
1

Transformations of High-Level Synthesis Codes
for High-Performance Computing

Johannes de Fine Licht
definelicht@inf.ethz.ch

Maciej Besta
maciej.besta@inf.ethz.ch

Simon Meierhans
mesimon@ethz.ch

Torsten Hoefler
htor@inf.ethz.ch

Department of Computer Science, ETH Zurich

Abstract—Spatial computing architectures promise a major stride in performance and energy efficiency over the traditional load/store
devices currently employed in large scale computing systems. The adoption of high-level synthesis (HLS) from languages such as C++
and OpenCL has greatly increased programmer productivity when designing for such platforms. While this has enabled a wider
audience to target spatial computing architectures, the optimization principles known from traditional software design are no longer
sufficient to implement high-performance codes, due to fundamentally distinct aspects of hardware design, such as programming for
deep pipelines, distributed memory resources, and scalable routing. To alleviate this, we present a collection of optimizing
transformations for HLS, targeting scalable and efficient architectures for high-performance computing (HPC) applications. We
systematically identify classes of transformations (pipelining, scalability, and memory), the characteristics of their effect on the HLS
code and the resulting hardware (e.g., increasing data reuse or resource consumption), and the objectives that each transformation
can target (e.g., resolve interface contention, or increase parallelism). We show how these can be used to efficiently exploit pipelining,
on-chip distributed fast memory, and on-chip dataflow, allowing for massively parallel architectures. To quantify the effect of various
transformations, we cover the optimization process of a sample set of HPC kernels, provided as open source reference codes. We aim
to establish a common toolbox to guide both performance engineers and compiler engineers in tapping into the performance potential
offered by spatial computing architectures using HLS.

F

1 INTRODUCTION
Since the end of Dennard scaling, when the power con-
sumption of digital circuits stopped scaling with their
size, compute devices have become increasingly limited by
their power consumption [1]. In fact, shrinking the feature
size even increases the loss in the metal layers of modern
microchips. Today’s load/store architectures suffer mostly
from the cost of data movement and addressing general
purpose registers and cache [2]. Other approaches, such
as dataflow architectures, have not been widely successful,
due to the varying granularity of applications [3]. However,
application-specific dataflow can be used to lay out as regis-
ters and on-chip memory to fit the specific structure of the
computation, and thereby minimize data movement.

Reconfigurable architectures, such as FPGAs, can be
used to implement application-specific dataflow [4], [5],
[6], but are hard to program [7], as traditional hardware
design languages, such as VHDL or Verilog, do not benefit
from the rich set of software engineering techniques that
improve programmer productivity and code reliability. For
these reasons, both hardware and software communities are
embracing high-level synthesis (HLS) tools [8], [9], enabling
hardware development using procedural languages.

HLS bridges the gap between hardware and software
development, and enables basic performance portability
implemented in the compilation system. For example, HLS
programmers do not have to worry about how exactly a
floating point operation, a bus protocol, or a DRAM con-
troller is implemented on the target hardware. Numerous
HLS systems [10], [11] synthesize hardware designs from
C/C++ [12], [13], [14], [15], [16], [17], OpenCL [18], [19] and
other high-level languages [20], [21], [22], [23], [24], provid-
ing a viable path for software and hardware communities to
meet and address each other’s concerns.

For many applications, computational performance is a
primary goal, which is achieved through careful tuning by
specialized performance engineers using well-understood
optimizing transformations when targeting CPU [25] and
GPU [26] architectures. For HLS, a comparable collection
of guidelines and principles for code optimization is yet
to be established. Optimizing codes for hardware is dras-
tically different from optimizing codes for software. In fact,
the optimization space is larger, as it contains most known
software optimizations, in addition to HLS-specific trans-
formations that let programmers manipulate the underlying
hardware architecture. To make matters worse, the low clock
frequency, lack of cache, and fine-grained configurability,
means that naive HLS codes typically perform poorly com-
pared to naive software codes, and must be transformed
considerably before the advantages of specialized hardware
can be exploited. Thus, the established set of traditional
transformations is insufficient, as it does not consider
aspects of optimized hardware design, such as pipelining
and decentralized fast memory.

In this work, we survey and define a set of key trans-
formations that optimizing compilers or performance en-
gineers can apply to improve the performance of hard-
ware layouts generated from HLS codes. This set unions
transformations extracted from previous work, where they
were applied either explicitly or implicitly, with additional
techniques that fill in gaps to maximize completeness. We
characterize and categorize transformations, allowing per-
formance engineers to easily look up those relevant to
improving their HLS code, based on the problems and bot-
tlenecks currently present. The transformations have been
verified to apply to both the Intel OpenCL and Xilinx Vivado
HLS toolflows, but are expected to translate to any pragma-
based imperative HLS tool.

2

Transformations Characteristics Objectives
PL RE PA ME RS RT SC CC LD RE CU BW PL RT RS

P
ip

el
in

in
g

Accumulation interleaving §2.1 - – – ∼ � – � ∼ � – – – – – –
Delay buffering §2.2 - - (-) - � (�) � � � � – – – – –
Random access buffering §2.3 - - (-) - � � � � � � – � – – –
Pipelined loop fusion §2.4 - (-) – ∼ ∼ (�) – � – – – – � – –
Pipelined loop switching §2.5 - (-) – ∼ ∼ (�) – ∼ – – – – � – �
Pipelined loop flattening §2.6 - – – - ∼ ∼ – � – – – – � – –
Inlining §2.7 - – (-) – (�) – – - � – – – – – –

S
ca

lin
g Horizontal unrolling §3.1 – (-) - - � � � (�) – – � – – – –

Vertical unrolling §3.2 – -! -! – �! �! � � – � � – – – –
Dataflow §3.3 – – (-) – (�) -! – - – � – – � � –
Tiling §3.4 – - – ∼ � ∼ � � � � – – – � �

M
em

or
y Mem. access extraction §4.1 (-) – – - � - – � � – – � – – –

Mem. buffering §4.2 – – – - � – – � – – – � – – –
Mem. striping §4.3 – – – - � � – � – – – � – – –
Type demotion §4.4 – – – - - - – - – – – � – – �

TABLE 1: Overview of transformations, the characteristics of their effect on the
HLS code and the resulting hardware, and the objectives that they can target. The
center group of column marks the following transformation characteristics: (PL)
enables pipelining; (RE) increases data reuse, i.e., increases the arithmetic intensity of
the code; (PA) increases or exposes more parallelism; (ME) optimizes memory accesses;
(RS) does not significantly increase resource consumption; (RT) does not significantly
impair routing, i.e., does not potentially reduce maximum frequency or prevent
the design from being routed altogether; (SC) does not change the schedule of loop
nests, e.g., by introducing more loops; and (CC) does not significantly increase
code complexity. The symbols have the following meaning: “–”: no effect, “-”:
positive effect, “-!”: very positive effect, “(-)”: small or situational positive
effect, “�”: negative effect, “�!”: very negative effect, “(�)”: small or situational
negative effect, “∼”: positive or negative effect can occur, depending on the
context. The right group of columns marks the following objectives that
can be targeted by transformations: (LD) resolve loop-carried dependencies, due
to inter-iteration dependencies or resource contention; (RE) increase data reuse;
(CU) increase parallelism; (BW) increase memory bandwidth utilization; (PL) reduce
pipelining overhead; (RT) improve routing results; (RS) reduce resource utilization.

In addition to identifying previous work that apply one or
more of the transformations defined here, we describe and
publish a set of end-to-end “hands-on” examples, optimized
from naive HLS codes into high performance implementa-
tions. This includes a stencil code, matrix multiplication,
and the N-body problem, all available on github. The
optimized codes exhibit dramatic cumulative speedups of
up to 29,950× relative to their respective naive starting
points, showing the crucial necessity of hardware-aware
transformations, which are not performed automatically by
today’s HLS compilers. As FPGAs are currently the only
platforms commonly targeted by HLS tools in the HPC
domain, transformations are discussed and evaluated in this
context. Evaluating FPGA performance in comparison to
other platforms is out of scope of this work. Our work pro-
vides a set of guidelines and a cheat sheet for optimizing
high-performance codes for reconfigurable architectures,
guiding both performance engineers and compiler devel-
opers to efficiently exploit these devices.

1.1 From Imperative Code to Hardware
Before diving into transformations, it is useful to form an
intuition of the major stages of the source-to-hardware stack,
to understand how they are influenced by the HLS code:
¶ High-level synthesis converts a pragma-assisted proce-
dural description (C++, OpenCL) to a functionally equiva-
lent behavioral description (Verilog, VHDL). This requires
mapping variables and operations to corresponding con-
structs, then scheduling operations according to their inter-
dependencies. The dependency analysis is concerned with
creating a hardware mapping such that the throughput
requirements are satisfied, which for pipelined sections re-
quire the circuit to accept a new input every cycle. Coarse-
grained control flow is implemented with state machines,

while computations and fine-grained control flow are or-
ganized in (predicated) pipelines. · Hardware synthesis
maps the register-level circuit description to components
and wires present on the specific target architecture. At
this stage and onwards, the procedure is both vendor and
architecture specific. ¸ Place and route maps the logical
circuit description to concrete locations on the target device,
by performing a lengthy heuristic-based optimization that
attempts to minimize the length of the longest wire and the
total wire length. The longest propagation time between two
registers including the logic between them (i.e., the critical
path of the circuit), will determine the maximum obtainable
frequency. ¹ Bitstream generation translates the final circuit
description to a binary format used to configure the device.
Most effort invested by an HLS programmer lies in guiding
the scheduling process in ¶ to implement deep, efficient
pipelines, but · is considered when choosing data types and
buffer sizes, and ¸ can ultimately bottleneck applications
once the desired parallelism has been achieved, requiring
the developer to adapt their code to aid this process.

1.2 Key Transformations for High-Level Synthesis
This work identifies a set of optimizing transformations that
are essential to designing scalable and efficient hardware
kernels in HLS. An overview given in Tab. 1. We divide
the transformations into three major classes: pipelining
transformations, that enable or improve the potential for
pipelining computations; scaling transformations that in-
crease or expose additional parallelism; and memory en-
hancing transformations, which increase memory utilization
and efficiency. Each transformation is further classified ac-
cording to a number of characteristic effects on the HLS
source code, and on the resulting hardware architecture
(central columns). To serve as a cheat sheet, the table further-
more lists common objectives targeted by HLS programmers,
and maps them to relevant HLS transformations (rightmost
columns). Characteristics and objectives are discussed in
detail in relevant transformation sections.

Throughout this work, we will show how each transfor-
mation is applied manually by a performance engineer by
directly modifying the source code, giving examples before
and after it is applied. However, many transformations are
also amenable to automation in an optimizing compiler.

1.3 The Importance of Pipelining
Pipelining is essential to efficient hardware architectures,
as expensive instruction decoding and data movement be-
tween memory, caches and registers can be avoided, by
sending data directly from one computational unit to the
next. We attribute two primary characteristics to pipelines:
• Latency (L): the number of cycles it takes for an input to

propagate through the pipeline and arrive at the exit, i.e.,
the number of pipeline stages.

• Initiation interval or gap (I): the number of cycles that
must pass before a new input can be accepted to the
pipeline. A perfect pipeline has I=1 cycle, as this is re-
quired to keep all pipeline stages busy. Consequently,
the initiation interval can often be considered the inverse
throughput of the pipeline; e.g., I=2 cycles implies that the
pipeline stalls every second cycle, reducing the through-
put of all pipelines stages by a factor of 1

2 .

