151.62 58 1743 0.606

Atlas 1142 0.210 3.013 1806.7 670.13 1012 4211 0.556

Ranger 4081 0.339 4.212 7653.43 11140.17 184 90435 0.568

Tbird 4391 0.129 2.036 10868.8 2878.47 7658 25169 0.406

We conclude that the routing tables in our generated networks are at least as balanced as the
routing tables in systems that are currently operated. Thus, we use those network layouts for all
further analyses. Designing better routing algorithms will be a topic for future work.

5.3 Simulation Results

We simulated all generated Fat Tree networks with the simulator discussed in Section 4. We used
the effective bisection bandwidth, which is defined as the average of all bandwidths in a bisect-
communication pattern (cf. Section 4.2.2.3), as a metric to assess the quality of a network topology.
All simulation results are shown in Figure II.24. They can be compared to the results shown at the
end of the previous section that were gathered by simulating real-world systems.

We present the data of Figure II.24 in two different diagrams. Diagram II.25(a) shows the rela-
tionship between effective bisection bandwidth and bisection bandwidth as stated for the network.
We clearly see that the static routing influences the results significantly. The effective bisection band-

width is higher than the ideal (which seems like a theoretical maximum) because we investigate
random communication patterns and not the worst-case like in the original definition. Networks,
where the ratio between port-count and crossbar-size is small, are behaving closer to the ideal net-
work because our Fat Tree networks are structured symmetrically. Generally, it can be concluded
that bigger crossbars perform better for most configurations and that the effects of oversubscrip-
tion are less important than our model assumes. Diagram II.25(b) shows the relationship between
the crossbar-size and effective bisection bandwidth for different network sizes. The crossbar-size is an
important parameter for the cost-effective production of large-scale networks. This diagram shows
that larger crossbars deliver better bandwidths. There seems to be an anomaly for 8-port crossbars
and network sizes bigger than 3000 nodes. However, this is due to the fact that Fat Trees used to
build those networks had a recursion depth of three (see Figure II.24) and use thus significantly
more resources (switches and cables) than networks based on 16-or-higher-port crossbars.

We conclude that bigger crossbars are generally beneficial and that statically routed and not
fully non-blocking networks can not achieve full bisection bandwidth. In our metric of effective
bisection bandwidth, it seems that up to 1:3 oversubscribed networks can still deliver reasonable
performance. However, a specific network design has to be selected based on price/performance
with the particular parameters of crossbar- and cable-costs on a case-by-base basis. We show a way
to evaluate different network designs and enable such a selection. Our simulations can also be
extended to different communication patterns such as typical data-center workloads.
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Figure II.25: Effective Bisection Bandwidth for different Network Layouts

6 Topology-Aware Collective Communication

“We are all agreed that your theory is crazy. The question which divides us is whether it is crazy enough

to have a chance of being correct.” – Niels Bohr, (1885-1962) Danish physicist, Nobel Prize 1922.

We have gained some experience with the detrimental effects of congestion in large-scale In-
finiBand networks, and we know ways to avoid congestion proactively. The problem is related to
the problem that MagPIe [120] addresses. The first obvious way is to change the node-assignment
in the batch-system to minimize the probability of congestion situations. However, in order to do
this, the batch system would need detailed information about the communication patterns of the
parallel applications. Otherwise, it can just fall back to the simple heuristic to map the applica-
tion on the smallest number of neighboring (in the Fat Tree) leaf-switches. This heuristic is usually
simply done by naming the nodes accordingly and using linear node-mapping strategies. Another
possibility would be to collect information about the application communication characteristics be-
tween runs. But this method has several fundamental problems (e.g., applications often implement
different methods with communication patterns) and is thus not further investigated.

The first and simple node mapping strategy can be efficient for a huge number of small-scale
jobs on a large-scale system. However, large-scale jobs that use the whole system can not benefit
from this strategy. As shown in Section 4.4.2, many applications use regular collective communica-
tion patterns. Using this information, one can use different techniques to mitigate congestion. One
way is to change the routing tables in order to support a particular pattern. This is not suitable be-
cause clusters are usually used by many applications with different requirements at the same time
and re-assigning the routing tables is a complex task. Our approach does not change the routing
tables but tries to match the communication pattern as closely as possible to the existing routing
tables.
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6.1 A Rank-Remapping Strategy for Collective Algorithms

In order to map the collective operations better to the underlying communication network, we use
a given collective algorithm (e.g., Bruck) and a fixed rank-to-node mapping (given by the batch
system) and just change the numbering of the nodes, i.e., the order of communication.

For example, we use the network shown in Fig. II.18, a bruck pattern (i.e., rank n sends to rank
n + 2r, ∀ 0 < r < log2P ) with 16 nodes and a linear rank-to-node mapping (R1→N1, R2→N2, . . . ,
R16→N16).

round communications

1 N1→N2, N2→N3, N3→N4, N4→N5, . . . , N15→N16, N16→N1

2 N1→N3, N2→N4, N3→N5, N4→N6, . . . , N15→N1, N16→N2

3 N1→N5, N2→N6, N3→N7, N4→N8, . . . , N15→N3, N16→N4

4 N1→N9, N2→N10, N3→N11, N4→N12, . . . , N15→N7, N16→N8

We can now change the rank-to-node mapping of the collective algorithm without changing the
communication patterns (only commutative and associative reductions can use the bruck pattern),
for example the reverse mapping (R1→N16, R2→N15, . . . , R16→N1) would still represent the col-
lective communication pattern correctly. The big advantage of this remapping is that it is com-
pletely transparent to the user, i.e., it can be done in the collective implementation and different
mappings can be chosen for different collective algorithms.

It is not obvious that something can be gained by remapping the rank-to-node assignment in
the communication pattern. If we apply the three metrics (1) sum of the maximum congestions per
round, (2) sum of all congestions per round and (3) sum of all congestions per cable each round,
we get congestions of 7, 104 and 216 respectively. This can be reproduced by manually routing the
connections through the network in Figure II.18. This linear mapping seems to be the best mapping
because the communication that spans switch borders is pretty low (especially in round 1 and 2).
So there seems to be no optimization potential for this simple mapping. We will nevertheless try to
achieve some optimization.

Our goal is to minimize the congestion. However, we have seen that assessing the congestions
for the tiny 16 node case is hard to do manually; optimizing the mapping is even harder. Thus,
we propose to use a common optimization scheme, genetic algorithms [122] (GA), to find a better
mapping. We implemented the optimization with the PGAPACK [135] framework which also al-
lows parallel optimization. A gene in our case is a set of integers of length P in the range 0 . . . P −1.
The position and the integer represents the mapping, i.e., the gene 2, 0, 1 represents the mapping
R0→N2, R1→N0, R2→N1. The strings are initialized randomly. Mutation is performed by flipping
two neighbor-elements. Crossover is done by combining the first part of gene 1 with the second
part of gene 2. The evaluation function for the GA is the simulation described before. The simula-
tion returns infinite for invalid strings (invalid strings may be a result of mutation). The algorithm
has been adjusted to stop if no change happens after 500 iterations.

Using the genetic algorithmwith the simple 16 node example results in the following optimized
gene (mapping) for metric (1) (15 2 12 5 16 6 11 9 14 3 10 8 13 4 1 7) and the sum of the maximum
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congestions for this gene is 6 instead of 7 for the linear mapping. The GA was able to find a better
solution even though the simple mapping seems rather good at first glance. Using metric (2) re-
turns the gene (16 6 3 11 1 9 2 8 14 7 13 10 15 12 4 5) with a congestion of 92 instead of 104. Metric
(3) returns the same gene as for metric (1) and a congestion of 204 instead of 216. This means that
the bruck communication pattern for gene 1 changes to:

round communications

1 N15→N2, N2→N12, N12→N5, N5→N16, . . . , N1→N7, N7→N15

2 N15→N12, N2→N5, N12→N16, N5→N6, . . . , N1→N15, N7→N2

3 N15→N16, N2→N6, N12→N11, N5→N9, . . . , N1→N12, N7→N5

4 N15→N14, N2→N3, N12→N10, N5→N8, . . . , N1→N11, N7→N9

The communication pattern is still the same, just the peers that communicate are different.

6.2 Benchmarking the Benefits

We implemented a benchmark that uses the rank-remapping technique to optimize collective algo-
rithms on real-world systems. The benchmark works as follows:

1. Extract the network topology of the system (can be done in advance; explained in Section 4).
2. Get the position of each rank in the network (extracting InfiniBandTM’s GUID).
3. Generate a collective communication pattern.
4. Run a benchmark using the generated communication pattern without remapping.
5. Run the genetic algorithm described above to remap ranks in the pattern (the GA is run in

parallel on all nodes in the allocation).
6. Run a benchmark using the optimized mapping.

The results for the Odin system using different node-numbers and the bruck-algorithm using
10MiB messages are shown in Figure II.26(a). The results for the tree-pattern, shown in Fig-
ure II.26(b) show a smaller gain but are still positive. We assume that the used metrics are not ac-
curate enough for this pattern (and the congestion is less, i.e., the optimization potential is lower).
The GA fails to optimize the nearest neighbor pattern because the simple linear mapping is ex-
tremely good in this case (the GA often converges on a pattern (local minimum) that is worse than
the simple linear mapping).

We also see decreased performance of some cases; this might be due to two things. First, the
metrics we use oversimplify the problem and do not really have any time-dependency. This means
they model the algorithm insufficiently. A full LogGP modeling would probably help but is, due
to its complexity, outside of the scope of this work. A second problem lies in the optimization
approach. The GA can converge in a local minimum and not find the best solution. The solu-
tion found might even be worse than the simple linear mapping because the genes are initialized
randomly, i.e., they might all be worse than the linear mapping. This can not be addressed easily
because the search space for an optimal mapping is huge (the number of valid mappings (genes),
i.e., all permutations of P integers is P !, which is already ≈ 2 · 1013 in the small example P = 16).
Covering a huge part of the search space or an exhaustive search is not possible. The structure of
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Figure II.26: Algorithm latency improvement on the Odin system

the search space has to be analyzed in detail to make any statements about the occurrence, number
and distribution of local minima. However, metric (2) was able to deliver reasonable performance
improvements for the bruck and tree pattern.

7 Conclusions

“Science may be described as the art of systematic oversimplification.” – Karl Popper (1902-1994) British

Philosopher

Weproposed a new 1:n n:1 benchmarking principle to assess the performance of the InfiniBandTM

network for all different transport types. Our proposed solution uses time measurement for each
packet to enable detailed statistical analysis. We analyzed all different transport types and con-
cluded that RDMA-W enables the fastest data transmission. Especially the discovery that single
message sends are quite slow compared to multi message sends is important for collective al-
gorithms (as most of them use mainly single message sends). We also show that the unreliable
multicast operations offer a scalable interface to perform one-to-many send operations.

Based on these results, we showed that simple modifications can enhance the accuracy of the
LogGP model significantly. The new LogfGP model is easy enough to be used by developers to
optimize parallel algorithms because it encourages the programmer to leverage the hardware par-
allelism for the transmission of small messages. We think that our model is more accurate than the
LogP model for other offloading-based networks where most packet processing is done in hard-
ware (e.g., Quadrics, Myrinet).

In order to allow accurate algorithm modeling, we compared well known Log(G)P measure-
ment methods and derived a new accurate LogGP parameter measurement scheme. Our method
is able to detect protocol changes in the underlying communication subsystem. An open source
implementation within the Netgauge framework is available for public use. This implementation
has been tested extensively with different modern MPI implementations and low-level networking
APIs.
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We used our findings to improve twoMPI collective algorithms. The first collective, MPI_Barrier,
uses the LogfP model and leverages the inherent hardware parallelism of the InfiniBandTM net-
work. The new n-way dissemination principle could be used to improve other collective algo-
rithms (e.g., MPI_Allreduce). We use automated tuning to choose the n-parameter. However, the
barrier operation could be enhanced up to 40% on a 64 nodes cluster in comparison to the well
tuned implementation of MVAPICH, and the gap is expected to widen for larger node numbers.

The second algorithm uses InfiniBandTM’s multicast feature to improve MPI_Bcast. Contrary
to all other known approaches, we are able to avoid all scalability/hot-spot problems that occur
with currently known schemes. The new multicast-based broadcast implementation accomplishes
a practically constant-time behavior in a double meaning: it scales independently of the commu-
nicator size and all MPI processes within a given communicator need the same time to complete
the broadcast operation. Well-known microbenchmarks substantiate these theoretical conclusions
with practical results. We proved it for up to 116 cluster nodes and there is no reason to assume
scalability problems with our approach.

We showed that the original definition of full bisection bandwidth [95] does not take the net-
work routing into account and might thus not be meaningful for practical applications. Thus, we
defined a more application performance oriented measure, the effective bisection bandwidth which
takes routing into account. We demonstrated a benchmark to perform this measurement. We also
propose a simulation methodology and simulate three of the largest existing InfiniBand clusters.
Our results show that none of those systems achieves more then 61% of the theoretical bisection
bandwidth. We also analyzed different real-world applications for their communication patterns
and simulated those patterns for the three analyzed systems. A rough estimation of the communi-
cation behavior showed that the communication time of those applications could nearly be halved
and the time to solution could be optimized by more than 12% with a network offering full effective
bisection bandwidth. Our results also show that an optimized process-to-node layout as offered by
topological MPI communicators might result in a significant performance increase.

Furthermore, we discussed and simulated different options for network topologies and routing
tables for static distributed routing. With the simulation of different Fat Tree network configuration
we were able to show that the problem occurs for all configurations that are not non-blocking
Clos networks. The simulation leads us to the interesting conclusion that full bisection bandwidth
networks are not delivering a significant higher performance than oversubscribed networks in the
average case.

A genetic algorithm strategy to remap collective ranks in order to increase the bandwidth for
a given topology was reasonably successful for small scale networks, however, the search space in
large-scale networks (P !) seems too large to explore in a reasonable way.
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Chapter III

New Collective Operations

“The nice thing about standards is that there are so many to choose from. And if you
really don’t like all the standards you just have to wait another year until the one arises you
are looking for.” – Andrew Tanenbaum, (1944) Dutch Computer Scientist, in “Introduction to Computer Networks”

Scalable parallel systems are specialized machines that differ dramatically in their architecture.
Those machines are often hard to understand and to program. The current MPI standard de-

fines collective operations that reflect high-level communication patterns to simplify the program-
mer’s task to implement scalable parallel applications. This addition of abstraction does not only
benefit programmability, it also simplifies performance portability and reduces common errors in
parallel programs.

The defined collective operations in the standard cover a wide range of dense one-to-many,
many-to-one and many-to-many communication patterns that have been shown to be useful. Vec-
tor variants of most collectives enable contributions of different sizes from different processes and
also sparse communication patterns. However, the interface is still dense and makes the imple-
mentation of large-scale sparse communication patterns suboptimal. In Chapter II, we discovered
that overlapping communication and computation has the potential to reduce the communication
overhead by several orders of magnitude for large point-to-point messages. However, the use of
overlapping techniques in high-level communication patterns has not been analyzed yet.

In this chapter, we discuss sparse collective operations, a new class of collectives that efficiently
enables sparse communication patterns at large scale. We demonstrate a possible interface to those
new sparse collectives and provide an example application that uses this interface to implement
an irregular communication pattern on a graph. Furthermore, we will investigate the possibility of
combining overlapping techniques with high-level communication patterns. For this, we summa-
rize and extend results from the article “A Case for Non-Blocking Collective Operations” [19]. The
next section introduces sparse collective operations followed by a discussion and analysis of non-
blocking collective operations. Section 3 models the CPU overhead and latency of non-blocking
collective operation and defines new algorithm selection criteria based on overhead models.
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1 Sparse Collective Communication

“The important thing in science is not so much to obtain new facts as to discover new ways of thinking

about them.” – William Lawrence Bragg, (1890-1971) Australian Physicist, Nobel Prize 1915

MPI topologies currently provide the MPI implementation with information about the typical
communication behavior of the processes in a new communicator, illustrating the structure of com-
munication via a Cartesian grid or a general graph. Topologies contain important application- and
data-specific information that can be used for optimized collective implementations and improved
mapping of processes to hardware. However, from the application perspective, topologies provide
little more than a convenient naming mechanism for processes.

We propose new collective operations that operate on communicators with process topologies.
These topological collectives express common communication patterns for applications that use
process topologies, such as nearest-neighbor data exchange and shifted Cartesian data exchange.
These collectives are usually implemented by the application programmer. However, a high-
performance implementation of those operations is not trivial and programmers frequently face
problems with deadlocks.

Nearest neighbor exchanges are performed in many parallel codes such as in real space elec-
tronic structure codes like Octopus [51]. The mesh’s points are distributed among the nodes to
increase computational throughput. Figure III.1(a) shows the geometry of a benzene molecule on
top of a real space grid. The grid points are divided into eight partitions. Communication between
adjacent partitions is necessary to calculate derivatives by finite-difference formulas, or, more gen-
erally, any non-local operator. Figure III.1(b) shows the situation for a third order discretization:
to calculate the derivative at point i, the values at points i − 1, . . . , i − 3 have to be communicated
from partition 2 to partition 1. The communication structure can be represented as a graph with
each vertex representing one computational node and edges representing neighboring partitions
(cf. Figure III.1(c)). Using this abstraction, the data exchange prior to the calculation of a derivative
can be mapped onto a general nearest neighbor communication pattern.

We propose a new class of collective operations defined in terms of topology communicators.
The new collective operations describe a neighbor exchange and other sparse collectives where the
communication relations are defined by the process (graph) topology.

1.1 Programmability

Listing III.1 shows the NBC_Ialltoall implementation which uses four different arrays to store the
adjacency information. The programmer is fully responsible for administering those arrays.
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(a) The benzene ring distributed on eight
nodes indicated by different colors.

(b) A third order stencil
leaking into a neighboring
partition.

(c) The communication pattern
for the benzene ring.

Figure III.1: Process topologies in real space electronic structure codes.

1 rdpls = calloc (p, sizeof ( int ) ) ; sdpls = calloc (p, sizeof ( int ) ) ;
rcnts = calloc (p, sizeof ( int ) ) ; scnts = calloc (p, sizeof ( int ) ) ;
for ( i =0; i<len( l i s t ) ; i++) i f ( l i s t [ i ] [0] == rank)

scnts [ l i s t [ i ] [1] ] = count ; rcnts [ l i s t [ i ] [1] ] = count ;
5 sdispls [0] = rdispls [0] = 0;

for ( i=1; i<p; i++) {
sdpls[ i ] = sdpls[ i−1] + scnts [ i ] ;
rdpls [ i ] = rdpls[ i−1] + rcnts [ i ] ; }

MPI_Alltoallv(sbuf , scnts , sdpls , dt , rcnts , rdpls , dt , comm, req ) ;

Listing III.1: Neighbor Exchange with Alltoallv.

It seems more natural to the programmer to map the output of a graph partitioner (e. g., an
adjacency list that represents topological neighbors) to the creation of a graph communicator and
simply perform collective communication on this communicator rather than performing the All-
toallv communication. To emphasize this, we demonstrate a pseudocodes that perform a similar
communication operation to all graph neighbors indicated in an undirected graph (list[i][0]
represents the source and list[i][1] the destination vertex of edge i and is sorted by source
node). The Alltoallv implementation has already been shown in Listing III.1. Listing III.2 shows
the implementation with our newly proposed operations that acquire the same information from
the MPI library (topology communicator layout). The processes mapping in the created graph
communicator might be rearranged by the MPI library to place tightly coupled processes on close
processors (e. g. on the same SMP system). The collective neighbor exchange operation allows
other optimizations (e. g. starting off-node communication first to overlap local memory copies of
on-node communication).
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(a) MPI_Neighbor_xchg, illustrating the communication
operations originating at rank 5 in a 2-dimensional carte-
sian communicator. The left side of the buffer represents
the send memory and the right side the receive memory.
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(b) MPI_Neighbor_xchg, ilustrating the communication
originating at node 4 for a non-periodic and a periodic di-
mension. The crossed buffer will be ignored by the collec-
tive (but has to be allocated)

Figure III.2: Sparse Communication Patterns in Cartesian Communicators

1 last = l i s t [0 ] [0 ] ; counter = 0; // l i s t is sorted by source
for ( i=0; i<len( l i s t ) ; i++) {
i f ( l i s t [ i ] [0] != last ) index[ l i s t [ i ] [0] ] = counter ;
edges[counter++] = l i s t [ i ] [ 1 ] ;

5 }
MPI_Graph_create(comm, nnodes, index , edges , 1 , topocomm) ;
MPIX_Neighbor_xchg(sbuf , count , dt , rbuf , count , dt , topocomm, req ) ;

Listing III.2: Implementation using MPIX_Neighbor_xchg.

1.2 Nearest Neighbor Exchange

We propose to add a new collective function named MPI_Neighbor_xchg (and its vector variant)
that performs nearest-neighbor communication on all processes in a communicator with a topology.
Each process transmits data to and receives data from each of its neighbors. The neighbors of a
process in the communicator can be determined by MPI_Comm_neighbors.

The outcome is as if each process executed a send to each of its neighbors with a call to,
MPI_Send(sendbuf + i*sendcount*extent(sendtype), sendcount, sendtype, neighbor[i], ...) and a
receive from every neighbor with a call to, MPI_Recv(recvbuf + i*recvcount*extent(recvtype), recv-

count, recvtype, neighbor[i], ...). Figure III.2(a) shows an example with a Cartesian communicator.

1.3 Neighbor Query

We propose two new functions that allow one to determine the neighbors of any com-
municator with a topology. These functions are modeled after MPI_Graph_neighbors_count

and MPI_Graph_neighbors, but they work for both communicators with graph topology
and for communicators with Cartesian topology. When passing a graph communicator to
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MPI_Comm_neighbors_count, the user will receive the number of neighbors in the graph (i.e.,
the same result that MPI_Graph_neighbors_count provides). For a Cartesian communicator, the
user will receive the number of processes whose distance from the calling process is 1. If provided
with a communicator that does not have a topology, the call returns MPI_ERR_TOPOLOGY. When
passing a graph communicator to MPI_Comm_neighbors, the user receives the ranks of each of the
neighbors of the calling process (i.e., the same result that MPI_Graph_neighbors provides). The
order of the ranks returned defines the layout of the send/receive arrays. This order is unspecified,
but successive calls to MPI_Comm_neighbors for the same communicator will return ranks in the
same order. When passing a Cartesian communicator to MPI_Comm_neighbors, the user receives
the ranks of each of the neighbors of the calling process. The order of the ranks is first along the first
dimension in displacement +1 and -1 (either of which may wrap around, if the topology is periodic
in that dimension, or will be omitted, if not periodic in that dimension), then along the second,
third and higher dimensions if applicable. Figure III.2(b) shows an example communication with
periodic dimensions.

1.4 Other Sparse Collective Functions

The proposed interface can be extended to all collective functions. For example, reduction oper-
ations defined on neighbor groups can be very helpful for parallel computational fluid dynamics
(CFD) programs. Those new collective operations will follow similar principles and will be investi-
gated further. We are also actively participating in the MPI Forum and these operations have been
proposed for consideration in the upcoming MPI-3 standard.

2 Non-Blocking Collective Communication

“The more physics you have the less engineering you need.” – Ernest Rutherford, (1871-1937) English Physicist,

Nobel Prize 1908

A non-blocking interface to collective operations enables the programmer to start the execu-
tion of a collective operation and then perform other computations. Later, the program can wait
or test for the end of the operation separately. Non-blocking collective operations and their possi-
ble benefits have already been discussed at meetings of the MPI standardization committee. The
final decision to not include them into the MPI-2 standard fell at March 6, 19971. However, the
fact that the decision was extremely marginal (11 yes / 12 no / 2 abstain) suggests that the role of
non-blocking collective operations is still debatable. Our contention is that non-blocking collective
operations are a natural extension to the MPI standard. We show that non-blocking collective oper-
ations can be beneficial for a class of applications to utilize the available CPU time more efficiently
and decrease the time to solution of these applications significantly. Further, we discuss two main
problems of blocking collective communication which limit the scalability of applications.

First, blocking collective operations have a more or less synchronizing effect on applications
which leads to unnecessary wait time. Even though the MPI standard does not define blocking
collective operations other than MPI_Barrier to be strictly synchronizing, most algorithms force

1see: http://www.mpi-forum.org/archives/votes/mpi2.html
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many processes to wait for other processes due to data dependencies. In this way, synchronization
with a single process is enforced for some operations (e.g., a MPI_BCAST can not be finished until
the root process called it) and the synchronizing behavior of other operations highly depends on
the implemented collective algorithm. In either case, pseudo-synchronizing behavior often leads to
many lost CPU cycles, multiplication of the effects of process skew (e.g., due to daemon processes
which “steal” the CPU occasionally and introduce a pseudo-random skew between processes [214,
198]), and a high sensitivity to imbalanced programming (e.g., some processes do slightly more
computation than others in each round).

Second, most blocking collective operations can not take much advantage of modern intercon-
nects which enable communication offload to support efficient overlapping of communication and
computation. Abstractly seen, each supercomputer or cluster consists of two entities, the CPU
which processes data streams and the network which transports data streams. In many networks,
both entities can act mostly independently of each other, but the programmer has no chance to use
this parallelism efficiently if blocking communication (point-to-point or collective) is used.

Another rationale to offer non-blocking semantics for collective communication is an analogy
between many modern operating systems and the MPI standard. Most modern operating systems
offer possibilities to overlap computation on the host CPU with actions of other entities (for exam-
ple hard disks or the network). Asynchronous I/O and non-blocking TCP/IP sockets are today’s
standard features for communication. The MPI standard offers non-blocking point-to-point com-
munication which can be used to overlap communication and computation. It would be a natural
extension to offer also a non-blocking interface to the collective operations.

Recent work has shown that non-blocking operations can be beneficial, both in terms of per-
formance and abstraction. Non-blocking operations allow communication and computation to be
overlapped and thus to leverage hardware parallelism for the asynchronous (and/or network-
offloaded) message transmission. Several studies have shown that the performance of parallel ap-
plications can be significantly enhanced with overlapping techniques (e.g., cf. [44, 63]). Similarly,
collective operations offer a high-level interface to the user, insulating the user from implemen-
tation details and giving MPI implementers the freedom to optimize their implementations for
specific architectures.

