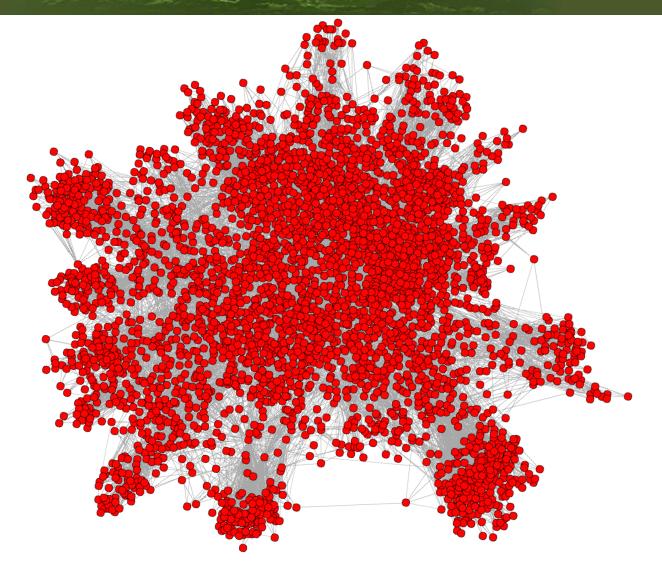
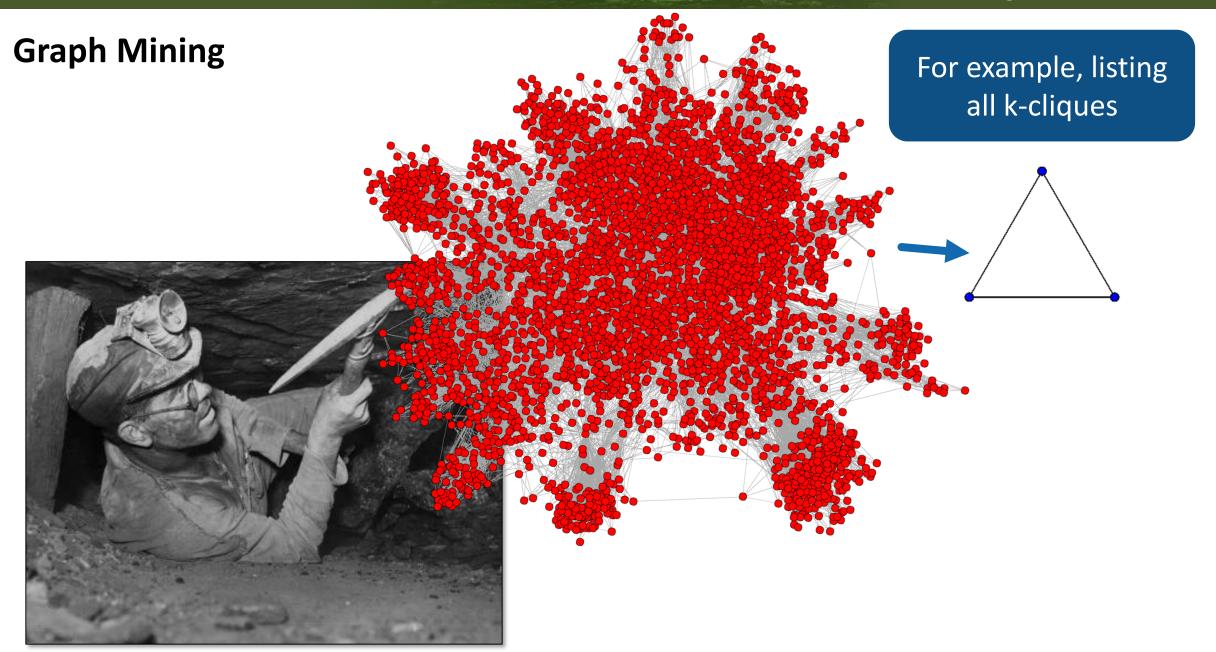
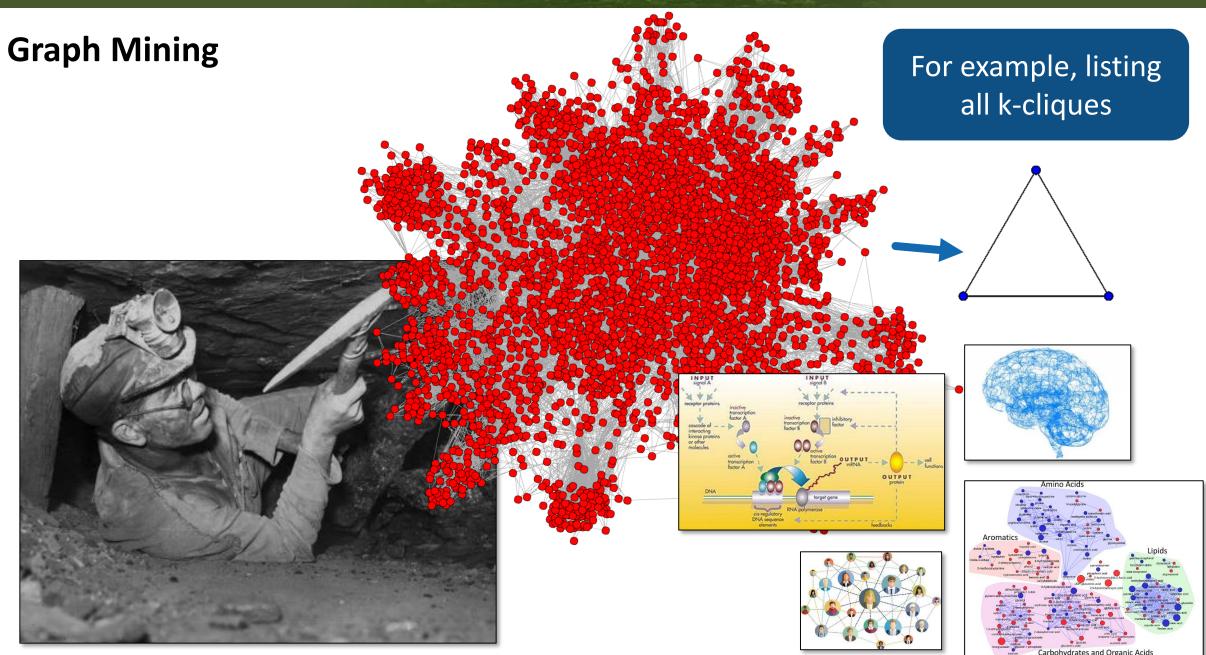
GraphMineSuite: Enabling High-Performance and Programmable Graph Mining Algorithms with Set Algebra

