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Introduction
Solving Grand Challenge Problems

@ not a Grid talk
@ HPC-centric view
@ highly-scalable tightly coupled machines

Thanks for the Introduction Manish!
@ All processors will be multi-core
@ All computers will be massively parallel
@ All programmers will be parallel programmers
@ All programs will be parallel programs

= All (massively) parallel programs need optimized
communication (patterns)
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Fundamental Assumptions (I)
We need more powerful machines!

@ Solutions for real-world scientific problems need huge
processing power (Grand Challenges)

Capabilities of single PEs have fundamental limits

@ The scaling/frequency race is currently stagnating
@ Moore’s law is still valid (number of transistors/chip)

@ Instruction level parallelism is limited (pipelining, VLIW,
multi-scalar)

Explicit parallelism seems to be the only solution

@ Single chips and transistors get cheaper

@ Implicit transistor use (ILP, branch prediction) have their
limits
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Fundamental Assumptions (Il)
Parallelism requires communication

@ Local or even global data-dependencies exist
@ Off-chip communication becomes necessary
@ Bridges a physical distance (many PEs)

4

Communication latency is limited

@ It’'s widely accepted that the speed of light limits
data-transmission

@ Example: minimal 0-byte latency for 1m ~ 3.3ns ~ 13
cycles on a 4GHz PE

Bandwidth can hide latency only partially

@ Bandwidth is limited (physical constraints)
@ The problem of “scaling out” (especially iterative solvers)
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Assumptions about Parallel Program Optimization

Collective Operations

@ Collective Operations (COs) are an optimization tool
@ CO performance influences application performance
@ optimized implementation and analysis of CO is non-trivial

Hardware Parallelism

@ More PEs handle more tasks in parallel
@ Transistors/PEs take over communication processing
@ Communication and computation could run simultaneously

Overlap of Communication and Computation

@ Overlap can hide latency
@ Improves application performance
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Overview (1)
Theoretical Considerations

@ a model for parallel architectures

@ parametrize model

@ derive model for BC and NBC

@ prove optimality of collops in the model (?)
@ show processor idle time during BC

@ show limits of the model (IB,BG/L)

Implementation of NBC
@ how to assess performance?
@ highly portable low-performance
@ |B optimized, high performance, threaded
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Overview (1)

Application Kernels

@ FFT (strong data dependency)
@ compression (parallel data analysis)
@ poisson solver (2d-decomposition)

Applications

@ show how performance benefits for microbenchmarks can
benefit real-world applications

@ ABINIT
@ Octopus
@ OSEM medical image reconstruction
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The LogGP model
Modelling Network Communication

@ LogP model family has best tradeoff between ease of use
and accuracy

@ LogGP is most accurate for different message sizes

Methodology

@ assess LogGP parameters for modern interconnects
@ model collective communication
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Myrinet/GM (preregistered/cached)
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InfiniBand (preregistered/cached)
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Modelling Collectives
LogGP Models - general

tbarr — (20 =+ L) : Hog2p—‘
tared = 2-(20+L+m-G)- [logoP]+ m-~ - [logsP]
tbcast = (20+L+m-G)- [log.P]|

CPU and Network LogGP parts

t7Y = 20 [logoP]  thel = L - [logoP]

1P — (40+m-v)-[logP]  tNEL, =2.(L+m- G)- [logzP]
tooo: = 20 [logoP]  thiel, = (L+m- G) - [logzP]
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CPU Overhead - MPI_Allreduce LAM/MPI 7.1.2

CPU Usage (share)
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CPU Overhead - MPI_Allreduce MPICH2 1.0.3
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Implementation of Non-blocking Collectives

LibNBC for MPI

@ single-threaded
@ highly portable
@ schedule-based design

LibNBC for InfiniBand

@ single-threaded (first version)
@ receiver-driven message passing
@ very low overhead

Threaded LibNBC

@ thread support requires MPI_THREAD_MULTIPLE
@ completely asynchronous progress
@ complicated due to scheduling issues
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LibNBC - Alltoall overhead, 64 nodes
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First Example

Derivation from “normal” implementation
@ distribution identical to “normal” 3D-FFT
@ first FFT in z direction and index-swap identical

Design Goals to Minimize Communication Overhead

@ start communication as early as possible
@ achieve maximum overlap time

@ start MPI_lalltoall as soon as first xz-plane is ready
@ calculate next xz-plane

@ start next communication accordingly ...

@ collect multiple xz-planes (tile factor)
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Transformation in z Direction

Data already transformed in y direction

y X
1 block = 1 double value (3x3x3 grid)
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Transformation in z Direction

Transform first xz plane in z direction

pattern means that data was transformed in y and z direction
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Transformation in z Direction

start MPI_lalltoall of first xz plane and transform second plane

cyan color means that data is communicated in the background
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Transformation in z Direction

start MPI_lalltoall of second xz plane and transform third plane
A

SNSss

X
y
data of two planes is not accessible due to communication
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Transformation in x Direction

start communication of the third plane and ...

y X
we need the first xz plane to go on ...
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. so MPI_Wait for the first MPI_lalltoall!

and transform first plane (new pattern means xyz transformed)
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Wait and transform second xz plane
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first plane’s data could be accessed for next operation
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Transformation in x Direction

wait and transform last xz plane

done! — 1 complete 1D-FFT overlaps a communication
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3d-FFT performance
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Parallel Data Compression

Second Example
Data Parallel Loops - Parallel Compression

for (i=0; i < N/P; i++) {
compute(i);

}
comm(N/P);
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Parallel Compression Performance
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Domain Decomposition

@ nearest neighbor communication
@ can be implemented with MPI_Alltoallv
@ we propose new collective MP1_Neighbor_xchg[v]
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Parallel 3d-Poisson solver - Speedup

Eth blocking - [ IB blocking —+—
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@ Cluster: 128 2 GHz Opteron 246 nodes
@ Interconnect: Gigabit Ethernet, InfiniBand™
@ System size 800x800x800 (1 node ~ 5300s)
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Medical Image Reconstruction

@ OSEM algorithm
@ Allreduction of full image
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Thank you for your Attention

An Introduction to

QUANTUM

Gradnamics

Amnother principal concept in Quantum
Gradnamics is the observation that
graduate students do not move toward
graduation in a steady and continuous
manner. Rather, they make progress
through discrete bursts of random pro-
ductivity called “wanta” (short for “want
data”) whose energy is proportional to
the frequency of meetings with their
advisor.

Grad students, or “p-ons” as Einstein

called them, can only occupy a
discrete number of energy states:

sleeping Q 1t

thinking aboul
working

“working”
'ﬁ"

WWW.PHDCOMICS.COM
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e “I discard all hope of predicting
| hitherto unpredictable quantities,
} such as my graduation.”

- Werner Heisenberg

A direct consequence of this is the
“Heisenberg Uncertainty Principle”,
perhaps the most well-Known theorem of
Quantum Gradnamics. Developed by
Heisenberg during a particularly unpro-
ductive period in his graduate career, the
Erinciple states that it is not possible to

now where a grad student is and where
it is going at the same time:

no idea

no idea 0 Normal

hat the
what they X l;::”g J;‘:IH:{ > amount of
are doing the rest of Uncertainty

their lives

When probed under pressure, a grad
student will either blurt out what they
are doing (but won’'t know if it means
anything), or they will blurt out what
they plan to do (but won't know how to
do it). Simply put, there is an inherent
degree of certainty and precision that is
missing from their everyday life.

Heisenberg attributed this to the fact that
meetings with professors are non-contmu-
nicative (that is, the order in which orders
are given doesn’t tell you whether they

are worth doing).
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