It has long been suggested that non-blocking collective functionality is not needed explicitly as
part of MPI because a threaded MPI library could be used with collective communication taking
place in a separate thread. However, there are several drawbacks to this approach. First, it requires
language and operating system support for spawning and managing threads, which is not possi-
ble on some operating systems—in particular on operating systems such as Catamount designed
for HPC systems. Second, programmers must then explicitly manage thread and synchronization
issues for purposes of communication even though these issues could and should be hidden from
them (e.g., handled by an MPI library). Third, the required presence of threads and the corre-
sponding synchronization mechanisms imposes the higher cost of thread-safety on all communi-
cation operations, whether overlap is obtained or not (cf. [87]). Finally, this approach provides an
asymmetric treatment of collective communications with respect to point-to-point communications
(which do support asynchronous communications).
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Non-blocking collective operations provide some performance benefits that may only be seen
at scale. The scalability of large scientific application codes is often dependent on the scalability
of the collective operations used. At large scale, system noise affects the performance of collec-
tive communications more than it affects the performance of point-to-point operations because of
the collective dependencies which are often introduced by collective communication algorithms.
To continue to scale the size of HPC systems to Peta-scale and beyond, we need communication
paradigms that will admit effective use of the hardware resources available on modern HPC sys-
tems. Implementing collective operations so that they do not depend on the the main CPU is one
important means of reducing the effects of system noise on application scalability.

2.1 Related Work

The obvious benefits of overlapping communication with computation and leveraging the hard-
ware parallelism efficiently with the usage of non-blocking communication is well documented.
Analyses [103, 106, 129] try to give an assessment of the capabilities of MPI implementations to
perform overlapping for point-to-point communications. Many groups analyze the possible per-
formance benefits for real applications. Liu et al. [137] showed possible speedups up to 1.9 for
several parallel programs. Brightwell et al. [45] classifies the source of performance advantage for
overlap and Dimitrov [66] uses overlapping as fundamental approach to optimize parallel applica-
tions for cluster systems. Other studies, as [49, 33, 63, 25] apply several transformations to parallel
codes to enable overlapping. Several studies of the use of overlapping techniques to optimize
three-dimensional FFTs have been done [68, 26, 50, 81]. The results of applying these non-blocking
communication algorithms (replacingMPI All-To-All communications) were inconclusive. In some
cases the non-blocking collectives improved performance, and in others performance degraded a
bit. Danalis et al. [63] obtained performance improvement by replacing calls to MPI blocking col-
lectives with calls to non-blocking MPI point-to-point operations. However, little research has been
done in the field of non-blocking collectives. Studies like [68, 44] mention that non-blocking collec-
tive operations would be beneficial but do not provide a measure for it. Kale et al. [113] analyzed
the applicability of a non-blocking personalized exchange to a small set of applications in practice.
However, many studies show that non-blocking communication and non-blocking collectives may

be beneficial. Due to its channel semantics, MPI/RT [114] defines all operations, including collec-
tive operations, in a non-blocking manner. IBM extended the standard MPI interface to include
non-blocking collectives in their parallel environment (PE), but have dropped support for this non-
standard functionality in the latest release of this PE. Our work contributes to the field because we
actually assess the potential performance benefits of a non-blocking collective implementation.

2.2 Possible Performance Benefits

The most obvious benefits of non-blocking collective operations are the avoidance of explicit
pseudo synchronization and the ability to leverage the hardware parallelism stated in Chapter II.
The pseudo-synchronizing behavior of most algorithms cannot be avoided, but non-blocking col-
lective operations process the operation in the background, which enables the user to ignore most
synchronization effects. Common sources for de-synchronization, process skew and load imbal-
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1 for ( proc=1; proc<nproc ; proc=proc∗2) {
create_communicator(nproc, comm) ;
for ( size=1; size<maxsize ; proc=proc∗2) {
gettimeofday( t1 ) ; getrusage(r1 ) ;

5 for ( i=0; i<max_iters ; i++)
MPI_Coll(comm, size , MPI_BYTE, . . . )

getrusage(r2 ) ; gettimeofday( t2 ) ;
} }

Listing III.3: Benchmark Methodology (pseudocode)

ance are not easily measurable. However, results can increase the application running time dra-
matically, as shown in [165]. Theoretical [27] and practical analyses [112, 165] show that operating
system noise and resulting process skew is definitely influencing the performance of parallel ap-
plications using blocking collective operations. Non-blocking collective operations avoid explicit
synchronization unless it is necessary (if the programmer wants to wait for the operation to finish).
This enables the programmer to develop applications which are more tolerant of process skew and
load imbalance.

Another benefit is to use the parallelism of the network and computation layers. Non-blocking
communication (point-to-point and collective) allows the user to issue a communication request to
the hardware, perform some useful computation, and ask later if it has been completed. Modern
interconnect networks can perform the message transfer mostly independently of the user process.
The resulting effect is that, for several algorithms/applications, the user can overlap the communi-
cation latencywith useful computation and ignore the communication latency up to a certain extent
(or totally). This has been well analyzed for point-to-point communication. Non-blocking collec-
tive operations allow the programmer to combine the benefits of collective communication [83]
with all benefits of non-blocking communication. The following subsections analyze the commu-
nication behavior of current blocking collective algorithms and implementations, and show that
only a fraction of the CPU time is involved into communication related computation. In relation
to previous studies we show, theoretically and practically, that a similar percentage, in many cases
even more, idle CPU time as with non-blocking point-to-point communication can be gained. We
assume that the biggest share of the remaining (idle) CPU time can be leveraged by the user if over-
lap of communication and computation together with non-blocking collective communication can
be applied.

2.3 Assessing the Benefits

We implemented a benchmark which measures the CPU utilization for different MPI collective op-
erations. The benchmark uses the standard gettimeofday() and getrusage() functionality of
modern operating systems to measure the idle time. It issues collective calls with different message
sizes and communicator sizes. The benchmark methodology is described as pseudocode in List-
ing III.3. The getrusage() call returns system time and user time used by the running process
separately. We chose a high number of iterations (10000) in the inner loop (max_iters, Line 5) to
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Implementation Networks

LAM/MPI 7.1.2 InfiniBand, TCP/IP
MPICH2 1.0.3 TCP/IP
Open MPI 1.1a3 InfiniBand and TCP/IP
OSU MVAPICH 0.9.4. InfiniBand

Table III.1: Tested MPI Implementations

be able to neglect the overhead and relative impreciseness of the system functions. We conducted
the benchmark for different MPI implementations shown in Table III.1.

Many MPI libraries are implemented in a non-blocking manner which means that the CPU
overhead is, due to polling, 100% regardless of other factors. Only LAM/MPI with TCP/IP and
MPICH2 with TCP/IP used blocking communication to perform the collective operations. How-
ever, it is correct to use polling to perform blocking MPI collective operations because, at least for
single threaded MPI applications, the CPU is unusable anyways and polling has usually slightly
lower overhead than interrupt-based (blocking) methods.

We investigated all collective operations for LAM/MPI and MPICH2 and want to discuss the
frequently used MPI_Allreduce (cf. [172]) in detail. Both MPI_Allreduce implementations exhibit
a similar behavior and use only a fraction of the available CPU power for communicators with
more than 8 nodes. MPICH2 causes in the average of all measurement points less than 30% CPU
load while LAM/MPI consumes less then 10%. We see also that the data size plays an important
role because there may be switching points in the collective implementation where the collective
algorithms or underlying point-to-point operations are changed (e.g., 128kb for MPICH2). How-
ever, this overhead includes the TCP/IP packet processing time spent in the kernel to transmit the
messages which is measured with the getrusage() function as system time. User-level, kernel-
bypass, and offloading communication hardware like InfiniBand, Quadrics or Myrinet does not
use the host CPU to process packets and does not enter the kernel during message transmission.
Figure III.3 shows the user-level CPU usage (without TCP/IP processing) for both examples from
above.

It shows that the CPU overhead for MPI_Allreduce, which implies a user-level reduction oper-
ation in our case, is below 10% in the average for MPICH2 and below 3% for LAM/MPI. These
figures show also that the share of CPU idle time grows with communicator and data size. Other
collective operations exhibit a similar behavior.

However, generally speaking, the time to perform a collective operation grows also with com-
municator and data size. This means that the overall (multiplicative) CPU waste is even higher.
Figure III.4 shows the absolute CPU idle time of both implementations, several collective opera-
tions, and a fixed communicated data size with varying communicator sizes. The effect of grow-
ing CPU waste during blocking collectives is clearly visible. Especially the MPI_Alltoall operation,
which usually scales worst, shows high CPU idle times with a growing number of participating
processes.

Figure III.5 shows the absolute CPU idle time of both implementations, for a fixed communi-
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Figure III.3: MPI_Allreduce (user time) overheads for different MPI libraries
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Figure III.4: CPU idle times with varying Communicator Sizes for a constant Data Size of 1kiB

cator size, and varying data sizes. The CPU waste is even higher and scales worse than for the
varying communicator size, nearly linearly with the data size (the figures are plotted with a loga-
rithmic scale).

The results show clearly that, using TCP/IP, more than 70% of the CPU time is wasted in aver-
age during blocking collective operations. We assume that the gap is more than 90% for offloading-
based networks such as InfiniBand, Quadrics orMyrinet which do not process messages on the host
CPU. Absolute measurements show the wasted time per collective which can easily be converted
into wasted CPU cycles. These considerations lead to possible optimizations using non-blocking
collective operations.

2.4 Application Programming Interface

We propose an API for the non-blocking collectives that is similar to that of the blocking collectives
and the former proprietary IBM extension. We use a naming scheme similar to the one used for the
non-blocking point-to-point API (e.g., MPI_Ibarrier instead of MPI_Barrier). In addition, request
objects (MPI_Request) are used for a completion handle. The proposed interfaces to all collective
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Figure III.5: CPU idle times with varying Data Size for 16 Processes

operations are defined in detail in the Appendix. For example, a non-blocking barrier would look
like:

1 MPI_Ibarrier(comm, request ) ;
. . .
/∗ computation, other MPI communications ∗/
. . .

5 MPI_Wait(request , status ) ;

Our interface relaxes the strict MPI convention that only one collective operation can be active
on any given communicator. We extend this so that we can have a huge number (system specific,
indicated by MPI_ICOLL_MAX_OUTSTANDING, cf. [18]) of parallel non-blocking collectives and a
single blocking collective outstanding at any given communicator. Our interface does not introduce
collective tags to stay close to the traditional syntax of collective operations. The order of issuing
a given collective operation defines how the collective-communications traffic matches up across
communicators. Similar to point-to-point communications, progress for these non-blocking collec-
tive operations depends on both underlying system hardware and software capabilities to support
asynchronous communications, as well implementation of these collectives by the MPI library. In
some cases MPI_Test or MPI_Wait may need to be called to progress these non-blocking collective
operations. This may be particularly true for collective operations that transform user data, such
as MPI_Allreduce.
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3 Modelling Non-Blocking Collective Communication

“To show this diagram properly, I would really need a four dimensional screen. However, because of

government cuts, we could manage to provide only a two dimensional screen” – Steven Hawking, (1942) British

Physicist

Modelling of collective operations is an important tool for their implementation and usage. Im-
plementers can develop and prove the optimality of new collective algorithms and users can assess
the overhead and scaling behavior of collective algorithms in their applications. We used modeling
techniques to develop new algorithms in the previous chapter. This chapter usesmodeling to assess
the potential benefits of overlapping communication and computation in collective algorithms.

Several previous works discussed different models for collective operations. Pjesivac-Grbovic
discusses in [170, 171] methods to model MPI collective operations in order to automate optimiza-
tions and select optimized algorithms based on certain parameters. In our work [21], we model
and compare several different MPI_Barrier algorithms and also conclude that models are sufficient
to select switching points for algorithms.

In order to assess the potential performance benefits of using non-blocking collective commu-
nication, we use the previously defined models for optimized collective algorithms. We model dif-
ferent collective operations that reflect the areas of one-to-many, many-to-one and many-to-many
communication. We model MPI_Bcast, MPI_Gather, MPI_Alltoall and MPI_Allreduce. As shown
in [211, 42, 172], these operations are frequently used in real applications. However, our results can
also be applied to all other collective operations.

3.1 Collective AlgorithmModels

The complex interaction between communication and computation in real-world applications re-
quires models to understand and optimize parallel codes. Serial computation models, such as
Modeling Assertions [28], have to be combined with network models such as the LogP [61]. Unfor-
tunately, today’s systems are too complex to be described entirely by an execution or communica-
tion model. It is necessary to assess the model parameters for every real-world system, in the serial
execution case in [28] as well as in the communication case in [62], [5, 24]. Pjesivac-Grbovic et al.
showed in [171] that the latency of collective operations that are implemented on top of point-to-
point messages can be modeled with the LogP model family and we showed in an earlier work [3]
that it is also possible to predict application performance by modeling the communication and
computation separately. Thus, it is crucial to the modeling of parallel applications to have accu-
rate models for the latency of collective operations and the overhead of non-blocking collective
operations.

Precise models for collective operations have been proposed in [171] and for barrier synchro-
nization in [21]. Both studies show that the LogP [61] or LogGP [29] model is able to predict the
communication time sufficiently accurately if the processes enter the collective operation simulta-
neously.

We use a combination of LogGP and LogfP which we call LogfGP. This new model simply adds
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the f parameter to the well known LogGPmodel. The LogfP model and the f parameter have been
discussed in Section 2.1.6 in Chapter II. We also chose not to model all collective operations sepa-
rately because we found that most algorithms are fundamental and can be used to implement many
collective operations. We chose broadcast as an example for a one-to-all operation and allreduce
as an example for an all-to-all operation. We model different algorithms for those two collective
operations and show how the theoretical analysis can lead to new insight regarding the selection
of algorithms either by latency or host overhead. We focus on non-blocking collective operations
and select thus by host-overhead. Please refer to [171] for latency-based selection maps.

3.1.1 Algorithms for MPI_Bcast

As discussed in [171], there are mainly five different algorithms to implement the MPI_Bcast op-
eration. The algorithms are described in detail in [171] and we refer to them as linear, pipeline,
binomial, binary and split-binary in the following. However, the models provided in [171] are
based on several simplifying assumptions that lead to significant simplifications in the blocking
case, e.g., g > o leads to an omission of o if o and g are to be accounted in parallel. In the gen-
eral non-blocking case, those assumptions are not valid because both entities (CPU and network)
are used by the application at the same time. This makes the models for non-blocking collective
communication significantly more complex than the blocking models listed in [171].

We develop models for the linear, segmented pipeline (s indicates the number of segments),
binomial and n-ary binomial algorithms. The other algorithm models show similar trends. In
order to model the LogfGPmodel easily, we introduce the new operator ζ that converts all negative
numbers to zero, for example ζ(4.5) = 4.5, ζ(−3.25) = 0 and ζ(−100.2) = 0. The models for s

segments of size m are

tlinbcast = max{(P − 2)o, ζ(P − f − 2)g}+ (m− 1)G + L + 2o (III.1)

tpipe
bcast = o + max{(s− 1)o, ζ(s− f − 1)g}+ (III.2)

(P − 1)(2o + L + G(m− 1))− o

tbin
bcast ≈ ⌈log2P ⌉ · (2o + L + (m− 1)G) (III.3)

tnbin
bcast ≈ ⌈lognP ⌉ · (ζ(n− f − 1)g + (n + 1)o + L + (m− 1)nG) (III.4)

The LogP communication graphs are shown in Figure III.6. We omitted the G parameter in order
to keep the figure legible.

Figure III.7(a) shows the map of the best performing algorithms (of our selection) for the broad-
cast operation. This map selects the algorithm by their communication latency. The map shows
that the pipelined algorithm performs well on small communicators and large messages, the bino-
mial algorithm should be chosen for larger communicators and smaller messages and the 8-way
binomial algorithm for very small messages. The remaining cases seem well covered by the lin-
ear algorithm. The authors are aware that a segmented pipelining algorithm could perform bet-
ter than the linear algorithm, but generating algorithm-selection maps is not focus of this work.
Figure III.7(b) shows the communication latency and the CPU overhead of a 64kiB broadcast. This
shows that the latency-wise selection would be the pipelined algorithm for small communicators,
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Figure III.6: LogGP Model Graphs for different Broadcast Algorithms
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Figure III.7: Latency and Overlap for different broadcast Algorithms

the linear algorithm for mid-sized communicators and the binomial algorithm for large commu-
nicators. However, the decision is much easier if we base it on the CPU overhead. The binomial
algorithm has the smallest number of message-sends on the critical path and is thus optimal in
most cases (a decision map like in Figure III.7(a) based on CPU overhead would show the binomial
algorithm for nearly all combinations and is thus omitted).

3.1.2 Algorithms for MPI_Allreduce

Pjesivac-Grbovic mainly discusses three different MPI_Gather: recursive doubling, segmented ring
and Rabenseifner’s algorithm. We chose to model the dissemination, n-way dissemination [23] and
segmented ring algorithm for our analysis. Reduction operations have additional CPU overhead,
the computation that is performed in the data. We assume a linear cost model depending on the
data size: t = γ ·m. The system-specific constant γ is the measuredmemory bandwidth (we assume
that the memory access time, not the computation itself, is the limiting factor). The LogGP models
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Figure III.8: LogGP Model Graphs for different Allreduce Algorithms

for the three algorithms are:

tdiss
allreduce = ⌈log2P ⌉ · (2o + L + (m− 1)G + mγ) + ζ((⌈log2P ⌉ − f − 1))g (III.5)

tndiss
allreduce = ⌈lognP ⌉ · ((n + 1)o + L + (m− 1)nG + nmγ) + (III.6)

ζ((⌈lognP ⌉ − f − 1))g

tring
allreduce = (2P − 2) · (2o + L + (

m

P
− 1)G) + ζ(2P − 2− f)g + (III.7)

(P − 1) · m
P

γ.

The LogP communication graphs are shown in Figure III.8. We omitted the G and γ parameters
in order to keep the figure legible. The 8-way dissemination algorithm degenerates to a linear
algorithm for 5 processes; the figure is not shown.

Figure III.9(a) shows the algorithmswith the lowest latency for the allreduce operation. The seg-
mented ring algorithm is preferable for small communicators and relatively large messages while
the dissemination algorithm covers the rest nicely. The 8-way dissemination algorithm should be
used for small messages only. However, a selection based on CPU overhead would prefer the seg-
mented ring algorithm over dissemination for mid-sized and large messages because of the better
balance of the computation. The dissemination performs better for small messages (that can not
be segmented efficiently). Figure III.9(b) shows the latency and overhead for a reduction if 64kiB

data. It shows that overhead of the ring algorithm is much lower than for the other choices.

4 Conclusions

“Mathematics seems to endow one with something like a new sense.” – Charles Darwin, (1809-1882) English

Scientist, Royal Medal 1853

We introduced new sparse collective operations to support arbitrary communication patterns.
This class of collective operations is especially useful for nearest neighbor communication and other
sparse but relatively persistent communication techniques. This improves scalability in comparison
to the current Alltoallv approach and also simplifies programming significantly.

A new set of non-blocking collective operations is proposed to enable overlapping of computa-
tion and communication also for high-level communication patterns. All collective operations can
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Figure III.9: Latency and Overlap for different Allreduce Algorithms

be supported in a non-blocking manner and we demonstrated the potential performance benefit
with MPI benchmarks that showed that the CPU is up to 97% idle during the collective operations.
This CPU time can theoretically be gained back and used for useful computation.

We argue that it is more useful to optimize first for lowCPU overhead and later for lower latency
if collective operations can be overlapped. We model several collective algorithms in the LogfGP
model in order to understand the CPU overheads better. We design new selection criteria and show
selection maps based on CPU overhead for the two collective operations broadcast and allreduce.
Our model reveals new insight into the distribution and total duration of CPU overheads and
interruptions. We also see that the CPUmust be activated frequently in order to ensure progression
of the collective algorithm.
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Chapter IV

Optimized Reference Implementation

“One test result is worth one thousand expert opinions.” – Wernher von Braun, (1912-1977)

German Physicist, National Medal of Science 1975

Concurrency of computation and communication is an important feature of non-blocking col-
lective operations. This means that the communication should ideally progress independently

of the computation. However, InfiniBandTM and many other networks do not allow a full indepen-
dence because communication schedules and protocols have to be executed on the main CPU,
“stealing” cycles from the application. There are two different options to implement support for
non-blocking collective operations and progression. The first way is to process the blocking collec-
tive operation in a separate thread and the second way is to implement it on top of non-blocking
point-to-point operations. Wewill evaluate both implementations in the following. We use a library
approach, e.g., both variants are implemented in a library with a standardized interface which is
defined in [18]. This enables us to run identical applications and benchmarks with both versions.

This chapter summarizes and extends results from the articles “Implementation and Perfor-
mance Analysis of Non-Blocking Collective Operations for MPI” [11], “Accurately Measuring Col-
lective Operations at Massive Scale” [15], “Optimizing non-blocking Collective Operations for In-
finiBand” [9] and “Message Progression in Parallel Computing - To Thread or not to Thread?” [8].
The next section describes the portable reference implementation of all collective operations. Sec-
tion 2 defines a simple benchmarking scheme for overhead measurements and Section 3 describes
a low-overhead implementation for the InfiniBandTM network. Finally, (threaded) progression is-
sues, an improved microbenchmarking scheme and several operating system effects are discussed
in Section 4.



CHAPTER IV. REFERENCE IMPLEMENTATION 1. LIBNBC

1 A collective Communication Library: LibNBC

“Simplicity is prerequisite for reliability.” – Edsger Dijkstra (1930-2002), Dutch computer scientist, Turing Award

1972

The NBC (Non-Blocking Collective) library (short: LibNBC) is a portable implementation of the
non-blocking collective operations proposed as an addition to MPI [18]. The main advantage of
non-blocking collective operations is that they offer a high flexibility by enabling the programmer
to use non-blocking semantics to overlap computation and communication, and to avoid pseudo-
synchronization of the user application.

LibNBC is based onMPI andwritten in ANSI C to enable high portability to many different par-
allel systems. Some MPI implementations offer the possibility to overlap communication and com-
putation with non-blocking point-to-point communication (e.g., Open MPI [76]). Using LibNBC
with such a library enables overlap for collective communications. However, even if the overlap
potential is low, most MPI implementations can be used to avoid pseudo-synchronization [106].

The main goal of LibNBC is to provide a portable and stable reference implementation of non-
blocking collective operations on top of MPI. LibNBC supports all collective operations defined in
MPI and is easily extensible with new operations. The overhead added by the library is minimal
so that a blocking execution (i.e., NBC_Ibcast immediately followed by a NBC_Wait) has similar
performance as the blocking collective operation (MPI_Bcast). However, this is not generally true
because other factors such as overhead and progression are more important for the execution of
non-blocking collective operations. The potential to overlap communication and computation is as
high as the lower communication layers support and support for special hardware operations can
be added easily.

1.1 Implementation

The most basic version of LibNBC is written in ANSI C (C90) to compile with gcc -W -Wall

-ansi -pedantic without warnings or errors. The library uses collective schedules to save the
necessary operations to complete an MPI collective communication. These schedules are built with
helper functions and executed by the scheduler to perform the operation.

1.1.1 The Collective Schedule

A collective schedule is a process-specific “execution plan” for a collective operation. It consists of
all necessary information to perform the operation. Collective schedules are designed to support
any collective communication scheme with the usual data dependencies. A schedule can consist of
multiple rounds to model the data dependencies. Operations in round r may depend on operations
in rounds i ≤ r and are not executed by the scheduler before all operations in rounds j < r have
been finished. Each collective operation can be represented as a series of point-to-point operations
with one operation per round. Some operations are independent of each other (e.g., the data sent
in a simple linear broadcast), and some depend on previous ones (e.g., a non-root, and non-leaf
process in a tree implementation of MPI_Bcast has to wait for the data before it can send to its
children). Independent operations can be in the same round and dependent operations have to be
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1 schedule : := size {round rdelim} round rend | size rend
round ::= num {type targs }

size : := size of the schedule ( int )
5 num ::= number of operations in round ( int )

type : := operation type (enum NBC_Fn_type)
targs : := operation specific arguments ( struct NBC_Args_<type>)
rdelim ::= ’1 ’ ; (char ) , indicates next round
rend ::= ’0 ’ ; (char) indicates next round

Listing IV.1: EBNF-like syntax description of the Schedule Array

in the right order in different rounds.
Definition IV.1: A collective schedule is a process specific plan to execute a collective operation. It

consists of r ≥ 1 rounds and o ≥ 0 operations.

Definition IV.2: A round is a building block of a collective schedule which may consist of o ≥ 0

operations. Rounds are interdependent, round r will only be started if all operations in round r − 1 are

finished. Round 0 can be started immediately.

Definition IV.3: An operation is the basic building block of a collective schedule. It is used to progress

collective operations. Operations are grouped in rounds and executed by the scheduler. Possible data depen-

dencies between operations are expressed in their grouping into rounds.

This schedule design enables coarse-grained dependencies which allow some degree of paral-
lelism and an optimized implementation of the schedule. It is possible to implement automatic and
transparent segmentation and pipelining.

1.1.2 Memory Layout of a Schedule

The easy round-based design of a schedule allows the schedule to be stored contiguously in mem-
ory. This design is cache-friendly; the fetch of the first operation of the round will most likely
also load the following operations. This special design has been used previously to optimize
MPI_Barrier synchronization for InfiniBandTM where the calculation of the communication peers
during the execution was too costly and had been done in advance [23].

The first element of each schedule is the size in bytes, stored as integer value. At least one
round follows the size element. A round consists of a number of operations (= o) and o operation
argument structures. The operation argument structures consist of all operation-specific arguments
and vary in size. A delimiter follows the last operation of each round. A delimiter may be followed
by another round or indicates the end of the schedule. An EBNF-like syntax description of the
schedule array is given in Listing IV.1.

1.1.3 Identifying a Running Collective Operation

A handle (NBC_Handle), which is similar to an MPI_Request, is used to identify running collective
operations, which are called instances in the following.

Definition IV.4: An instance of a collective operation is a currently running operation which has not

been completed by Test or Wait.
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The handle identifies the current state, the schedule, and all necessary information to progress
the collective operation. Each handle is linked to a user communicator. Each user communicator
is duplicated at the first use into a so called shadow communicator. All communication done by
LibNBC is performed on the shadow communicator to prevent tag collisions on the user communi-
cator. A tag, specific to each communicator-instance pair, is also saved at the handle to distinguish
between different ongoing collective operations on the shadow communicator. The handle holds
all information related to outstanding requests (in the current implementation MPI_Requests, but
other (e.g., hardware specific) request types are also possible) and a void pointer to store arbitrary
information needed by the collective routines (e.g., temporary buffers for reductions).

The current state of an instance is determined by the pending requests and the current round
in the schedule. The open requests are attached to the handle and the current round is saved as
an integer offset (bytes) in the schedule array. This means that a single schedule could be used by
many instances at the same time (i.e., can be attached to multiple handles) and may remain cached
at the communicator for future usage (this is not implemented yet).