MACIEJ BESTA, ZUR VONARBURG-SHMARIA, YANNICK SCHAFFNER, LEONARDO SCHWARZ, GRZEGORZ KWASNIEWSKI, LUKAS GIANINAZZI, JAKUB BERANEK, KACPER JANDA, TOBIAS HOLENSTEIN, SEBASTIAN LEISINGER, PETER TATKOWSKI, ESREF OZDEMIR, ADRIAN BALLA, MARCIN COPIK, PHILIPP LINDENBERGER, PAVEL KALVODA, MAREK KONIECZNY, ONUR MUTLU, TORSTEN HOEFLER

Graph Mining

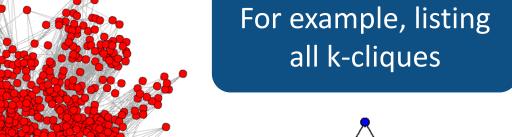


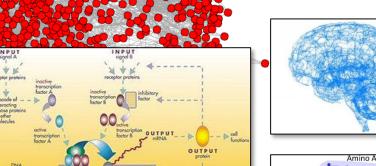


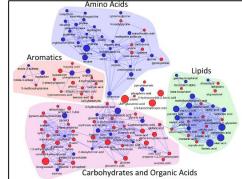


Graph Mining

Challenges?

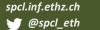






Example: the Bron-Kerbosch algorithm for maximal clique listing

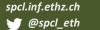
```
algorithm BronKerbosch (R, P, X) is
  if P and X are both empty then
    report R as a maximal clique
  choose a pivot vertex u in P U X
  for each vertex v in P \ N(u) do
    BronKerbosch (R U {v}, P \ N(v), X \ N(v))
    P := P \ {v}
    X := X U {v}
```

Example: the Bron-Kerbosch algorithm for maximal clique listing

```
algorithm BronKerbosch (R, P, X) is
   if P and X are both empty then
     report R as a maximal clique
   choose a pivot vertex u in P ∪ X
   for each vertex v in P \ N(u) do
     BronKerbosch (R ∪ {v}, P ∩ N(v), X ∩ N(v))
     P := P \ {v}
     X := X ∪ {v}
```

Complex algorithm structure, deeply recursive, no notion of iterations

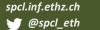


Example: the Bron-Kerbosch algorithm for maximal clique listing

```
algorithm BronKerbosch (R, P, X) is
  if P and X are both empty then
    report R as a maximal clique
  choose a pivot vertex u in P ∪ X
  for each vertex v in P \ N(u) do

    BronKerbosch (R U {v}, P ∩ N(v), X ∩ N(v))
    P := P \ {v}
    X := X U {v}
```

Complex algorithm structure, deeply recursive, no notion of iterations



Example: the Bron-Kerbosch algorithm for maximal clique listing

```
algorithm BronKerbosch (R, P, X) is
  if P and X are both empty then
    report R as a maximal clique
  choose a pivot vertex u in P U X
  for each vertex v in P \ N(u) do

    BronKerbosch (R U {v}, P \ N(v), X \ N(v))
    P := P \ {v}
    X := X U {v}
```

Complex algorithm structure, deeply recursive, no notion of iterations

Example: the Bron-Kerbosch algorithm for maximal clique listing

```
algorithm BronKerbosch (R, P, X) is
  if P and X are both empty then
    report R as a maximal clique
  choose a pivot vertex u in P ∪ X
  for each vertex v in P \ N(u) do

    BronKerbosch (R U {v}, P ∩ N(v), X ∩ N(v))
  P := P \ {v}
    X := X U {v}
```

```
while not done
  for all vertices v:
    send updates over outgoing edges of v
  for all vertices v:
    apply updates from inbound edges of v
```


Complex algorithm structure, deeply recursive, no notion of iterations

Example: the Bron-Kerbosch algorithm for maximal clique listing

```
algorithm BronKerbosch (R, P, X) is
  if P and X are both empty then
    report R as a maximal clique
  choose a pivot vertex u in P ∪ X
  for each vertex v in P \ N(u) do

    BronKerbosch (R U {v}, P ∩ N(v), X ∩ N(v))
    P := P \ {v}
    X := X U {v}
```

```
while not done
  for all vertices v:
    send updates over outgoing edges of v
  for all vertices v:
    apply updates from inbound edges of v
```


...Repeat several times

Complex algorithm structure, deeply recursive, no notion of iterations

Complex algorithm

structure, deeply recursive,

no notion of iterations

Non-straightforward

parallelism, complicated

memory access patterns

Graph Mining: Challenges

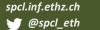
Example: the Bron-Kerbosch algorithm for maximal clique listing

```
algorithm BronKerbosch (R, P, X) is
    if P and X are both empty then
         report R as a maximal clique
    choose a pivot vertex u in P \bigcup X
    for each vertex v in P \setminus N(u) do
         BronKerbosch (R \cup \{v\}, P \cap N(v), X \cap N(v))
         P := P \setminus \{v\}
         X := X \cup \{v\}
```

```
while not done
  for all vertices v:
   send updates over outgoing edges of v
  for all vertices v:
    apply updates from inbound edges of v
```


...Repeat several times

Not very complicated



Example: the Bron-Kerbosch algorithm for maximal clique listing

```
algorithm BronKerbosch (R, P, X) is
  if P and X are both empty then
    report R as a maximal clique
  choose a pivot vertex u in P U X
  for each vertex v in P \ N(u) do

    BronKerbosch (R U {v}, P \ N(v), X \ N(v))
    P := P \ {v}
    X := X U {v}
```

Complex algorithm structure, deeply recursive, no notion of iterations

Example: the Bron-Kerbosch algorithm for maximal clique listing

```
algorithm BronKerbosch (R, P, X) is
  if P and X are both empty then
    report R as a maximal clique
  choose a pivot vertex u in P U X
  for each vertex v in P \ N(u) do

    BronKerbosch (R U {v}, P \ N(v), X \ N(v))
    P := P \ {v}
    X := X U {v}
```

Complex algorithm structure, deeply recursive, no notion of iterations

Non-straightforward parallelism, complicated memory access patterns

Example: the Bron-Kerbosch algorithm for maximal clique listing

Many other algorithms with similar properties

```
algorithm BronKerbosch (R, P, X) is
  if P and X are both empty then
    report R as a maximal clique
  choose a pivot vertex u in P U X
  for each vertex v in P \ N(u) do

    BronKerbosch (R U {v}, P \ N(v), X \ N(v))
    P := P \ {v}
    X := X U {v}
```