3

To quantify the importance of pipelining in HLS, we con-
sider the number of cycles C it takes to execute a pipeline
with latency L (both in [cycles]), taking N inputs, with an
initiation interval of I [cycles]. Assuming a reliable producer
and consumer at either end, we have:

C = L+ I · (N − 1) [cycles]. (1)

This is shown in Fig. 1. The time to execute all N iterations
with clock rate f [cycles/s] of this pipeline is thus C/f .

ILC = L + I (N – 1)

N

Fig. 1: Pipeline characteristics.

For two pipelines in sequence that both consume and pro-
duce N elements, the latency is additive, while the initiation
interval is decided by the “slowest” actor:

C0 + C1 = (L0 + L1) + max(I0, I1) · (N − 1)

When I0=I1 this corresponds to a single, deeper pipeline.
For large N , the latencies are negligible, so this deeper
pipeline increases pipeline parallelism by adding more
computations without increasing the runtime; and without
introducing additional off-chip memory traffic. We are thus
interested in building deep, perfect pipelines to maximize
performance and minimize off-chip data movement.

1.4 Optimization Goals
We organize the remainder of this work according to three
overarching optimization goals, corresponding to the three
categories marked in Tab. 1:
• Enable pipelining (Sec. 2): For compute bound codes,

achieve I=1 cycle for all essential compute components,
to ensure that all pipelines run at maximum throughput.
For memory bound codes, guarantee that memory is
always consumed at line rate.

• Scaling/folding (Sec. 3): Fold the total number of itera-
tions N by scaling up the parallelism of the design to
consume more elements per cycle, thus cutting the total
number of cycles required to execute the program.

• Memory efficiency (Sec. 4): Saturate pipelines with data
from memory to avoid stalls in compute logic. For mem-
ory bound codes, maximize bandwidth utilization.

Sec. 5 covers the relationship between well-known software
optimizations and HLS, and accounts for which of these
apply directly to HLS code. Sec. 6 shows the effect of
transformations on a selection of kernels, Sec. 7 presents
related work, and we conclude in Sec. 9.

2 PIPELINE-ENABLING TRANSFORMATIONS
As a crucial first step for any HLS code, we cover detecting
and resolving issues that prevent pipelining of computa-
tions. When analyzing a basic block of a program, the HLS
tool determines the dependencies between computations,
and pipelines operations accordingly to achieve the target
initiation interval. There are two classes of problems that
hinder pipelining of a given loop:
1) Loop-carried dependencies (inter-iteration): an iteration

of a pipelined loop depends on a result produced by a

previous iteration, which takes multiple cycles to com-
plete (i.e., has multiple internal pipeline stages). If the
latency of the operations producing this result is L, the
minimum initiation interval of the pipeline will be L.
This is a common scenario when accumulating into a sin-
gle register (see Fig. 2), in cases where the accumulation
operation takes Lacc>1 cycles.

2) Interface contention (intra-iteration): a hardware re-
source with limited ports is accessed multiple times in
the same iteration of the loop. This could be a FIFO
queue or RAM that only allows a single read and write
per cycle, or an interface to external memory, which only
supports sending/serving one request per cycle.

For each of the following transformations, we will give
examples of programs exhibiting properties that prevent
them from being pipelined, and how the transformation
can resolve this. All examples use C++ syntax, which al-
lows classes (e.g., “FIFO” buffer objects) and templating. We
perform pipelining and unrolling using pragma directives,
where loop-oriented pragmas always refer to the following
loop/scope, which is the convention used by Intel/Altera HLS
tools (as opposed to applying to current scope, which is the
convention for Xilinx HLS tools).

Lacc

Lacc

+ Loop
carried
depen-
dency

Fig. 2: Loop-carried dependency.

+
M ≥ Lacc

Loop carried
dependency
is resolved

(update every
M cycles)

Fig. 3: Buffered accumulation.

2.1 Accumulation Interleaving
For multi-dimensional iteration spaces, loop-carried depen-
dencies can often be resolved by reordering and/or inter-
leaving nested loops, keeping state for multiple concurrent
accumulations. We distinguish between four approaches to
interleaving accumulation, covered below.

2.1.1 Full Transposition
When a loop-carried dependency is encountered in a loop
nest, it can be beneficial to reorder the loops, thereby fully
transposing the iteration space. This typically also has a
significant impact on the program’s memory access pattern,
which can benefit/impair the program beyond resolving a
loop-carried dependency.

Consider the matrix multiplication code in Lst. 1a, com-
puting C = A ·B +C, with matrix dimensions N , K , and
M . The inner loop k ∈ K accumulates into a temporary reg-
ister, which is written back to C at the end of each iteration
m ∈ M . The multiplication of elements of A and B can
be pipelined, but the addition on line 6 requires the result
of the addition in the previous iteration of the loop. This
is a loop-carried dependency, and results in an initiation
interval of L+, where L+ is the latency of a 64 bit floating
point addition (for integers L+,int=1 cycle, and the loop can
be pipelined without further modifications). To avoid this,
we can transpose the iteration space, swapping the K-loop
with the M -loop, with the following consequences:
• Rather than a single register, we now implement an accu-

mulation buffer of depth M and width 1 (line 2).

4

1 for (int n = 0; n < N; ++n)
2 for (int m = 0; m < M; ++m) {
3 double acc = C[n][m];
4 #pragma PIPELINE
5 for (int k = 0; k < K; ++k)
6 acc += A[n][k] * B[k][m];
7 C[n][m] = acc; }

K

M

acc

inn
er

loo
p

A
[N

×
K
]

B
[K

×
M

]

C [N×M]

N

(a) Naive implementation of general matrix multiplication C=AB+C.

1 for (int n = 0; n < N; ++n) {
2 double acc[M]; // Uninitialized
3 for (int k = 0; k < K; ++k)
4 double a = A[n][k]; // Only read once
5 #pragma PIPELINE
6 for (int m = 0; m < M; ++m) {
7 double prev = (k == 0) ? C[n][m]
8 : acc[m];
9 acc[m] = prev + a * B[k][m]; }

10 for (int m = 0; m < M; ++m) // Write
11 C[n][m] = acc[m]; } // out

K

M

inner
loop

A
[N

×K
]

B
[K

×M
]

acc[0] , acc[1] , . . . , acc[M-1]

N

(b) Transposed iteration space, same location written every M cycles.

1 for (int n = 0; n < N; ++n)
2 for (int m = 0; m < M/T; ++m) {
3 double acc[T]; // Tiles of size T
4 for (int k = 0; k < K; ++k)
5 double a = A[n][k]; // M/T reads
6 #pragma PIPELINE
7 for (int t = 0; t < T; ++t) {
8 double prev = (k == 0) ?
9 C[n][m*T+t] : acc[t];

10 acc[t] = prev + a * B[k][m*T+t]; }
11 for (int t = 0; t < T; ++t) // Write
12 C[n][m*T+t] = acc[t]; } // out

K

M

N

A
[N

×
K
]

B
[K

×
M

]

C [N×M]

acc[0] , . . ., acc[B-1]inner
loop

(c) Tiled iteration space, same location written every T cycles.

Listing 1: Interleave accumulations to remove loop-carried dependency.

• The loop-carried dependency is resolved: each location is
only updated every M cycles (with M≥Lacc in Fig. 3).

• A, B, and C are all read in a contiguous fashion, achiev-
ing perfect spatial locality (we assume row-major memory
layout. For column-major we would interchange the K-
loop and N -loop).

• Each element of A is read exactly once.

The modified code is shown in Lst. 1b. We leave the accumu-
lation buffer defined on line 2 uninitialized, and implicitly
reset it on line 8, avoiding M extra cycles to reset (this is a
form of pipelined loop fusion, covered in Sec. 2.4).

2.1.2 Tiled Accumulation Interleaving
For accumulations done in a nested loop, it can be sufficient
to interleave across a tile of an outer loop to resolve a
loop-carried dependency, using a limited size buffer to store
intermediate results. This tile only needs to be of size ≥Lacc,
where Lacc is the latency of the accumulation operation.

This is shown in Lst. 1c, for the transposed matrix mul-
tiplication example from Lst. 1b, where the accumulation
array has been reduced to tiles of size T (which should be
≥Lacc, see Fig. 3), by adding an additional inner loop over
the tile, and cutting the outer loop by a factor of B.

2.1.3 Single-Loop Accumulation Interleaving
If no outer loop is present, we have to perform the ac-
cumulation in two separate stages, at the cost of extra
resources. For the first stage, we perform a transformation
similar to the nested accumulation interleaving, but strip-
mine the inner (and only) loop into blocks of size K ≥ Lacc,
accumulating partial results into a buffer of size K . Once
all incoming values have been accumulated into the partial

1double Acc(double arr[], int N) {
2 double t[16];
3 #pragma PIPELINE
4 for (int i = 0; i < N; ++i) { // P0
5 auto prev = (i < 16) ? 0 : t[i%16];
6 t[i%16] = prev + arr[i]; }
7 double res = 0;
8 for (int i = 0; i < 16; ++i) // P1
9 res += t[i]; // Not pipelined

10 return res; }

Phase 0 Phase 1

+ +

Listing 2: Two stages required for single loop accumulation.

result buffers, the second phase collapses the partial results
into the final output. This is shown in Lst. 2 for K=16.
Optionally, the two stages can be implemented to run in
a coarse-grained pipelined fashion, such that the first stage
begins computing new partial results while the second stage
is collapsing the previous results (by exploiting dataflow
between modules, see Sec. 3.3).

2.1.4 Batched Accumulation Interleaving
For algorithms with loop-carried dependencies that cannot
be solved by either method above (e.g., due to a non-
commutative accumulation operator), we can still pipeline
the design by processing batches of inputs, introducing an
additional loop nested in the accumulation loop. This pro-
cedure is similar to Sec. 2.1.2, but only applies to programs
where it is relevant to compute the accumulation for multi-
ple data streams, and requires altering the interface and data
movement of the program to interleave inputs in batches.

The code in Lst. 3a shows an iterative solver code with
an inherent loop-carried dependency on state, with a min-
imum initiation interval corresponding to the latency LStep
of the (inlined) function Step. There are no loops to inter-
change, and we cannot change the order of loop iterations.
While there is no way to improve the latency of producing
a single result, we can improve the overall throughput by a
factor of LStep by pipelining across N≥LStep different inputs
(e.g., overlap solving for different starting conditions). We
effectively inject another loop over inputs, then perform
transposition or tiled accumulation interleaving with this
loop. The result of this transformation is shown in Lst. 3b,
for a variable number of interleaved inputs N.

1Vec<double> IterSolver(Vec<double> state, int T) {
2 #pragma PIPELINE // Will fail to pipeline with I=1
3 for (int t = 0; t < T; ++t)
4 state = Step(state);
5 return state; }

(a) Solver executed for T steps with a loop-carried dependency on state.

1template <int N>
2void MultiSolver(Vec<double> *in,
3 Vec<double> *out, int T) {
4 Vec<double> b[N]; // Partial results
5 for (int t = 0; t < T; ++t)
6 #pragma PIPELINE
7 for (int i = 0; i < N; ++i) {
8 auto read = (t == 0) ? in[i] : b[i];
9 auto next = Step(read);

10 if (t < T-1) b[i] = next;
11 else out[i] = next; }} // Write out

T
b[0]

b[1]

b[N-1]

...

inner loop

(b) Pipeline across N≥Lstep inputs to achieve I=1 cycle.