1.1.4 The Non-Blocking Schedule Execution

The execution of a schedule is implemented in the internal function NBC_Start. It checks if
a shadow communicator exists for the passed user communicator and creates one if necessary.
MPI_Attributes attached to the user communicator are used to store communicator specific data
(shadow comm and tag). Tags are reset to 1 if they reach 32767 (the minimum tag-size in MPI) or
if a new shadow communicator is constructed. The NBC_Start function sets the schedule offset at
the handle to the first round and starts the round with a call to NBC_Start_round.

The function NBC_Start_round issues all operations for the next round (indicated by the han-
dle’s offset). All requests returned by non-blocking operations (like Isend, Irecv) are attached to
the handle and all blocking (local) operations (like Copy, Operation) are executed at this point. The
progress function is called to check if the round can already be finished (e.g., if it only had local
operations).

1.1.5 Progressing a Non-Blocking Instance

We differentiate two kinds of progress. The first kind of progress is done inside the library (e.g., to
send the next fragments). The MPI progress may be asynchronous (e.g., separate thread), or syn-
chronous (user has to call MPI_Test to achieve progress) depending on the MPI implementation.
The second progress is the transition from one round to another. We only analyze operations/al-
gorithms that have a single round in this section. Algorithms with multiple rounds are discussed
in Section 4.

NBC_Test tests all outstanding point-to-point requests for completion. A successful completion
of all requests means that the active round is finished and the instance can be moved to the next
round. The whole operation is finished if the current round is the last round and NBC_OK is
returned. If a next round exists, NBC_Start_round is called after adjusting the handles offset to the
new round. The function returns NBC_CONTINUE if there are still outstanding requests in this
round.
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NBC_Ibcast(1)

NBC_Ibcast(2)

User Thread NBC Thread NBC Thread

NBC_Ibcast(3)

wakeup

add to worklist

Finish(2)

Finish(3)

Finish(1)
set flag 1

set flag 2

set flag 3

NBC_Wait(1)

NBC_Wait(3)

NBC_Wait(2)

wakeup

Figure IV.1: Execution of NBC calls in separate threads

The complete internal and external APIs to use and extend LibNBC are described in Appendix C

1.2 Evaluating MPI Collectives and Threads

The threaded implementation, based on the pthread interface, is able to spawn a user-defined num-
ber of communication threads to perform blocking collective operations. It operates using a task-
queue model, where every thread has its own task queue. Whenever a non-blocking collective
function is called, a work packet (containing the function number and all arguments) is placed into
the work queue of the next thread in a round robin scheme.

The worker threads could either poll their work queue or use condition signals to be notified.
Condition signals may introduce additional latency while constant polling increases the CPU over-
head. We will analyze only the condition wait method in the next section because short experi-
ments with the polling method showed that it is worse in all regards. Since there must be at least
one worker thread per MPI job, at most half of the processing cores is available to compute unless
the system is oversubscribed.

Whenever a worker thread finds a work packet in its queue (either during busy waiting or af-
ter being signaled), the thread starts the corresponding collective MPI operation and sets a flag
after its completion. All asynchronous operations have to be started on separate communicators
(mandated by the MPI standard). Thus, every communicator is duplicated on its first use with any
non-blocking collective and cached for later calls. Communicator duplication is a blocking collec-
tive operation in itself and causes matching problems when it’s run with threads (cf. Gropp et al.
in [87]). The communicator duplication has to be done in the user thread to avoid race conditions,
which makes the first call to a non-blocking collective operation with every communicator block.
All subsequent calls are executed truly non-blocking.

When the user calls NBC_Test, the completion flag is simply checked and the appropriate return
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1 MPI_Gather ( . . . ) ; /∗ warmup ∗/
MPI_Barrier ( . . . ) ; /∗ synchronization ∗/
t0 = MPI_Wtime( ) ; /∗ take time ∗/
for ( i=0; i<reps ; i++) {

5 MPI_Gather ( . . . ) ; /∗ execute benchmark ∗/
}
t1 = MPI_Wtime( ) ; /∗ take time ∗/
MPI_Barrier ( . . . ) ;
time = t1−t0 ;

Listing IV.2: MPPTEST Benchmark Scheme

code generated. A call to NBC_Wait waits on a condition variable. The next section describes a
scheme to benchmark the CPU overhead and the latency of non-blocking collective operations.

2 A Microbenchmarking Scheme for Non-Blocking Collective

Communication

“Part of the inhumanity of the computer is that, once it is competently programmed and working smoothly,

it is completely honest.” – Isaac Asimov, (1920-1992) Russian Chemist

Several benchmarking studies of collective operations exist for different systems [40, 170, 178].
In this section, we discuss and analyze different established measurement methods for collective
operations on parallel computing systems and point out common systematic errors. Our measure-
ment method is derived from the SKaMPI benchmarks [215] and is universal and not limited to
point-to-point based methods or specific algorithms. The following section discusses other estab-
lished benchmark methods.

2.1 Related Work

Different benchmark schemes have been proposed. Currently known methods can be divided into
three groups. The first group synchronizes the processes explicitly with the use of synchronization
routines (i.e., MPI_Barrier). The second scheme, proposed by Worsch et al. in [215], establishes
the notion of a global time and the processes start the operation synchronously. The third scheme
assesses the quality of a collective implementation by comparison to point-to-point operations [188]
and is thus limited to algorithms using point-to-point messages. We investigate several publicly
available benchmarks in the following and characterize them in the three groups.

MPPTEST implements ideas on reproducible MPI performance measurements from [86]. As
described in the article, the operation to measure is executed in a warm-up round before the ac-
tual benchmark is run. The nodes are synchronized with a single MPI_Barrier operation before
the operation is run N times in a loop. A pseudo-code is shown in Listing IV.2. Only the time
measurements at rank 0 are reported to the user.
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1 t0 = TIMER( ) ; /∗ take time ∗/
for ( i=0; i<reps ; i++) {

/∗ execute benchmark ∗/
MPI_Alltoall ( . . . ) ; }

5 t1 = TIMER( ) ; /∗ take time ∗/
MPI_Barrier ( . . . ) ;
time = t1−t0 ;

Listing IV.3: MPBench Benchmark Scheme

1 for ( i=0; i<numbarr; i++)
MPI_Barrier ( . . . ) ;

t0 = MPI_Wtime( ) ; /∗ take time ∗/
for ( i=0; i<reps ; i++) {

5 /∗ execute benchmark ∗/
MPI_Alltoall ( . . . ) ;

}
t1 = MPI_Wtime( ) ; /∗ take time ∗/
time = ( t1−t0)/reps ;

Listing IV.4: Intel MPI Benchmark Scheme

MPBench was developed by Mucci et al. [154]. MPBench does not synchronize at all before
the benchmarks. Rank 0 takes the start time, runs N times the collective operation to benchmark
and takes the end time. A pseudo-code is shown in Listing IV.3.

The timer can use the RDTSC CPU instruction or gettimeofday(). Time measurement is only
performed and printed on rank 0.

Intel MPI Benchmarks (formerly Pallas MPI benchmarks [163]), measure a wide variety of
MPI calls including many collective functions. The code issues a definable number of MPI_Barrier

operations before every benchmark and measures the collective operation in a loop afterwards.
The time needed to execute the loop is taken as a measurement point. The scheme is shown in
Listing IV.4. The benchmark prints minimum, maximum and average time over all processes.

SKaMPI The SKaMPI benchmark uses a time-window based approach, described in [215],
that ensures that all processes start the operation at the same time. No explicit synchronization is
used and the times are either reported per process or cumulative.

2.2 Systematic Errors in Common Measurement Methods

Benchmarking collective operations is a controversial field. It is impossible to find a single correct
scheme to measure collective operations because the variety of real-world applications is high. Ev-
ery benchmark may have its justification and is not erroneous in this case. However, microbench-
marks are often used to compare implementations and to model the influence of the communica-
tion to several applications. Thus, a benchmark should represent the average or at least the majority
of applications. Our model application for this work is a well balanced application that issues at
least two different collective operations in a computational loop (cf. [172]). This model application
would benefit from well balanced collective operations that do not introduce process skew. The
following paragraphs describe common systematic errors done in the measurement of collective
operations. This section is concluded with the selection of a benchmark method. We begin with a
simplification of the LogP model to describe common mistakes.

A simplified LogP model, derived from Culler’s original LogP model [61], is used to model
the network transmissions and effects in collective communication. The LogP model uses four
parameters to describe a parallel system. The parameter L models the network latency and g is
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the time that has to be waited between two packets. The CPU overhead o does not influence the
network transmission and is thus omitted in our simplified model. The number of participating
processes P is constantly four in our examples.

2.2.1 Implementation Assumptions

The implementation of collective communication operations is usually not standardized to pro-
vide as much optimization space as possible to the implementer. Thus, any point-to-point algo-
rithm or hardware-supported operation, that offers the functionality defined in the interface, is
a valid implementation. Some research groups used elaborate techniques (e.g., hardware opti-
mization and/or specialized algorithms) to optimize collective communication on different sys-
tems (cf. [23], [207, 218]). A portable benchmark that uses the collective interface, for example MPI,
can not make any assumptions about the internal implementation.

2.2.2 Results on multiple processes

A second problem is that benchmarks are usually providing a single number to the user, while all
processes benchmark their own execution time. Some benchmarks just return the time measured
on a single node (e.g., the rank 0), some use the average of all times and some the maximum time
of all processes. The decision which time to use for the evaluation is not trivial it is even desirable
to include the times of all ranks in the evaluation of the implementation. Worsch et al. define three
schemes to reduce the times to a single number: (1) the time needed at a designated process, (2)
maximum time on all processes and (3) the time between the start of the first process and the finish
of the last. This list can be extended further, e.g., (4) the average time of all processes or (5) the
minimum time might play a role and is returned by certain benchmarks.

2.2.3 Pipelined Measurements

Another source for systematic errors are pipelining effects that occur when many operations are
executed in a row. A common scheme is to execute N operations in a loop, measure the time
and divide this time by N . This scheme was introduced to avoid the relative high inaccuracy of
timers when short intervals are measured. We show in Section 2.3 that this is not necessary for
high precision timers. An example LogP modeling for MPI_Bcast with root 0, implemented with a
linear scheme, is shown in Figure IV.2(a).

A single execution is much more likely to model the behavior of real applications (multiple suc-
cessive collective operations should be merged into a single one with more data). Both schemes
result in different execution times, e.g., the worst-case (maximum among all nodes) returned la-
tency for a single execution is L + 2g for a single operation and (8g + L)/3 for three successive
operations. The pipelined measurement tends to underestimate the latency in this example.

2.2.4 Process Skew

The LogP models in the previous paragraph assumed that the first operation started at exactly the
same (global) time. This is hardly possible in real parallel systems. The processes often arrive at
the benchmark in random order and at undefined times. Process skew is influenced by operating
system noise [27, 109] or other collective operations (cf. Figure IV.2(a) where rank 0 leaves the
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Figure IV.2: Common Errors in measuring collective operations

operation after 2g and rank 3 finishes only after L + 2g). A LogP example for the influence of
process skew is shown in Figure IV.2(b). The left side shows a random skew pattern where rank 1
and 2 arrive relatively late and do not have to wait for their message while the right side shows a
situation where the root (rank 0 in this example) arrives late and all ranks have to wait much longer
than usual. Process skew can not be avoided and is usually introduced during the runtime of the
parallel program. This effect is well known and several benchmarks use an MPI_Barrier before the
measurement to correct skew.

2.2.5 Synchronization Perturbation and Congestion

The MPI_Barrier operation has two problems, the first one is that this operation may be imple-
mented with any algorithm because it only guarantees that all processes arrived before the first
leaves the call but not that the processes leave at the same time (i.e., the barrier operation may
introduce process skew). The second one is that it may use the same network as other collective
operations, which may influence the messages of the investigated collective operation. An example
with a linear barrier is shown in Figure IV.2(c).

2.2.6 Network Congestion

Network congestion can occur if multiple operations are started successively or synchronization
messages interfere with the measurement. This influences the measured latencies.

2.2.7 Selecting a Benchmark Scheme

The SKaMPI benchmarks avoid most of the systematic errors with the window-based mecha-
nism [215]. This mechanism relies heavily on the assumption, that the difference between the local
clocks does not change (drift) or changes in a predictable way (can be corrected). We analyze the
clock drift in the following sections. Another problemmight be the variation in the latency of point-
to-point messages. This variation is also analyzed and a new fast point-to-point synchronization
scheme is presented. Furthermore, we propose and implement a new scalable group synchroniza-
tion algorithm which scales logarithmically instead of the linear SKaMPI approach.
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2.3 Measurements in Parallel Systems

Several restrictions apply to measurements in parallel systems. One of the biggest problems is the
missing time synchronization. Especially in cluster systems, where every node is a complete and
independent systemwith its own local time source, one has to assume that potentially all processes
of a parallel job run at (slightly) different clock speeds. However, to perform the necessary mea-
surements, we need to synchronize all clocks or have at least the time offsets of all processes to
a global time. It can also not be assumed that the processes start in any synchronous state. To
ensure portability, MPI mechanisms have to be used to synchronize. However, collective oper-
ations semantics do not guarantee any timing, thus, we need to synchronize the processes with
point-to-point operations. Those operations do not guarantee timing either but are less complex
than collective operations (no communication patterns). We analyze local time sources and their
accuracy in the following. This is followed by an analysis of the clock skew in parallel systems and
the distribution of latencies. This analyzes are used to derive a novel and precise synchronization
scheme in the next section.

2.3.1 Local Time Measurement

All time sources in computing systems work in a similar way: They use a crystal that oscillates with
a fixed frequency and a register that counts the number of oscillations since a certain point in time
(for example the system startup). However, the way to access this information can be different.
Some timing devices can be configured to issue an interrupt when the register reaches a certain
value or overflows and others just enable the programmer to read the register.

An important timer in a modern PC is the Real Time Clock (RTC) which is powered by a battery
or capacitor so that it continues to tick even when the PC is turned off. It is used to get the initial
time of the day at system startup, but since it is often inaccurate (it is optimized for low power
consumption, not for accuracy), it should not be used to measure short time differences, like they
might occur in benchmarking scenarios.

Another time-source is the Programmable Interval Timer (PIT). It can be configured to issue
interrupts at a certain frequency (Linux 2.6 uses 1000.15 Hz). These interrupts are used to update
the system time and perform several operating system functions. When using the system time (for
example via gettimeofday()) one must be aware that the returned value might be influenced
by ntp or other time-synchronization mechanisms and that there is a whole software stack behind
this simple system call which might add additional perturbation (i.e., interrupts, scheduling, etc.).

The resolution of the discussed time sources is not high and not accurate enough for the bench-
marking of fast events like single message transmissions. Thus, many instruction set architectures
(ISA) offer calls to read the CPU’s clock register which is usually incremented at every tick. For ex-
ample the x86 and x86-64 ISAs offer the atomic instruction RDTSC call [108] to read a 64 bit CPU tick
register. In fact mostmodern ISAs support similar features. The resolution of those timers is usually
high (e.g., 0.5ns on a 2GHz system). It has to be noted that this mechanism introduces several prob-
lems on modern CPUs. The first issue is caused by techniques that dynamically change the CPU
frequency (e.g., to save energy) such as “Intel-SpeedStep” or “AMD-PowerNow”. Changing the
CPU clock results in invalid time measurements and many other problems. Thus, we recommend
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to disable those mechanisms in cluster systems. A second problem, called “process hopping”, may
occur on multi-processor systems where the process is re-scheduled between multiple CPUs. The
counters on the CPUs are not necessarily identical. This might also influence the measurement.
This problem is also minor because most modern operating systems (e.g., Linux 2.6) offer inter-
faces to bind a process to a specific CPU (e.g., CPU affinity), and in fact, most operating systems
attempt to avoid “process hopping” by default.

2.3.2 Clock Skew and Network Latencies

The crystals used for hardware timers are not ideal with respect to their frequency. They may be a
little bit slower or faster than their nominal rate. This drift is also temperature dependent and has
been analyzed in [124] and [155]. It was shown that this effect is significant enough to distinguish
/ identify single computers and sometimes even the timezone which they are located in. Due to
other effects, such as the NTP daemon that synchronizes every 11 minutes (local time!) by default,
the clock difference between two nodes may behave unpredictable, which will lead to erroneous
results. Therefore the usage of a software independent clock like the TSC is generally a viable
alternative. Of course those effects could have a negative influence on collective benchmarks which
rely on time synchronization, especially if the synchronization is done only once before a long series
of benchmarks. In our experiments it turns out that two clocks (even on identical hardware) always
run at slightly different speeds. Therefore we analyzed the clock skew between various nodes in a
cluster system over a long period of time.

Similar to the clocks, that do not run totally synchronously, we do also expect a variance in
the network transmission parameters for different messages. The most important parameter for
benchmarks and synchronization is the network latency (or round-trip-time (RTT) in ping-pong
benchmarks). Thus, we have to analyze the variance of RTT for different networks.

We used a simple ping-pong scheme to determine the RTT: Rank 1 sends its local time t1 as
an eight byte message with a blocking send to rank 2. As soon as rank 2 has completed the cor-
responding recv, it sends its local time t2 back to rank 1. After rank 1 is finished receiving that
timestamp it checks his local time t3. To use a portable high-precision timing interface and to
support many network interconnects, the benchmark scheme was implemented in the Netgauge
performance measurement framework [12]. A pseudo-code is shown in Listing IV.5. The difference
between the first and the second timestamp obtained by node 1 is the roundtrip time (trtt ← t3− t1).
On our x86 systems, we used RDTSC in the take_time() macro because this gives us a high
resolution and accuracy. However, we double-checked our findings with MPI_Wtime (which uses
gettimeofday() or similar functions) to avoid common pitfalls described in Section 2.3.1.

This measurement was repeated 50,000 times, once every second over a period of 14 hours. We
gather data to get information about the RTT distribution and also the clock skew between two
nodes. Thus, we define the difference between t1 and t2 as clock-difference (tdiff ← |t1 − t2|) and
collect statistical data for the clock differences too.

The benchmark results, a histogram of 50,000 RTTmeasurements in 200 uniform bins, for the la-
tency (RTT/2) distributions of InfiniBand, Myrinet, and Gigabit Ethernet are shown in Figure 2.3.2.
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1 i f (rank == 0) {
t1 = take_time ( ) ;
module−>send(1 , &t1 , 8) ;
module−>recv(1 , &t2 , 8) ;

5 t3 = take_time ( ) ;
} else {
module−>recv(0 , &t1 , 8) ;
t2 = take_time ( ) ;
module−>send(0 , &t2 , 8) ;

10 }

Listing IV.5: The RTT Benchmark
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Figure IV.3: Distribution of RTT

The clock skew results of 6 different node pairs on our test systems are shown in Figure IV.4(a).
We see that the clock difference behaves relatively linear and can thus be corrected by a linear
error function. That way synchronization error below 1 ppm (parts per million) can be achieved.
Without linear error correction the error can be up to 300 ppm. The detailed methodology that is
used to determine the clock difference is described in the next section.

2.4 Time Synchronization

We describe a new time synchronization schemes that bases on our analysis of clock skew and la-
tency variation. We begin by defining a method to synchronize two processes and derive a scalable
scheme to synchronize large process groups. We use this schemes to synchronize the processes in
our collective benchmark NBCBench [11] that uses a window-based benchmark scheme.

2.4.1 Synchronizing two Processes

A clock synchronization between two peers is often accomplished with a ping-pong scheme similar
to the one described above: Two nodes calculate their clock difference so that the client node knows
his clock offset relative to the server node. This offset can be subtracted from the client’s local time
when clock synchronization is required. However this procedure has certain pitfalls one has to be
aware of.

Many implementations of the scheme described above, for example the one found in the
SKaMPI code, use MPI_Wtime to acquire timestamps. This is of course the most portable solution
and works for homogeneous nodes as well as heterogeneous ones. But you can not be sure which
timing source is used by MPI_Wtime, for example the usage of gettimeofday() is, due to its
portability, quite likely. But the clock tick rate of this clock can vary (cf. Section 2.3.1). We showed
in Section 2.3 that a linear correction can be used for nodes running at different clock speeds if
software errors (e.g., NTP) are avoided.

We also showed in Section 2.3 that measured network latencies are varying with an unpre-
dictable distribution. The effect of this pseudo-random variation of the latency to the clock syn-
chronization has to be minimized. Using the average or median of the clock difference, like many
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Figure IV.4: Different time-synchronization parameters

codes do today, is not a viable option because, as you can see in the histograms, they vary a lot. A
better approach is the measurement of roundtrip time and clock difference at the same time and
only use the clock differences obtained in measurements which showed a latency below a certain
threshold.

The distribution of roundtrip times can not be known in advance. That implies that the thresh-
old can not be selected easily. We chose a different approach to ensure accurate measurements.
For the measurements in Section 2.3, we used only the 25% of the results that had the smallest
roundtrip time. However, this requires a huge number of measurements to be conducted every
time which makes this scheme unusable for online measurements. For this purpose, we developed
another approach. We conduct as many measurements as we needed so that the minimal observed
roundtrip time does not become smaller for N consecutive measurements.

While this scheme is guaranteed to converge, it is not possible to predict how many measure-
ments have to be conducted for a certain N . It is also not possible to select an N mathematically
that ensures a certain quality of the observed “minimal” roundtrip time. Thus, we performed a
simulation to find suitable values for N for different interconnection networks.

The simulation takes a random roundtrip time from our list 1 and checks if it was bigger than the
smallest one observed in this run. If this condition is met N consecutive times the run is completed
andwe compute the difference between the smallest RTT in ourwhole dataset and the one observed
in the current run. The averaged values for several networks are graphed in Figure IV.4(b). It shows
that the quality of the measurement and the measurement costs (i.e., the number of measurements)
grow relatively independent of the network withN (the costs for the different networks look nearly
identical on the double-logarithmic plot, thus we plotted it only once). However, the quality of the
results grows pretty fast for smallN and seems to “saturate” around 5%. To support every network,
we chose N = 100, which has an error of less than 10% for our tested networks and converges after
approximately 180 measurements.

1we used the 50,000 RTTs gathered as described in Section 2.3
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2.4.2 Scalable Group Time Synchronization

Collective time synchronization means that all nodes know the time difference to a single node so
that every node can compute a global time locally. Rank 0 is conveniently chosen as global time
source, i.e., after the time synchronization, every rank knows the difference between its own clock
and rank 0’s clock. This enables globally synchronous events. For example, rank 0 can broadcast
a message that some function is to be executed at its local time x. Every rank can now calculate its
local time when this operation has to be executed.

A common scheme to synchronize all ranks is to start the point-to-point synchronization proce-
dure between rank 0 and every other rank. This disadvantage of this scheme is that it takes P−1

synchronization steps to synchronize P processes. We propose a new and scalable time synchro-
nization algorithm for our scalable benchmark. Our algorithm uses ⌈log2P ⌉ communication steps
to synchronize P processes.

The algorithm divides all ranks in two groups. The first group consists of the maximum power
of two ranks, t = 2k ∀ k ∈ N , t < P beginning from rank 0 to rank t−1. The second group includes
the remaining ranks t to P−1.

The algorithm works in two steps, the first group synchronizes with a tree-based scheme in
log2t synchronization rounds. The point-to-point scheme, described in Section 2.4.1 is used to syn-
chronize client and server. Every rank r in round r acts as a client if r mod 2r = 0 and as a server if
r mod 2r = 2(r−1). All clients r use rank r + 2(r−1) as server and all servers rank r− 2(r−1) as client.
All client-server groups do the point-to-point synchronization scheme in parallel. Every server
gathers some time difference data in every round. This gathered data has to be communicated at
the end of every round. To be precise, a server communicates 2(r−1)−1 time differences to its client
at the end of every round. The clients receive the data and update their local differences to pass
them on in the next step. After log2t rounds, rank 0 knows the time differences to all processes in
group 1.

In the second step, all processes in group 2 choose peer r− t in group 0 to synchronize with. All
nodes in group 2 synchronize in a single step with their peers and send the result to rank 0 which
in turn calculates all the time offsets for all nodes and scatters them accordingly. After this step,
all nodes are time synchronized, i.e., know their time difference to the global clock of rank 0. The
whole algorithm for an example with P = 7 is shown in Figure IV.5(a).

Figure IV.5(b) shows the difference in synchronization time between a linear scheme and the
proposed tree-like algorithm. The benchmark, which measures the synchronization time at rank 0,
was run on the Odin cluster at Indiana University, which consists of 128 Dual Opteron dual-core
nodes. To simulate a real application, we used all available cores of the machine. The synchroniza-
tion time is greatly reduced (up to a factor of more than 16 for 128 processes) with the new scheme.
The gain of the new method is even higher for Gigabit Ethernet.

2.5 Measuring Non-Blocking Collectives

We developed a micro-benchmark to assess the performance and overlap potential of the MPI
threaded and point-to-point implementation of non-blocking collective operations. This bench-
mark uses the interface described in Section 1. For a given collective operation, it measures the
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Figure IV.5: New Time Synchronization Method

time to perform the blocking MPI collective, the non-blocking collective in a blocking way (with-
out overlap) and the non-blocking collective interleaved with busy loops to measure the potential
computation and communication overlap. In addition, the benchmark measures the communica-
tion overhead of blocking and non-blocking collective operations. Overhead is defined as the time
the calling thread spends in communications related routines, i.e., the time the thread can’t spend
doing other work. The communication overhead of blocking operations is the latency of the col-
lective operation, because the collective call does not complete until the collective operation has
completed locally.

Using both implementations and the benchmark results, four different times are measured:

• Blocking MPI collective in the user thread (MPI/BL)
• BlockingMPI collective in a separate communications thread to emulate non-blocking behav-
ior (MPI/NB)

• Non-blocking NBC operation without overlap, i.e., the initiation is directly followed by await
(NBC/BL)

• Non-blocking NBC operation with maximum overlap, i.e., computing at least as long as an
NBC/BL operation takes (NBC/NB)

We benchmarked both implementations with Open MPI 1.2.1 [76] on the Coyote cluster system
at Los Alamos National Labs, a 1290 node AMD Opteron cluster with an SDR InfiniBand network.
Each node has two single core 2.6 GHz AMD Opteron processors, 8 GBytes of RAM and a single
SDR InfiniBand HCA. The cluster is segmented into 4 separate scalable units of 258 nodes. The
largest job size that can run on this cluster is therefore 516 processors.

Figure IV.6 shows the results of the microbenchmark for different CPU configurations of 128
processes running on Coyote. The threaded MPI implementation allows nearly full overlap (frees
nearly 100% CPU) as long as the system is not oversubscribed, i.e., every communication thread
runs on a separate core. However, this implementation fails to achieve any overlap (it shows even
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negative impact) if all cores are used for computation. LibNBC, based on non-blocking MPI point-
to-point allows decent overlap in all cases, even if all cores are used for computation. Those results
and the lack of control over the MPI collective implementation leads us to the conclusion that
a separate implementation of non-blocking collective operations is necessary to achieve highest
performance. We will discuss threaded progression issues with LibNBC later in Section 4. We
decided to optimize LibNBC for InfiniBandTM to achieve maximum performance in the threaded
and non-threaded case. The next section describes our InfiniBandTM-optimized implementation in
the non-threaded case.