Complex algorithm structure, deeply recursive, no notion of iterations

Non-straightforward parallelism, complicated memory access patterns

Example: the Bron-Kerbosch algorithm for maximal clique listing

Many other algorithms with similar properties

k-clique listing

Subgraph isomorphism

Link prediction

Clustering

Vertex orderings

Frequent subgraph mining

Dense subgraph discovery

Vertex similarity

Complex algorithm structure, deeply recursive, no notion of iterations

Non-straightforward parallelism, complicated memory access patterns

```
algorithm BronKerbosch (R, P, X) is
  if P and X are both empty then
    report R as a maximal clique
  choose a pivot vertex u in P U X
  for each vertex v in P \ N(u) do

    BronKerbosch (R U {v}, P \ N(v), X \ N(v))
    P := P \ {v}
    X := X U {v}
```


Example: the Bron-Kerbosch algorithm for maximal clique listing

Many other algorithms with similar properties

k-clique listing

Subgraph somorphism

Link prediction

Clustering

A TOTAL OF THE PARTY OF THE PAR

Vertex orderings

Frequent subgraph mining Dense subgraph discovery

Vertex similarity

Complex algorithm structure, deeply recursive, no notion of iterations

Non-straightforward parallelism, complicated memory access patterns

```
algorithm BronKerbosch (R, P, X) is
  if P and X are both empty then
    report R as a maximal clique
  choose a pivot vertex u in P U X
  for each vertex v in P \ N(u) do

    BronKerbosch (R U {v}, P \ N(v), X \ N(v))
    P := P \ {v}
    X := X U {v}
```


Goal: construct a high-performance algorithm solving a selected graph mining problem

maximal clique listing

with similar properties

Link prediction

ustering

/ertex derings

Frequent subgraph mining

How to achieve this goal?

no nonon or nerations

Vertex similarity

Non-straightforward parallelism, complicated memory access patterns

```
algorithm BronKerbosch (R, P, X) is
  if P and X are both empty then
    report R as a maximal clique
  choose a pivot vertex u in P ∪ X
  for each vertex v in P \ N(u) do

    BronKerbosch (R U {v}, P ∩ N(v), X ∩ N(v))
    P := P \ {v}
    X := X U {v}
```


Goal: construct a high-performance algorithm solving a selected graph mining problem

maximal clique listing

with similar properties

Link prediction

ustering

Vertex derings

Frequent subgraph mining

How to achieve this goal? ursive tions

One has to address several issues...

issues... patterns

```
algorithm BronKerbosch (R, P, X) is
  if P and X are both empty then
    report R as a maximal clique
  choose a pivot vertex u in P ∪ X
  for each vertex v in P \ N(u) do

    BronKerbosch (R U {v}, P ∩ N(v), X ∩ N(v))
    P := P \ {v}
    X := X U {v}
```


alg

Goal: construct a high-performance algorithm solving a selected graph mining problem

with similar

Link prediction

ustering

ertex derings

Frequent subgraph mining

How to achieve this goal? cursive,

One has to address several issues...

issues...
plicated
patterns

Many algorithms are NPcomplete or even EXPTIME

What are relevant mining baselines and datasets?

report R as a maximal clique choose a pivot vertex u in $P \cup X$ for each vertex v in $P \setminus N(u)$ do BronKerbosch $(R \cup \{v\}, P \cap N(v), X \cap N(v))$ $P := P \setminus \{v\}$ $X := X \cup \{v\}$

Goal: construct a high-performance algorithm solving a selected graph mining problem

ce h /erte

 $X \cap N(v)$

tex

Frequent subgraph mining

With simila

Link prediction

? alg

What are relevant mining baselines and datasets?

report R as a maximal clique

How to effectively develop new efficient baselines?

 $X := X \cup \{v\}$

How to achieve this goal? cursive,

One has to address several issues...

sues... plicated patterns

alg

Goal: construct a high-performance algorithm solving a selected graph mining problem

with similar

Link prediction

What are relevant mining baselines and datasets?

report R as a maximal clique

How to effectively develop new efficient baselines?

 $X := X \cup \{v\}$

stering

ertex derings

Frequent subgraph mining

How to achieve this goal? cursive,

One has to address several issues...

rward plicated patterns

How to analyze performance/others, using what metrics?

Goal: construct a high-performance algorithm solving a selected graph mining problem

with similar

Link prediction

What are relevant mining baselines and datasets?

report R as a maximal clique

How to effectively develop new efficient baselines?

 $X := X \cup \{v\}$

stering

ertex derings

Frequent subgraph mining

How to achieve this goal? ursive,

One has to address several issues...

rward plicated patterns

How to analyze performance/others, using what metrics?

Goal: construct a high-performance algorithm solving a selected graph mining problem

with similar

Link prediction

What are relevant mining baselines and datasets?

report R as a maximal clique

How to effectively <u>develop</u> new efficient baselines?

 $X := X \cup \{v\}$

ıstering

ertex derings

Frequent subgraph mining

How to achieve this goal?

One has to address several issues...

rward plicated patterns

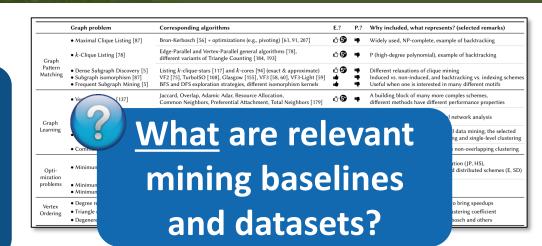
How to analyze performance/others, using what metrics?

 $X \cap N(v)$

... Benchmark specification prescribing representative *problems*, *algorithms*, and *datasets*