Listing 3: Pipeline across multiple inputs to avoid loop-carried dependency.

2.2 Delay Buffering
When iterating over regular domains in a pipelined fashion,
it is often sufficient to express buffering using delay buffers,
expressed either with cyclically indexed arrays, or with

5

constant offset delay buffers, also known from the Intel
ecosystem as shift registers. These buffers are only accessed in
a FIFO manner, with the additional constraint that elements
are only be popped once they have fully traversed the depth
of the buffer (or when they pass compile-time fixed access
points, called “taps”, in Intel OpenCL). Despite the “shift
register” name, these buffers do not need to be implemented
in registers, and are frequently implemented in on-chip
RAM when large capacity is needed, where values are not
physically shifted.

A common set of applications that adhere to the delay
buffer pattern are stencil applications such as partial dif-
ferential equation solvers [27], [28], [29], image processing
pipelines [30], [31], and convolutions in deep neural net-
works [32], [33], [34], [35], [36], all of which are typically
traversed using a sliding window buffer, implemented in
terms of multiple delay buffers (or, in Intel terminology, a
shift register with multiple taps). These applications have
been shown to be a good fit to spatial computing architec-
tures [37], [38], [39], [40], [41], [42], [43], as delay buffering
is cheap to implement in hardware, either as shift registers
in general purpose logic, or in RAM blocks.

Lst. 4 shows two ways of applying delay buffering to a
stencil code, namely a 4-point stencil in 2D, which updates
each point on a 2D grid to the average of its north, west,
east, and south neighbors. To achieve perfect data reuse, we
buffer every element read in sequential order from memory
until it has been used for the last time – after two rows,
when the same value has been used as all four neighbors.

In Lst. 4a we use cyclically indexed line buffers to imple-
ment the delay buffering pattern, instantiated as arrays on
lines 1-2. We only read the south element from memory each
iteration (line 7), which we store in the center line buffer
(line 13). This element is then reused after M cycles (i.e.,
“delayed” for M cycles), when it is used as the east value
(line 9), propagated to the north buffer (line 12), shifted in
registers for two cycles until it is used as the west value
(line 14), and reused for the last time after M cycles on line 8.
The resulting circuit is illustrated in Fig. 4.

1float north_buffer[M]; // Line
2float center_buffer[M]; // buffers
3float west, center; // Registers
4for (int i = 0; i < N; ++i) {
5 #pragma PIPELINE
6 for (int j = 0; j < M; ++j) {
7 auto south = memory[i][j]; // Single memory read
8 auto north = north_buffer[j]; // Read line buffers
9 auto east = center_buffer[(j + 1)%M]; // (with wrap around)

10 if (i > 1 && j > 0 && j < M - 1) // Assume padding of 1
11 result[i - 1][j] = 0.25*(north + west + south + east);
12 north_buffer[j] = center; // Update both
13 center_buffer[j] = south; // line buffers
14 west = center; center = east; } } // Propagate registers

(a) Delay buffering using cyclically indexed line buffers.

1float sr[2*M + 1]; // Shift register buffer
2for (int i = 0; i < N; ++i) {
3 #pragma PIPELINE
4 for (int j = 0; j < M; ++j) {
5 #pragma UNROLL
6 for (int k = 0; k < 2*M; ++k)
7 sr[k] = sr[k + 1]; // Shift the array left
8 sr[2*M] = memory[i][j]; // Append to the front
9 if (i > 1 && j > 0 && j < M - 1) // Initialize/drain

10 result[i-1][j] = 0.25*(sr[0] + sr[M-1] + sr[M+1] + sr[2*M]); } }

(b) Delay buffering using an Intel-style shift register.

Listing 4: Two ways of implementing delay buffering on an N×M grid.

Lst. 4b demonstrates the shift register pattern used to
express the stencil buffering scheme, which is supported
by the Intel OpenCL toolflow. Rather than creating each
individual delay buffer required to propagate values, a
single array is used, which is “shifted” every cycle using
unrolling (lines 6-7). The computation accesses elements of
this array using constant indices only (line 10), relying on the
tool to infer the partitioning into individual buffers (akin
to loop idiom recognition [25]) that we did explicitly in
Lst. 4a. The implicit nature of this pattern requires the tool
to specifically support it. For more detail on buffering stencil
codes we refer to other works on the subject [44], [39].
Opportunities for delay buffering often arise naturally in
pipelined programs. If we consider the transposed matrix
multiplication code in Lst. 1b, we notice that the read from
acc on line 8 and the write on line 9 are both sequential, and
cyclical with a period of M cycles. We could therefore also
use the shift register abstraction for this array. The same is
true for the accumulation code in Lst. 3b.

+ + + ×

D
R
A
M

Seq.
south

east west north

Fig. 4: A delay buffer for a 4-point stencil with three taps.

2.3 Random Access Buffering
When a program unavoidably needs to perform random ac-
cesses, we can buffer data in on-chip memory and perform
random access to this fast memory instead of to slow off-
chip memory. A random access buffer implemented with a
general purpose replacement strategy will emulate a CPU-
style cache; but to benefit from targeting a spatial system, it
is usually more desirable to specialize the buffering strategy
to the target application [45], [46]. This can enable off-chip
memory accesses to be made contiguous by loading and
storing data in stages (i.e., tiles), then exclusively perform-
ing random accesses to fast on-chip memory.

Lst. 6 outlines a histogram implementation that uses an
on-chip buffer (line 1) to perform fast random accesses reads
and writes (line 5) to the bins computed from incoming data,
illustrated in Fig. 6. Note that the random access results
in a loop-carried dependency on histogram, as there is a
potential for subsequent iterations to read and write the
same bin. This can be solved with one of the interleaving
techniques described in Sec. 2.1, by maintaining multiple
partial result buffers.

1unsigned hist[256] = {0}; // Array of bins
2#pragma PIPELINE // Will have II=2
3for (int i = 0; i < N; ++i) {
4 int bin = CalculateBin(memory[i]);
5 hist[bin] += 1; // Single cycle access
6} // ...write result out to memory...

+

R
A

M

Seq.

D
R
A
M

Seq.

Listing 6: Random access to on-chip histogram buffer.

2.4 Pipelined Loop Fusion
When two pipelined loops appear sequentially, we can fuse
them into a single pipeline, while using loop guards to en-
force any dependencies that might exist between them. This
can result in a significant reduction in runtime, at little to no
resource overhead. This transformation is closely related to
loop fusion [47] from traditional software optimization.

6

1// Pipelined loops executed sequentially
2for (int i = 0; i < N0; ++i) Foo(i, /*...*/);
3for (int i = 0; i < N1; ++i) Bar(i, /*...*/);

(a) (L0 + I0(N0−1)) + (L1 + I1(N1−1)) cycles.

1for (int i = 0; i < N0+N1; ++i) {
2 if (i < N0) Foo(i, /*...*/);
3 else Bar(i - N0, /*...*/); }

(b) L2 + I(N0 + N1−1) cycles.

1for (int i = 0; i < max(N0, N1); ++i) {
2 if (i < N0) Foo(i, /*...*/); // Omit ifs
3 if (i < N1) Bar(i, /*...*/); } // for N0==N1

(c) L3 + I · (max(N0, N1)−1) cycles.

Listing 5: Two subsequent pipelined loops fused sequentially (Lst. 5b) or concurrently (Lst. 5c). Assume that all loops are pipelined (pragmas omitted for brevity).

For two consecutive loops with latencies/bounds/initi-
ation intervals {L0, N0, I0} and {L1, N1, I1} (Lst. 5a), re-
spectively, the total runtime according to Eq. 1 is (L0 +
I0(N0−1)) + (L1 + I1(N1−1)). Depending on which con-
dition(s) are met, we can distinguish between three levels of
pipelined loop fusion, with increasing performance benefits:
1) I=I0=I1 (true in most cases): Loops can be fused by

summing the loop bounds, using loop guards to sequen-
tialize them within the same pipeline (Lst. 5b).

2) Condition 1 is met, and only fine-grained or no dependencies
exist between the two loops: Loops can be fused by
iterating to the maximum loop bound, and loop guards
are placed as necessary to predicate each section (Lst. 5c).

3) Conditions 1 and 2 are met, and N=N0=N1 (same loop
bounds): Loops bodies can be trivially fused (Lst. 5c, but
with no loop guards necessary).

An alternative way of performing pipeline fusion is to
instantiate each stage as a separate processing element, and
stream fine-grained dependencies between them (Sec. 3.3).

2.5 Pipelined Loop Switching
The benefits of pipelined loop fusion can be extended to
coarse-grained control flow by using loop switching (as op-
posed to loop unswitching, which is a common transforma-
tion [25] on load/store architectures). Whereas instruction-
based architectures attempt to only execute one branch of
a conditional jump (via branch prediction on out-of-order
processors), a conditional in a pipelined scenario will result
in both branches being instantiated in hardware, regardless
of whether/how often it is executed. The transformation of
coarse-grained control flow into fine-grained control flow is
implemented by the HLS tool by introducing predication to
the pipeline, at no significant runtime penalty.

Lst. 7 shows a simple example of how the transformation
fuses two pipelined loops in different branches into a single
loop switching pipeline. The transformation applies to any
pipelined code in either branch, following the principles
described for pipelined loop fusion (§2.4 and Lst. 5).

The implications of pipelined loop switching are more
subtle than the pure fusion examples in Lst. 5, as the total
number of loop iterations is not affected (assuming the fused
loop bound is set according to the condition, see line 1 in

1if (condition)
2 #pragma HLS PIPELINE
3 for (int i = 0; i < N0; ++i)
4 y[i] = Foo(x[i]);
5else
6 #pragma HLS PIPELINE
7 for (int i = 0; i < N1; ++i)
8 y[i] = Bar(x[i]);

(a) Coarse-grained control flow.

1auto N = condition ? N0 : N1;
2#pragma HLS PIPELINE
3for (int i = 0; i < N; ++i) {
4 if (condition)
5 y[i] = Foo(x[i]);
6 else
7 y[i] = Bar(x[i]);
8}

(b) Control flow absorbed into pipeline.

Listing 7: Pipelined loop switching absorbs coarse-grained control flow.

Lst. 7b). There can be a (tool-dependent) benefit from saving
overhead logic by only implementing the orchestration and
interfaces of a single pipeline, at the (typically minor) cost
of the corresponding predication logic. More importantly,
eliminating the coarse-grained control can enable other
transformations that significantly benefit performance, such
as fusion [§2.4] with adjacent pipelined loops, flattening
nested loops [§2.6], and on-chip dataflow [§3.3].

2.6 Pipelined Loop Flattening/Coalescing
To minimize the number of cycles spent in filling/draining
pipelines (where the circuit is not streaming at full through-
put), we can flatten nested loops to move the fill/drain
phases to the outermost loop, fusing/absorbing code that
is not in the innermost loop if necessary.

Lst. 8a shows a code with two nested loops, and gives the
total number of cycles required to execute the program. The
latency of the drain phase of the inner loop and the latency
of Bar outside the inner loop must be paid at every iteration
of the outer loop. If N0�L0, the cycle count becomes just
L1 +N0N1, but for applications where N0 is comparable to
L0, draining the inner pipeline can significantly impact the
runtime (even if N1 is large). By transforming the code such
that all loops are perfectly nested (see Lst. 8b), the HLS tool
can effectively coalesce the loops into a single pipeline, where
next iteration of the outer loop can be executed immediately
after the previous finishes.