3 Case-Study: Optimized Implementation for InfiniBand

“For a successful technology, reality must take precedence over public relations, for Nature cannot be

fooled.” – Richard Feynman, (1918-1988) American Physicist

The portable version of LibNBC is built on top of non-blocking MPI point-to-point operations.
As a result, the overhead and the achievable overlap are directly dependent on the overhead
and (independent) progress of MPI_Isend and MPI_Irecv in the underlying MPI library. Several
benchmarking studies about overlap [103, 106, 129] show controversial results for different MPI
libraries. However, the studies do mainly agree that independent progress is limited in current
open-source MPI libraries. Especially the analysis of applying overlapping techniques to paral-
lel Fast Fourier Transform led to controversial results [26, 50, 68, 81], which is most likely due to
the different abilities of the underlying communication system to perform asynchronous message
progression. As we will discuss below, our own experience was similar: the overlap potential of
current open-sourceMPI libraries is limited. Thus, we decided to implement our own InfiniBandTM

transport layer to leverage the full hardware features discussed in Chapter II. First, we define func-
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tions needed by LibNBC as a subset of the functionality that MPI offers and then, we describe an
InfiniBandTM-optimized implementation of this subset.

3.1 LibNBC Requirements

The architecture of LibNBC has been discussed in Section 1. However, the overlap potential is
limited by this design, mainly by two factors [11]. First, the user has to call NBC_Test periodically
to advance the internal state of the scheduler (start new communication rounds) and second, the
overlap is limited by the underlying MPI library.

The first problem could be solved if the scheduler was executed in a separate progress thread.
However, this would require a thread-safe (MPI_THREAD_MULTIPLE) MPI library and thus limit
portability significantly. The second problem, the underlying communication system, causes a
higher performance loss. This could be overcome if another transport layer would be used to
send and receive messages asynchronously. It would be beneficial if this transport layer ensures
asynchronous progress. However, the MPI standard does not define a clear progress rule and the
support for asynchronous progress is limited.

The first step in optimizing LibNBC for a particular network like InfiniBand would be to use the
low-level network interface in a way that enables highest overlap, full asynchronous progress and
is optimized for the needs of LibNBC. Not all features of MPI are needed by LibNBC, for example,
the MPI library needs to implement a rather complicated protocol to support MPI_ANY_SOURCE

which is not needed by LibNBC. The requirements of LibNBC are listed in the following.

• non-blocking send is used to start a send operation and should return immediately (low
overhead)

• non-blocking receive is used to post a receive and should return immediately (low overhead)
• request objects are needed to identify outstanding communications. All request objects have

to be relocatable!
• communication contexts aka communicators are used as a communication universe to rep-

resent MPI communicators passed by the user
• message tags are used to differentiate between multiple different outstanding collective op-

erations on a single communicator
• message ordering message with the same tag must match in the receiver side in the order

they were issued on the sender side
• test for completion this test should be non-blocking and specific to a request object. It might
be used to progress the communication. However, fully asynchronous progress is preferable.

• wait for completion is optional (can be a busy test), but might be used for different optimiza-
tions (e.g., lower power consumption by using blocking OS calls)

Having defined the requirements of LibNBC, we will briefly describe MPI libraries for the
InfiniBandTM network in the next section.
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3.2 MPI Implementations for InfiniBand

Two popular open-source MPI implementations for InfiniBand, Open MPI and MVAPICH, ex-
hibit similar performance characteristics. Neither implementation offers asynchronous progress
(a progress thread) of outstanding messages. The two-sided semantics of MPI force the imple-
menter to implement a protocol where the sender has to wait until the receiver posted the re-
ceive request because the message size is not limited (this prevents the usage of pre-posted re-
ceive buffers). This protocol is commonly called “rendezvous protocol”. Another MPI feature,
the MPI_ANY_SOURCE semantics, force the implementation to perform at least three message
exchanges for every large message [186].

All benchmarks are conducted on the Odin cluster at Indiana University. Since the investigated
MPI libraries don’t have (fully) asynchronous progress for large messages, the user-program has
to progress the requests manually. The only way to progress in a fully portable way is to test ev-
ery outstanding request for completion because the MPI standard mandates that repeated calls of
MPI_Test must complete a request eventually. However, calling MPI_Test during the computation
is not only a software-technological nightmare (passing the requests down to the computation ker-
nels) but is also a source of two kinds of significant overhead. The first source of overhead is simply
the time spent in MPI_Test itself. The second overhead source is less obvious but more influential.
Calls to libraries (e.g., BLAS [130]) must be split up into smaller portions which, first, destroys code
structure, and, second, might lower efficiency (i.e., cache efficiency, the cache is also polluted by
the calls to MPI_Test). Thus, calling MPI_Test is not a feasible option. However, not calling any
test with the MPI implementations results simply in no overlap at all (see analyses in the following
section).

Thus, the user of the current LibNBC is forced to perform test calls in the application. Accept-
ing this, the user faces another problem because the decision of when and how often MPI_Test

should be called is non-trivial. Too many calls cause unnecessary overhead and not enough calls
will not progress the library and causes unnecessary waiting. It is easy to show that the optimal
“test-patterns” depend on the protocol used by the MPI library and therewith on the library itself.
Given this complexity that an application programmer faces today, he usually just applies a simple
heuristic of calling test when it is convenient or not at all. However, overlap performance in this
case is clearly suboptimal.

We will analyze different test strategies in the following section with the goal of deriving better
heuristics.

3.2.1 Open MPI Message Progression for LibNBC

We use LibNBC to analyze the progression strategies. LibNBC’s scheduler calls MPI_Testall on all
outstanding requests related to the NBC_Handle that NBC_Test is called with. Thus, the test behav-
ior is transparent. We extended our benchmark NBCBench which was first introduced in Section 2
to support different test strategies. NBCBench follows the principles for collective benchmarking
described in [86, 215], [15] to ensure highly accurate results. The benchmark is run twice for every
combination of message size and communicator size. The first run determines the time that the
(blocking) execution takes and the second run executes a computation of the length of the first run
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Figure IV.7: CPU overhead of NBC_Ialltoall with Open MPI

between init and wait of the collective communication. The implemented test strategy issues N

tests in equidistant times during the simulated computation. N is a function of the message size
and therewith indirectly of the transfer time, it is computed as

N =

⌊
size

interval

⌋

+ 1

For example, if the datasize is 4096 bytes and the interval is 2048 bytes, the benchmark issues one
test at the beginning, one after 50% of the computation and one at the end. The test-interval is
chosen by the user.

We chose two collectives that are not influenced by the missing asynchronous progress of
LibNBC itself, but represent a common subset. The first operation, NBC_Igather, represents a
many-to-one operation while the second operation, NBC_Ialltoall represents the group of many-
to-many collectives.

We benchmarked different test-intervals (0 for no tests, 1024, 2048, 4096 and 8192) for
NBC_Igather and NBC_Ialltoall for 16 and 64 nodes. We analyzed two different memory regis-
tration modes of OpenMPI, leave pinned (where the memory is cached in a registration cache) and
no leave pinned (the memory is registered in a pipelined way to overlap registration and commu-
nication) [186].

Figure IV.7(a) and IV.7(b) show the results of the overhead benchmark with Open MPI
1.2.4/openib on 16 and 64 nodes respectively.

The overhead is defined as the time that is spent for communication. This is not the latency, but
the sum of the time spent in initialization (e.g., the call to NBC_Igather call), testing (NBC_Test)
and the waiting time at the end (NBC_Wait). Thus, the benchmark models the ideal overlap if
all communication can be overlapped. The cases where no tests were performed were equal to
the blocking execution of MPI_Alltoall in this scenario (no overlap at all). The optimal test intervals
differ between 16 and 64 nodes. While, on 64 nodes, testing every 1024 bytes seems most beneficial,
a test-interval of 8192 bytes performs better on 16 nodes.
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Figure IV.8: CPU overhead of NBC_Igather with Open MPI

The results for NBC_Igather on 16 and 64 nodes, shown in Figure IV.8(a) and Figure IV.8(b),
show also different optimal test-intervals. It is even more complicated because a test-interval of
2048 bytes seems better for several message sizes. Thus, we can conclude that the optimal test
strategy does not only depend on the MPI implementation, but also on the message size and com-
municator size. A simple heuristic does not seem feasible. However, testing itself is suboptimal for
several reasons, thus we should focus on different strategies.

This section has shown that even if the application programmer is willing to progress the MPI
manually, the selection of an optimal strategy is highly non-trivial (and not likely to be performed
by a developer). Thus, we decided to implement a library (LibOF) that offers all necessary features
to LibNBC directly on top of InfiniBandTM (the OFED verbs interface). The design and implemen-
tation of this library is described in the next section.

3.3 Implementation of LibOF

Many MPI implementations are tuned for microbenchmark performance of the blocking
Send/Recv operations. Thus, things like minimal CPU overhead are often neglected to achieve
higher blocking performance. Only some implementations, like MVAPICH [195], optimize for
overlap and often need to be enabled explicitly. In the design of LibOF, we did not focus on
microbenchmark performance but we tried to minimize the CPU overhead (and thus maximal
overlap). Thus, our blocking microbenchmark results are expected to be slightly worse than Open
MPI’s. Measurements with blocking communication showed that ourmicrobenchmark latency and
bandwidth lie within a 5% margin of Open MPI’s. Plots of those results can just be omitted.

In addition to the low overhead of the calls themselves, we also have to ensure that there is no
need to call them often. To achieve this, we have to design protocols that enable themaximum asyn-
chronity between the calling program and the InfiniBandTM network which offers asynchronous
progress.

The library uses MPI communicators as communication context. It attaches it’s data as an at-
tribute to every communicator. This communicator-specific structure stores all peer-specific in-
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formation for this communicator and is initialized at the first use of this communicator. Due to
the InfiniBandTM connection establishment mechanisms, the first call with every communicator is
blocking and needs to be performed by all ranks in the communicator to avoid deadlocks.

Orienting on currentMPI implementations, we decided to implement an Eager and Rendezvous
protocol in order to achieve the blocking performance. Those protocols will be described in the
following.

3.3.1 Eager Protocol

Our Eager protocol is designed to proceed completely asynchronously of the calling program.
Every peer has a number of buffers that can store the eager message, its size the tag and some
protocol information. Those peer-specific buffers are registered during communicator initializa-
tion and the necessary data (r_key, address) is exchanged. When a new send operation is
initiated with OF_Isend, all necessary data is attached to the request, which is set to the status
EAGER_SEND_INIT, and the function returns to the user. The first test call with this request copies
the data into a pre-registered send-buffer (if available) and posts a signaled RDMA_WRITE send re-
quest to the peer’s SQ. The send-buffer is a linear array in memory and a tag of −1 marks an entry
as unused. To find an unused buffer, the array is scanned for a tag equal to−1 and the buffer-index
is attached to the request. The WR id is set to the address of the request so that the buffer can be
freed (tag set to −1) when the WR completes on the send side. OF_Irecv attaches the arguments
to the request and sets the request’s status to RECV_WAITING_EAGER. Every test on a request with
this status scans the eager array for the tag. It copies the data in the receive buffer if the tag is found
and notifies the sender that the receive buffer can be re-used. The notifications (EAGER_ACKs) are
piggybacked (in the protocol information) to other eager messages or sent explicitly if more than a
certain number of eager buffers are used.

3.3.2 Rendezvous Protocol

Our rendezvous protocol differs from the protocol used in any MPI implementation because
LibNBC does not require a receive from any source. Thus, we can drive a receiver-based proto-
col where the receiver initiates the communication and the sender is passive until it is triggered.
The receiver attaches all necessary information to the request and sets it to RNDV_RECV_INIT dur-
ing OF_Irecv function. The first test on this request registers the receive buffer, packs tag, r_key
and address into a pre-registered RTR message buffer. This buffer is then sent with RDMA_WRITE
to a pre-registered location at the sender and the request is set to RECV_SENDING_RTR. The RTR
send buffer is freed with a similar mechanism as the eager send buffer. OF_Isend sets the re-
quest’s status to SEND_WAITING_RTR after attaching the arguments to the request and registering
the send memory. A test on the sender-side scans the RTR array for the request’s tag. If the tag is
found, it posts the RDMA_WRITE_WITH_IMM send request to its local SQ and sets the request status
to SEND_SENDING_DATA. A receive request is finished when the receiver received the data.

3.3.3 Optimizing for Overlap

Optimizing for overlap means minimizing the CPU overhead and maximizing the asynchronous
InfiniBandTM progress. We minimize the CPU overhead by using our optimized protocols that
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only use a minimal number of operations to send and receive messages. For example, we use only
a single CQ for send and receive requests because polling a CQ is relatively expensive [20].

Achieving the maximum asynchronity is easy in the case of the eager protocol and tricky in the
case of rendezvous. A first simple optimization, called test-on-init in the following, is to call the
first test in the send of the eager protocol and the receive in the rendezvous protocol during the
OF_Isend and OF_Irecv functions respectively. This hands the (ready) message immediately to
the InfiniBandTM network and does not introduce unnecessary waiting until the first test is called
by the user. However, it obviously increases the CPU overhead in those functions.

The test-on-init optimizationmakes the progress in the eager protocol completely asynchronous
(no test is necessary to “push” messages). However, the rendezvous protocol does still need a
test on the sender-side to send the message after the RTR arrived. Thus, no progress will happen
before the test. The optimal time between the OF_Isend and the first test is also not trivially
determinable (it would be a single latency if receive and send were started at the same global
time). A simple approach would be to poll test until the RTR message has arrived, but this might
introduce deadlocks because OF_Isend would depend on the receiver. We decided to implement
a timeout-based mechanism that polls only a limited time to avoid deadlocks and will refer to it
later as “wait-on-send”. However, this mechanism increases the CPU overhead of the rendezvous
send drastically. We will discuss techniques to mitigate this after we analyzed and compared the
influence in the next section.

3.4 Performance Results

We compare the overhead and overlap of our implementation to Open MPI’s overhead with dif-
ferent techniques. We used two different microbenchmarking tools, Netgauge and NBCBench to
assess raw performance.

3.4.1 Netgauge

We extended Netgauge with a module to use LibOF as communication channel and added a new
communication pattern which assesses the overheads of non-blocking communication. The mod-
ule’s implementation is trivial and just maps Netgauge’s (blocking and non-blocking) send/recv
and test functions to OF_Isend, OF_Irecv and OF_Test. The communication pattern “nbov”
does a simple ping-pong and measures the times to issue the non-blocking send or receive calls
and loops on test until the operation succeeds. Additionally, it takes the time for all calls to test
and divides them by the number of issued tests to get a rough estimation for the average time
for the test operation. We use the Netgauge’s high-precision timers (RDTSC [108]) to benchmark
single messages and repeat the ping-pong procedure multiple times (1000) and average the results
afterwards.

We ran our new pattern with Open MPI and LibOF to determine the overheads. The Isend
overhead is shown in Figure IV.9(a). We set the eager protocol limit to 255 bytes for LibOF and
Open MPI. LibOF without test-on-init performs best because it does not start any operation during
the Isend. The wait-on-send adds a huge overhead to every send operation as expected.

The Irecv overheads are shown in Figure IV.9(b). The wait-on-send and test-on-init show the
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Figure IV.9: Isend and Irecv Overheads

same performance because wait-on-send implies test-on-init and the receiver side is not different.
The overhead of registering the memory and sending the RTR message can be seen when the pro-
tocol is switched to rendezvous. It is still not clear if the minimization of the send/recv overhead is
more important than the minimization of the test overhead. The test overheads lie in a range from
0.1 (rendezvous) to 2 (eager) microseconds.

3.4.2 Optimizing Wait-On-Send

We saw in the previous Section that wait-on-send adds a huge constant CPU overhead permessage.
LibNBC usually issues many messages at the same time (dependent on communicator size) so
that this overhead adds up per message. To mitigate this effect and since we have transparent
access to our implementation, we implemented a hook OF_Startall in LibOF that progresses
multiple send requests until they leave the status SEND_WAITING_RTR. Thus, the overhead (which
is basically the waiting time for the RTR to be transmitted) is only paid once for multiple messages.
The OF_Startall is called by LibNBC directly after a new round is started and has also a timeout
mechanism to prevent deadlocks.

3.4.3 NBCBench

We use NBCBench again to compare our implementation with the best results (with the “optimal”
test interval) achieved with Open MPI (cf. Section 3.2.1). We ran the same test-intervals as previ-
ously used with and without test-on-init. We ran the wait-on-send implementation without tests
because it is designed to run asynchronously and test would only add overhead.

The results for NBC_Ialltoall on 16 and 64 nodes are shown in Figure IV.10(a) and IV.10(b) respec-
tively. The results indicate that our wait-on-send implementation (the optimized version) performs
best in nearly all cases. The 64 node case where test-on-init, with tests every 8192 bytes, performs
better lies in the small message range where blocking collective operations are faster (the overhead
of generating the schedule is significant for small messages, cf. [11]).

Similar results can be found in Figures IV.11(a) and IV.11(b) which shown the comparison for
NBC_Igather on 16 and 64 nodes respectively.
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Figure IV.10: NBC_Ialltoall overheads with LibOF
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Figure IV.11: NBC_Igather overheads with LibOF

All the benchmarks and results in this section have been gathered with LibNBC’s non-blocking
collectives. Figure IV.12 compares the Performance of NBC_Ialltoall (A2A) and NBC_Igather (GAT)
to the highly optimized blocking MPI implementations [193].

3.5 Applicability to 10 Gigabit Ethernet

Many high-performance 10 Gigabit Ethernet networks support iWARP in hardware. The commu-
nication with the iWARP stack is implemented with the OpenFabrics Verbs interface. Thus, the
same strategies used to optimize LibNBC for InfiniBandTM can be used to optimize for 10 Gigabit
Ethernet and should result in similar performance. The LogGP parameters allow a quantification
of the remaining CPU overhead. Measurements for an adapter that supports iWARP in hardware
are presented in Section 2.4 in Chapter II. However we do not have access to a reasonable number
of 10 Gigabit Ethernet cards to perform measurements with LibNBC.
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Figure IV.13: Different Progression Strategies

4 Communication Progression Issues

“Technology presumes there’s just one right way to do things and there never is.” – Robert Pirsig, (1928)

American philosopher

After we discussed and optimized point-to-point progression for InfiniBandTM in the previous
section, we analyze different fully asynchronous progression schemes in this section. To achieve
full asynchronity, we leverage threads to progress the state of LibNBC. This would ideally result in
fully-asynchronous progression as shown in Figure IV.13(a).

A common assumption is that the progress just happens in the background without user in-
tervention. While this might be true for some communication libraries or systems, there are cases
where the user needs to progress the messaging subsystem manually. An easy way to do this
for MPI is to call MPI_Test as described in the previous section. A high quality implementation
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should ensure fully asynchronous progress whenever possible. In this section, we analyze and
evaluate different options for message progression at the point-to-point and collective level. First,
we discuss well-known strategies to implement point-to-point messages and to interact with the
communication hardware.

4.1 Messaging Strategies in Communication Middleware

To discuss message progression schemes efficiently, we introduce common messaging protocols
and implementation options. Most MPI libraries implement two different protocols to transmit
messages. Depending on the message size, either an eager or a rendezvous protocol is selected to
implement the message transmission. Eager transmissions send the message without synchroniza-
tion to the receiver where it is buffered until the application process receives it. The rendezvous
protocol delays the message transmission until the receive process has posted the receive opera-
tion to the library. Another option is to use pipelined message transmission in the rendezvous
protocol [186].

These protocols build on single message sends. The eager protocol sends only one message
from the sender to the receiver. However, the rendezvous protocol requires at least two synchro-
nization messages and the actual data transmission, which might be pipelined and thus consist of
many send operations. Different strategies to send those messages are based on the two simple
operating system (OS) concepts, polling and interrupt. Most middleware systems only implement
polling mode (i.e., the program spins on the main CPUwhile querying the hardware) for user-level
messaging to enable OS bypass. The other option, interrupts (i.e., the process enters the operating
system and frees the CPU until a message arrives asynchronously) requires interaction with the
OS. It is assumed that the necessary syscall (privilege change) to enter the operating system code is
rather expensive and thus, many modern messaging systems focus on OS-bypass schemes where
all communication is performed in userspace. Thus, the polling based approach delivers, due to OS
bypass, a slightly lower point-to-point latency and is therefore used in common high-performance
MPI libraries for InfiniBand such as Open MPI and MVAPICH.

A more complex issue is the development of non-blocking high-level communication routines
that involve interactions between multiple processes. Similar overlapping principles than in the
point-to-point case can be used with those operations. However, the optimization for overlap is
much more complicated because the communication protocols and algorithms are becoming sig-
nificantly more complex than in the point-to-point case. Thus, we focus on the more complicated
case to analyze the overlap of non-blocking collective operations in our work which of course also
covers point-to-point progression.

4.2 Message Progression Strategies

Three fundamentally different messaging strategies can be found in parallel systems. A common
strategy is to enforce manual progression by the user. This is often perceived as no progression
because the programmers do not progress or can not progress the library manually. A second strat-
egy is the hardware-based approach where the message handling is done in the network interface
card. The third approach, using threads for progression, is often discussed as the “silver bullet”
but it has not found widespread adoption yet.
Torsten Höfler 103



CHAPTER IV. REFERENCE IMPLEMENTATION 4. PROGRESSION ISSUES

4.2.1 Manual progression

This scheme is the simplest to implement from the MPI implementer’s perspective because there
is no asynchronous progress. Every time, the user calls MPI_Test with a request, the library checks
if it can make any progress on this request. Thus, the complete control and responsibility is given
to the user in this case. There are several problems with this approach. The biggest problem is the
opaqueness of the MPI library, i.e., the user does not know about the protocol and the status of a
specific operation. Thus, for portable programs, he has to assume the worst case for asynchronous
progress, the pipeline protocol, where he has to call MPI_Test to progress every fragment in order
to achieve good overlap. However, the missing status information forces the user to adopt a black
box strategy.

In the previous section, we proposed a black box testing scheme that issues N tests during a
message transmission; the scheme is shown in Figure IV.13(b).

4.2.2 Hardware-based progression

A possible solution to ensure full asynchronous progress is to do the protocol processing in the
communication hardware. The Myrinet interconnection network offers a programmable network
interface card (NIC) and several schemes have been proposed to offload protocol processing and
message matching on this external CPU [118]. A similar offload scheme was proposed for Ethernet
in [187]. Some proposals, such as [219], also implement NIC-based message broadcast schemes.
The relatively simple barrier operation has also been implemented with hardware support [218].
Other schemes [214, 48] support collective operation offload for some operations but impose some
limitations. However, none of those implementations allow overlap because they only offer a block-
ing interface.

4.2.3 Threads for Message Progression

Asynchronous progression threads have often been stated as a silver bullet in future work, but they
are not widely used. Adoption might have happened because the threaded programming model
puts a huge burden on the system software implementer because the whole driver infrastructure
and all libraries must be implemented reentrant (thread safe). However, some libraries, for example
Open MPI, begin to explore the possibility of threaded progress. Other libraries like MPI/pro or
HP MPI offer asynchronous progression threads but have not been analyzed in detail.

Threads have usually been used in high performance computing to implement thread-level
parallelism (OpenMP, also in combination with MPI as a hybrid programming model [173]) or for
other tasks that are not critical for communication, such as checkpoint/restart functionality.

Threads are a promising model for asynchronous progression. One of the biggest problems
with manual progression strategies is that it is very unlikely that MPI_Test hits the ideal time. It
comes either too early and there is nothing to progress or too late and overlap potential is wasted.
A threaded implementation would be either polling and thus get all messages immediately or
the thread could be woken up to progress the communication layer at exactly the right times. A
progress thread also enables fully asynchronous progression, i.e., without any user interaction. We
will focus on a threaded progression of non-blocking collective operations in the following sections.
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Figure IV.14: Scheduling Issues

However, before introducing our implementation, we discuss several operating system effects that
influence the execution of threads.

4.2.3.1 Operating System Effects

There was great effort to circumvent the operating system in the past with so called OS-bypass
methods. User-level networking without operating system support was implemented for most
modern network interconnects to enable lower latencies and avoid system calls. However, the
operating system plays an important role in the administration of user and progress threads. We
have to distinguish the different methods to access the network hardware (polling, interrupt) and
the subscription factor of the cores (all cores run user threads vs. spare cores can run progression
threads). The subscription scheme is shown for a rather common dual-CPU dual-core combination
in Figure IV.14(a).

Combining both schemes leads us to the following 4 combinations:

access method core subscription

polling fully subscribed

polling spare cores available

interrupt fully subscribed

interrupt spare cores available

Operating System Scheduling The operating system scheduler usually arranges the threads
(or processes) in two ormore queues, a runnable queue and awaiting queue. Threads (or processes)
in the runnable queue are waiting for the CPU and share this resource among each other, threads
on the waiting queue wait for some other hardware event (i.e., a packet from the wire). To ensure
fairness of the CPU sharing, each process has a time-slice to run on the CPU. If this time-slice
is over, the scheduler schedules other runnable threads. The scheduler bases its decision on the
thread priorities (which depends on the particular operating system). Typical length of time-slices
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are between 4 and 10 milliseconds. The Linux 2.6 default scheduler (called the O(1) scheduler)
implements such a time-slice based mechanism.

The analysis is easy if a spare core is available to eachMPI process to run the progression thread.
The difference between the polling (common implementation) and the interrupt based approach is
that the polling might reduce transmission latencies slightly (due to OS bypass). The interrupt
based approach might be more power efficient (since the hardware is idle during the message
transmission) but might also have some effect to the performance of the operating system (and
thus to other threads). However, this highly depends on the implementation of the OS (e.g., How
is the locking implemented? Does the scheduling overhead depend on the number of threads?).

The analysis is much more complicated if there are no idle cores available. We would argue
that this is the common case in today’s systems, i.e., if a user has 4 cores per machine, he usually
launches 4 (MPI) processes on each machine to achieve highest performance. In this scenario, the
progression thread has to share the CPU with the computation thread. In the polling approach,
the computation thread and the progression thread are both runnable all the time which leads to
heavy contention in the fully subscribed case. This effectively halves the CPU availability for the
computation thread and thus also halves the overall performance. Those effects can be limited by
calling sched_yield() in the progression thread after some poll operations which leads to a re-
scheduling. However, the progression thread is still runnable and will be re-scheduled depending
on priority. The interrupt approach seems much more useful in this scenario because the progres-
sion thread goes to sleep (enters the wait queue) when no work is to be done and is woken up
(enters the run queue) when specific network events (e.g., a packet is received) occur. This sched-
ules the thread at exactly the right time (work is to be done) and is thus significantly different from
the manual progression and the polling approach.