	Graph problem	Corresponding algorithms	E.?	P.?	Why included, what represents? (selected remarks)
Graph Pattern Matching	Maximal Clique Listing [87]	Bron-Kerbosch [56] + optimizations (e.g., pivoting) [61, 91, 207]	₫	4	Widely used, NP-complete, example of backtracking
	• k-Clique Listing [78]	Edge-Parallel and Vertex-Parallel general algorithms [78], different variants of Triangle Counting [184, 193]	் 6	*	P (high-degree polynomial), example of backtracking
	 Dense Subgraph Discovery [5] Subgraph isomorphism [87] Frequent Subgraph Mining [5] 	Listing k -clique-stars [117] and k -cores [94] (exact & approximate) VF2 [75], TurbolSO [108], Glasgow [155], VF3 [58, 60], VF3-Light [59] BFS and DFS exploration strategies, different isomorphism kernels	₫ •	**	Different relaxations of clique mining Induced vs. non-induced, and backtracking vs. indexing schemes Useful when one is interested in many different motifs
Graph Learning	Vertex similarity [137]	Jaccard, Overlap, Adamic Adar, Resource Allocation, Common Neighbors, Preferential Attachment, Total Neighbors [179]	₫	•	A building block of many more comples schemes, different methods have different performance properties
	• Link Prediction [202]	Variants based on vertex similarity (see above) [10, 142, 146, 202], a scheme for assessing link prediction accuracy [211]	6	•	A very common problem in social network analysis
	• Clustering [183]	Jarvis-Patrick clustering [119] based on different vertex similarity measures (see above) [10, 142, 146, 202]	்	•	A very common problem in general data mining; the selected scheme is an example of overlapping and single-level clustering
	• Community detection	Label Propagation and Louvain Method [195]		•	Examples of convergence-based on non-overlapping clustering
Opti- mization problems	Minimum Graph Coloring [168]	Jones and Plassmann's (JP) [123], Hasenplaugh et al.'s (HS) [110], Johansson's (J) [121], Barenboim's (B) [17], Elkin et al.'s (E) [90], sparse-dense decomposition (SD) [109]	.4	•	NP-complete; uses vertex prioritization (JP, HS), random palettes (J, B), and adapted distributed schemes (E, SD)
	Minimum Spanning Tree [76] Minimum Cut [76]	Boruvka [53] A recent augmentation of Karger–Stein Algorithm [125]	:	*	P (low complexity problem) P (superlinear problem)
Vertex Ordering	Degree reordering	A straightforward integer parallel sort		Ô	A simple scheme that was shown to bring speedups
	Triangle count ranking Degenerecy reordering	Computing triangle counts per vertex Exact and approximate [94] [127]	₫ ©	Ô	Ranking vertices based on their clustering coefficient Often used to accelerate Bron-Kerbosch and others

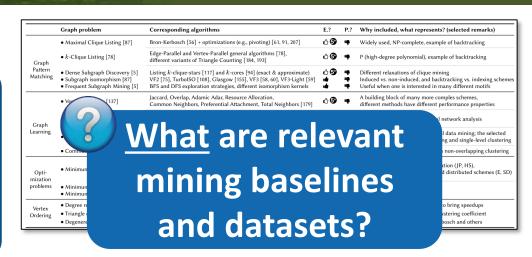
... **Benchmark specification** prescribing representative *problems*, *algorithms*, and *datasets*

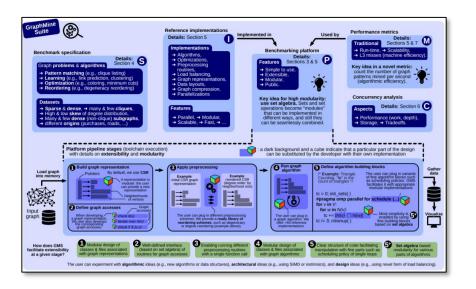




... Benchmark specification prescribing representative problems, algorithms, and datasets

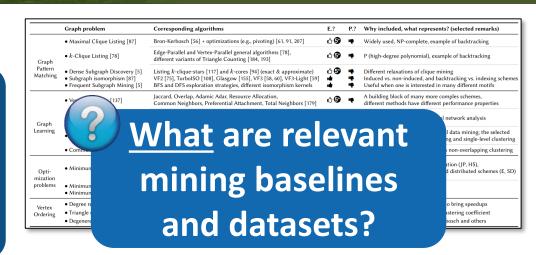
2 ... Software platform with reference implementations based on set algebraic formulations for programmability & high performance

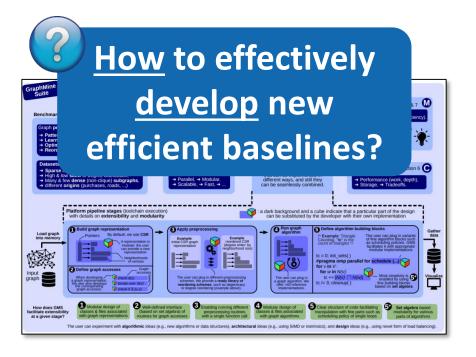




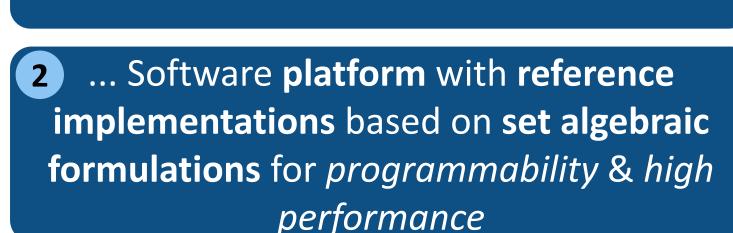
... Benchmark specification prescribing representative *problems*, *algorithms*, and *datasets*

2 ... Software platform with reference implementations based on set algebraic formulations for programmability & high performance

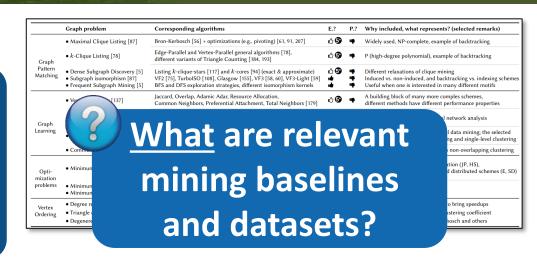




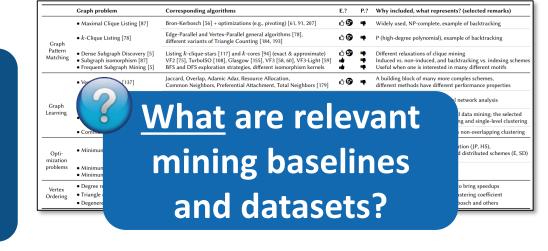
... Benchmark specification prescribing representative problems, algorithms, and datasets



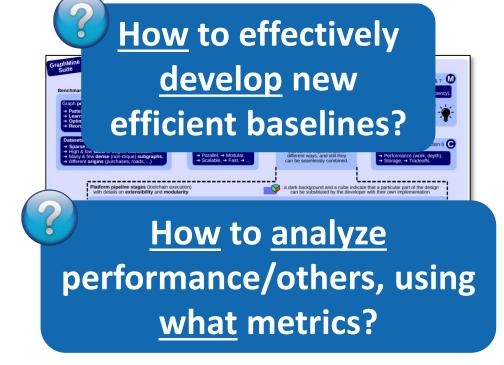
... **Performance metrics, e.g.,** to assesses algorithmic throughput