1for (int i = 0; i < N1; ++i) {
2 #pragma PIPELINE
3 for (int j = 0; j < N0; ++i)
4 Foo(i, j);
5 Bar(i); }

(a) L1 + N1 · (L0 + N0−1) cycles.

1for (int i = 0; i < N1; ++i) {
2 #pragma PIPELINE
3 for (int j = 0; j < N0; ++i)
4 Foo(i, j);
5 if (j == N0 - 1) Bar(i); }

(b) L2 + N0N1−1 cycles.

Inner state 0
Outer state

Inner state 1
Single state

Listing 8: Before and after coalescing loop nest to avoid inner pipeline drains.

To perform the transformation in Lst. 8, we had to absorb
Bar into the inner loop, adding a loop guard (line 5 in
Lst. 8b), analogous to pipelined loop fusion (§2.4), where
the second pipelined “loop” consists of a single iteration.
This contrasts the loop peeling transformation, which is
used by CPU compilers to regularize loops to avoid branch
mispredictions and increasing amenability to vectorization.
While loop peeling can also be beneficial in hardware, e.g.,
to avoid deep conditional logic in a pipeline, small inner
loops can see a significant performance improvement by
eliminating the draining phase.

2.7 Inlining
In order to successfully pipeline a scope, all function calls
within the code section must be pipelineable. This typically

7

requires “inlining” functions into each call site, creating
dedicated hardware for each invocation, resulting in ad-
ditional resources consumed for every additional callsite
after the first. This replication is done automatically by HLS
compilers on demand, but an additional inline pragma
can be specified to directly “paste” the function body into
the callsite during preprocessing, removing the function
boundary during optimization and scheduling.

3 SCALABILITY TRANSFORMATIONS

Parallelism in HLS revolves around the folding of loops,
achieved through unrolling. In Sec. 2.1 we used strip-
mining and reordering to avoid loop-carried dependencies
by changing the schedule of computations in the pipelined
loop nest. In this section, we similarly strip-mine and re-
order loops, but with additional unrolling of the strip-mined
chunks. Pipelined loops constitute the iteration space; the
size of which determines the number of cycles it takes
to execute the program. Unrolled loops, in a pipelined
program, correspond to the degree of parallelism in the
architecture, as every expression in an unrolled statement
is required to exist as hardware. Parallelizing a code thus
means turning sequential/pipelined loops fully or partially
into parallel/unrolled loops. This corresponds to folding the
sequential iteration space, as the number of cycles taken to
execute the program are effectively reduced by the inverse
of the unrolling factor.

CU
a b

(a) Before.

CU
a0 b0

CU
a1 b1

CU
a2 b2

CU
a3 b3

(b) Horizontal unroll.

CU
b

CU
b

CU
b

CU
ba0 a1 a2 a3

(c) Vertical unroll.

CU CU
a0 a1

CU
a2

CU
a3

b b b b

(d) Dataflow.

Fig. 5: Horizontal unrolling, vertical unrolling, and dataflow, as means to increase
parallelism. Rectangles represent buffer space, such as registers or on-chip RAM.
Horizontal: four independent inputs processed in parallel. Vertical: one input is
combined with multiple buffered values. Dataflow: similar to vertical, but input
or partial results are streamed through a pipeline rather than broadcast.

3.1 Horizontal Unrolling (Vectorization)
We implement vectorization-style parallelism with HLS by
“horizontally” unrolling loops in pipelined sections, or by
introducing vector types, folding the sequential iteration
space accordingly. This is the most straightforward way of
adding parallelism, as it can often be applied directly to an
inner loop without further reordering or drastic changes to
the nested loop structure. Vectorization is more powerful
in HLS than SIMD operations on load/store architectures,
as the unrolled compute units are not required to be ho-
mogeneous, and the number of units are not constrained
to fixed sizes. Horizontal unrolling increases bandwidth
utilization by explicitly exploiting spatial locality, allowing
more efficient accesses to off-chip memory such as DRAM.

Lst. 9 shows two functionally equivalent ways of vec-
torizing a loop over N elements by a horizontal unrolling
factor of W . Lst. 9a strip-mines a loop into chunks of W
and unrolls the inner loop fully, while Lst. 9b uses partial
unrolling by specifying an unroll factor in the pragma. As
a third option, explicit vector types can be used, such as
those built into OpenCL (e.g., float4 or int16), or custom
vector classes [48]. These provide less flexibility, but are
more concise and are sufficient for most applications.
In practice, the unrolling factor W [operand/cycle] is con-
strained by the bandwidth B [Byte/s] available to the

1for (int i = 0; i < N / W; ++i)
2 #pragma UNROLL // Fully unroll inner
3 for (int w = 0; w < W; ++w) // loop
4 C[i*W + w] = A[i*W + w]*B[i*W + w];

(a) Using strip-mining.

1// Unroll outer loop by W
2#pragma UNROLL W
3for (int i = 0; i < N; ++i)
4 C[i] = A[i] * B[i];

(b) Using partial unrolling.

Listing 9: Two variants of vectorization by factor W using loop unrolling.

compute logic (e.g., from off-chip memory), according to
Wmax =

⌊
B
fS

⌋
, where f [cycle/s] is the clock frequency of

the unrolled logic, and S [Byte/operand] is the operand
size in bytes. Horizontal unrolling is usually not sufficient to
achieve high logic utilization on large chips, where the avail-
able memory bandwidth is low compared to the available
amount of compute logic. Furthermore, because the energy
cost of I/O is orders of magnitude higher than moving data
on the chip, it is desirable to exploit on-chip memory and
pipeline parallelism instead (this follows in Sec. 3.2 and 3.3).

3.2 Vertical Unrolling
We can achieve scalable parallelism in HLS without relying
on external memory bandwidth by exploiting data reuse,
distributing input elements to multiple computational units
replicated “vertically” through unrolling [49], [38], [50]. This
is the most potent source of parallelism on hardware architectures,
as it can conceptually scale indefinitely with available silicon
when enough reuse is possible. Viewed from the paradigm
of cached architectures, the opportunity for this transforma-
tion arises from temporal locality in loops. Vertical unrolling
draws on bandwidth from on-chip fast memory by storing
more elements temporally, combining them with new data
streamed in from external memory to increase parallelism,
allowing more computational units to run in parallel at the
expense of buffer space. In comparison, horizontal unrolling
requires us to widen the data path that passes through the
processing elements (compare Fig. 5b and 5c).

When attempting to parallelize a new algorithm, iden-
tifying a source of temporal parallelism to feed vertical
unrolling is essential to whether the design will scale. Pro-
grammers should consider this carefully before designing
the hardware architecture. From a reference software code,
the programmer can identify scenarios where reuse occurs,
then extract and explicitly express the temporal access pattern
in hardware, using a delay buffering [§2.2] or random-access
[§2.3] buffering scheme. Then, if additional reuse is possible,
vertically unroll the circuit to scale up performance.

As an example, we return to the matrix multiplication
code from Lst. 1c. In Sec. 2.1.2, we saw that strip-mining

1 for (int n = 0; n < N / P; ++n) { // Folded by unrolling factor P
2 for (int m = 0; m < M / T; ++m) { // Tiling
3 double acc[T][P]; // Is now 2D
4 // ...initialize acc from C...
5 for (int k = 0; k < K; ++k) {
6 double a_buffer[P]; // Buffer multiple elements to combine with
7 #pragma PIPELINE // incoming values of B in parallel
8 for (int p = 0; p < P; ++p)
9 a_buffer[p] = A[n*P + p][k];

10 #pragma PIPELINE
11 for (int t = 0; t < T; ++t) // Stream tile of B
12 #pragma UNROLL
13 for (int p = 0; p < P; ++p) // P-fold vertical unrolling
14 acc[t][p] += a_buffer[p] * B[k][m*T+t];
15 } /* ...write back 2D tile of C... */ } }

Listing 10: P -fold vertical unrolling of matrix multiplication.

8

and reordering loops allowed us to move reads from matrix
A out of the inner loop, re-using the loaded value across
T different entries of matrix B streamed in while keeping
the element of A in a register. Since every loaded value
of B eventually needs to be combined with all N rows of
A, we realize that we can perform more computations in
parallel by keeping multiple values of A in local registers.
The result of this transformation is shown in Lst. 10. By
buffering P elements (where P was 1 in Lst. 1c) of A prior
to streaming in the tile of B-matrix (lines 8-9), we can fold
the outer loop over rows by a factor of P , using unrolling
to multiply parallelism (as well as buffer space required for
the partial sums) by a factor of P (lines 12-14).

3.3 Dataflow
For complex codes it is common to partition functionality
into multiple modules, or processing elements (PEs), stream-
ing data between them through explicit interfaces. In con-
trast to conventional pipelining, PEs arranged in a dataflow
architecture are scheduled separately when synthesized by
the HLS tool. There are multiple benefits to this:
• Different functionality runs at different schedules. For exam-

ple, issuing memory requests, servicing memory requests,
and receiving requested memory can all require different
pipelines, state machines, and even clock rates.

• Smaller components are more modular, making them eas-
ier to reuse, debug and verify.

• The effort required by the HLS tool to schedule code
sections increases dramatically with the number of opera-
tions that need to be considered for the dependency and
pipelining analysis. Scheduling logic in smaller chunks is
thus beneficial for compilation time.

• Large fan-out/fan-in is challenging to route on real hard-
ware, (i.e., 1-to-N or N -to-1 connections for large N). This
is mitigated by partitioning components into smaller parts
and adding more pipeline stages.

• The fan-in and fan-out of control signals (i.e., stall, reset)
within each module is reduced, reducing the risk of these
signals constraining the maximum achievable frequency.

To move data between PEs, communication channels with
a handshake mechanism are used. These channels double
as synchronization points, as they imply a consensus on
the program state. In practice, channels are always FIFO
interfaces, and support standard queue operations Push,
Pop, and sometimes Empty, Full, and Size operations. They
occupy the same register or block memory resources as
other buffers (Sec. 2.2/Sec. 2.3).

The mapping from source code to PEs differs between
HLS tools, but is manifested when functions are connected
using channels. In the following example, we will use the
syntax from Xilinx Vivado HLS to instantiate PEs, where
each non-inlined function correspond to a PE, and these
are connected by channels that are passed as arguments
to the functions from a top-level entry function. Note that
this functionally diverges from C++ semantics without
additional abstraction [48], as each function in the dataflow
scope is executed in parallel in hardware, rather than in the
sequence specified in the imperative code. In Intel OpenCL,
dataflow semantics are instead expressed with multiple
kernel functions each defining a PE, which are connected by
global channel objects prefixed with the channel keyword.

To see how streaming can be an important tool to express
scalable hardware, we apply it in conjunction with vertical
unrolling (Sec. 3.2) to implement an iterative version of the
stencil example from Lst. 4. Unlike the matrix multiplication
code, the stencil code has no scalable source of parallelism
in the spatial dimension. Instead, we can achieve reuse by
folding the outer time-loop to treat P consecutive timesteps
in a pipeline parallel fashion, each computed by a distinct
PE, connected in a chain via channels [37], [51], [38]. We
replace the memory interfaces to the PE with channels, such
that the memory read and write become Pop and Push oper-
ations, respectively. The resulting code is shown in Lst. 11a.
We then vertically unroll to generate P instances of the PE
(shown in Lst. 11b), effectively increasing the throughput
of the kernel by a factor of P , and consequently reducing
the runtime by folding the outermost loop by a factor of P
(line 3 in Lst. 11a). Such architectures are sometimes referred
to as systolic arrays [52], [53].