The interrupt-based mechanism raises two concerns. First, it seems unclear how big the in-
terrupt latency and overheads are on modern systems. Second, the scheduler has to schedule the
progression thread immediately after the interrupt arrives to achieve asynchronous progress. It is
not sufficient if the thread is just put on the run queue and the computation thread is re-scheduled
to finish its time-slice. Waiting until the time-slice of the active thread is finished increases the
interrupt-to-run latencies by a time-slice/2 on average which effectively disables asynchronous
progress because the time slices are one to two order of magnitudes higher than the transmission
latency of modern networks. Unfortunately, this mechanism is common practice to ensure fair-
ness, i.e., avoid processes that get many interrupts to preempt other compute-bound processes all
the time. The Linux scheduler favors I/O bound processes but it might still not be sufficient to
achieve highest overlap. To overcome this problem, one can increase the relative priority of the
progression thread. We experiment with the highest possible priority, real time threads in Linux.
If a real time (RT) thread is runnable, then it preempts every other thread by default. RT threads
might decrease the interrupt-to-run latency significantly. However, they might also increase the
interrupt and context switching overhead significantly because the thread is scheduled every time
an interrupt occurs and goes to sleep shortly after. All options are illustrated in Figure IV.14(b). The
next section discusses our implementation of non-blocking high-level communication operations
and our extensions for threaded asynchronous progression.
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4.3 Threaded Implementation of LibNBC

LibOF, described in the previous section, implements the standard non-blocking transmission func-
tions (send/recv) in a way that enables the most asynchronous progress without user interven-
tion. In this work, we extend and analyze LibOF to use a progression thread to ensure fully asyn-
chronous progression.

4.3.1 Partially Asynchronous Collective Communication

The structure of LibNBC reflects the two levels of communication (point-to-point and collective).
The user issues a non-blocking collective operation which returns a handle. This handle has a
(potentially multi-round) schedule of the execution (cf. [11]) and a list of point-to-point operations
of the current round attached. Progress is thus defined on the two levels, point-to-point progress
and collective progress.

The two levels of progression for a binomial tree broadcast on four processes are displayed in
Figure IV.15(a). Even though process 1 received the RTR message from process 3 early, it can only
send the data after it received it from process 0. Those data-dependencies incurred by the collective
algorithms add a new complexity to the progression.

The InfiniBand optimized LibOF supported nearly asynchronous point-to-point progress at the
messaging level for the rendezvous protocol. The implemented wait-on-send strategy (the sender
polls for a while to receive the ready-to-receive (RTR) message from the receiver) progresses if the
nodes post the send and receive operations at similar times. However, if the RTR message arrives
late, there will be no progress (unless the user progresses manually). The eager point-to-point
protocol is fully asynchronous if free slots are available at the receiver-side. The implementation
uses unsignaled RDMA-Write and polls the memory to detect memory completion. Consult [9]
for a detailed analysis of the different progression schemes in comparison to manual progression.
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However, this protocol does not support progress on the collective messaging layer. If the collective
algorithm consists of multiple communication rounds (e.g., broadcast is implemented as a tree or
Allreduce in a pipelined way), only the first round is progressed automatically and the user has to
progress the following rounds manually. This is the big limitation in the current implementation
that our new threaded implementation seeks to overcome.

4.3.2 Fully Asynchronous Collective Communication

This section describes the design of the fully threaded version to deal withmultiple communication
contexts (MPI communicators) and multiple point-to-point InfiniBand connections (queue pairs
(QP)). Our design focuses on an interrupt-based implementation because polling has been well
analyzed in previous work (e.g., [4]). Each queue pair represents a channel between two hosts
and is associated with a completion queue where events are posted. Those events could be the
reception of a new message or the notification of a message transmission. Each completion queue
is associated with a so called completion channel to use interrupt driven message progression.
Each completion channel offers a file descriptor that can be used in system calls (e.g., select() or
poll()) to wait for events.

To get a notification for every packet, the implementation is changed to use RDMA-Write with
immediate (signaled RDMA-Write) for every message transmission. This makes sure that the re-
ceiver receives an interrupt for incoming messages.

In our design, the progress thread handles all collective and point-to-point progressions. After
the user thread posts a new collective operation, the new handle is added to the thread’s worklist.
This is one of two synchronization/locking points between the two threads. The second synchro-
nization is when the user wants to wait on the communication where it waits until a (shared mem-
ory) semaphore attached to the handle becomes available (is activated by the progress thread). The
test call just checks if the semaphore would block and returns true if not.

The progress thread itself generates a list of point-to-point requests from its collective work-
list (every collective handle in the list has a list of point-to-point requests attached) and calls
OF_Waitany() with the full list. When OF_Waitany() returns, a point-to-point request finished and
the progress thread calls LibNBC’s internal scheduler with the associated collective handle to see
if any progress can be made on the collective layer. Then, it compiles a new list of point-to-point
requests (since a handle might have been changed) and enters OF_Waitany() again.

The implementation of OF_Waitany() uses the list of point-to-point requests to assemble a list
of file pointers (by checking the associated completion channels). The function then blocks (with
the poll() system call) until one of the file pointers gets available (i.e., a completion channel
event occurred). Then it polls the associated completion queue, progresses the message for which
the event occurred and returns if a message transmission finished. If no transmission finished,
the function just enters the poll() call again. The number of completion events depends on the
point-to-point protocol used. Figure IV.15(b) illustrates the protocol-dependent completions.

The program must also ensure that if the user issues a new collective operation, this is picked
up by the thread (to avoid deadlocks and achieve best progress). In order to do so, a pipe read file
descriptor is added to the list of file pointers to poll(). Whenever a new request is added to the
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threads worklist, it is woken up from the wait queue by writing to this pipe.
This scheme enables fully asynchronous progress and the collective operations are finished in

the background without any user interaction. The following sections discuss benchmarks and per-
formance results for several different configurations.

4.3.3 Point-to-point Overhead

We benchmark our implementation on the Odin cluster. We implemented a new communication
pattern benchmark for Netgauge [12] that measures the overlap potential and communication over-
head for point-to-point messages and different progression strategies. The benchmark works as
follows:

1. Benchmark the time tb for a blocking communication.
(a) start timer tb

(b) start communication
(c) wait for communication
(d) stop timer tb

2. Start the communication.
3. Compute for time tb.

(a) endtime = current time + tb

(b) while(current time < endtime) do computation
4. Wait for communication to finish.

The measurement is done as a ping pong with pre-posted receives on the client side, i.e., “start
communication” posts a non-blocking receive and a non-blocking send and “wait for communica-
tion” waits until both operations finished. The server side simply returns the packets to the sender.
The overhead to is the sum of the times spent to start the communication, progress the communi-
cation (test) and wait for the communication to complete.

We compare the Open MPI implementation which needs manual message progression (cf. Sec-
tion 4.2) with LibOF. The first experiment is a parameter study which aims to find the best pa-
rameters for the manual progression of Open MPI. We conducted benchmarks for tests every
2n,∀n = 10..18 bytes. The test every 65536 bytes performed best for most message-sizes.

The results between twoOdin nodes are shown in Figure IV.16(a). It compares OpenMPI (using
the best test configuration for every 65536 bytes) with our threaded and non-threaded Mini-MPI
implementation (LibOF). The results show that the overlap optimized Mini-MPI has a generally
lower CPU overhead than the Open MPI implementation. Adding a progression thread to this
implementation decreases the overhead due to offloading the communication processing to a spare
core.

We conclude from those experiments that the threaded progression strategy can be beneficial for
point-to-point messaging if the progression thread runs on a separate CPU core. The next section
analyzes the collective progression behavior where all cores might be busy with computation.
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Figure IV.16: Open MPI and LibOF Communication CPU Overheads

4.3.4 Collective Overhead

We benchmarked all collective operations with NBCBench and present Allreduce, the most im-
portant multi-round operation (cf. [172]). Other important single-round operations, like Alltoall
have already been evaluated in the previous section and showed a high potential for overlap. The
reduction operations are at the same time the most complicated operations to optimize for over-
head. Those operations include, additionally to the communication, a computation step that uses
a significant amount of CPU cycles in the reduction operation.

In our analysis we focus on the Allreduce operation which has been found to he hardest to
optimize for overlap [11]. All other operations perform (significantly) better (with lower overhead)
in all benchmarked cases. The Allreduce implementation in LibNBC uses two different algorithms
for small and large messages (cf. [171]). A simple binomial tree with a reduction to rank 0 followed
by a broadcast on the same tree is used for messages smaller then 65kiB. This algorithm, which is
described and modeled in Section 3.1.2, has 2 · ⌈log2P ⌉ communication rounds on P processes. The
large message algorithm, that is also described and modeled in Section 3.1.2, chops the message
into P chunks and performs 2 · P − 2 communication rounds in a pipelined manner to reduce the
data.

Figure IV.16(b) shows the overhead of a non-blocking Allreduce operation on 32 nodes with
1 process per node. The best test strategy was to test every 1024 bytes, but this is significantly
outperformed by the threaded implementation due to communication offload to spare cores. Real
time threads do not improve performance in this scenario.

These results show that the threaded implementation is able to lower the CPU overhead by
one order of magnitude if a spare CPU core is available to offload the computation. However, we
showed in [4] that some applications can benefit from using all cores. That means that there might
be no “free” cores on today’s dual-, quad- or oct-core systems. Thus, we also have to evaluate our
progression strategies in the case where all CPU cores are busy with user computation. However,
in general, we assume that especially memory-bound and irregular algorithms, like sparse solvers
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Figure IV.17: NBC_Iallreduce overhead on 32 nodes, 4 processes per node with different progres-
sion strategies

or graph problems, can not use the growing number of available cores so that spare communication
cores will be available for communication offload in the near future.

4.3.4.1 The Oversubscribed Case

Using MPI exclusively means running n MPI processes on each n-core node. This leads to a 2:1
oversubscription of threads vs. available cores. Other models, like hybrid MPI + OpenMP [173]
might lead to only one progression thread per node but are more complicated to program and
optimize.

To reflect the oversubscription case, we run 4 threads on each of the 32 test nodes of Odin. This
leads to 128 processes performing the collective operations. Our results show that our test strategy
did not perform well when all cores are busy. The threaded implementation is also not able to
decrease the communication overhead significantly due to scheduling problems in the operating
system described in Section 4.2.3.1. However, those OS effects can be overcome with a real-time
thread that preempts the user computation as soon as an InfiniBand completion event occurs.

The timing-based measurements only accounts for the CPU overhead of the actual communica-
tion calls (NBC_Iallreduce and NBC_Wait) but other overheads such as interrupt processing, time
spent in the InfiniBand kernel driver and context switching overhead as well as cache pollution are
not taken into account and could have a detrimental effect on real application performance. Thus,
we analyze the number of context switches, the context switch and interrupt processing overhead
in the following.

The number of context switches The implementation allows for more than one event to be
processed by the progress thread in a single interrupt. However, the real-time scheduling might
cause many context switches. The maximum number of context switches equals to the number
of completion notifications, which depends on the transport protocol and the collective algorithm.
The eager protocol causes 1 completion on the sender and the receiver and the rendezvous protocol
causes 2 completions on the sender the receiver as explained in Section 4.3.2. Thus, the tree-based
small message algorithm causes up to 1 · 2 · ⌈log2P ⌉ completion events in the eager case and 2 ·
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2 · ⌈log2P ⌉ completion events in the rendezvous case (some intermediate nodes send and receive
⌈log2P ⌉ messages). The number of interrupts is thus 14 or 28 in our example with 128 processes.
The pipelined large message algorithm causes up to 1 ·2 · (2 ·P −2) completions for eager messages
and 2 · 2 · (2 · P − 2) for rendezvous messages (each node sends and receives a single packet in
2 · P − 2 rounds. In our example with P = 128, this equals 508 or 1016 interrupts.

4.3.4.2 Interrupt and Context Switch Overhead

It is not clear how much a threaded implementation suffers from context switch and system inter-
rupt overhead. In our model, the latency incurred by those operations is less important because
we assume that this will be overlapped with computation. The most important measure in our
model is the CPU overhead, i.e., howmany CPU cycles the interrupt processing and context switch
“steals” from the user application. We describe a simple microbenchmark to assess the context
switching and interrupt overhead in the following.

The benchmark measures the time to process a fixed workload on every of the c CPU cores. In
order to do this, it spawns one computation thread on each core i that records the time ti1 to compute
the fixed problem in a loop. The benchmark has two stages, stage one measures the normal case
where no extra interrupts are generated/received2. Then, the main thread that has been sleeping
so far programs the real time clock interrupt timer to the highest possible frequency f = 8192Hz

for stage 2. In this stage, the main thread receives those interrupts and thus steals computation
cycles from the worker threads that benchmark ti2 on each core. The results from all cores for the
two stages are averaged into t1 =

∑

i ti1/c and t2 =
∑

i ti2/c. The difference t = t2 − t1 is the time
that is added by the interrupts and subsequent context switches. The number of interrupts in stage
2 can be estimated with i = t2 · 8192Hz.

We ran this benchmark on the Odin cluster with 4 computation threads. The average fixed
computation of 7 measurements in stage 1 was t1 = 19.14626 s and in stage 2 t2 = 19.27969 s. The
number of interrupts in stage 2 was thus j = t2 · f ≈ 157939. The j interrupts delayed the work by
t = 133430µs, thus yielding a CPU overhead per interrupt per core of 133430/1579394 ·4 = 3.38µs.

We show that interrupts and context switching between threads causes about 3.4µs overhead on
our test system and is thus relatively expensive. Based on that, we conclude that frequent context
switches increase the overhead significantly. Especially for the large-message Allreduce algorithm
that might receive up to 1016 interrupts which would mean an overhead of 3.4ms per core. How-
ever, this overhead is not reflected in our current time-based computation analysis. Additional
other overheads like the time spent in the InfiniBand driver stack and side effects like cache pollu-
tion are not modeled so far. To overcome this limitation, we propose a workload-based benchmark
that simulates a real-world applicationwith the computation of a constant workload in the different
scenarios.

4.3.4.3 Workload-based overhead benchmark

We extend NBCBench with a workload-based computation scheme. The first step to obtain the
blocking time tb remains the same.

2“no extra” means only the normal background “noise” in this case
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1. Benchmark the time tb for a blocking communication.
2. Find workload λ that needs tb to be computed.

(a) λ = 0

(b) while(tλ < tb) { increase workload λ by δ;
tλ = time to compute workload λ }

3. Start timer tov .
4. Start communication.
5. Compute fixed workload λ.
6. Wait for communication.
7. Stop timer tov .

The overhead to in this case is the difference between the time for the overlapped case (computation
and communication) and the computation time, thus to = tov − tc.

We repeated the benchmarks with the new fixed workload scheme. The results for a single MPI
process per node are as expected similar to the results with the time-based benchmark. However,
the results in the overloaded case with 4 processes per node are rather different and shown in
Figure IV.17(b). This benchmark reveals that even the real time thread is not able to decrease the
communication overhead by an order of magnitude as shown with the time-based benchmark.
However, the performance improvement is still significant with about a factor of two improvement
(note the logarithmic scale of the graph) but mitigated by different sources of overhead, such as
context switching, cache pollution and interrupt or driver processing. It is also interesting, that
the right test strategy (in this case every 1024 bytes) is able to deliver higher performance for some
message sizes due to the relatively low overhead of the test calls.

It has been shown that largemessages are easy to overlap with a test-based strategy [11]. Our re-
sults with the threaded approach support the previous results and the real-time thread performs an
order of magnitude better than the normal threading in the time-based benchmark. This is reduced
to a factor of two in the work-based benchmark that takes the different sources of overhead into ac-
count. Other collective operations, such as Reduce, Bcast, Alltoall, and Allgather show significantly
better results than the complex Allreduce operation because they do not involve computation or
they only deliver the result to a single host only. We focused our analysis on the complex Allreduce
operation which is also the most important collective operation.

4.3.5 Overcoming the Threading Issues

There are different ways to mitigate or even overcome the problems with threaded progression.
The most obvious way would be to limit the number of interrupts by intelligent coalescing. This
means that only the events that are important for progression (e.g., no local completions) generate
an interrupt and wake the progress thread up. This technique is already used in Myrinet/MX to
progress point-to-point communication and is able to at least halve the number of interrupts and
thus reduce the overhead significantly.

Another easy change would be to replace the thread-based mechanism with a signal based
concept, where the progression code is executed by a signal handler in the same thread. This would
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save the context switching and scheduler overhead time. However, the current implementation of
signals is unreliable and needs to be made reliable to avoid deadlocks.

Another way would be to implement the whole progression engine inside the OS kernel.
This would also eliminate context switches, scheduler overhead and also the expensive privilege
changes between user- and kernel-space. Since the scheduler design is rather simple, this could
be a viable solution to the progression problem. With this, we argue that operating system by-
pass might not be beneficial in all scenarios. Magoutis et al. also mention several other benefits of
kernel-level I/O in [145].

The third and theoretically best but also most expensive way is to implement the whole high-
level operation in the network hardware. Approaches to do full point-to-point message progression
in the network interface card have been described in Section 4.2.2. This would need to be extended
with functionality to handle higher level communication patterns.

5 Conclusions

“It doesn’t matter how beautiful your theory is, it doesn’t matter how smart you are. If it doesn’t agree

with experiments, it’s wrong” – Richard Feynman, (1918-1988) American Physicist

Traditionally, scientists have not been able to fully leverage the performance benefit of over-
lapping communication and computation because MPI only supports blocking collective opera-
tions. In this section, we introduced LibNBC, a portable high-performance library that provides
non-blocking versions of all collective operations. Thus, for the first time, fully portable and MPI-
compliant non-blocking collective operations are available for overlapping communication and
computation.

To assess the latency and overhead of blocking and non-blocking collective operations accu-
rately, we analyzed different benchmarking schemes. We found certain systematic errors in com-
mon methods and proposed a new and scalable scheme based on the window mechanism used in
SKaMPI. Therefore, we propose and analyze a new scalable group synchronization method for col-
lective benchmarks. Our method is more than 16 times faster on 128 processes and promises to be
more accurate than currently used schemes. We implemented a new network-jitter analysis bench-
mark in the open source performance analysis tool Netgauge. The described scheme to benchmark
collective operations has been implemented in the open source benchmark NBCBench. We were
able to show that the MPI model to perform blocking collectives in a separate thread is suboptimal.

Then, we analyzed the performance of LibNBC on InfiniBandTM in detail and investigated sev-
eral options to minimize the communication overhead (in order to maximize communication over-
lap). We showed that reasonable performance can be achieved at the user level using MPI and ap-
propriate invocation patterns of MPI_Test (to guarantee progress of MPI). However, the invocation
patterns depend not only on the MPI implementation but also on the communicator size and data
size. We showed that, in general, the programmer would not be able to derive simple and optimal
heuristics for progressing MPI. Furthermore, having to manually progress MPI in this way is gen-
erally suboptimal because it influences code structure negatively and adds additional overheads.
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Based on the requirements of LibNBC, we implemented a low-level interface that uses the OFED
verbs API directly to communicate. We propose a new rendezvous protocol that does not require
user-level intervention to make independent progress in the network. Furthermore, we show with
several microbenchmarks and application kernels that our implementation performs significantly
better than blocking communication and non-blocking communication based on Open MPI.

We analyzed different strategies for asynchronous progression of non-blocking collective com-
munication operations in message passing libraries. We analyzed polling and interrupt based
threaded implementations and can conclude that polling based implementations are only bene-
ficial if separate computation cores are available for the progression threads. The interrupt-based
implementation might also be helpful in the oversubscribed case (i.e., the progress and user thread
share a computation core) but this depends on the collective operation as well as on operating sys-
tem parameters. We found that the progression thread needs to be scheduled immediately after
a network event to ensure asynchronous progress. A good way to implement this is the usage of
real-time functionality in the current Linux kernel. Our analyses for the most complicated opera-
tion, Allreduce, show that it is hard to achieve high overlap. However, further analyses show that
other simpler operations, like reductions or broadcasts perform well in our model. We also pro-
posed several mechanisms to mitigate the different sources of overhead that we identified in this
chapter. We will also investigate different collective algorithms that can further improve the CPU
availability to the user thread.

We have also theoretically shown that all optimization techniques are applicable to the upcom-
ing generation of 10 Gigabit Ethernet adapters that support the iWARP protocol [111] in hardware.
The variance in CPU overhead has been discussed in Chapter II.
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Chapter V

Optimizing Parallel Applications

“Prediction is very difficult, especially about the future.” – Niels Bohr, (1885-1962) Danish

physicist, Nobel Prize 1922.

Hunting for performance in distributed-memory parallel scientific applications has long fo-
cused on optimizing two primary constituents, namely optimizing (single process or single

thread) computational performance and optimizing communication performance. With more ad-
vanced communication operations (such as non-blocking operations), it has also become important
to optimize the interactions between computation and communication, which introduces yet an-
other dimension in which to optimize. Moreover, these advanced operations continue to grow
even more sophisticated (with the advent, e.g., of non-blocking collective operations), presenting
the programmer with yet more complexity in the optimization process. As systems continue to
grow in scale, the importance of tuning along all of these dimensions grows.

Historically, overlapping communication and computation is a common approach for scien-
tists to leverage parallelism between processing and communication units [137]. Applications with
overlapped computation and communication are less latency sensitive and can, up to a certain
extent, still achieve good parallel performance and scalability on high-latency networks. The abil-
ity to ignore process skew and hide message transmission latencies can be especially beneficial
on cluster computers (also known as Networks of Workstations, NOW) and on Grid-based sys-
tems. The most straightforward way to improve basic communication performance is to employ
high-performance communication hardware and specialized middleware to lower the latency and
increase the bandwidth. However, there are limits to the gains to overall application performance
that can be achieved just by focusing on bandwidth and latency. Approaches that overlap compu-
tation and communication seek to overcome these limits by hiding the latency costs by performing
communication and computation simultaneously.

Obtaining true overlap (and the concomitant performance benefits) requires hardware andmid-
dleware support, sometimes placing high demands on communication hardware. Some studies,
e.g., White et al. [106], found that earlier communication networks did not support overlapping
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well. However, most modern network interconnects perform communication operations with their
own co-processor units and much more effective overlap is possible [5]. To take advantage of
this opportunity, specific non-blocking semantics must be offered to the programmer. Many mod-
ern library interfaces (even outside of HPC) already offer such non-blocking interfaces, examples
include asynchronous filesystem I/O, non-blocking sockets and MPI non-blocking point-to-point
communication.

This chapter summarizes and extends results from the articles “Optimizing a Conjugate Gra-
dient Solver with Non-Blocking Collective Operations” [2], “Leveraging Non-blocking Collec-
tive Communication in High-performance Applications” [1], “Sparse Non-Blocking Collectives in
Quantum Mechanical Calculations” [7] and “Communication Optimization for Medical Image Re-
construction Algorithms” [14]. The following section analyzes several application kernels for the
applicability of non-blocking collective operations and derives general principles like pipelining.
Section 2 discusses the usage of the extended collective operations introduced in Chapter III in two
real-world applications.

1 Leveraging Non-Blocking Collective Communication

“Research is what I’m doing when I don’t know what I’m doing.” – Wernher von Braun, (1912-1977) German

Physicist, National Medal of Science 1975

Another key component to efficient hardware utilization (and therefore to high performance)
is the abstraction of collective communication. High-level group communications enable commu-
nication optimizations specific to hardware, network, and topology. A principal advantage of this
approach is performance-portability and correctness [83].

The use of non-blocking collective operations can avoid data-driven pseudo-synchronization of
the application. Iskra et al. and Petrini et al. show in [109] and [165] that this effect can cause a
dramatic performance decrease.

It is easy to understand how non-blocking collective operations mitigate the pseudo-
synchronization effects and hide the latency costs. However, properly applying those techniques
to real-world applications turned out to be non-trivial because code must often be restructured sig-
nificantly to take full advantage of non-blocking collective operations. In this chapter, we propose
a scheme to make non-blocking collective operations much more straightforward to use. In par-
ticular, we propose an approach for incorporating non-blocking collectives based on library-based
transformations. Our current implementation uses C++ generic programming techniques, but the
approach would be applicable in other languages through the use of other appropriate tools.

Overview In this section we address in particular the following issues:

1. We show how scientific kernels can take advantage of non-blocking collective operations.
2. We show which code transformations can be applied and how they can be automated.
3. We analyze the potential benefits of such transformations.
4. We discuss limitations and performance trade-offs of this approach.
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1.1 Related Work

Possible transformations to parallel codes to enable overlapping have been proposed in many stud-
ies [25, 33, 49, 63]. However, none of them investigated transformations to non-blocking collective
communication. Danalis et al. [63] even suggest replacing collective calls with non-blocking send-
receive calls. This is clearly against the philosophy of MPI and destroys performance portability
and many possibilities of optimization with special hardware support (cf. [139, 158, 190]) com-
pletely. Our approach transforms codes that use blocking collective operations and enables the use
of non-blocking collective operations and thus combines the performance portability and machine-
specific optimization with overlap and easy programmability.

Several languages, like Split-C [59], UPC [102], HPF [99] or Fortran-D [100], have compilers
available that are able to translate high-level language constructs into message passing code.

1.2 Principles for Overlapping Collectives

Many parallel algorithms apply some kind of element-wise transformation or computation to large
(potentially multi-dimensional) data sets. Sancho et al. show several examples for such “Concur-
rent Data Parallel Applications” in [180] and prognose a high overlap potential. Other examples
are Parallel Sorting [57], Finite Element Method (FEM) calculations, 3D-FFT [26] and parallel data
compression [191].

We chose a dynamic, data-driven application, parallel compression, as a more complex example
than the simple static-size transformations that were shown in previous works. Themain difference
here is that the size of the output data can not be predicted in advance and strongly depends on
the structure of the input data. Thus, a two-step communication scheme has to be applied to the
problem.

In our example, we assume that the N blocks of data are already distributed among the P

processing elements (PE) and each PE compresses its blocks by calling compress(). The data will
finally be gathered to a designated rank. Gathering of the compression results must be performed
in two steps where the first step collects the individual sizes of the compressed data at the master
process, and determines so the parameters of the second step, the final data gathering. This naive
scheme is shown in Listing V.1.