... Benchmark specification prescribing representative *problems*, *algorithms*, and *datasets*



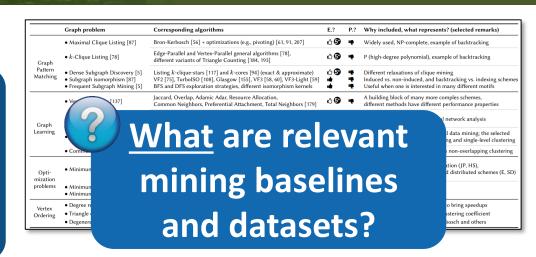
- 2 ... Software platform with reference implementations based on set algebraic formulations for programmability & high performance
 - ... Performance metrics, e.g., to assesses algorithmic throughput





... Benchmark specification prescribing representative *problems*, *algorithms*, and *datasets*

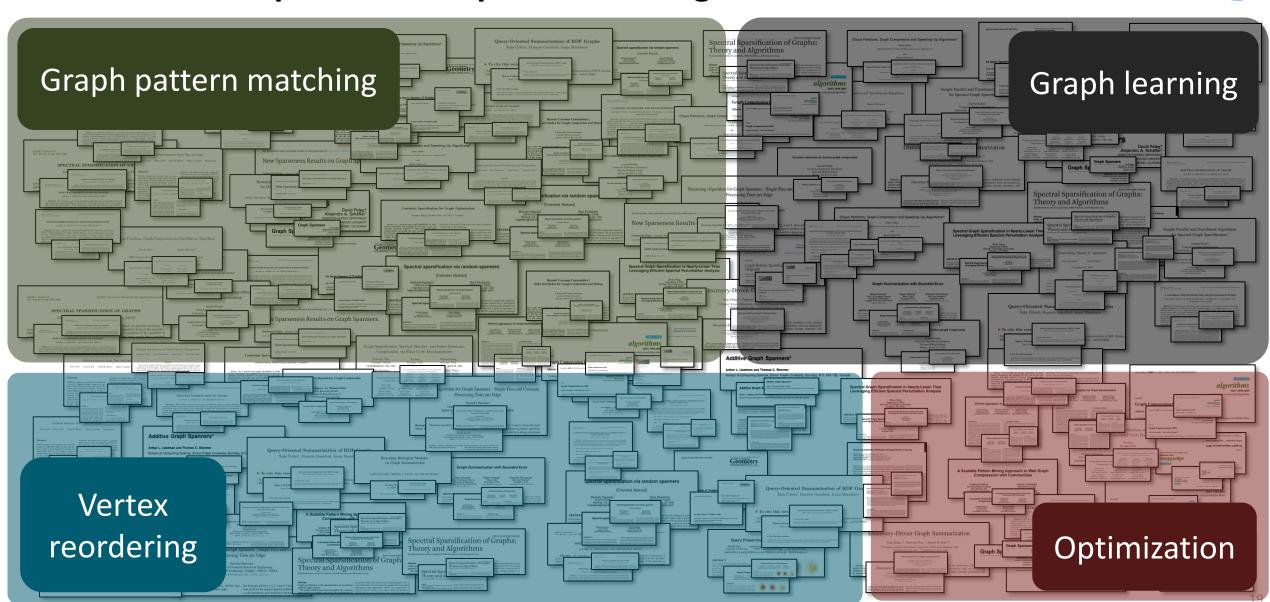
... **Performance metrics, e.g.,** to assesses algorithmic throughput