For architectures/HLS tools where large fan-out is an is-
sue for compilation or routing, an already replicated design
can be transformed to a dataflow architecture. For example,
in the matrix multiplication example in Lst. 10, we can move
the P -fold unroll out of the inner loop, and replicate the
entire PE instead, replacing reads and writes with channel
accesses [50]. B is then streamed into the first PE, and
passed downstream every cycle. A and C should no longer
be accessed by every PE, but rather be handed downstream
similar to B, requiring a careful implementation of the start
and drain phases, where the behavior of each PE will vary
slightly according to its depth in the sequence.

3.4 Tiling
Loop tiling in HLS is commonly used to fold large problem
sizes into manageable chunks that fit into fast on-chip
memory, in an already pipelined program [38]. Rather than
making the program faster, this lets the already fast archi-
tecture support arbitrarily large problem sizes. This is in
contrast to loop tiling on CPU and GPU, where tiling is used
to increase performance. Common to both paradigms is that
they fundamentally aim to meet fast memory constraints. As
with horizontal and vertical unrolling, tiling relies on strip-
mining loops to alter the iteration space.

Tiling was already shown in Sec. 2.1.2, when the accu-
mulation buffer in Lst. 1b was reduced to a tile buffer in

1void PE(FIFO<float> &in, FIFO<float> &out, int T) {
2 // ..initialization...
3 for (int t = 0; t < T / P; ++t) // Fold timesteps T by factor P
4 #pragma PIPELINE
5 for (/* loops over spatial dimensions */) {
6 auto south = in.Pop(); // Value for t-1 from previous PE
7 // ...load values from delay buffers...
8 auto next = 0.25*(north + west + east + south);
9 out.Push(next); }} // Value for t sent to PE computing t+1

(a) Processing element for a single timestep. Will be replicated P times.

1#pragma DATAFLOW // Schedule nested functions as parallel modules
2void SystolicStencil(const float in[], float out[], int T) {
3 FIFO<float> pipes[P + 1]; // Assume P is given at compile time
4 ReadMemory(in, pipes[0]); // Head
5 #pragma UNROLL // Replicate PEs
6 for (int p = 0; p < P; ++p)
7 PE(pipe[p], pipe[p + 1], T); // Forms a chain
8 WriteMemory(pipes[P], out); } // Tail

(b) Instantiate and connect P consecutive and parallel PEs.

Listing 11: Dataflow between replicated PEs to compute P timesteps in parallel.

9

Lst. 1c, such that the required buffer space used for partial
results became a constant, rather than being dependent on
the input size. This transformation is also relevant to the
stencil codes in Lst. 4, where it can be used similarly to
restrict the size of the line buffers or shift register, so they a
no longer proportional to the problem size.

4 MEMORY ACCESS TRANSFORMATIONS
When an HLS design has been pipelined, scheduled, and
unrolled as desired, the memory access pattern has been
established. In the following, we describe transformations
that optimize the efficiency of off-chip memory accesses in
the HLS code. For memory bound codes in particular, this is
critical for performance after the design has been pipelined.

4.1 Memory Access Extraction
By extracting accesses to external memory from the compu-
tational logic, we enable compute and memory accesses to
be pipelined and optimized separately. Accessing the same
interface multiple times within the same pipelined section
is a common cause for poor memory bandwidth utilization
and increased initiation interval due to interface contention,
since the interface can only service a single request per
cycle. In the Intel OpenCL flow, memory extraction is done
automatically by the tool, but since this process must be
conservative due to limited information, it is often still
beneficial to do the extraction explicitly in the code [54]. In
many cases, such as for independent reads, this is not an in-
herent memory bandwidth or latency constraint, but arises
from the tool scheduling iterations according to program
order. This can be relaxed when allowed by inter-iteration
dependencies (which can in many cases be determined
automatically, e.g., using polyhedral analysis [55]).

In Lst. 12a, the same memory (i.e., hardware memory
interface) is accessed twice in the inner loop. In the worst
case, the program will issue two 4Byte memory requests
every iteration, resulting in poor memory performance, and
preventing pipelining of the loop. In software, this problem
is typically mitigated by caches, always fetching at least

1void PE(const int A[N], int B[N/2]) {
2 #pragma PIPELINE // Achieves I=2
3 for (int i = 0; i < N/2; ++i)
4 // Issues N/2 memory requests of size 1
5 B[i] = A[i] + A[N/2 + i];
6}

DR
AM

A[i]

A[N/2+i]

1 elem./burst

1 elem./burst

N/2 bursts

N/2 bursts
N/2 state

transitionsPE

(a) Multiple accesses to A cause inefficient memory accesses.

1void PE(FIFO<int> &A0, FIFO<int> &A1,
2 int B[N/2]) {
3 #pragma PIPELINE // Achieves I=1
4 for (int i = 0; i < N/2; ++i)
5 B[i] = A0.Pop() + A1.Pop());
6}

DR
AM

A[i]

A[N/2+i]

N/2 elem./burst

N/2 elem./burst

1 burst

1 burst
1 state

transition

Com
pute

Pipeline

PE

ReadA

(b) Move memory accesses out of computational code.
1void ReadA(const int A[N], FIFO<int> &A0, FIFO<int> &A1) {
2 int buffer[N/2];
3 #pragma PIPELINE
4 for (int i = 0; i < N/2; ++i)
5 buffer[i] = A[i]; // Issues 1 memory request of size N/2
6 #pragma PIPELINE
7 for (int i = 0; i < N/2; ++i) {
8 A0.Push(buffer[i]); // Sends to PE
9 A1.Push(A[N/2 + i]); }} // Issues 1 memory request of size N/2

(c) Read A in long bursts and stream them to the PE.

Listing 12: Separate memory accesses from computational logic.

one cache line. If we instead read the two sections of A
sequentially (or in larger chunks), the HLS tool can infer
two bursts accesses to A of length N/2, shown in Lst. 12c.
Since the schedules of memory and computational modules
are independent, ReadA can run ahead of PE, ensuring that
memory is always read at the maximum bandwidth of the
interface (Sec. 4.2 and Sec. 4.3 will cover how to increase this
bandwidth). From the point of view of the computational
PE, both A0 and A1 are read in parallel, as shown on
line 5 in Lst. 12b, hiding initialization time and inconsistent
memory producers in the synchronization implied by the
data streams.

An important use case of memory extraction appears in
the stencil code in Lst. 11, where it is necessary to separate
the memory accesses such that the PEs are agnostic of
whether data is produced/consumed by a neighboring PE
or by a memory module. Memory access extraction is also
useful for performing data layout transformations in fast
on-chip memory. For example, we can change the schedule
of reads from A in Lst. 10 to a more efficient scheme by
buffering values in on-chip memory, while streaming them
to the kernel according to the original schedule.

4.2 Memory Buffering
When dealing with memory interfaces with an inconsistent
data rate, such as DRAM, it can be beneficial to request
and buffer accesses earlier and/or at a more aggressive pace
than what is consumed or produced by the computational
elements. For memory reads, this can be done by reading
ahead of the kernel into a deep buffer instantiated between
memory and computations, by either 1) accessing wider vec-
tors from memory than required by the kernel, narrowing or
widening data paths (aka. “gearboxing”) when piping to or
from computational elements, respectively, or 2) increasing
the clock rate of modules accessing memory with respect to
the computational elements.

The memory access function Lst. 12c allows long bursts
to the interface of A, but receives the data on a narrow bus
at W · Sint = (1 · 4) Byte/cycle. In general, this limits the
bandwidth consumption to f ·WSint at frequency f , which is
likely to be less than what the external memory can provide.
To better exploit available bandwidth, we can either read
wider vectors (increase W) or clock the circuit at a higher
rate (increase f). The former consumes more resources, as
additional logic is required to widen and narrow the data
path, but the latter is more likely to be constrained by timing
constraints on the device.

4.3 Memory Striping
When multiple memory banks with dedicated channels
(e.g., multiple DRAM modules or HBM lanes) are available,
the bandwidth at which a single array is accessed can be
increased by a factor corresponding the the number of
available interfaces by striping it across memory banks. This
optimization is employed by most CPUs transparently by
striping across multi-channel memory, and is commonly
known from RAID 0 configuration of disks.

We can perform striping explicitly in HLS by inserting
modules that join or split data streams from two or more
memory interfaces. Reading can be implemented with two
or more memory modules requesting memory from their

10

respective interfaces, pushing to FIFO buffers that are read
in parallel and combined by another module (for writing: in
reverse), exposing a single data stream to the computational
kernel. This is illustrated in Fig. 6, where the unlabeled
dark boxes in Fig. 6b represent PEs reading and combining
data from the four DRAM modules. The Intel OpenCL
compiler [19] applies this transformation by default.

FPGA fabric

D
D

R
1

D
D

R
2

D
D

R
3

D
D

R
0

Compute kernel

(a) Memory stored in a single bank.

FPGA fabric

D
D

R
1

D
D

R
2

D
D

R
3

D
D

R
0

Compute kernel

(b) Memory striped across four banks.

Fig. 6: Striping memory across memory banks increases available bandwidth.

4.4 Type Demotion

We can reduce resource and energy consumption, band-
width requirements, and operation latency by demoting
data types to less expensive alternatives that still meet
precision requirements. This can lead to significant im-
provements on architectures that are specialized for certain
types, and perform poorly on others. On traditional FPGAs
there is limited native support for floating point units.
Since integer/fixed point and floating point computations
on these architectures compete for the same reconfigurable
logic, using a data type with lower resource requirements
increases the total number of arithmetic operations that can
potentially be instantiated on the device. The largest benefits
of type demotion are seen in the following scenarios:
• Compute bound architectures where the data type can be

changed to a type that occupies less of the same resources
(e.g., from 64 bit integers to 48 bit integers).

• Compute bound architectures where the data type can be
moved to a type that is natively supported by the target
architecture, such as single precision floating point on
Intel’s Arria 10 and Stratix 10 devices [56].

• Bandwidth bound architectures, where performance can
be improved by up to the same factor that the size of the
data type can be reduced by.

• Latency bound architectures where the data type can be
reduced to a lower latency operation, e.g., from floating
point to integer.

In the most extreme case, it has been shown that collapsing
the data type of weights and activations in deep neural
networks to binary [34] can provide sufficient speedup for
inference that the increased number of weights makes up
for the loss of precision per weight.

5 SOFTWARE TRANSFORMATIONS IN HLS
In addition to the transformations described in the sections
above, we include an overview of how well-known CPU-
oriented transformations apply to HLS, based on the com-
piler transformations compiled by Bacon et al. [25]. These
transformations are included in Tab. 2, and are partitioned
into three categories:
• Transformations directly relevant to the HLS transforma-

tions already presented here.
• Transformations that are the same or similar to their

software counterparts.
• Transformations with little or no relevance to HLS.

CPU-Oriented Transformations and how they apply to HLS codes.