1 my_size = 0;
for ( i=0; i < N/P; i++) {
my_size += compress( i , outptr ) ;
outptr += my_size ;

5
}
gather( sizes , my_size ) ;
gatherv(outbuf , sizes ) ;

Listing V.1: Parallel compression naive scheme

1
for ( i=0; i < N/P; i++) {
my_size = compress( i , outptr ) ;
gather( sizes , my_size ) ;

5 igatherv(outptr , sizes , hndl[ i ] ) ;
i f ( i >0) waitall (hndl[ i−1], 1) ;

}
waitall (hndl[N/P] , 1) ;

Listing V.2: Transformed compression
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This kind of two-step communication process is common for dynamic data-driven computa-
tions (e.g., parallel graph algorithms [143]), making it rather challenging to be generated automat-
ically by parallelizing compilers or other tools. None of the projects discussed in the related works
section can deal with the data-dependency in this example and optimize the code for overlap. Thus,
we propose a library-based approach that offers more flexibility and supports the dynamic nature
of the communication.

It seems that two main heuristics are sufficient to optimize programs for overlap: First, the
communication should be started as early as possible. This technique is called “early binding” [66].
Second, the communication should be finished as late as possible to give the hardware asmuch time
as possible to perform the communication. In some communication systems, messages can overlap
each other. So called communication-communication overlap [34, 137] can also be beneficial.

1.3 Manual Transformation Technique

Listing V.2 shows the transformed code of Listing V.1. This simple scheme enables the commu-
nication of the nth element to overlap with the computation of the (n + 1)st element. The call
gather(sizes, my_size) collects the local data size of all nodes into a single array sizes and
igatherv(outbuf, sizes, hndl[i]) starts a non-blocking communication of the buffers,
gathering the correct size from every PE. The non-blocking communication is finished with a call to
waitall(hndl, num) that waits for num communications identified by handles starting at hndl.

However, our previous works involving overlap, such as optimization of a three-dimensional
Poisson solver [2] or the optimization of a three-dimensional Fast Fourier Transform [4] showed
that this simple heuristic is not sufficient to achieve good overlap. The two main reasons for this
have been found in the theoretical and practical analysis of non-blocking collective operations in
Section 2. This analysis shows that the overlap of non-blocking collective operations is relatively
low for small messages but grows with message-size. This is due to some constant CPU intensive
overheads such as issuing messages or managing communication schedules and the faster “bulk”
transfer [29] of larger messages. Furthermore it can be more beneficial to give every communica-
tion more time to complete before waiting for it. Another conflicting issue could be that some MPI
implementations have problems to manage many outstanding requests and this results in signifi-
cantly degraded performance. We provide separate solutions to those problems in the following.

1.3.1 Loop Tiling

The fine grained communication can be coarsened by loop tiling. This means that more computa-
tion is performed before a communication operation is started. Listing V.3 shows such a transfor-
mation.
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1 for ( i=0; i < N/P/t ; i++) {
my_size = 0;
for ( j=i ; j < i+t ; j++) {
my_size += compress( i∗t+j , outptr ) ;

5 outptr += my_size ;
}
i f ( i > w) waitall (hndl[ i−w] , 1) ;
gather( sizes , my_size ) ;
igather (outbuf , sizes , hndl[ i ] ) ;

10 }
waitall (hnld[N/P/t−w] , w) ;

Listing V.5: Final compression transformation

1 for ( i=0; i < N/P/t ; i++) {
my_size = 0;
for ( j=i ; j < i+t ; j++) {
my_size += compress( i∗t+j , outptr ) ;

5 outptr += my_size ;
}
gather( sizes , my_size ) ;
igatherv(outbuf , sizes , hndl[ i ] ) ;
i f ( i >0) waitall (hndl[ i−1], 1) ;

10 }
waitall (hndl[N/P/t ] , 1) ;

Listing V.3: Compression after loop-tiling

1 for ( i=0; i < N/P; i++) {
my_size = compress( i , outptr ) ;
outptr += my_size ;
i f ( i > w) waitall (hndl[ i−w] , 1) ;

5 igather ( sizes , my_size ) ;
igatherv(outbuf , sizes , hndl[ i ] ) ;

10 }
waitall (hndl[N/P−w] ,w) ;

Listing V.4: Compression with a window

1.3.2 Communication Window

Allowing more than a single outstanding request at a time gives the opportunity to finish the com-
munication later (possibly at the end) and allow communication/communication overlap. How-
ever, too many outstanding requests create a large overhead and can slow down the application
significantly. So, the number of outstanding requests must be chosen carefully. This transforma-
tion is shown in Listing V.4. Both schemes can be combined efficiently to transform our example as
illustrated in Listing V.5.

1.3.3 Tuning the Parameters

These schemes introduce a trade-off that is caused by the pipelined fashion of the transformed
algorithm (cf. pipeline theory [94]). The speedup of a pipeline is usually limited by the start-up
overhead needed to fill the pipe. Our two-stage pipeline has a start-up time of a single communi-
cation. In our special case, this overhead is not a start-up time at the beginning but rather a drain
time at the end because the last operation can usually not be overlapped. This means that a high
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tiling factor can lead to higher drain times without overlap. Thus, the tiling factor has to be cho-
sen big enough to allow for bulk transfers and efficient overlap, but also not too big to cause high
pipeline drain times. The window factor is important to give the single communications more time
to finish, but a too high window might cause performance degradation in the request matching
of the underlying communication system. Both factors have to be optimized carefully to every
parallel system and application.

1.4 Programmer-directed Collectives Overlap

The previous section described several code transformation schemes to leverage non-blocking col-
lective operations. However, our experiences show that applying those schemes manually is error-
prone and time-consuming. Fully automatic transformation with the aid of a compiler will demand
an extremely elaborate data dependency analysis to guarantee inter-loop independence and can
simply not handle many cases. We propose a flexible generic approach that does not require exter-
nal software but only a standard compliant C++ compiler. The basic idea is to separate the commu-
nication from the computation and rearrange them while optimizing tiling factor and window-size
to get the highest possible performance. The resulting generic communication pattern represents a
huge class of applications.

The separation of communication and computation introduces two functors that have to be
implemented by the programmer. The interplay between those functors is defined in the template
library and can be parametrized in order to achieve the maximum performance. The two functors
are called computation and communication.

computation(i) computes step i of an iterative parallel application. The input data can ei-
ther be read in the object or generated on the fly. The results of the computation are written into a
buffer object, which is selected by the template. A buffer object stores the computed data and
acts as source and destination buffer for the communication() functor. The communication
functor communicates the data in the buffer it is called with. The buffer object itself is not re-
quired to store actual data, it can contain references to some other containers to avoid copying.
All functors and the buffer object are implemented by the application programmer. Our template
library combines those building blocks to enable efficient pipelining. The elements are described
in detail in the following.

1 class computation_t {
void operator ( ) ( int i , buffer_t& buffer ) {

buffer . size += compress( i , buffer . ptr ) ;
buffer . ptr += buffer . size ;

5 } } computation ;

Listing V.6: Computation functor

Computation defines the func-
tion call operator that is called for ev-
ery input element by the template.
A user-supplied buffer to store the
output data is also passed to the func-
tion. Listing V.6 shows the computa-
tion functor for our compression ex-
ample.
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1 class communication_t {
void operator ( ) ( buffer_t& buffer ) {

gather( sizes , buffer . size ) ;
igatherv(outbuf , sizes , buffer .hndl ) ;

5 } } communication;

Listing V.7: Communication functor

Communication defines the
parenthesis operator and gets called
with a buffer in order to commu-
nicate the buffer’s contents. The
communication functor for the
compression is given in Listing V.7.

1 std : : vector<buffer> buffers [w] ;
pipeline_tiled_window(N/P, tile_size ,

computation, communication, buffers ) ;

Listing V.8: Templated function call

Buffer is used to store compu-
tation results and to communicate
them later. All communication book-
keeping is attached to the buffer.

With the two functors at hand,
communication overlap of real-world
applications can be augmented by tiling and communication windows without modifying the user
code. This is demonstrated in Listing V.8.

The function template pipeline_tiled_window is parametrized in order to tune the tile size
- the second function argument - and the number of windows. The latter is defined implicitly by
the number of buffers (buffers.size()). In the remainder of this section we demonstrate the
performance impact of this tuning.

1.5 Performance Results

We implemented the example with our template transformation scheme to analyze the parallel
performance. We used the g++ 3.4.6 compiler with OpenMPI 1.2 [76] and the InfiniBand optimized
version of LibNBC to implement the MPI communication and libbzip2 for the data compression.
All benchmarks have been executed on theOdin cluster at Indiana University. We used only a single
processor per node to reflect our communication optimization. The nodes are interconnected with
Mellanox InfiniBandTM adapters and a single 288 port switch.

Figure V.1(a) shows the communication overhead for the compression of 122MB random data
on different node counts with blocking MPI calls, non-blocking calls with the standard LibNBC
(based on MPI_Isend/Irecv calls performing NBC_Test to progress) and our InfiniBand-optimized
LibNBC/OF without tests using the wait-on-send implementation (cf. Section 3). The MPI/BL
graph shows the performance of the original untransformed code, the MPI/NBC and OF/NBC the
optimized code using our template library with and without InfiniBandTM optimizations, respec-
tively.

Our benchmarks show that the communication overhead of the parallel compression example
can be significantly reduced with the application of our transformation templates and the subse-
quent use of non-blocking collective communication in a pipelined way. The compression time on
120 PEs was reduced from 2.18s to 1.72s which is an application performance gain of 21%. Fig-
ure V.1(b) the influence of the tiling factor on 120 PEs.
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Figure V.1: Communication overheads using InfiniBandTM for parallel compression

1.6 Extended Example: Three-dimensional Fast Fourier Transform

A more complex example, the parallel implementation of three-dimensional Fast Fourier Trans-
forms (FFTs), has been studied by many research groups [26, 50, 68, 81]. The application of non-
blocking communication resulted in controversial results. The optimized collective all-to-all com-
munication was replaced by a non-blocking point-to-point message pattern. Even if this enabled
overlap, the communicationwas not optimized for the underlying architecture and different effects,
such as network congestion, and therefore decreased the performance. Dubey et al. [68] mention
the applicability of a non-blocking all-to-all, but they implemented a point-to-point based scheme
and did not see a significant performance improvement. Calvin et al. showed performance benefits
using the same scheme [50]. However, the test-cases of their study used only four compute nodes
which limited the impact of congestion dramatically. We use the optimized non-blocking collective
communication operations provided by LibNBC to avoid congestion and ensure proper scaling
and overlap.

The three-dimensional FFT can be decomposed into three sweeps of one-dimensional FFTs,
which are performed using FFTW [75] in our implementation. The data can be distributed block-
wise such that the first two sweeps are computed with the same distribution. Between the second
and third sweep the data must be migrated within planes of the cuboids. The computation scheme
is depicted on a high level in Listing V.9 and Figure V.2.

The n3 complex values are initially distributed block-wise in y-direction (our transformation
schemes can be used to redistribute the data if this is not the case). The first step consists of n2

1D-FFTs in z-direction. The calculation in x-direction can still be performed with the same distribu-
tion. Before computing the FFT in the y-direction the data in every z-plane must be redistributed,
ideally with an all-to-all communication. Performing the calculations within the z-planes in two
steps establishes a loop with independent computation and communication so that our pipelining
schemes can be applied.

We applied our generic scheme to the parallel 3D-FFT. The computation() functor performs
a single serial one-dimensional transformation with FFTW and packs the transformed data to a
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1 transform all line in z−direction
for al l z−planes {
transform all lines in x−direction
parallel transpose from x−distr

5 to y−distr /∗ all−to−al l ∗/
}
for al l y−lines {
transform line in y−direction

}

Listing V.9: Pseudo-code of 3D-FFT

z
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x

z

y

x
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P2

P1

P0

P0 P1 P2 P3

Figure V.2: Block distribution in y-direction
(left) and x-direction (right)
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Figure V.3: Communication overheads using InfiniBandTM for parallel 3d-FFT

buffer. The communication() uses LibNBC’s non-blocking NBC_Ialltoall to initiate the commu-
nication. The “wait” function unpacks the received data from the buffer object into the FFT-buffer.

We perform multiple benchmarks on different systems to show the wide applicability and use-
fulness of our approach. The first series of benchmark results for a weak scaling 3D-FFT (7203,
6723, 6403, 4803 and 4003 double complex values on 120, 96, 64, 32 and 16 PEs respectively) using
InfiniBand onOdin are shown in Figure V.3(a). The communication overhead in this more complex
example can also be reduced significantly. Our optimizations were able to improve the running
time of the FFT on 120 PEs by 16% from 2.5s to 2.1s.

This first result demonstrates the same performance gain for the parallel FFT as we showed
for the parallel compression. Combining window and tiling leads to the highest improvement.
Figure V.3(b) shows the communication overhead with regards to the window size (for a fixed
optimal tiling).

In a second benchmark, we measure the strong scaling of a full transformation of a 10243 point
FFT box (9603 for 32 processes due to memory limitations) on the the Cray XT4, Jaguar, at the Na-
tional Center for Computational Sciences, Oak Ridge National Laboratory. This cluster is made
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Figure V.4: Blocking and non-blocking 3d-FFT times on the XT4

up of a total of 11,508 dual socket 2.6 GHz dual-core AMD Opteron chips, and the network is a
3-D torus with the Cray-designed SeaStar [31] communication processor and network router de-
signed to offload network communication from the main processor. The compute nodes run the
Catamount lightweight micro-kernel. All communications use the Portals 3.3 communications in-
terface [43]. The Catamount system does not support threads and can thus not run the threaded
implementation. An unreleased development version of Open MPI [76] was used to perform these
measurements, as Open MPI 1.2.1 does not provide Portals communications support. However,
using the NIC-supported overlap with LibNBC results in a better overall system usage and an up
to 14.2% higher parallel efficiency of the FFT on 128 processes, shown in Figure V.4.

A third benchmark was run on the Coyote cluster system at Los Alamos National Labs, a 1290
node AMD Opteron cluster with an SDR InfiniBand network. Each node has two single core 2.6
GHz AMD Opteron processors, 8 GBytes of RAM and a single SDR InfiniBand HCA. The results
for runs of the 10243 FFT box transformation on 128 processes with either 1 process per node (1ppn)
or two processes per node (2ppn) are shown in Fig. V.5 . This effectively compares the efficiency
of the MPI approach (perform the non-blocking collectives in a separate thread, cf. Section 1.2)
with the LibNBC approach (use non-blocking point-to-point communication). We clearly see the
the LibNBC approach is superior on this system. As soon as all available CPUs are used for com-
putation, the threaded approach even slows the execution down. Our conclusion is that with the
currently limited number of CPU cores, it does not pay off to invest half of the cores to process
asynchronous collectives with the MPI approach; they should rather be used to perform useful
computation.

The next section looks at another class of applications where parts of the communication are
already independent of the computation and can thus be overlapped easily.

1.7 Applications with Independent Communication

Scientific computing applications are particularly well-suited to benefit from the more abstract ex-
pression of parallel communication afforded by collective operations. Moreover, many algorithms
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Figure V.5: Blocking and non-blocking 3d-FFT times using 64 or 128 nodes (128 processes)

in scientific computing, e.g., linear solvers, provide a high potential for overlapping communica-
tion and computation. In order to combine the advantages of this overlapping with the advantages
of collective communication, we introduce non-blocking collective operations as a natural addition
to the MPI standard and demonstrate the performance benefits with a parallel conjugate gradient
solver.

1.7.1 Optimization of Linear Solvers

Iterative linear solvers are important components of most applications in HPC. They consume,
with very few exceptions, a significant part of the overall run-time of typical applications. In many
cases, they even dominate the overall execution time of parallel code. Reducing the computational
needs of linear solvers will thus be a huge benefit for the whole scientific community.

Despite the different algorithms and varying implementations of many of them, one common
operation is the multiplication of large and sparse matrices with vectors. Assuming an appropriate
distribution of the matrix, large parts of the computation can be performed on local data and the
communication of required remote data — also referred to as inner boundaries or halo — can be
overlapped with the local part of the matrix vector product.

1.7.2 Case Study: 3-Dimensional Poisson Equation

For the sake of simplicity, we use the well-known Poisson equation with Dirichlet boundary con-
ditions, e.g., [89]

−∆u = 0 in Ω = (0, 1)× (0, 1)× (0, 1), (V.1)

u = 1 on Γ. (V.2)

The domain Ω is equidistantly discretized. Each dimension is split into N + 1 intervals of size
h = 1/(N + 1). Within Ω one defines n = N3 grid points

G = {(x1, x2, x3)|∀i, j, k ∈ N, 0 < i, j, k ≤ N : x1 = ih, x2 = jh, x3 = kh}.
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Thus, each point in G can be represented by a triple of indices (i, j, k) and we denote u(ih, jh, kh)

as ui,j,k. Lexicographical order allows for storing the values of the three-dimensional domain into
a one-dimensional array. For distinction we use a typewriter font for the memory representation
and start indexing from zero as in C/C++

ui,j,k ≡ u[(i− 1) + (j− 1) ∗ N + (k− 1) ∗ N2] ∀0 < i, j, k ≤ N. (V.3)

The differential operator −∆ is discretized for each x ∈ G with the standard 7-point stencil

−∆hui,j,k =
6ui,j,k − ui−1,j,k − ui+1,j,k − ui,j−1,k − ui,j+1,k − ui,j,k−1 − ui,j,k+1

h2
.

Setting this equation equal to zero for all x ∈ G provides an approximation of (V.1) on Ω. Consider-
ing that the function u is given on the boundary, the corresponding terms can be transferred to the
right hand side, e.g., for −∆hu1,3,1 the equation reads

6u1,3,1 − u2,3,1 − u1,2,1 − u1,4,1 − u1,3,2

h2
=

u0,3,1 + u1,3,0

h2
=

2

h2
.

The linear operator −∆h can be represented as a sparse matrix in R
n×n using the memory layout

from (V.3), confer e.g., [89] for the 2D case.

1.7.3 Domain Decomposition

The grid G is partitioned into p sub-grids G1, . . . , Gp where p is the number of processors. The
processors are arranged in a non-periodic Cartesian grid p1 × p2 × p3 with p = p1 · p2 · p3, provided
by MPI_Dims_create. In case that N is divisible by pi∀i the local grids on each processor have size
N/p1 ×N/p2 ×N/p3, otherwise the local grids are such that the whole grid is partitioned and the
sizes along each dimension vary at most by one.

Each sub-grid has 3 to 6 adjoint sub-grids if all pi > 1. Two processors P and P ′ storing adjoint
sub-grids are neighbors, written as the relation Nb(P, P ′). This neighborhood can be characterized
by the processors’ Cartesian coordinates P ≡ (P1, P2, P3) and P ′ ≡ (P ′

1, P
′

2, P
′

3)

Nb(P, P ′) iff |P1 − P ′

1|+ |P2 − P ′

2|+ |P3 − P ′

3| = 1. (V.4)

Fig. V.6 shows the partition of G into sub-grids and necessary communication.

1.7.4 Design and Optimization of the CG Solver

The conjugate gradient method (CG) by Hestenes and Stiefel [96] is a widely used iterative solver
for systems of linear equations when the matrix is symmetric and positive definite. To provide a
simple base of comparison, we refrain from preconditioning [89] and from aggressive performance
tuning [84]. However, the local part of the dot product is unrolled using multiple temporaries,
the two vector updates are fused in one loop, and the number of branches is minimized in order
to provide a high-performance base case. The parallelization of CG in the form of Listing V.10 is
straight-forward by distributing the matrix and vectors and computing the vector operations and
the contained matrix vector product in parallel.
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Figure V.6: Processor Grid

1 while ( sqrt (gamma) > epsilon ∗ error_0) {
i f ( iteration > 1)

q = r + gamma / gamma_old ∗ q;
v = A ∗ q;

5 delta = dot(v, q) ;
alpha = delta / gamma;
x = x + alpha ∗ q;
r = r − alpha ∗ v;
gamma_old = gamma;

10 gamma = dot( r , r ) ;
iteration = iteration + 1;

}

Listing V.10: Pseudo-code for CG method

Neglecting the operations outside the iteration, the scalar operations in Listing V.10 — line 1,
2, 6, 9, and 11 — and part of the vector operations — line 3, 7, and 8 — are completely local.
The dot products in line 5 and 10 require communication in order to combine local results with
MPI_Allreduce to the global value. Unfortunately, computational dependencies avoid overlapping
these reductions. Therefore, the whole potential to save communication time in a CG method lies
in the matrix vector product — line 4 of Listing V.10.

1.7.5 Parallel Matrix Vector Product

Due to the regular shape of the matrix, it is not necessary to store the matrix explicitly. Instead the
projection u 7→ −∆u is computed. In the distributed case p > 1, values on remote grid points need
to be communicated in order to complete the multiplication. In our case study, the data exchange
is limited to values on outside planes of the sub-grids in Fig. V.6 unless the plane is adjoint to the
boundary Γ. Therefore, processors must send and receive up to six messages to their neighbors
according to (V.4) where the size of the message is given by the elements in the corresponding
outer plane.

However, most operations can be already executed with locally available data during com-
munication as shown in Listing V.11. The first command copies the values of v_in needed by
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1 void matrix_vector_mult( struct array_3d ∗v_in ,
struct array_3d ∗v_out ,

struct comm_data_t ∗comm_data)
{

5 fill_buffers (v_in , &comm_data−>send_buffers ) ;
start_send_boundaries(comm_data) ;
volume_mult(v_in , v_out , comm_data) ;

finish_send_boundaries(comm_data) ;
10 mult_boundaries(v_out , &comm_data−>recv_buffers ) ;

}

Listing V.11: Implementation of parallel matrix vector product

1 void start_send_boundaries( struct comm_data_t ∗comm_data)
{
/∗ Compute displacements ∗/
i f (comm_data−>non_blocking)

5 NBC_Ialltoallv(sbuf . start , scounts , sdispls , MPI_DOUBLE,
rbuf . start , rcounts , rdispls , MPI_DOUBLE,
processor_grid , comm_data−>handle ) ;

else {
MPI_Alltoallv(sbuf . start , scounts , sdispls , MPI_DOUBLE,

10 rbuf . start , rcounts , rdispls , MPI_DOUBLE, processor_grid ) ;
}

Listing V.12: Code for starting communication

other processors into the send buffers. Then an all-to-all communication is launched, which can
be a blocking operation using MPI_Alltoallv or a non-blocking operation using NBC_Ialltoallv, List-
ing V.12. The last function has the same arguments as the first one with an additional NBC_Handle

that is used to identify the operation later. The command volume_mult computes the local part of
the matrix-vector product and in case of non-blocking communication, NBC_Test is called period-
ically with the handle returned by NBC_Ialltoallv in order to progress the non-blocking operations.
Before using remote data in mult_boundaries, the completion of NBC_Ialltoallv is checked in
finish_send_boundaries with an NBC_Wait on the NBC_Handle, Listing V.13.

1 void finish_send_boundaries( struct comm_data_t ∗comm_data)
{

i f (comm_data−>non_blocking)
NBC_Wait(comm_data−>handle ) ;

5 gt2 = MPI_Wtime( ) ;
}

Listing V.13: Code for finishing communication
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1.7.6 Benchmark Results

Weperformed a CG calculation on a grid of 800×800×800 points until the residual was reduced by a
factor of 100, which took 218 iterations for each run. This weak termination criterion was chosen for
practical reasons in order to allowmore tests on the cluster. We verified on selected tests with much
stronger termination criteria that longer executions have the same relative behavior. The studies
were conducted on the Odin cluster. Fig. V.7 shows the benchmark results using Gigabit Ethernet
and InfiniBandTM up to 96 nodes. The presented speedups are relative to a single-processor run
without any communication. We see that the usage of our NBC library resulted in a reasonable
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Figure V.7: Parallel speedup of a 3d Poisson solver for different network interconnects.

performance gain for nearly all node counts. The explicit performance advantage is shown in
Fig. V.8. The performance loss at 8 processors is caused by relatively high effort to test the progress
of communication.
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Figure V.8: Speedup using LibNBC

The overall results show that for both networks,
InfiniBandTM and Gigabit Ethernet, nearly all commu-
nication can be overlapped and the parallel execution
times are similar. The factor of 10 in bandwidth and
the big difference in the latency of both interconnects
does not impact the run-time significantly, even if the
application has high communication needs. The par-
tially superlinear speedup is due to cache effects in the
inner part of the matrix vector product.

1.7.7 Comparison to non-blocking Point-to-

Point Messaging

Due to the our design, non-blocking point-to-point communication would perform almost equally
while requiring the user to program the management for multiple communication handlers includ-
ing the progress enforcement. Using collective communication simplifies programming, increases
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maintainability and enables portable performance tuning. Possible optimizations for Alltoallv calls
include the exploitation of network concurrency (cf. [200]), optimization for special parallel systems
like BlueGene/L (cf. [30]) or automatically tuning the communication plans (cf. [71]).

We are aware that the (slow but steady) linear growing of the displacement and count ar-
rays with the communicator size can introduce scalability problems on very large machines (e.g.,
BlueGene/L). However, the better programmability, high optimization potential, and clearer code-
structure (cf. [83]) outweigh those concerns.

Based on those discoveries, we decided to investigate the use of topological collective opera-
tions discussed in Section 1 in Chapter III. Those operations enable easy and efficient implemen-
tation of sparse collective communication patterns such as nearest neighbor collective operations.
We will analyze their impact on programmability as well as on performance with a real-world
application using a linear solver in Section 2.2.

1.7.8 Optimization Impact on Other Linear Solvers

The approach described above can be used to optimize other linear solvers in addition to CG. We
discuss some ideas for the application of non-blocking collective operations to different algorithms.

As with CG, other Krylov sub-space methods, such as GMRES [177], CG Squared [192], or BI-
CGStab [209], have dependencies that similarly limit the potential of overlapping communication
and computation for their reduction operations. On the other hand, the preconditioners that are
typically used in conjunction with Krylov sub-space iterations often consist of operations that are
similar to matrix-vector product, e.g., incomplete LU or Cholesky factorization, and thus have the
potential of overlapping.

Classical iterative solvers — Richardson iteration, Jacobi, and Gauß-Seidel relaxation — consist
only of operations similar to matrix-vector product. Such iterations therefore offer the potential for
significant overlap in contrast to CG and related Krylov sub-space methods that require reduction
operations. Unfortunately, due to the slow convergence of these methods, their importance as
iterative solvers is limited.

The classical methods are important, however, as “smoothers” inmultigridmethods (MG) [202].
In addition to the smoothing process within each level of the multigrid, corresponding sub-grids
of adjoint levels are related to each other by interpolation operators. These operators involve com-
munication to interpolate values close to sub-grid boundaries. The amount of communication in-
creases for higher orders of interpolation. Grid values inside the sub-grids can be interpolated with
local data — assuming the grids are similarly decomposed — so that the interpolation operators
allow for communication overlapping. Particularly on smaller grids, communication becomes a
severe bottleneck and non-blocking communication provides the potential for significant improve-
ments. As multigrid methods are solvers with minimal numerical complexity, they are important
in scientific computing and we will investigate them in detail in future work.