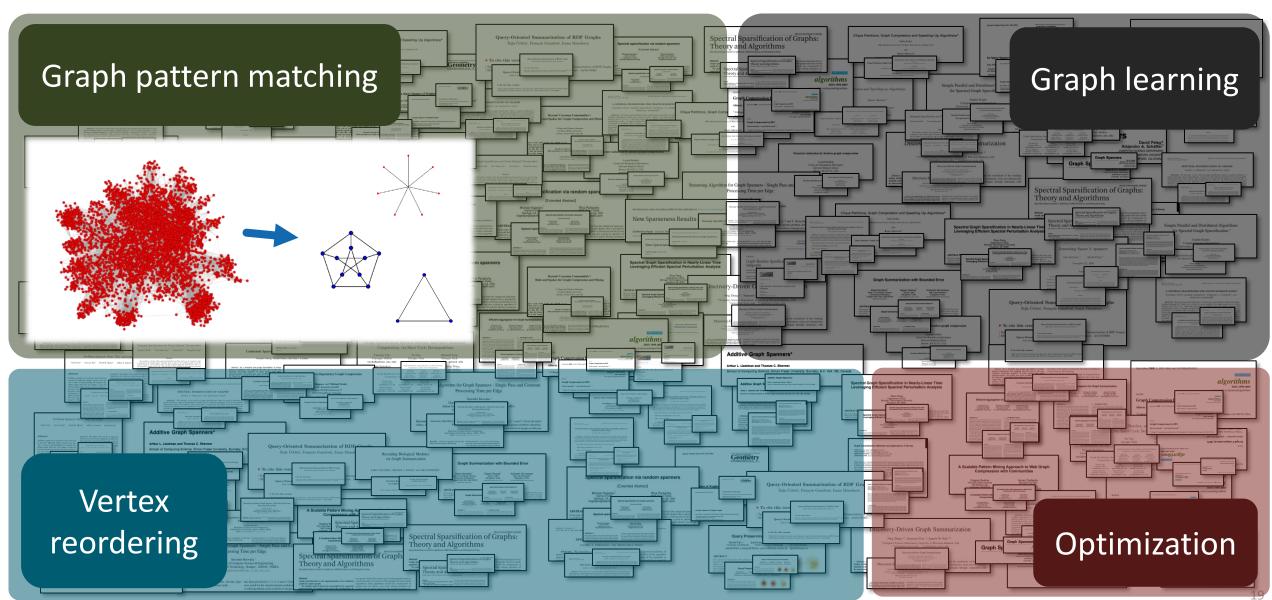


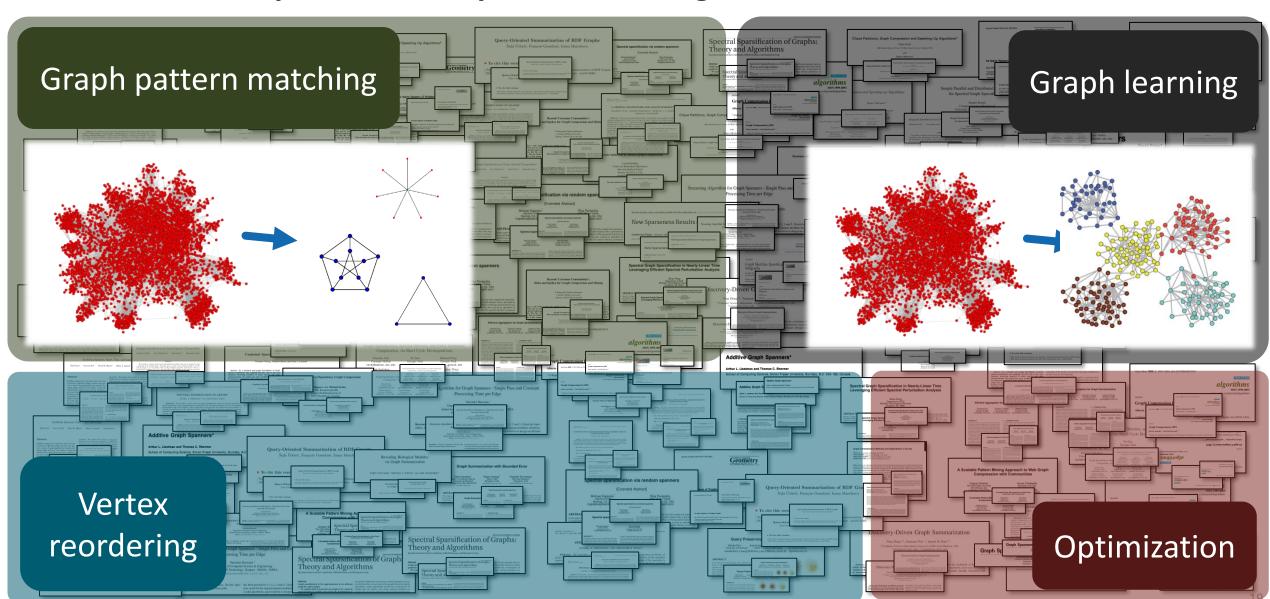
What are the representative problems & algorithms?

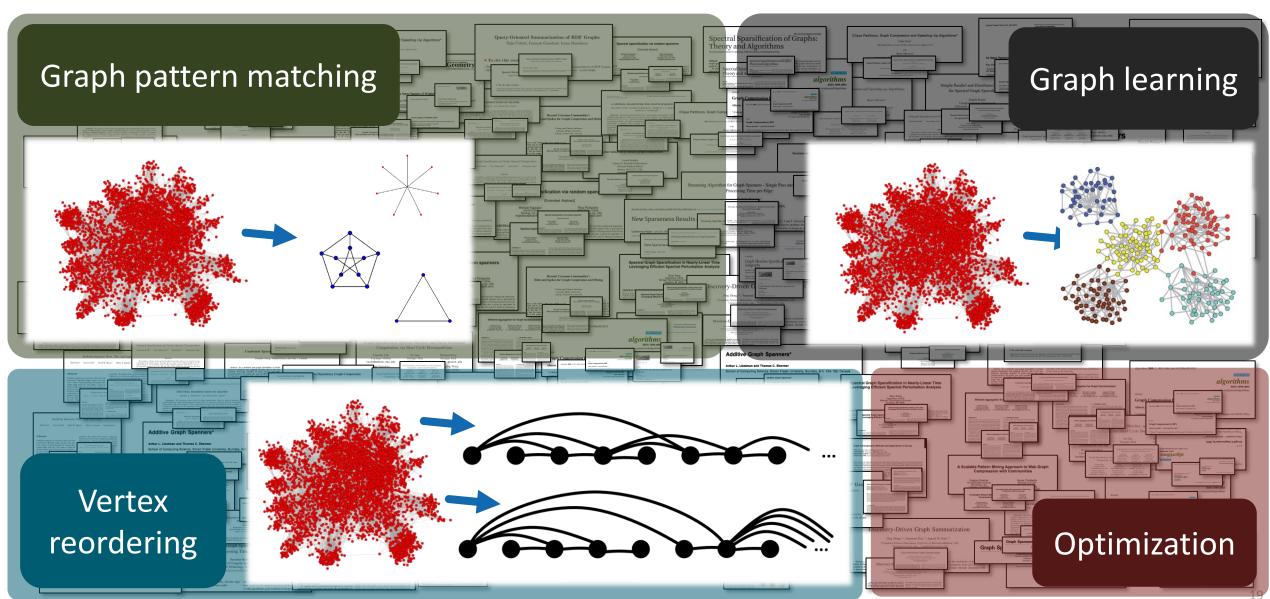
1

What are the representative problems & algorithms?

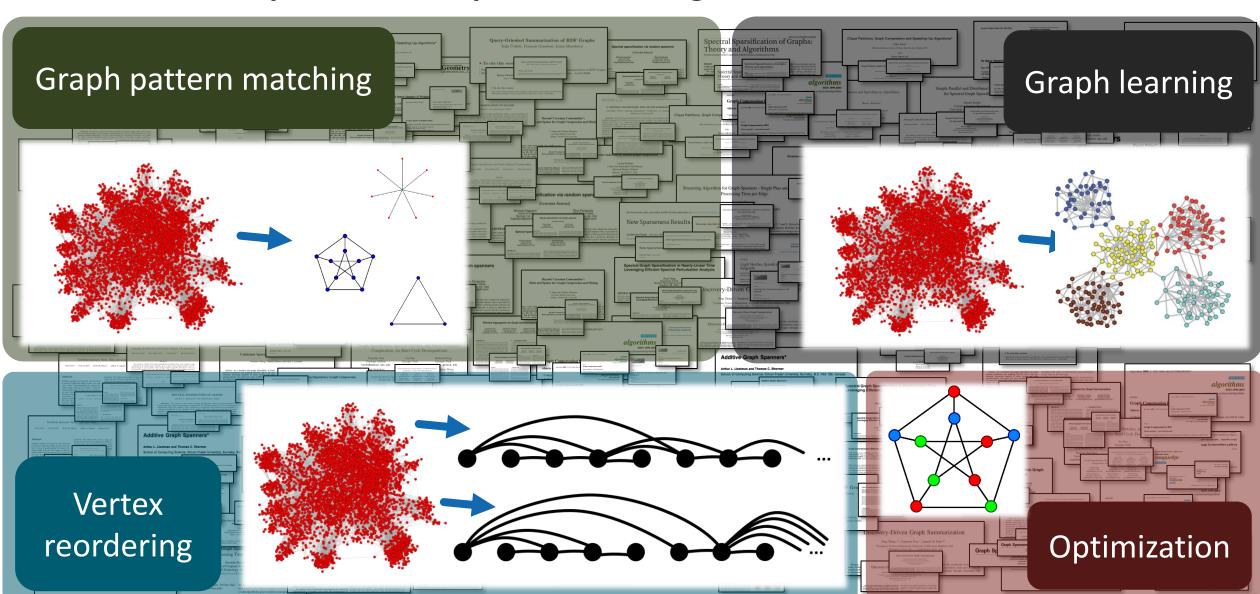








ETHzürich



What are the representative problems & algorithms? ...and datasets?