D
ir

ec
tly

re
la

te
d

to
H

LS
tr

an
sf

or
m

at
io

ns

� Loop interchange [57], [47] is used to resolve loop-carried dependencies [§2].
� Strip-mining [58], loop tiling [59], [47], and cycle shrinking [60] are central compo-

nents of many HLS transformations [§2.1, §3.1, §3.2, §2.1.2].
� Loop distribution and loop fission [61], [47] are used to separate differently scheduled

computations to allow pipelining [§3.3].
� Loop fusion [62], [47], [63] is used for merging pipelines [§2.4].
� Loop unrolling [64] is used to generate parallel hardware [§3.1, §3.2].
� Software pipelining [65] is used by HLS tools to schedule code sections according to

operation interdependencies to form hardware pipelines.
� Loop coalescing/flattening/collapsing [66] saves pipeline drains in nested

loops [§2.6].
� Reduction recognition prevents loop-carried dependencies when accumulating [§2.1].
� Loop idiom recognition is relevant for HLS backends, for example to recognize shift

registers [§2.2] in the Intel OpenCL compiler [19].
� Procedure inlining is used to remove function call boundaries [§2.7].
� Procedure cloning is frequently used by HLS tools when inlining [§2.7] to specialize

each function “call” with values that are known at compile-time.
� Loop unswitching [67] is rarely advantageous; its opposite is beneficial [§2.6, §2.4].
� Loop peeling is rarely advantageous; its opposite is beneficial to allow coalesc-

ing [§2.6].
� SIMD transformations is done in HLS via horizontal unrolling [§3.1].
� Short-circuiting: while the logic for both boolean operands must always be instanti-

ated in hardware, dynamically scheduling branches [68] can effectively “short-circuit”
otherwise deep, static pipelines.

S
am

e
or

si
m

ila
r

in
H

LS

� Loop-based strength reduction [69], [70], [71], Induction variable elimination [72],
Unreachable code elimination [72], Useless-code elimination [72], Dead-variable
elimination [72], Common-subexpression elimination [72], Constant propagation
[72], Constant folding [72], Copy propagation [72], Forwarding substitution [72],
Reassociation, Algebraic simplification, Strength reduction, Bounds reduction,
Redundant guard elimination are all transformations that eliminate code, which is a
useful step for HLS codes to avoid generating unnecessary hardware.

� Loop-invariant code motion (hoisting) [72] does not save hardware in itself, but can
save memory operations.

� Loop normalization can be useful as an intermediate transformation.
� Loop reversal [72], array padding and contraction, scalar expansion, and scalar

replacement yield the same benefits as in software.
� Loop skewing [72] can be used in multi-dimensional wavefront codes.
� Function memoization can be applied to HLS, using explicit fast memory.
� Tail recursion elimination may be useful if eliminating dynamic recursion can enable

a code to be implemented in hardware.
� Regular array decomposition applies to partitioning of both on-chip/off-chip memory.
� We do not consider transformations that apply only in a distributed setting (message

vectorization, message coalescing, message aggregation, collective communica-
tion, message pipelining, guard introduction, redundant communication), but they
should be implemented in dedicated message passing hardware when relevant [73].

D
o

no
ta

pp
ly

to
H

LS

� No use case found for loop spreading and parameter promotion.
� Array statement scalarization: No built-in vector notation in C/C++/OpenCL.
� Code colocation, displacement minimization, leaf procedure optimization, and

cross-call register allocation, are not relevant for HLS, as there are no runtime
function calls.

� I/O format compilation: No I/O supported directly in HLS.
� Supercompiling: is infeasible for HLS due to long synthesis times.
� Loop pushing/embedding: Inlining completely is favored to allow pipelining.
� Automatic decomposition and alignment, scalar privatization, array privatization,

cache alignment, and false sharing are not relevant for HLS, as there is no (implicit)
cache coherency protocol in hardware.

� Procedure call parallelization and split do not apply, as there are no forks in hardware.
� Graph partitioning only applies to explicit dataflow languages.
� There are no instruction sets in hardware, so VLIW transformations do not apply.

TABLE 2: The relation of traditional CPU-oriented transformations to HLS codes.

It is interesting to note that the majority of well-known
transformations from software apply to HLS. This implies
that we can leverage much of decades of research into high-
performance computing transformations to also optimize
hardware programs, including many that can be applied
directly (i.e., without further adaptation to HLS) to the im-
perative source code or intermediate representation before
synthesizing for hardware. We stress the importance of sup-
port for these pre-hardware generation transformations in
HLS compilers, as they lay the foundation for the hardware-
specific transformations proposed here.

6 END-TO-END EXAMPLES
To showcase the transformations presented in this work and
provide a “hands-on” opportunity for seeing HLS optimiza-
tions applied in practice, we will describe the optimization
process on a sample set of classical HPC kernels, available
as open source repositories on github1. These kernels are

1. https://github.com/spcl?q=hls

https://github.com/spcl?q=hls

11

written in C++ for Xilinx Vivado HLS [12] with hlslib [48]
extensions, and are built and run using the Xilinx Vitis envi-
ronment. For each example, we will describe the sequence of
transformations applied, and give the resulting performance
at each major stage.

The included benchmarks were run on an Alveo
U250 board, which houses a Xilinx UltraScale+ XCU250-
FIGD2104-2L-E FPGA and four 2400MT/s DDR4 banks (we
utilize 1-2 banks for the examples here). The chip consists
of four almost identical chiplets with limited interconnect
between them, where each chiplet is connected to one of
the DDR4 pinouts. This multi-chiplet design allows more
resources (1728K LUTs and 12,288 DSPs), but poses chal-
lenges for the routing process, which impedes the achiev-
able clock rate and resource utilization for a monolithic ker-
nel attempting to span the full chip. Kernels were compiled
for the xilinx u250 xdma 201830 2 shell with Vitis 2019.2
and executed with version 2.3.1301 of the Xilinx Runtime
(XRT). All benchmarks are included in Fig. 7, and the
resource utilization of each kernel is shown in Fig. 8.

6.1 Stencil Code
Stencil codes are a popular target for FPGA acceleration in
HPC, due to their regular access pattern, intuitive buffering
scheme, and potential for creating large systolic array de-
signs [38]. We show the optimization of a 4-point 2D stencil
based on Lst. 4. Benchmarks are shown in Fig. 7, and use
single precision floating point, iterating over a 8192×8192
domain. We first measure a naive implementation, where
all neighboring cells are accessed directly from the input
array, which results in no data reuse and heavy interface
contention on the input array. We then apply the following
optimization steps:
1) Delay buffers [§2.2] are added to store two rows of the

domain (see Lst. 4a), removing interface contention on
the memory bus and achieving perfect spatial data reuse.

2) Spatial locality is exploited by introducing vectoriza-
tion [§3.1]. To efficiently use memory bandwidth, we
use memory extraction [§4.1], buffering [§4.2], and strip-
ing [§4.3] from two DDR banks.

3) To exploit temporal locality, we replicate the vectorized
PE by vertical unrolling [§3.2] and stream [§3.3] between
them (Lst. 11). The domain is tiled [§3.4] to limit fast
memory usage.

Enabling pipelining with delay buffers allows the kernel to
throughput∼1 cell per cycle. Improving the memory perfor-
mance to add vectorization (using W = 16 operands/cycle
for the kernel) exploits spatial locality through additional
bandwidth usage. The vertical unrolling and dataflow step
scales the design to exploit available hardware resources on
the chip, until limited by placement and routing. The final
implementation is available on github2.

6.2 Matrix Multiplication Code
We consider the optimization process of a matrix multipli-
cation kernel using transformations presented here. Bench-
mark for 8192×8192 matrices across stages of optimization
are shown in Fig. 7. Starting from a naive implementation
(Lst. 1a), the following optimization stages were applied:

2. https://github.com/spcl/stencil hls/

Naive
Pipelined

Vectorized

Systolic
Naive

Pipelined

Vectorized

Systolic
Initial

Pipelined

Systolic

10−3

10−1

101

103

[GOp/s]

<0.1

(53×) 1.2
(14×/720×) 16.1

(25×/18270×)409.3

<0.1

(36×) 0.6
(16×/578×) 9.6

(52×/29950×)497.0

1.6
(4×) 6.4

(42×/167×)270.7

Stencil Matrix Multiplication N-Body

Fig. 7: Performance progression of kernels when applying transformations. Paren-
theses show speedup over previous version, and cumulative speedup.

Naive
Pipelined

Vectorized

Systolic
Naive

Pipelined

Vectorized

Systolic
Initial

Pipelined

Systolic

0.01%

0.1%

1%

10%

100%
[Utilization]

Stencil Matrix Multiplication N-Body

LUTs DSPs BRAM

Fig. 8: Resource usage of kernels from Fig. 7 as fractions of available resources.
The maxima are taken as 1728K LUTs, 12,288 DSPs, and 2688 BRAM.

1) We transpose the iteration space [§2.1.1], removing the
loop-carried dependency on the accumulation register,
and extract the memory accesses [§4.1], vastly improving
spatial locality. The buffering, streaming and writing
phases are fused [§2.4], allowing us to coalesce the three
nested loops [§2.6].

2) In order to increase spatial parallelism, we vectorize
accesses to B and C [§3.1].

3) To scale up the design, we vertically unroll by buffering
multiple values of A, applying them to streamed in
values of B in parallel [§3.2]. To avoid high fan-out,
we partition buffered elements of A into processing
elements [§3.3] arranged in a systolic array architecture.
Finally, the horizontal domain is tiled to accommodate
arbitrarily large matrices with finite buffer space.

Allowing pipelining and regularizing the memory access
pattern results in a throughput of ∼1 cell per cycle. Vec-
torization multiplies the performance by W , set to 16 in
the benchmarked kernel. The performance of the vertically
unrolled dataflow kernel is only limited by placement and
routing due to high resource usage on the chip. The final
implementation achieves state-of-the-art performance on
the target architecture [50], and is available on github3.

6.3 N-Body Code
Finally, we show an N-body code in 3 dimensions, using
single precision floating point types and iterating over
16,128 bodies. Since Vivado HLS does not allow memory
accesses of a width that is not a power of two, memory ex-
traction [§4.1] and buffering [§4.2] was included in the first
stage, to support 3-vectors of velocity. We then performed
the following transformations:
1) The loop-carried dependency on the acceleration accu-

mulation is resolved by applying tiled accumulation
interleaving [§2.1.2], pipelining across T≥L+ different
resident particles applied to particles streamed in.

2) To scale up the performance, we further multiply the
number of resident particles, this time replicating com-
pute through vertical unrolling [§3.2] of the outer loop

3. https://github.com/spcl/gemm hls

https://github.com/spcl/stencil_hls/
https://github.com/spcl/gemm_hls

12

into P parallel processing element arranged in a systolic
array. Each element holds T resident particles, and parti-
cles are streamed [§3.3] through the PEs.

The second stage gains a factor of 4× corresponding to the
latency of the interleaved accumulation, followed by a factor
of 42× from unrolling units across the chip. T≥L+ can be
used to regulate the arithmetic intensity of the kernel. The
bandwidth requirements can be reduced further by storing
more resident particles on the chip, scaling up to the full
fast memory usage of the FPGA. The tiled accumulation in-
terleaving transformation thus enables not just pipelining of
the compute, but also minimization of I/O. The optimized
implementation is available on github4.

These examples demonstrate the impact of different
transformations on a reconfigurable hardware platform. In
particular, enabling pipelining, regularizing memory ac-
cesses, and vertical unrolling are shown to be central com-
ponents of scalable hardware architectures. The dramatic
speedups over naive codes also emphasize that HLS tools do
not yield competitive performance out of the box, making it
critical to perform further transformations. For additional
examples of optimizing HLS codes, we refer to the numer-
ous works applying HLS optimizations listed below.