1.8 Map-Reduce

Another programming-pattern that can be used to express a large class of applications is map-
reduce [64, 127]. This generic scheme is used by google to run many of its sevices at large scale.
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A map-reduce program is composed of two functions: map and reduce. Both functions are well
known in functional programming. Map accepts an input pair, applies the implemented function
and emits a number of <key,value> pairs. Reduce accepts a key and a number of values and emits
a single result.

A typical map-reduce program is the search for the number of given strings in a files. The map
function accepts an input file (or a part of it) and a vector of strings s. It searches the input for the
strings and emits the pair < s,1>. The reduce function simply sums all the numbers for a given s

together.

1 void map( filem f , keys strs ) {
for ( i=0; i<strs . size ( ) ; i++) {
char ∗ptr=f . start_addr ( ) ;
while(ptr<f .end_addr()−strs . len) {

5 i f ( !memcmp(ptr , str [ i ] , strs . len ))
EmitIntermediate( i , 1) ;
ptr++;

} } }

Listing V.14: Map Example Function

1 void reduce(key str , values num) {
int sum=0;
for ( i=0; i<values . size ( ) ; i++) {
sum += values[ i ] ;

5 }
Emit(sum) ;

}

Listing V.15: Reduce Example Function

The remaining functionality is offered by the map-reduce library. This programming concept
allows automatic parallelization of large input sets. The library can split the input data into chunks
that are distributed to multiple processing elements. For example in the case of string-search, the
file can be split into multiple parts and the search can be assigned to multiple hosts. The reduce-
function sums up the local and distributed counts of the search strings. However, the concept does
not offer any data-distribution mechanism, i.e., the programmer of the map-reduce program has
to ensure that the data is available to the map function. Optimizations can be supported by the
framework, for example parallel filesystem like GFS [79] could be used to map the tasks as close to
the data as possible [169]. The library schedules map and reduction tasks to the available PEs and
can thus do automatic load-balancing and react to node failures without user intervention.

Map-reduce was not intended to be implemented on top of MPI, and MPI lacks several features
that are needed to implement it efficiently. Missing features are for example fault tolerance (i.e., the
ability to react to erroneous processes) and variable sized reduction operations (map-reduce reduc-
tions can return values that are of a different size than the input values, e.g., string concatenations;
MPI only supports fixed-size vectors for reductions). However, if we ignore fault tolerance and en-
force only fixed-size reductions (this limits the model but still reflects a large class of applications),
we can implement map-reduce on top of MPI.

Map-reduce is a master-worker model, i.e., the computation (map and reduce tasks) is sched-
uled by a central master process and executed by slave processes. MPI is well suited to implement
this concept by using rank 0 as master process and all other P−1 ranks as slaves. In this model, it is
useful to group a map and a reduce task together because the reduced data (result of the map-task)
is already in the right processes’ memory. This makes it possible to use collective operations to
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perform the map and reduce task. The map task can be implemented as a simple scatter operation
and the reduce task can use a reduction. Using collective operations forces the reduction operation
to accept and return only fixed-size data vectors. But using collective MPI reductions has a high
optimization potential. The user can still implement his own reduction scheme over point-to-point
if the size of the reduced data changes. However, we assume unchanged data-sizes as we have
in our example. The reduction can now be implemented as an MPI Operation (or a predefined
operation and datatype can be used which even enables hardware optimizations such as [77]).

message wait work

0 1 2 3 40 1 2 3 4

non−blocking (asynchronous) message

Figure V.9: Map-Reduce Scheme implemented with MPI and NBC Collectives, assuming 5 pro-
cesses executing 8 tasks and a binomial tree scatter and reduction algorithm. The left part shows
the execution in the MPI model and the right part in the NBC model.

1.8.1 Two Simple Map-Reduce Applications

We implemented the simple string-search and an artificial, but more flexible, application in the
map-reduce model on top of MPI. The string search was easy to implement and shows the appli-
cability of the MPI-based map-reduce scheme. However, we decided to implement an application
that is able to simulate a large class of map-reduce programs. This application accepts four pa-
rameters: the number of tasks, minimum (min) and maximum (max) task duration and the size
of the reduction operation. The application issues workpackets that take a random time in the
interval [min,max]. The times are evenly distributed. A slave process retrieves the work-packet
and computes a simple loop that takes the received time (emulates the map operation). After the
computation is finished, the slave starts the reduce (by calling an MPI reduction). The execution
scheme is shown in left part Figure V.9.

We can easily apply non-blocking collective operations to the map as well as the reduce func-
tionality. In the map-case, the master starts wm non-blocking scatter operations at the beginning
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before it waits for the first one to complete. It issues the next one after the first one completes.
This efficiently creates a “window” of scatter operations that run in the background. Their latency
can be ignored if the window size is reasonably large and the work-packets take long enough to
compute. The same principle can also be applied if the work-packets contain actual data. The
trade-off there is that the memory requirements grow with the window size, i.e., data for all run-
ning operations has to be in main memory at the root process. The slave processes similarly start
wm non-blocking scatter operations and re-post new non-blocking scatter until the signal to exit
is received. In the reduce case, we have to define a set of wr buffers to support wr outstanding
non-blocking operations. A similar window-technique as in the map-operation is used to have wr

outstanding NBC_Ireduce operations at any time. If all n buffers are busy, the “oldest” reduction is
finished by calling NBC_Wait and the Reduce function is performed locally on the root-node again.
The remaining outstanding communications have to be finished and their buffers reduced when
all tasks are done. The resulting execution scheme is shown in the right part of Figure V.9.

1.8.2 Performance Results

Most map-reduce applications process large amounts of data that have to be read from either the
network or local disks. Thus, we assume that the I/O bandwidth is not sufficient to keep multi-
ple processing elements busy. However, most of today’s systems are multi-core or SMP systems
such that there are idle resources available to offload the communication. We use the threaded
InfiniBand-optimized version of LibNBC for all benchmarks. This efficiently results in offloading
the Reduce-task to another core (the reduce operation is a part of the MPI_Reduce communication)
transparently to the application developer. Benchmarks of the simple string-search example were
also covered by the more extensive simulator and delivered exactly the same results. Thus, we only
present benchmark results for the different configurations of the simulator.

We benchmarked two different workload-scenarios with 1 to 126 slave nodes with 10 tasks per
node. We compared the threaded version of LibNBC with a maximum of 5 outstanding collective
operations with Open MPI 1.2.6. We also varied the data-size of the reduction operation (in our
example, we used summation as the reduce operation). Figure V.10(a) shows the communication
and synchronization overhead for a static workload of 1 second per packet. Using non-blocking
collective results in a significant performance increase because nearly all communication can be
overlapped. The remaining communication overhead is due to InfiniBandTM’s memory registra-
tion which is done on the host CPU. The graphs show a reduction of communication and synchro-
nization overhead of up to 27%. Figure V.10(b) shows the influence of non-blocking collectives to
dynamic workloads varying between 1ms and 10s. The significant performance increase is due
to avoidance of synchonization and the use of communication/computation overlap. This clearly
shows that our technique can be used to benefit map-reduce-like applications significantly. The
dynamic example shows improvements in time to solution of up to 25%.
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Figure V.10: Overhead and Time to Solution for Static and Dynamic Workloads for different Num-
ber of Slaves

2 Case Studies with Real-World Applications

“In the good old days physicists repeated each other’s experiments, just to be sure. Today they stick to

FORTRAN, so that they can share each other’s programs, bugs included.” – Edsger Dijkstra (1930-2002), Dutch

computer scientist, Turing Award 1972

In this chapter, we finally apply the described techniques to real-world applications. All de-
scribed applications are run with realistic workloads and at reasonable scale, i.e., the communica-
tion overheads are not higher than 25-30%. We expect to lower the communication overhead with
the application of non-blocking techniques. We have shown in the previous section that this over-
head can be significantly reduced from 50% down to 10% in the ideal case. Often, non-blocking
techniques can only be applied to some of the operations causing communication overhead. Thus,
we expect 5-15% performance increase for the real applications and realistic workloads. We analyze
two applications, a software that uses global reduction operations to reconstruct medical images
and a quantum mechanical simulation that performs nearest neighbor communication as part of
the inner solver.

2.1 Medical Image Reconstruction

Many modern medical methods for diagnosis and treatment require highly accurate, high-
resolution 3D images of the inside of a human body. In order to provide the required accuracy and
resolution, modern reconstruction algorithms in medical imaging are becoming more complex and
time-consuming. In this section, we study Positron Emission Tomography (PET) reconstruction,
where one of the most popular, but also most time-consuming algorithms—the list-mode OSEM
algorithm—requires several hours on a common PC in order to compute a 3D reconstruction. With
advanced algorithms that incorporate more physical aspects of the PET process, computation times
are rising even further [126]. This motivates the parallelization of the algorithm on multiprocessor
clusters [182].
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Our current parallel implementation uses MPI collective operations and OpenMP [160, 161].
Collective operations allow the programmer to express high-level communication patterns in a
portable way, such that implementers of communication libraries provide machine-optimized al-
gorithms for those complex communications.

To reduce the communication overhead in our case study, we transform our code to leverage
non-blocking collective operations offered by LibNBC, which provide—additionally to the over-
lapping of communication with computation— high-level communication offload using the Infini-
Band network. We analyze the code transformations and provide an analytical runtime model that
identifies the overlap potential of our approach.

2.1.1 List-Mode OSEM Algorithm

PET is a medical imaging technique that displays metabolic processes in a human or animal body.
PET acquisition proceeds as follows: A slightly radioactive substance which emits positrons when
decaying is applied to the patient who is then placed inside a scanner.

Figure V.11: Detectors register an event
in a PET-scanner with 6 detector rings

1 for each( iteration k){
for each( subiteration l ) {
for (event i ∈ Sl ) {

4 compute Ai

5 compute cl+ = (Ai)
t 1

Aifk
l

}

6 fk
l+1 = fk

l cl }
7 fk+1

0 = fk
l+1 }

Listing V.16: Sequential list-mode
OSEM algorithm.

The detectors of the scanner measure so-called events: When the emitted positrons of the ra-
dioactive substance collide with an electron residing in the surrounding tissue near the decaying
spot (up to 3mm from the emission point), they are annihilated. During annihilation two gamma
rays emit from the annihilation spot in opposite directions and form a line, see Fig. V.11. These
gamma rays are registered by the involved detectors; one such registration is called an event. Dur-
ing one investigation, typically 107 to 5 · 108 events are registered, from which a reconstruction
algorithm computes a 3D image of the substance’s distribution in the body.

In this work, we focus on the highly accurate, but also quite time-consuming list-mode OSEM
(Ordered Subset Expectation Maximization) reconstruction algorithm [174] which computes the
image f from the m events saved in a list.

The algorithm works block-iteratively: in order to speed up convergence, a complete iteration
over all events is divided into s subiterations (see Listing V.16). Each subiteration processes one
block of events, the so-called subset. The starting image vector is f0 = (1, ..., 1) ∈ R

N , where N

is the number of voxels in the image being reconstructed. For each subiteration l ∈ 0, ..., s−1, the
events in subset l are processed in order to compute a new, more precise reconstruction image fl+1,
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Figure V.12: Parallel list-mode OSEM algorithm on four nodes with the blocking MPI_Allreduce

using four OpenMP threads per node

which is used again for the next subiteration as follows:

fl+1 =
1

At
norm1

︸ ︷︷ ︸

:=a

flcl; cl =
∑

i∈Sl

(Ai)
t 1

Aifl
, (V.5)

where Sl are the indices of events in subset l, 1 = (1, ..., 1). For the i-th row Ai of the so-called
system-matrixA ∈ R

m×N , element aik denotes the length of intersection of the line between the two

detectors of event i with voxel k. The so-called normalization vector a =
1

At
norm1

is independent of

the current subiteration and can thus be precalculated. In the computation of fl+1 themultiplication
of aflcl is performed element by element.

After one iteration over all subsets, the reconstruction process can either be stopped, or the re-
sult can be improved with further iterations over all subsets (see pseudocode in Listing V.16). Note
that the optimal number of events per subset ms = m/s only depends on the scanner geometry
and is thus fixed (for our scanner [181], it is ms = 106).

2.1.2 Algorithm Parallelization Concept

Two strategies to parallelize the list-mode OSEM algorithm exist: one distributes the events, the
other the 3D image among the processor. In [182] we showed that the first strategy outperforms
the second in almost all cases and we therefore chose this first strategy for our parallelization:
Since fl+1 depends on fl we parallelize the computations within one subset. We decompose the
input data, i.e., the events of one subset into P (=number of nodes) blocks and process each block
simultaneously. The calculations for one subset includes four steps on every node j (∀ j = 1, . . . , P )

(cf. Fig. V.12):
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1. Read ms/P events.

2. Compute cl,j =
∑

i∈Sl,j
(Ai)

t 1

Aifl
. This includes the on-the-fly computation of Ai for each

event in Sl,j .
3. Sum up cl,j ∈ R

N (
∑

j cl,j = cl) with MPI_Allreduce.
4. Compute fl+1 = flcl.

We implemented steps 1 and 3 (i.e., the reading of data and the actual communication of the parallel
algorithm) using MPI_File_Read and blocking MPI_Allreduce. We start one process per node and
support SMP clusters by additionally parallelizing steps 2 and 4 using OpenMP.

2.1.3 Parallel Algorithm with Non-Blocking Collectives

In order to optimize the parallel algorithm, we reduce the overhead arising from the Allreduce step
by overlapping its communication with computations that are independent of the communicated
data.

We overlap the reading of events for subset l and the computation of the corresponding sub-
matrix Al (which is composed of rows i ∈ Sl) with the communication of cl−1 of the preceding
subset (see Fig. V.13). Hence, the non-blocking parallel algorithm on nodes j (∀ j = 1, . . . , P ) reads
as follows:

1. Read ms/P events in the first subset.

2. Compute cl,j =
∑

i∈Sl,j
(Ai)

t 1

Aifl
. This includes the on-the-fly computation of Ai for each

event in Sl,j in the first subset. Beginning from the second subset, rows Ai have already been
computed in parallel with NBC_Iallreduce.

3. Start NBC_Iallreduce for cl,j (
∑

j cl,j = cl).
4. In every but the last subset, each node reads the ms/P events for subset l + 1 and computes

Ai for subset l + 1.
5. Perform NBC_Wait to finish NBC_Iallreduce.
6. Compute fl+1 = flcl.

Note that in this approach, Al has to be kept in memory. If not enough memory is available, one
part Al can be computed as in the original version in step 2 and the other part in step 4. Also,

since Ai is precomputed, the computation of cl = (Ai)
t 1

Aifl
could cause CPU cache misses that

influence the performance.

2.1.4 Analyzing the Overlap Potential

In order to identify the overlap potential of our approach, we develop an analytical runtime model
for the overlappable computations. We denote the sequential time to compute the ms rows of
Al by t1Al

(ms) and the time to read each node’s ms/P events by tPread(ms/P ). If we assume that
tPread(ms/P ) ≈ tPread(ms)/P , we obtain a computational overlap time per subset with one thread
on each of the P nodes of

tPCompOver = tPread(ms/P ) + t1Al(ms)/P ≈ (tPread(ms) + t1Al(ms))/P (V.6)
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Figure V.13: Parallel list-mode OSEM algorithm on four nodes with the non-blocking
NBC_Iallreduce using four OpenMP threads per node

We will verify our model (V.6) with experiments in Section 2.1.5.
On q cores per node, the ideal parallel efficiency with our OpenMP parallelization would be

α(q) = t1Ai
/(tqAi

· q) = 1. However, with an increasing number of threads sharing the cache, cache
misses increase considerably and thus our OpenMP implementation scales worse than ideally on
multi-core machines. For example, on a quad-core processor, efficiency is α(4) = 0.5.

Note that on systems where file I/O andMPI communication share the same network, the over-
lapping of reading of data and communication might be limited due to the network’s bandwidth.
Hence, in the worst case, with the network fully loaded by MPI communication, tPCompOver =

t1Al(ms)/P .
Fig. V.14(a) shows a comparison of the “blocking performance”1 of LibNBC 0.9.3 with

the “tuned” collective module of Open MPI 1.2.6rc2. The measurements were done with
NBCBench [15] on the odin cluster at Indiana University. Odin uses NFSv3 over Gigabit Ethernet as
file system and the Intel compiler suite version 9.1. LibNBC’s Allreduce uses multiple communi-
cation rounds (cf. [11]). This requires the user to ensure progress manually by calling NBC_Test or
run a separate thread that manages the progression of LibNBC (i.e., progress thread). Fig. V.14(b)
shows the communication overhead with and without a progress thread under the assumption that
thewhole communication latency can be overlappedwith computation (i.e., the overhead is a lower
bound) and the progress thread runs on a spare CPU core (the overhead with a progress thread is
constantly 3µs, due to the fully asynchronous processing, and thus at the bottom of Fig. V.14(b)).

2.1.5 Benchmark Results

In our benchmarks, we study the reconstruction of data collected by the quadHIDAC small-animal
PET scanner [181]. We used 107 events divided into 10 subsets and performed one iteration over
all events. The reconstruction image has the size N = (150 × 150 × 280) voxels. We ran a set of
different benchmarks on the Odin system. We compared the non-threaded and threaded versions
of LibNBC using the InfiniBandTM optimized transport. We progressed the non-threaded version

1NBC_Iallreduce immediately followed by NBC_Wait
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Figure V.14: Allreduce Performance Results for a 48MiB Summation of Doubles

with 4 × P calls to NBC_Test that are equally distributed over the overlapped time. The threaded
version of LibNBC is implemented by using InfiniBand’s blocking semantics and the application
did not call NBC_Test at all. We benchmarked all configurations of LibNBC and the original MPI
implementation on 8, 16 and 32 nodes with 1, 2, 3 or 4 OpenMP threads per node three times and
report the average times across all runs and processes (the variance between the runs was low).

Computational Overlap The computational overlap time per subset tPCompOver decreases—as
expected from our model—linearly with increasing number of processes P . The average time was
833.5ms on 8, 469.9ms on 16 and 241.8ms on 32 nodes. With reading time tPread ranging from
55.4ms on 8 to 11.2ms on 32 nodes and computation time tPAl

ranging from 778.1ms to 230.6ms

on 8 and 32 nodes, respectively, we are able to verify our model (V.6) with an error of about 6%.
Fig. V.15(a) shows the application running time on 32 nodes with different numbers of OpenMP

threads per node. We see that the non-threaded version of LibNBC is able to improve the running
time in every configuration. However, the threaded version is only able to improve the perfor-
mance if it has a spare core available because of scheduler congestion on the fully loaded system.
The performance gain also decreases with the number of OpenMP threads. This is because we
studied a strong scaling problem and the overlappable computation time gets shorter with more
threads computing the static workload and is eventually not enough to overlap the full communica-
tion. Another issue for smaller node-counts is that our transformed implementation is, as described
in Section 2.1.4, slightly less cache-friendly which limits the application speedup at smaller scale.

Fig. V.15(b) shows the communication overhead for different node counts with one thread per
node2. Our implementation achieves significantly smaller communication overhead for all config-
urations. However, the workload per node that can be overlapped decreases, as described above,
with the number of nodes, while the communication time of the 48MiB Allreduce remains nearly
constant. Thus, the time to overlap shrinks with the number of nodes and limits the performance
gain of the non-blocking collectives.

2the lower part of the bars denotes the Allreduce overhead
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2.2 Octopus - A QuantumMechanical Software Package

Ab-initio quantum mechanical simulations play an important role in nano and material sciences
as well as many other scientific areas, e. g., the understanding of biological or chemical processes.
Solving the underlying Schrödinger equation for systems of hundreds or thousands of atoms re-
quires a tremendous computational effort that can only be mastered by highly parallel systems and
algorithms.

Density functional theory (DFT) [123, 175] is a computationally feasible method to calculate
properties of quantum mechanical systems like molecules, clusters, or solids. The basic equations
of DFT are the static and time-dependent Kohn-Sham equations:3

Hϕj = εjϕj i
∂

∂t
ϕj(t) = H(t)ϕj(t) (V.7)

The electronic system is described by the Hamiltonian operator

H = −1

2
∇2 + V , (V.8)

where the derivative accounts for kinetic energy and V for the atomic potentials and electron-
electron interaction. The vectors ϕj , j = 1, . . . , N , are the Kohn-Sham orbitals each describing one
of N electrons.

The scientific application octopus [51] solves the eigenvalue problem of Eq. (V.7, left) by itera-
tive diagonalization for the lowest N eigenpairs (εj ,ϕj) and Eq. (V.7, right) by explicitly evolving
the Kohn-Sham orbitals ϕj(t) in time. The essential ingredient of iterative eigensolvers as well as
of most real-time propagators [52] is the multiplication of the Hamiltonian with an orbital Hϕj .
Since octopus relies on finite-difference grids to represent the orbitals, this operation can be par-
allelized by dividing the real-space mesh and assigning a certain partition (domain) to each node
as shown in Fig. III.1(a).

3i denotes the imaginary unit i =
√

−1 and t is the time parameter.
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(a) An area V enlarged by d. (b) Rhombic dodecahedrons, consisting of twelve
rhombic faces, stacked to fill up space.

Figure V.16: Message sizes and number of neighbors.

The potential V is a diagonal matrix, so the product V ϕj can be calculated locally on each node.
The Laplacian operator of (V.8) is implemented by a finite-difference stencil as shown in Fig. III.1(b).
This technique requires to send values close to the boundary (gray shading in Fig. III.1(b)) from one
partition (orange) to a neighboring one (green).
The original implementation of Hϕj is:

1. Exchange boundary values between partitions.
2. ϕj ← − 1

2∇2
ϕj (apply kinetic energy operator).

3. ϕj ← ϕj + V ϕj (apply potential).

In this article, we describe a simplified and efficient way to implement and optimize the neigh-
bor exchange with non-blocking collective operations that are defined on topology communicators.

2.2.1 Parallel Implementation

This section gives a detailed analysis of the communication and computation behavior of the do-
main parallelization and presents alternative implementations using non-blocking and topology-
aware collectives that provide higher performance and better programmability.

2.2.1.1 Domain parallelization

The application of the Hamiltonian to an orbital Hϕj can be parallelized by a partitioning of
the real-space grid. The best decomposition depends on the distribution of grid-points in real-space
which depends on the atomic geometry of the system under study. We use the library METIS [117]
to obtain partitions that are well balanced in the number of points per node.

The communication overhead of calculating Hϕj is dominated by the neighbor exchange oper-
ation on the grid. To determine a model to assess the scaling of the communication time which can
be used to predict the application’s running time and scalability, we need to assess the message-
sizes, and the average number of neighbors of every processor. Both parameters are influenced
by the discretization order d that affects how far the stencil leaks into neighboring domains, and
by the number of points in each partition. Assuming a nearly optimal domain decomposition, NP

points in total, and P processors we can consider the ratio V = NP/P as “volume” per node. The
number of communicated points is p(P ) = Vd − V with Vd being the volume V increased by the
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discretization order d and reads

p(P ) = αd3 + βd2
√

V (P ) + γd 3

√

V (P )2 (V.9)

with coefficients α, β, γ depending on the actual shape of the partitions. The derivation of (V.9)
is sketched schematically in Fig. V.16(a) for a 2D situation: an area V is increased by d in each
direction. The enlargement is proportional to d2 (green) and d

√
V (red). In 3D, the additional

dimension causes these terms to be multiplied by d and leads to one more term proportional to
d

3
√

V 2. Fig. V.17(a) shows the number of exchanged points measured for a cylindrical grid of 1.2
million points and the analytical expression (V.9) fitted to the data-points.

Since the average number of neighbors (ν) depends on the structure of the input system, we
cannot derive a generic formula for this quantity but instead give the following estimate: METIS
minimizes edge-cut which is equivalent to minimization of surfaces. This can be seen in Fig. III.1(a)
on 64 where the partition borders are almost between the gray Carbon atoms, the optimum in this
case. In general, the minimal surface a volume can take on is spherical. Assuming the partitions
to be stacked rhombic dodecahedrons as approximation to spheres, shown in Fig. V.16(b), we con-
clude that, for larger P , ν is clearly below P because each dodecahedron has at maximum twelve
neighbors. This consideration, of course, assumes truly minimum surfaces that METIS can only ap-
proximate. In practice, we observe an increasing number of neighbors for larger P , see Fig. V.17(b).
Nevertheless, the number of neighbors is an order of magnitude lower than the number of proces-
sors.

Applying the well-known LogGP model [29] to our estimations of the scaling of the message
sizes and the number of neighbors ν, we can derive the following model of the communication
overhead (each point is represented by an 8 byte double value):

tcomm = L + oν + g(ν − 1) + G(ν · 8 p(P )) (V.10)
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We assume a constant number of neighbors ν at large scale. Thus, the communication overhead
scales withO

(√

NP/P
)

in P . The computational cost of steps 2 and 3 that determines the potential
to overlap computation and communication scales with NP/P for the potential term and αd3 +

βd2
√

NP/P + γd
3

√

(NP/P )
2
+ δNP/P for the kinetic term.4 We observe that our computation has

a similar scaling behavior as the communication overhead, cf. Eq. (V.10). We therefore conclude that
overlapping the neighbor exchange communication with steps 2 and 3 should show a reasonable
performance benefit at any scale.

Overlapping this kind of communication has been successfully demonstrated on a regular grid
in [2]. We expect the irregular grid to achieve similar performance improvements which could
result in a reduction of the communication overhead.

Practical benchmarks show that there are two calls that dominate the communication overhead
of octopus. On 16 processors, about 13% of the application time is spent in many 1 real or com-
plex value MPI_Allreduce calls caused by dot-products and the calculation of the atomic potentials.
This communication can not be optimized or overlapped easily and is thus out of the scope of
this work. The second biggest source of communication overhead is the neighbor communica-
tion which causes about 8.2% of the total runtime. Our work aims at efficiently implementing the
neighbor exchange and reducing its communication overhead with new non-blocking collective
operations that act on a process topology.

2.2.1.2 Implementation with NBC_Ialltoallv

The original implementation used MPI_Alltoallv for the neighbor exchange. The transition to the
use of non-blocking collective operations is a simple replacing of MPI_Alltoall with NBC_Ialltoallv

and the addition of a handle. Furthermore, the operation has to be finished with a call to NBC_Wait

before the communicated data is accessed.
However, to achieve the best performance improvement, several additional steps have to be

performed. The first step is to maximize the time to overlap, i. e., to move the NBC_Wait as far
behind the respective NBC_Ialltoallv as possible in order to give the communication more time
to proceed in the background. Thus, to overlap communication and computation we change the
original algorithm to:

1. Initiate neighbor exchange (NBC_Ialltoallv).
2. ϕj ← vϕj (apply potential).
3. ϕj ← ϕj − 1

2∇2
ϕ

inner
j (apply kinetic energy operator to inner points).