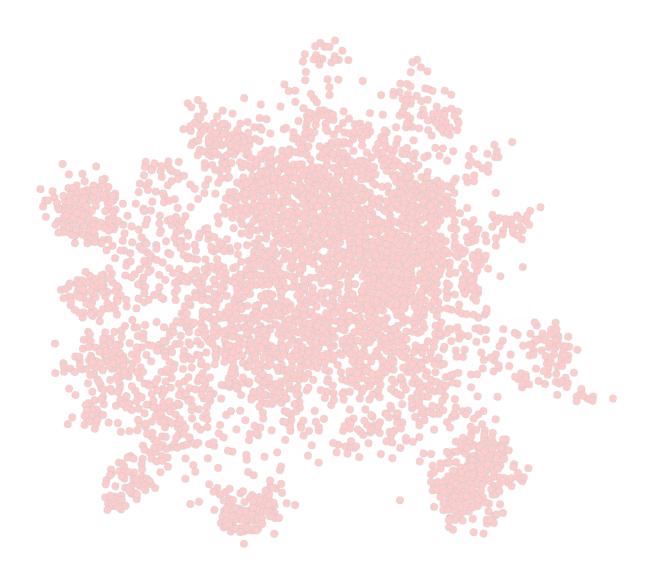
1

	Graph problem	Corresponding algorithms	E.?	P.?	Why included, what represents? (selected remarks)		
	Maximal Clique Listing [87]	Bron-Kerbosch [56] + optimizations (e.g., pivoting) [61, 91, 207]	₫	•	Widely used, NP-complete, example of backtracking		
Graph	• k-Clique Listing [78]	Edge-Parallel and Vertex-Parallel general algorithms [78], different variants of Triangle Counting [184, 193]			P (high-degree polynomial), example of backtracking		
Pattern Matching	 Dense Subgraph Discovery [5] Subgraph isomorphism [87] Frequent Subgraph Mining [5] 	Listing k -clique-stars [117] and k -cores [94] (exact & approximate) VF2 [75], TurbolSO [108], Glasgow [155], VF3 [58, 60], VF3-Light [59] BFS and DFS exploration strategies, different isomorphism kernels	∆ ⑤ :• :•	# #	Different relaxations of clique mining Induced vs. non-induced, and backtracking vs. indexing schem Useful when one is interested in many different motifs		
	• Vertex similarity [137]	Jaccard, Overlap, Adamic Adar, Resource Allocation, Common Neighbors, Preferential Attachment, Total Neighbors [179]	₫	•	A building block of many more comples schemes, different methods have different performance properties		
Graph	• Link Prediction [202]	Variants based on vertex similarity (see above) [10, 142, 146, 202], a scheme for assessing link prediction accuracy [211]	₫	•	A very common problem in social network analysis		
Learning	• Clustering [183]	Jarvis-Patrick clustering [119] based on different vertex similarity measures (see above) [10, 142, 146, 202]	₫	•	A very common problem in general data mining; the selected scheme is an example of overlapping and single-level clustering		
	• Community detection	Label Propagation and Louvain Method [195]	:•	•	Examples of convergence-based on non-overlapping clustering		
Opti- mization	• Minimum Graph Coloring [168]	Jones and Plassmann's (JP) [123], Hasenplaugh et al.'s (HS) [110], Johansson's (J) [121], Barenboim's (B) [17], Elkin et al.'s (E) [90], sparse-dense decomposition (SD) [109]	:6	*	NP-complete; uses vertex prioritization (JP, HS), random palettes (J, B), and adapted distributed schemes (E, SE		
problems	 Minimum Spanning Tree [76] Minimum Cut [76]	Boruvka [53] A recent augmentation of Karger-Stein Algorithm [125]	: ć	# P	P (low complexity problem) P (superlinear problem)		
Vertex	Degree reordering	A straightforward integer parallel sort	:6	Ů	A simple scheme that was shown to bring speedups		
Ordering	Triangle count ranking	Computing triangle counts per vertex	🖒 😚	Ô	Ranking vertices based on their clustering coefficient		

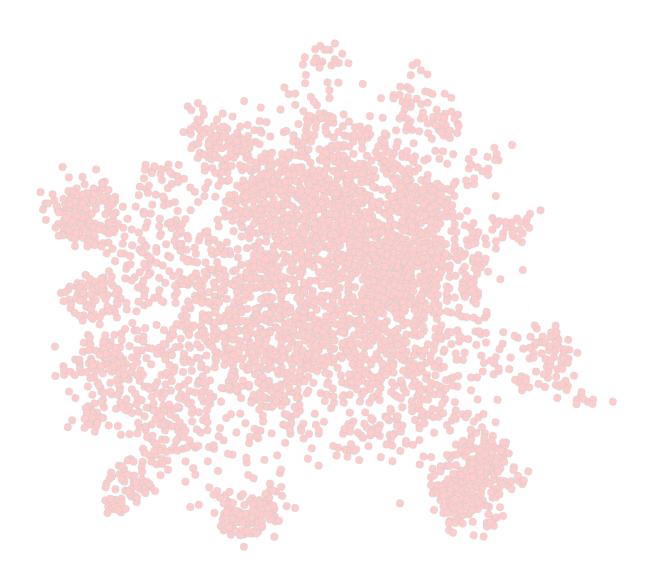
What are the representative problems & algorithms? ...and datasets?