7 RELATED WORK
Optimized applications. Much work has been done in

optimizing C/C++/OpenCL HLS codes for FPGA, such as
stencils [38], [39], [40], [74], [75], deep neural networks [76],
[77], [35], [36], [34], matrix multiplication [78], [75], [50], [79],
graph processing [80], [81], networking [82], light propaga-
tion for cancer treatment [46], and protein sequencing [49],
[83]. These works optimize the respective applications using
transformations described here, such as delay buffering,
random access buffering, vectorization, vertical unrolling,
tiling for on-chip memory, and dataflow.

Transformations. Zohouri et al. [84] use the Rodinia
benchmark to evaluate the performance of OpenCL codes
targeting FPGAs, employing optimizations such as SIMD
vectorization, sliding-window buffering, accumulation in-
terleaving, and compute unit replication across multiple
kernels. We present a generalized description of a superset
of these transformations, along with concrete code examples
that show how they are applied in practice. The DaCe frame-
work [85] exploits information on explicit dataflow and
control flow to perform a wide range of transformations,
and code generates efficient HLS code using vendor-specific
pragmas and primitives. Kastner et al. [86] go through the
implementation of many HLS codes in Vivado HLS, focus-
ing on algorithmic optimizations. da Silva et al. [87] explore
using modern C++ features to capture HLS concepts in a
high-level fashion. Lloyd et al. [88] describe optimizations
specific to Intel OpenCL, and include a variant of memory
access extraction, as well as the single-loop accumulation
variant of accumulation interleaving.

Directive-based frameworks. High-level, directive-based
frameworks such as OpenMP and OpenACC have been
proposed as alternative abstractions for generating FPGA
kernels. Leow et al. [89] implement an FPGA code gen-
erator from OpenMP pragmas, primarily focusing on cor-
rectness in implementing a range of OpenMP pragmas.

4. https://github.com/spcl/nbody hls

Lee et al. [90] present an OpenACC to OpenCL com-
piler, using Intel OpenCL as a backend. The authors im-
plement horizontal and vertical unrolling, pipelining and
dataflow by introducing new OpenACC clauses. Papakon-
stantinou et al. [91] generate HLS code for FPGA from
directive-annotated CUDA code.

Optimizing HLS compilers. Mainstream HLS compil-
ers automatically apply many of the well-known software
transformations in Tab. 2 [22], [92], [93], but can also employ
more advanced FPGA transformations. Intel OpenCL [19]
performs memory access extraction into “load store units”
(LSUs), does memory striping between DRAM banks, and
detects and auto-resolves some buffering and accumulation
patterns. The proprietary Merlin Compiler [94] uses high-
level acceleration directives to automatically perform some
of the transformations described here, as source-to-source
transformations to underlying HLS code. Polyhedral compi-
lation is a popular framework for optimizing CPU and GPU
loop nests [55], and has also been applied to HLS for FPGA
for optimizing data reuse [95]. Such techniques may prove
valuable in automating, e.g., memory extraction and tiling
transformations. While most HLS compilers rely strictly
on static scheduling, Dynamatic [68] considers dynamically
scheduling state machines and pipelines to allow reducing
the number of stages executed at runtime.

Domain-specific frameworks. Implementing programs
in domain specific languages (DSLs) can make it easier
to detect and exploit opportunities for advanced trans-
formations. Darkroom [30] generates optimized HDL for
image processing codes, and the popular image process-
ing framework Halide [31] has been extended to support
FPGAs [96], [97]. Luzhou et al. [53] and StencilFlow [44]
propose frameworks for generating stencil codes for FP-
GAs. These frameworks rely on optimizations such as delay
buffering, dataflow, and vertical unrolling, which we cover
here. Using DSLs to compile to structured HLS code can
be a viable approach to automating a wide range of trans-
formations, as proposed by Koeplinger et al. [98], and the
FROST [99] DSL framework.

Other approaches. There are other approaches than
C/C++/OpenCL-based HLS languages to addressing the
productivity issues of hardware design: Chisel/FIR-
RTL [100], [101] maintains the paradigm of behavioral pro-
gramming known from RTL, but provides modern language
and compiler features. This caters to developers who are
already familiar with hardware design, but wish to use a
more expressive language. In the Maxeler ecosystem [102],
kernels are described using a Java-based language, but
rather than transforming imperative code into a behavioral
equivalent, the language provides a DSL of hardware con-
cepts that are instantiated using object-oriented interfaces.
By constraining the input, this encourages developers to
write code that maps well to hardware, but requires learning
a new language exclusive to the Maxeler ecosystem.

8 TOOLFLOW OF XILINX VS. INTEL

When choosing a toolflow to start designing hardware with
HLS, it is useful to understand two distinct approaches
by the two major vendors: Intel OpenCL wishes to en-
able writing accelerators using software, making an effort to
abstract away low-level details about the hardware, and

https://github.com/spcl/nbody_hls

13

present a high-level view to the programmer; whereas Xil-
inx’ Vivado HLS provides a more productive way of writing
hardware, by means of a familiar software language. Xilinx
uses OpenCL as a vehicle to interface between FPGA and
host, but implements the OpenCL compiler itself as a thin
wrapper around the C++ compiler, whereas Intel embraces
the OpenCL paradigm as their frontend (although they
encourage writing single work item kernels [103], effectively
preventing reuse of OpenCL kernels written for GPU).

Vivado HLS has a stronger coupling between the HLS
source code and the generated hardware. This requires
the programmer to write more annotations and boilerplate
code, but can also give them stronger feeling of control.
Conversely, the Intel OpenCL compiler presents convenient
abstracted views, saves boilerplate code (e.g., by automat-
ically pipelining sections), and implements efficient substi-
tutions by detecting common patterns in the source code
(e.g., to automatically perform memory extraction [§4.1]).
The downside is that developers end up struggling to write
or generate code in a way that is recognized by the tool’s
“black magic”, in order to achieve the desired result. Finally,
Xilinx’ choice to allow C++ gives Vivado HLS an edge in
expressibility, as (non-virtual) objects and templating turns
out to be a useful tool for abstracting and extending the
language [48]. Intel offers a C++-based HLS compiler, but
does not (as of writing) support direct interoperability with
the OpenCL-driven accelerator flow.

9 CONCLUSION
The transformations known from software are insufficient to
optimize HPC kernels targeting spatial computing systems.
We have proposed a new set of optimizing transforma-
tions that enable efficient and scalable hardware architec-
tures, and can be applied directly to the source code by a
performance engineer, or automatically by an optimizing
compiler. Performance and compiler engineers can benefit
from these guidelines, transformations, and the presented
cheat sheet as a common toolbox for developing high per-
formance hardware using HLS.

ACKNOWLEDGEMENTS
This work was supported by the European Research Coun-
cil under the European Union’s Horizon 2020 programme
(grant agreement DAPP, No. 678880). The authors wish
to thank Xilinx and Intel for helpful discussions; Xilinx
for generous donations of software, hardware, and access
to the Xilinx Adaptive Compute Cluster (XACC) at ETH
Zurich; the Swiss National Supercomputing Center (CSCS)
for providing computing infrastructure; and Tal Ben-Nun
for valuable feedback on iterations of this manuscript.

REFERENCES

[1] W. A. Wulf and S. A. McKee, “Hitting the memory wall: implica-
tions of the obvious,” SIGARCH, 1995.

[2] M. Horowitz, “Computing’s energy problem (and what we can
do about it),” in ISSCC, 2014.

[3] D. D. Gajski et al., “A second opinion on data flow machines and
languages,” Computer, 1982.

[4] S. Sirowy and A. Forin, “Where’s the beef? why FPGAs are so
fast,” MS Research, 2008.

[5] A. R. Brodtkorb et al., “State-of-the-art in heterogeneous comput-
ing,” Scientific Programming, 2010.

[6] D. B. Thomas et al., “A comparison of CPUs, GPUs, FPGAs,
and massively parallel processor arrays for random number
generation,” in FPGA, 2009.

[7] D. Bacon et al., “FPGA programming for the masses,” CACM,
2013.

[8] G. Martin and G. Smith, “High-level synthesis: Past, present, and
future,” D&T, 2009.

[9] J. Cong et al., “High-level synthesis for FPGAs: From prototyping
to deployment,” TCAD, 2011.

[10] R. Nane et al., “A survey and evaluation of FPGA high-level
synthesis tools,” TCAD, 2016.

[11] W. Meeus et al., “An overview of today’s high-level synthesis
tools,” DAEM, 2012.

[12] Z. Zhang et al., “AutoPilot: A platform-based ESL synthesis
system,” in High-Level Synthesis, 2008.

[13] Intel High-Level Synthesis (HLS) Compiler. https://www.
intel.com/content/www/us/en/software/programmable/
quartus-prime/hls-compiler.html. Accessed May 15, 2020.

[14] A. Canis et al., “LegUp: High-level synthesis for FPGA-based
processor/accelerator systems,” in FPGA, 2011.

[15] Mentor Graphics. Catapult high-level synthesis. https:
//www.mentor.com/hls-lp/catapult-high-level-synthesis/
c-systemc-hls. Accessed May 15, 2020.

[16] C. Pilato et al., “Bambu: A modular framework for the high level
synthesis of memory-intensive applications,” in FPL, 2013.

[17] R. Nane et al., “DWARV 2.0: A CoSy-based C-to-VHDL hardware
compiler,” in FPL, 2012.

[18] M. Owaida et al., “Synthesis of platform architectures from
OpenCL programs,” in FCCM, 2011.

[19] T. Czajkowski et al., “From OpenCL to high-performance hard-
ware on FPGAs,” in FPL, 2012.

[20] R. Nikhil, “Bluespec system Verilog: efficient, correct RTL from
high level specifications,” in MEMOCODE, 2004.

[21] J. Auerbach et al., “Lime: A Java-compatible and synthesizable
language for heterogeneous architectures,” in OOPSLA, 2010.

[22] ——, “A compiler and runtime for heterogeneous computing,”
in DAC, 2012.

[23] J. Hammarberg and S. Nadjm-Tehrani, “Development of safety-
critical reconfigurable hardware with Esterel,” FMICS, 2003.

[24] M. B. Gokhale et al., “Stream-oriented FPGA computing in the
Streams-C high level language,” in FCCM, 2000.

[25] D. F. Bacon et al., “Compiler transformations for high-
performance computing,” CSUR, 1994.

[26] S. Ryoo et al., “Optimization principles and application perfor-
mance evaluation of a multithreaded GPU using CUDA,” in
PPoPP, 2008.

[27] G. D. Smith, Numerical solution of partial differential equations: finite
difference methods, 1985.

[28] A. Taflove and S. C. Hagness, “Computational electrodynamics:
The finite-difference time-domain method,” 1995.

[29] C. A. Fletcher, Computational Techniques for Fluid Dynamics 2, 1988.
[30] J. Hegarty et al., “Darkroom: compiling high-level image process-

ing code into hardware pipelines.” TOG, 2014.
[31] J. Ragan-Kelley et al., “Halide: A language and compiler for

optimizing parallelism, locality, and recomputation in image
processing pipelines,” in PLDI, 2013.

[32] T. Ben-Nun and T. Hoefler, “Demystifying parallel and dis-
tributed deep learning: An in-depth concurrency analysis,”
CSUR, 2019.