4. Wait for the neighbor exchange to finish (NBC_Wait).
5. ϕj ← ϕj − 1

2∇2
ϕ

edge
j (apply kinetic energy operator to edge points).

We initiate the exchange of neighboring points (step 1) and overlap it with the calculation of the
potential term (step 2) and the inner part of the kinetic energy, which is the derivative of all points
that can be calculated solely by local points (step 3). The last step is waiting for the neighbor-
exchange to finish (step 4) and calculation of the derivatives for the edge points (step 5).

4The derivation of this expression is similar to (V.9) except that we shrink the volume by the discretization order d.
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A usual second step to optimize for overlap is to introduce NBC_Test() calls that give LibNBC
the chance to progress outstanding requests. This is not necessary if the threaded version of
LibNBC is running on the system. We have shown Chapter IV that the a naively threaded ver-
sion performs worse, due to the loss of a computational core. However, for this work, we use the
InfiniBand optimized version of LibNBCwhich does not need explicit progressionwith NBC_Test()

if there is only a single communication round (which is true for all non-blocking operations used
in octopus).

As shown in Section 2.2.1.1, the maximum number of neighbors is limited. Thus, the resulting
communication pattern for large-scale runs is sparse. The MPI_Alltoallv function, however, is not
suitable for large-scale sparse communication patterns because it is not scalable due to the four
index arrays which have to be filled for every process in the communicator regardless of the com-
munication pattern. This results in arrays mostly filled with zeros that still have to be generated,
stored and processed in the MPI call and is thus a performance bottleneck at large scale. Filling
those arrays correctly is also complicated for the programmer and a source of common program-
ming errors. To tackle the scalability and implementation problems, we use the new collective
operations, proposed in Chapter III, that are defined on the well knownMPI process topologies [6].
The following section describes the application of one of the proposed collective operations to the
problem described above.

2.2.1.3 Implementation with Topological Collective Operations

We use a graph communicator and the newly proposed collectives introduced in Chapter III
to represent the neighborship of partitions generated by METIS for the particular input system.
MPI_Graph_create is used to create the graph communicator. Due to the potentially irregular grid
(depending on the input system), the number of points communicated with each neighbor might
vary. Thus, we used the vector variant NBC_Ineighbor_xchgv to implement the neighbor exchange
for octopus.

2.2.2 Performance Analysis

We benchmarked our implementation on the CHiC supercomputer system (a cluster computer
consisting of nodes equipped with dual socket dual-core AMD 2218 2.6 GHz CPUs, connected
with SDR InfiniBand and 4 GB memory per node). We use the InfiniBand-optimized version of
LibNBC [9] to achieve highest performance and overlap. Each configuration was ran three times
on all four cores per node (4-16 nodes were used) and the average values are reported.

Fig. V.18(a) shows the microbenchmark results for the overhead of NBC_Ialltoallv and
NBC_Ineigbor_xchgv of NBCBench [11] with 10 neighbors under the assumption that the whole
communication time can be overlapped. The overhead of the new neighbor exchange operation
is slightly lower than the NBC_Ialltoallv overhead because the implementation does not evalu-
ate arrays of size P . Fig. V.18(b) shows the communication overhead of a fixed-size ground state
calculation of a chain of Lithium and Hydrogen atoms. The overhead varies (depending on the
technique used) between 22% and 25% on 16 processes. The bars in Fig. V.18(b) show the total
communication overhead and the tackled neighbor exchange overhead (lower part). We analyze
only the overhead-reduction and easier implementation of the neighbor exchange in this work.
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Figure V.18: LibNBC and octopus communication overhead.

The application of non-blocking neighbor collective operations efficiently halves the neighbor ex-
change overhead and thus improves the performance of octopus by about 2%. The improvement
is smaller on 64 processes because the time to overlap is due to the strong scaling problem much
smaller than in the 32 or 16 process cases. The gain of using the nearest neighbor exchange collec-
tive is marginal at this small scale. Memory restrictions prevented bigger strong-scaling runs.

3 Conclusions

Although non-blocking collective communication operations offer significant potential for improv-
ing application performance, they need to be used appropriately within applications to actually
provide performance improvements. In this chapter, we presented different programming patterns
to enable efficient overlapping of collective communication for a wide class of scientific applica-
tions. Applying non-blocking collective communication with our approach allowed applications
to scale far beyond the parallelism of simple non-blocking point-to-point communication schemes.

The implementation of our transformation scheme as a generic library function template allows
these techniques to be usedwithout requiring the programmer to explicitly encode them. Compres-
sion and FFT benchmarks using our template demonstrate a significant decrease of communication
overhead for both applications. The communication overhead was reduced by more than 92% for
the parallel compression and 90% for the parallel 3D-FFT which led to an application speedup of
21% and 16% respectively.

We also demonstrated the easy use of the LibNBC and the application principle of non-blocking
collectives to a class of application kernels that exhibits explicit data parallelism. We were able to
improve the parallel application kernel running time by up to 34% with minor changes to the
application.

The programming schemeMap-Reducewas also analyzed. We noted thatMap-Reduce does not
ideally fit the MPI model. However, we analyzed the large subset of Map-Reduce applications that
match the MPI model. The use of collective operations for the Map and Reduce tasks seems natural
for this class of applications. We demonstrated reasonable performance gains for dynamic and
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static workloads by using non-blocking collective operations and the simple window/pipelining
techniques that we described before.

In an application study, we applied non-blocking collective operations to the mixed OpenM-
P/MPI parallel implementation of the list-mode OSEM algorithm and analyzed the performance
gain for a fixed problem size (strong scaling) on different setups of MPI processes and OpenMP
threads and a real-world input. The conducted study demonstrates that the overlap optimization
potential of non-blocking collectives depends heavily on the time to overlap (amount of work to
do while communicating) which usually decreases while scaling to larger process counts. How-
ever, even in the worst case (smallest workload) of our example, running 128 threads on 32 nodes,
LibNBC was able to reduce the communication overhead from 40.31% to 37.3%. In the best case,
with one thread on 8 nodes (highest workload per process), the communication overhead could be
efficiently halved from 12.0% to 5.6%.

In a second application study, we analyzed the ease of use and performance potential of our
newly proposed topological collectives. We showed the application of the new operations to the
quantum mechanical simulation program octopus. The communication overhead of the neigh-
bor exchange operation was efficiently halved by overlapping of communication and computation
improved the application performance.

In general, we have been able to prove our assumptions with real-world codes and workloads.
However, we have to say that the correct application and performance tuning of non-blocking
collective is non-trivial and requires a lot of expert knowledge and fine tuning. Manual approaches
to do this are cumbersome and we showed a semi-automatic approach. Simplifying the use and
tuning of this new class of operations is subject of ongoing research.
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Summary and Conclusions

“I hope we’ll be able to solve these problems before we leave. And when I say ’before we
leave’, I mean ’before we die.’ ” – Paul Erdös, (1913-1996) Hungarian Mathematician

In this work, we analyze today’s parallel programming models and principles for their applica-
bility to large-scale systems and algorithms. We focused on the Message Passing Interface (MPI)

which is the most usedmodel on today’s large-scale systems. We strongly believe that only gradual
change can be successful in practice. Thus, we focus on extending MPI to improve its performance
at large-scale.

In order to model the reality as accurately as possible, we analyze a particular network that is of-
ten used in High Performance Computing, InfiniBand. We implemented the extensive open-source
benchmark Netgauge to measure, compare and model all of InfiniBand’s different data transmis-
sion modes. Based on this, we were able to verify the LogGP model for large messages and extend
it for more accurate modelling of small messages in the InfiniBand architecture.

We show that collective optimization of communication patterns is the key to portable perfor-
mance at large scale. MPI offers the collective operation mechanism to enable the user to express
dense communication patterns abstractly. The newmodel enabled a step back into theory such that
we could derive two new principles to optimize collective communication in MPI.

Based on the previous experiments, we reasoned that the performance metric of large-scale net-
works, their bisection bandwidth, is not accurate to predict performance at scale. We analyzed
the largest unclassified existing InfiniBand installations and introduced a new measure, effective
bisection bandwidth, which seems more accurate from an application perspective. We also extrap-
olate those results to larger future systems with up to 10,000 endpoints. An extensive analysis of
real-world application patterns shows that the new measure also provides a better assessment for
different communication patterns such as tree, dissemination and nearest neighbor. Based on this,
we point out that optimized collective implementations could take advantage of the additional in-
formation such as routing. We propose an optimization scheme based on a remapping strategy. We
were able to approximate good solutions with a genetic algorithm at small scale, however, large-
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scale simulations showed that this approach is not viable due to the large (factorial) search space.
Based on those experiments and our belief that large-scale communication patterns have to be

optimized abstractly, we proposed two extensions to the existing MPI collective operations. The
first extension are topological collective operations that enable sparse communication patterns to
be modeled at a high level (e.g., with graph topologies) which is a huge optimization potential.
This enables the expression of common sparse communication schemes, such as nearest neighbor,
in terms of collective operations. With this technique, the sparse operations can be optimized by
the library, and the programmer’s task is simplified while the scalability of simple point-to-point
is maintained. The second extension is a non-blocking variant of all MPI collective operations.
The obvious benefit here is that they offer an interface that can be used to overlap communication
and computation to hide the latency and use the network bandwidth more efficiently. Another
not so obvious benefit is more important at large-scale: the mitigation of the detrimental effects of
process skew and load imbalance by moving the data-driven pseudo-synchronization of collective
operations into the background. Both extensions are under consideration for the third generation
MPI standard.

Overlapping of computation and communication is widely discussed and there seems to be no
clear conclusion among scientists. We show that the drawbacks lie mainly in the implementation
of communication libraries which limit the practical use of overlapping techniques. We model the
potential performance gain of non-blocking collective operations with our newly developed mod-
els and are able to draw two main conclusions: first, the theoretical performance gain grows with
the size of the exchanged data and system size. It enables a reduction of the communication over-
head of up to three orders of magnitude for large messages on large systems. At smaller (today’s
realistic) scale, the performance benefits vary between 80% and 99%. Second, the choice of opti-
mal algorithms to implement non-blocking collective operations is fundamentally different from
the implementation of blocking collectives because CPU overhead and progression becomes more
important than latency in this context. Thus, we conclude theoretically that a simple threaded im-
plementation using MPI-2 features would not perform optimally and has other disadvantages, for
example, programmability.

To demonstrate the disadvantages, we compared an implementation based in threaded block-
ing MPI collective operations with an implementation based on point-to-point messages and al-
gorithms optimized for overlap. Based on the results, we decided to continue the development of
the point-to-point-based implementation due to its higher flexibility and performance. The result-
ing implementation, LibNBC, supports all colletive operations defined in MPI and all topological
collectives proposed in this work with a non-blocking interface. In order to gain higher measure-
ment accuracy, we extended a well-known benchmark scheme for blocking collective operations
to enable higher accuracy, higher scalability and the measurement of communication overheads of
non-blocking collective operations. The benchmark’s source-code, called NBCBench, is publicly
available. In order to show principles that can be used to implement a low-overhead version of
non-blocking collectives, we optimized our implementation for the InfiniBand network and were
able to demonstrate near-optimal performance. Our fully-threaded version can be used to offload
the whole communication and the communication-related computation to a separate processing
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element. We also discuss operating system issues that become significant when the progression
thread is run on a loaded CPU. We also discuss possible solutions to all discovered problems.

The biggest remaining problem is the use of the new techniques in real applications. We showed
several basic principles to optimize parallel algorithms in the extended model. We implemented
those ideas as generic C++ templates which can be used to rearrange computation and communi-
cation in order to achieve highest performance. We show the the optimization of three application
kernels: 3-dimensional Poisson Solver, a 3-dimensional Fast Fourier Transform and a Parallel Com-
pression. The communication overhead of all kernels could be decreased by up to 92%. We also
analyzed the applicability to the parallel programming scheme Map-Reduce and showed that per-
formance of static and dynamic workloads can be significantly enhanced.

Two real-world applications, a medical image reconstruction algorithm and a quantum-
mechanical computation were also analyzed. The communication overhead of the optimized op-
erations could be halved in the best case. However, we also saw that non-blocking collective oper-
ations can not be applied to all algorithms and might need rather huge changes to the underlying
algorithm or mathematical representation. We still show performance improvements for both ap-
plication examples. We see that optimization is an expert task and requires significant tuning and
knowledge about the application and the communication network.

We expect that our results will impact mathematical thinking and algorithm design. Parallel
algorithms will need to be designed with high-level communication patterns in mind and enable
overlap of communication and computation wherever possible. Thus, the designer needs to think
in terms of data- and functionality parallelism. We expect that new algorithms and architectures
will be designed with those principles in mind.

All results of this thesis and programs used to gather them are available as source code. Pro-
grams were either implemented in Open MPI or in one of the software packages developed as
tools for the research. Those tools, namely LibNBC, Netgauge, LibAllprof and NBCBench, com-
prise about comprise about 41,000 source lines of C, C++ and python code1. All tools are available
to the public at the personal homepage of the author.

1counted with David A. Wheeler’s ’SLOCCount’
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Appendix

“Our two greatest problems are gravity and paper work. We can lick gravity, but
sometimes the paperwork is overwhelming.” – Wernher von Braun, (1912-1977) German Physicist,

National Medal of Science 1975
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C LibNBC API Definition

This section defines the internal API to add new non-blocking collective algorithms and new col-
lective functionality (e.g., new operations) to LibNBC and the external API for end-users to use the
non-blocking operations. All functions return NBC error codes, defined in nbc.h.

C.1 Internal API - Building a Schedule

This section describes all the functions that can be used to build a schedule for a collective.

• NBC_Sched_create(NBC_Schedule* schedule) allocates a new schedule array.
• NBC_Free(NBC_Handle *handle) deallocates a schedule and all related allocated mem-

ory.
• NBC_Sched_send(void* buf, int count, MPI_Datatype datatype, int

dest, NBC_Schedule *schedule) adds a non-blocking send operation to the schedule
• NBC_Sched_recv(void* buf, int count, MPI_Datatype datatype, int

source, NBC_Schedule *schedule) adds a non-blocking receive operation to the
schedule

• NBC_Sched_op(void* tgt, void* src1, void* src2, int count,

MPI_Datatype datatype, MPI_Op op, NBC_Schedule *schedule) adds a block-
ing local reduction operation of the non-overlapping buffers *src1 and *src2 into *tgt to
the schedule.

• NBC_Sched_copy(void *src, int srccount, MPI_Datatype srctype, void

*tgt, int tgtcount, MPI_Datatype tgttype, NBC_Schedule *schedule)

adds a blocking local copy operation from *src to *tgt to the schedule.
• NBC_Sched_barrier(NBC_Schedule *schedule) ends the current round in the sched-

ule and adds a new round.
• NBC_Sched_commit(NBC_Schedule *schedule) ends the schedule. The commit func-
tion could be used to apply further optimization to the schedule, e.g., to add automatic seg-
mentation and pipelining (currently not done).

C.2 Internal API - Executing a Schedule

This section describes all internal functions that are used to execute a schedule.

• NBC_Start(NBC_Handle *handle, MPI_Comm comm, NBC_Schedule *schedule)

starts the execution of a schedule.
• NBC_Progress(NBC_Handle *handle) progresses the instance identified by the handle.

Returns NBC_OK if the instance (collective operation) is finished or NBC_CONTINUE if there
are still open requests.

C.3 Internal API - Performing Local Operations

This section describes all internal functions that are used to perform local (blocking) operations.
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• NBC_Copy(void *src, int srccount, MPI_Datatype srctype, void *tgt,

int tgtcount, MPI_Datatype tgttype, MPI_Comm comm) copies a message from a
source to a destination buffer (from *src to *tgt).

• NBC_Operation(void *tgt, void *src1, void *src2, MPI_Op op,

MPI_Datatype type, int count) performs a reduction operation from *src1

and *src2 into *tgt.

C.4 External API

This section defines the external API for non-blocking collective operations:

• Non-blocking collective communications can be nested on a single communicator. However,
the NBC implementation limits the number of outstanding non-blocking collectives to 32767.
If a new non-blocking communication gets started, and the NBC library has no free resources,
it fails and raises an exception.

• User-defined MPI reduction operations are not supported.
• NBC collective operations do not match MPI collective operations.
• The send buffer must not be changed for an outstanding non-blocking collective operation,

and the receive buffer must not be read until the operation is finished (e.g, after NBC_Wait).
• Request test and wait functions (NBC_Test, NBC_Wait, NBC_Testall, NBC_Testany, ...) sim-

ilar to their MPI conterpart, described in Section 3.7 of the MPI-1.1 [151] standard, are sup-
ported for non-blocking collective communications.

• NBC_Request_free is not supported.
• NBC_Cancel is not supported.
• The order of issued non-blocking collective operations defines thematching of them (compare
the ordering rules for collective operations in the MPI-1.1 standard and MPI-2 standard in
threaded environments).

• Non-blocking collective operations and blocking collective operations can not match each
other. Any attempts to match them should fail to prevent user portability errors.

• progress is defined similar as for non-blocking point-to-point in the MPI-2 standard
• operations are not tagged to stay close to the current MPI semantics for collective operations

(in threaded environments) and to enable a simple implementation on top of send receive (an
implementation could simply use negative tag values to identify collectives internally)

• NBC request objects are used to enable mixing with poit-to-point operations in operations
like NBC_Waitany. The authors do not see a problem to add this third class of requests (the
two classes right now are point-to-point requests and generalized requests).

• Status objects are not changed by any call finishing a non-blocking collective because all the
information is available in the arguments (there are no wildcards in collectives).

Now, we describe some routines in the style of the MPI standard. Not all routines are explained
explicitely due to the similarity to the MPI-standardized ones. The new features are summarized
in “Other Collective Routines”.
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C.4.1 Barrier Synchronization

NBC_IBARRIER(comm, request)

IN comm communicator (handle)
OUT request request (handle)
int NBC_Ibarrier(MPI_Comm comm, NBC_Handle* request)

NBC_IBARRIER(COMM, REQUEST, IERR)

INTEGER COMM, IERROR, REQUEST

NBC_Ibarrier initializes a barrier on a communicator. NBC_Wait may be used to block until it is
finished.

Advice to users. A non-blocking barrier sounds unusable because barrier is defined in a
blocking manner to protect critical regions. However, there are codes that may move in-
dependent computations between the NBC_Ibarrier and the subsequent Wait/Test call to
overlap the barrier latency.
Advice to implementers. A non-blocking barrier can be used to hide the latency of the barrier
operation. This means that the implementation of this operation should incur only a low
overhead (CPU usage) in order to allow the user process to take advantage of the overlap.

C.4.2 Broadcast

NBC_IBCAST(buffer, count, datatype, root, comm, request)

INOUT buffer starting address of buffer (choice)
IN count number of elements in buffer (integer)
IN datatype data type of elements of buffer (handle)
IN root rank of the broadcast root (integer)
IN comm communicator (handle)
OUT request request (handle)
int MPI_Ibcast(void* buffer, int count, MPI_Datatype datatype, int root,

MPI_Comm comm, NBC_Handle* request)

NBC_IBCAST(BUFFER, COUNT, DATATYPE, ROOT, COMM, REQUEST, IERR)

<type> BUFFER(*), RECVBUF(*)

INTEGER COUNT, DATATYPE, ROOT, COMM, IERROR, REQUEST
Advice to users. A non-blocking broadcast can efficiently be used with a technique called
“double buffering”. This means that a usual buffer in which a calculation is performed
will be doubled in a communication and a computation buffer. Each time step has two
independent operations - communication in the communication buffer and computation in
the computation buffer. The buffers will be swapped (e.g., with simple pointer operations)
after both operations have finished and the program can enter the next round. Valiant’s
BSP model [208] can be easily changed to support non-blocking collective operations in
this manner.
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C.4.3 Gather

NBC_IGATHER(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root, comm, request)

IN sendbuf starting address of send buffer (choice)
IN sendcount number of elements in send buffer (integer)
IN sendtype data type of sendbuffer elements (handle)
OUT recvbuf starting address of receive buffer (choice, significant only at root)
IN recvcount number of elements for any single receive (integer, significant only at root)
IN recvtype data type recv buffer elements (handle, significant only at root)
IN root rank of receiving process (integer)
IN comm communicator (handle)
OUT request request (handle)
int NBC_Igather(void* sendbuf, int sendcount, MPI_Datatype sendtype,

void* recvbuf, int recvcount, MPI_Datatype recvtype, int root,

MPI_Comm comm, NBC_Handle* request)

NBC_IGATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT,RECVTYPE,

ROOT, COMM, REQUEST, IERR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT, COMM, IERROR,

REQUEST

C.4.4 Neighbor Exchange

NBC_INEIGHBOR_XCHG(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, comm,

request)

IN sendbuf starting address of send buffer (choice)
IN sendcount number of elements in send buffer (integer)
IN sendtype data type of sendbuffer elements (handle)
OUT recvbuf starting address of receive buffer (choice, significant only at root)
IN recvcount number of elements for any single receive (integer, significant only at root)
IN recvtype data type recv buffer elements (handle, significant only at root)
IN comm communicator (handle)
OUT request request (handle)
int NBC_Ineighbor_xchg(void* sendbuf, int sendcount,

MPI_Datatype sendtype, void* recvbuf, int recvcount,

MPI_Datatype recvtype, MPI_Comm comm, NBC_Handle* request)

NBC_INEIGHBOR_XCHG(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECV-

COUNT,RECVTYPE,

COMM, REQUEST, IERR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, IERROR,

REQUEST

Torsten Höfler XXV



C. LIBNBC API DEFINITION

C.4.5 Other Collective Routines

All other collective routines in MPI can be executed in a non-blocking manner as shown above.
The operation MPI_<OPERATION> is renamed to NBC_I<OPERATION> and a request-reference
is added as last element to the argument list. All collective routines are shown in Table C.4.5.

NBC_IBARRIER NBC_IBCAST

NBC_IGATHER NBC_IGATHERV

NBC_ISCATTER NBC_ISCATTERV

NBC_IALLGATHER NBC_IALLGATHERV

NBC_IALLTOALL NBC_IALLTOALLV

NBC_IALLTOALLW NBC_IREDUCE

NBC_IALLREDUCE NBC_IREDUCE_SCATTER

NBC_ISCAN NBC_IEXSCAN

Table A.1: Proposed non-blocking collective functions

C.5 Examples

This section presents two examples. Section C.5.1 is intended for implementers who want to imple-
ment new non-blocking collective algorithms using the NBC scheduler. Section C.5.2 is intended
for MPI programmers which want to use the non-blocking collective operations to optimize their
program.

C.5.1 Implementing Collective Algorithms in LibNBC

New collective algorithms can easily be added to LibNBC. We present an example of the imple-
mentation of the dissemination barrier, that has been proposed in [93] and a pseudo-code is given
in [22]. The implementation with the NBC scheduler can be found in nbc_ibarrier.c in the
LibNBC sources. An excerpt of the code is show in Listing A.1
Line 13 creates a new schedule. The algorithm consists of log2P rounds and processes synchronize
pairwise in each round. This means that each process sends and receives to/from other processes
each round and it has to wait until the messages have been received. The rank-specific schedule is
built in the do-loop (Line 17-32). The schedule is committed in Line 36 and ready for use afterwards.
Line 27 starts the scheduler to execute the schedule (non-blocking).
A schedule of rank 0 in a 4-process communicator would consist of two rounds. Each round con-
sists of a send and a receive operation, and its representation in memory is shown in Figure A.1.

send to 1 recv from 3 end send to 2 recv from 2 end

Figure A.1: Schedule for Rank 0 of 4 for a Dissemination Barrier
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1 int NBC_Ibarrier(MPI_Comm comm, NBC_Handle∗ handle) {
int round, rank, p, maxround, res , recvpeer , sendpeer ;
NBC_Schedule ∗schedule ;

5 res = MPI_Comm_rank(comm, &rank) ;
res = MPI_Comm_size(comm, &p) ;

schedule = malloc( sizeof (NBC_Schedule) ) ;

10 round = −1;
handle−>tmpbuf=NULL;

res = NBC_Sched_create(schedule ) ;

15 maxround = ( int ) cei l ( ( log(p)/LOG2)−1);

do {
round++;
sendpeer = (rank + (1<<round)) % p;

20 /∗ add p because modulo does not work with negative values ∗/
recvpeer = ((rank − (1<<round))+p) % p;

/∗ send msg to sendpeer ∗/
res = NBC_Sched_send(NULL, 0 , MPI_BYTE, sendpeer , schedule ) ;

25
/∗ recv msg from recvpeer ∗/
res = NBC_Sched_recv(NULL, 0 , MPI_BYTE, recvpeer , schedule ) ;

/∗ end communication round ∗/
30 i f (round < maxround){

res = NBC_Sched_barrier(schedule ) ;
}

} while (round < maxround) ;

35 res = NBC_Sched_commit(schedule ) ;

res = NBC_Start(handle , comm, schedule ) ;

return NBC_OK;
40 }

Listing A.1: Dissemination Barrier in LibNBC (error checks removed)
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1 int function () {
buffer comm, comp;
NBC_Handle handle ;

5 do {
/∗ do some computation on comm buffer ∗/

NBC_Ibcast(comm, 1 , MPI_DOUBLE, 0 , MPI_COMM_WORLD, &handle ) ;

10 /∗ do some computation on comp buffer ∗/

NBC_Wait(&handle ) ;
} while (problem_not_solved ) ;

}

Listing A.2: Code example with non-blocking NBC_Ibcast

1 int function () {
buffer comm, comp;
NBC_Handle handle ;

5 do {
/∗ do some computation on comm buffer ∗/

NBC_Ibcast(comm, 1 , MPI_DOUBLE, 0 , MPI_COMM_WORLD, &handle ) ;

10 /∗ do some computation on comp buffer ∗/

NBC_Test(&handle ) ;

/∗ do some computation on comp buffer ∗/
15

NBC_Wait(&handle ) ;
} while (problem_not_solved ) ;

}

Listing A.3: Code example with non-blocking NBC_Ibcast with NBC_Test

C.5.2 Using Non-Blocking Collective Operations from a MPI Program

The transition from blocking MPI collective operations to non-blocking NBC collective operations
is simple. The NBC interface is similar to the blocking MPI collective operations and adds only
a NBC_Handle as last parameter. A code using NBC_Ibcast is shown in Listing A.2. To ensure
progress in the background, the user should call NBC_Test on active handles as shown in List-
ing A.3.
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