[33] G. Lacey et al., “Deep learning on FPGAs: Past, present, and
future,” arXiv:1602.04283, 2016.

[34] M. Courbariaux et al., “Binarized neural networks: Training deep
neural networks with weights and activations constrained to +1
or -1,” arXiv:1602.02830, 2016.

[35] Y. Umuroglu et al., “FINN: A framework for fast, scalable bina-
rized neural network inference,” in FPGA, 2017.

[36] M. Blott et al., “FINN-R: An end-to-end deep-learning framework
for fast exploration of quantized neural networks,” TRETS, 2018.

[37] H. Fu and R. G. Clapp, “Eliminating the memory bottleneck: An
FPGA-based solution for 3d reverse time migration,” in FPGA,
2011.

[38] H. R. Zohouri et al., “Combined spatial and temporal block-
ing for high-performance stencil computation on FPGAs using
OpenCL,” in FPGA, 2018.

[39] H. M. Waidyasooriya et al., “OpenCL-based FPGA-platform for
stencil computation and its optimization methodology,” TPDS,
May 2017.

https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.mentor.com/hls-lp/catapult-high-level-synthesis/c-systemc-hls
https://www.mentor.com/hls-lp/catapult-high-level-synthesis/c-systemc-hls
https://www.mentor.com/hls-lp/catapult-high-level-synthesis/c-systemc-hls

14

[40] Q. Jia and H. Zhou, “Tuning stencil codes in OpenCL for FPGAs,”
in ICCD, 2016.

[41] X. Niu et al., “Exploiting run-time reconfiguration in stencil
computation,” in FPL, 2012.

[42] ——, “Dynamic stencil: Effective exploitation of run-time re-
sources in reconfigurable clusters,” in FPT, 2013.

[43] J. Fowers et al., “A performance and energy comparison of
FPGAs, GPUs, and multicores for sliding-window applications,”
in FPGA, 2012.

[44] J. de Fine Licht et al., “StencilFlow: Mapping large stencil pro-
grams to distributed spatial computing systems,” in CGO, 2021.

[45] X. Chen et al., “On-the-fly parallel data shuffling for graph
processing on OpenCL-based FPGAs,” in FPL, 2019.

[46] T. Young-Schultz et al., “Using OpenCL to enable software-like
development of an FPGA-accelerated biophotonic cancer treat-
ment simulator,” in FPGA, 2020.

[47] D. J. Kuck et al., “Dependence graphs and compiler optimiza-
tions,” in POPL, 1981.

[48] J. de Fine Licht and T. Hoefler, “hlslib: Software engineering for
hardware design,” arXiv:1910.04436, 2019.

[49] S. O. Settle, “High-performance dynamic programming on FP-
GAs with OpenCL,” in HPEC, 2013.

[50] J. de Fine Licht et al., “Flexible communication avoiding matrix
multiplication on FPGA with high-level synthesis,” in FPGA,
2020.

[51] K. Sano et al., “Multi-FPGA accelerator for scalable stencil com-
putation with constant memory bandwidth,” TPDS, 2014.

[52] H. Kung and C. E. Leiserson, “Systolic arrays (for VLSI),” in
Sparse Matrix Proceedings, 1978.

[53] W. Luzhou et al., “Domain-specific language and compiler
for stencil computation on fpga-based systolic computational-
memory array,” in ARC, 2012.

[54] T. Kenter et al., “OpenCL-based FPGA design to accelerate the
nodal discontinuous Galerkin method for unstructured meshes,”
in FCCM, 2018.

[55] T. Grosser et al., “Polly – performing polyhedral optimizations on
a low-level intermediate representation,” PPL, 2012.

[56] U. Sinha, “Enabling impactful DSP designs on FPGAs with hard-
ened floating-point implementation,” Altera White Paper, 2014.

[57] J. R. Allen and K. Kennedy, “Automatic loop interchange,” in
SIGPLAN, 1984.

[58] M. Weiss, “Strip mining on SIMD architectures,” in ICS, 1991.
[59] M. D. Lam et al., “The cache performance and optimizations of

blocked algorithms,” 1991.
[60] C. D. Polychronopoulos, “Advanced loop optimizations for par-

allel computers,” in ICS, 1988.
[61] D. J. Kuck, “A survey of parallel machine organization and

programming,” CSUR, Mar. 1977.
[62] A. P. Yershov, “ALPHA – an automatic programming system of

high efficiency,” J. ACM, 1966.
[63] M. J. Wolfe, “Optimizing supercompilers for supercomputers,”

Ph.D. dissertation, 1982.
[64] J. J. Dongarra and A. R. Hinds, “Unrolling loops in Fortran,”

Software: Practice and Experience, 1979.
[65] M. Lam, “Software pipelining: An effective scheduling technique

for VLIW machines,” in PLDI, 1988.
[66] C. D. Polychronopoulos, “Loop coalescing: A compiler transfor-

mation for parallel machines,” Tech. Rep., 1987.
[67] F. E. Allen and J. Cocke, A catalogue of optimizing transformations,

1971.
[68] L. Josipović et al., “Dynamically scheduled high-level synthesis,”

in FPGA, 2018.
[69] J. Cocke and K. Kennedy, “An algorithm for reduction of operator

strength,” CACM, 1977.
[70] R. Bernstein, “Multiplication by integer constants,” Softw. Pract.

Exper., 1986.
[71] G. L. Steele, “Arithmetic shifting considered harmful,” ACM

SIGPLAN Notices, 1977.
[72] A. V. Aho et al., “Compilers, principles, techniques,” Addison

Wesley, 1986.
[73] T. De Matteis et al., “Streaming message interface: High-

performance distributed memory programming on reconfig-
urable hardware,” in SC, 2019.

[74] D. Weller et al., “Energy efficient scientific computing on FPGAs
using OpenCL,” in FPGA, 2017.

[75] A. Verma et al., “Accelerating workloads on FPGAs via OpenCL:
A case study with opendwarfs,” Tech. Rep., 2016.

[76] N. Suda et al., “Throughput-optimized OpenCL-based FPGA
accelerator for large-scale convolutional neural networks,” in
FPGA, 2016.

[77] J. Zhang and J. Li, “Improving the performance of OpenCL-based
FPGA accelerator for convolutional neural network,” in FPGA,
2017.

[78] E. H. D’Hollander, “High-level synthesis optimization for
blocked floating-point matrix multiplication,” SIGARCH, 2017.

[79] P. Gorlani et al., “OpenCL implementation of Cannon’s matrix
multiplication algorithm on Intel Stratix 10 FPGAs,” in ICFPT,
2019.

[80] M. Besta et al., “Graph processing on FPGAs: Taxonomy, survey,
challenges,” arXiv:1903.06697, 2019.

[81] ——, “Substream-centric maximum matchings on FPGA,” in
FPGA, 2019.

[82] H. Eran et al., “Design patterns for code reuse in HLS packet
processing pipelines,” in FCCM, 2019.

[83] E. Rucci et al., “Smith-Waterman protein search with OpenCL on
an FPGA,” in Trustcom/BigDataSE/ISPA, 2015.

[84] H. R. Zohouri et al., “Evaluating and optimizing OpenCL kernels
for high performance computing with FPGAs,” in SC, 2016.

[85] T. Ben-Nun et al., “Stateful dataflow multigraphs: A data-centric
model for performance portability on heterogeneous architec-
tures,” in SC, 2019.

[86] R. Kastner et al., “Parallel programming for FPGAs,”
arXiv:1805.03648, 2018.

[87] J. S. da Silva et al., “Module-per-Object: a human-driven method-
ology for C++-based high-level synthesis design,” in FCCM, 2019.

[88] T. Lloyd et al., “A case for better integration of host and target
compilation when using OpenCL for FPGAs,” in FSP, 2017.

[89] Y. Y. Leow et al., “Generating hardware from OpenMP pro-
grams,” in FPT, 2006.

[90] S. Lee et al., “OpenACC to FPGA: A framework for directive-
based high-performance reconfigurable computing,” in IPDPS,
2016.

[91] A. Papakonstantinou et al., “FCUDA: Enabling efficient compila-
tion of CUDA kernels onto FPGAs,” in SASP, 2009.

[92] S. Gupta et al., “SPARK: a high-level synthesis framework for ap-
plying parallelizing compiler transformations,” in VLSID, 2003.

[93] ——, “Coordinated parallelizing compiler optimizations and
high-level synthesis,” TODAES, 2004.

[94] J. Cong et al., “Source-to-source optimization for HLS,” in FPGAs
for Software Programmers, 2016.

[95] L.-N. Pouchet et al., “Polyhedral-based data reuse optimization
for configurable computing,” in FPGA, 2013.

[96] J. Pu et al., “Programming heterogeneous systems from an image
processing DSL,” TACO, 2017.

[97] J. Li et al., “HeteroHalide: From image processing DSL to efficient
FPGA acceleration,” in FPGA, 2020.

[98] D. Koeplinger et al., “Automatic generation of efficient accelera-
tors for reconfigurable hardware,” in ISCA, 2016.

[99] E. D. Sozzo et al., “A common backend for hardware acceleration
on FPGA,” in ICCD, 2017.

[100] J. Bachrach et al., “Chisel: constructing hardware in a scala
embedded language,” in DAC, 2012.

[101] A. Izraelevitz et al., “Reusability is FIRRTL ground: Hardware
construction languages, compiler frameworks, and transforma-
tions,” in ICCAD, 2017.

[102] Maxeler Technologies, “Programming MPC systems (white pa-
per),” 2013.

[103] Intel FPGA SDK for OpenCL Pro Edition Best Practices Guide,
UG-OCL003, revision 2020.04.1. Accessed May 15, 2020.

Johannes de Fine Licht is a PhD student at ETH Zurich. His research topics
revolve around spatial computing systems in HPC, and include programming
models, applications, libraries, and enhancing programmer productivity.

Maciej Besta is a PhD student at ETH Zurich. His research focuses on under-
standing and accelerating large-scale irregular graph processing in any type of
setting and workload.

Simon Meierhans is studying for his MSc degree at ETH Zurich. His interests
include randomized and deterministic algorithm and data structure design.

Torsten Hoefler is a professor at ETH Zurich, where he leads the Scalable
Parallel Computing Lab. His research aims at understanding performance of
parallel computing systems ranging from parallel computer architecture through
parallel programming to parallel algorithms.

	Introduction
	From Imperative Code to Hardware
	Key Transformations for High-Level Synthesis
	The Importance of Pipelining
	Optimization Goals

	Pipeline-Enabling Transformations
	Accumulation Interleaving
	Full Transposition
	Tiled Accumulation Interleaving
	Single-Loop Accumulation Interleaving
	Batched Accumulation Interleaving

	Delay Buffering
	Random Access Buffering
	Pipelined Loop Fusion
	Pipelined Loop Switching
	Pipelined Loop Flattening/Coalescing
	Inlining

	Scalability Transformations
	Horizontal Unrolling (Vectorization)
	Vertical Unrolling
	Dataflow
	Tiling

	Memory Access Transformations
	Memory Access Extraction
	Memory Buffering
	Memory Striping
	Type Demotion

	Software Transformations in HLS
	End-to-End Examples
	Stencil Code
	Matrix Multiplication Code
	N-Body Code

	Related Work
	Toolflow of Xilinx vs. Intel
	Conclusion
	References
	Biographies
	Johannes de Fine Licht
	Maciej Besta
	Simon Meierhans
	Torsten Hoefler