1

1		Graph problem	Corresponding algorithms		P.?	Why included, what represents? (selected remarks)	
		Maximal Clique Listing [87]	Bron-Kerbosch [56] + optimizations (e.g., pivoting) [61, 91, 207]	ு	n il	Widely used, NP-complete, example of backtracking	
	Graph Pattern Matching	• k-Clique Listing [78]	Edge-Parallel and Vertex-Parallel general algorithms [78], different variants of Triangle Counting [184, 193]	₫	H.	P (high-degree polynomial), example of backtracking	
		Dense Subgraph Discovery [5]Subgraph isomorphism [87]Frequent Subgraph Mining [5]	Listing k -clique-stars [117] and k -cores [94] (exact & approximate) VF2 [75], TurbolSO [108], Glasgow [155], VF3 [58, 60], VF3-Light [59] BFS and DFS exploration strategies, different isomorphism kernels	⇔	Different relaxations of clique mining Induced vs. non-induced, and backtracking vs. indexi Useful when one is interested in many different moti		
	Graph Learning	• Vertex similarity [137]	Jaccard, Overlap, Adamic Adar, Resource Allocation, Common Neighbors, Preferential Attachment, Total Neighbors [179]	₫	n il	A building block of many more comples schemes, different methods have different performance properties	
		• Link Prediction [202]	Variants based on vertex similarity (see above) [10, 142, 146, 202], a schemo as a single like oredition actually [21]	66 C	\odot	A very common problem in social network analysis	
		• Clustering [183]	a sche Details in the paper vertex similarity measures (see above) [10, 142, 146, 202]	∂ 5		A very common problem in general data mining; the selected scheme is an example of overlapping and single-level clustering	
		 Community detection 	Label Propagation and Louvain Method [195]	n d r		Examples of convergence-based on non-overlapping clustering	
	Opti- mization problems	Minimum Graph Coloring [168]	Jones and Plassmann's (JP) [123], Hasenplaugh et al.'s (HS) [110], Johansson's (J) [121], Barenboim's (B) [17], Elkin et al.'s (E) [90], sparse-dense decomposition (SD) [109]	ndg	14	NP-complete; uses vertex prioritization (JP, HS), random palettes (J, B), and adapted distributed schemes (E, SD)	
		Minimum Spanning Tree [76]Minimum Cut [76]	Boruvka [53] A recent augmentation of Karger-Stein Algorithm [125]	ide ide	side side	P (low complexity problem) P (superlinear problem)	
	Vertex Ordering	Degree reorderingTriangle count rankingDegenerecy reordering	A straightforward integer parallel sort Computing triangle counts per vertex Exact and approximate [94] [127]	ம் ம் 69 ம் 69	6	A simple scheme that was shown to bring speedups Ranking vertices based on their clustering coefficient Often used to accelerate Bron-Kerbosch and others	



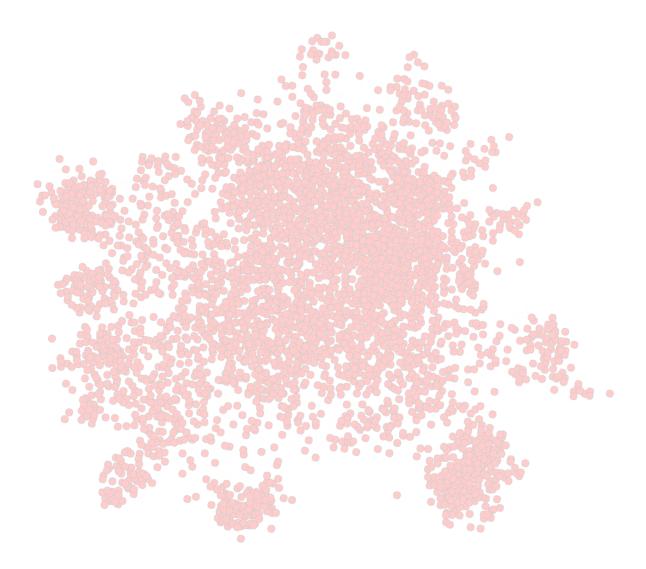
When benchmarking graph workloads, one picks graphs with different...



When benchmarking graph workloads, one picks graphs with different...

1

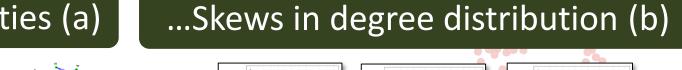


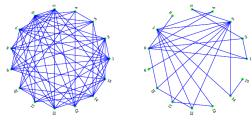


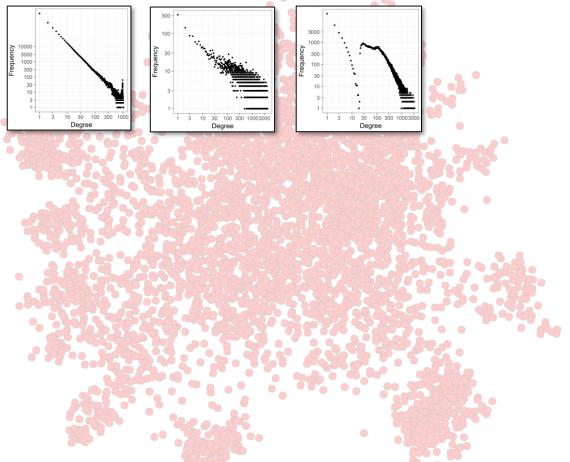
When benchmarking graph workloads, one picks graphs with different...

1

...Sparsities (a)



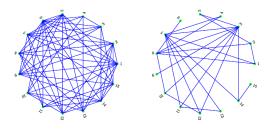




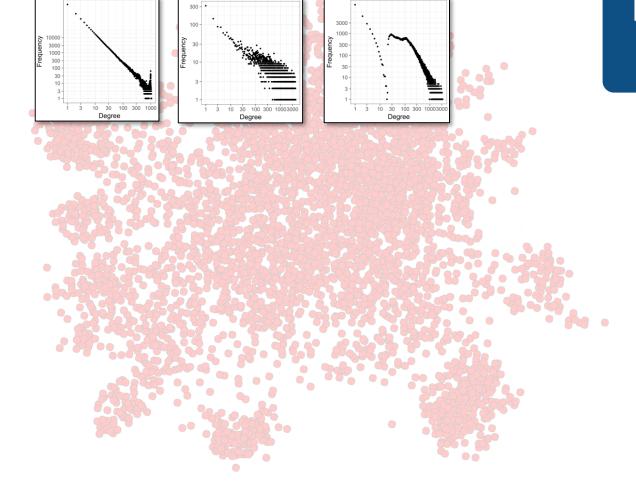
When benchmarking graph workloads, one picks graphs with different...

1

...Sparsities (a)



...Skews in degree distribution (b)



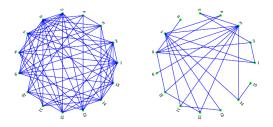
Not enough for graph mining!

When benchmarking graph workloads, one picks graphs with different...

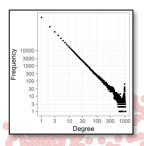
1

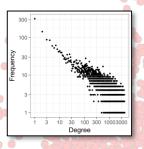
...Sparsities (a)

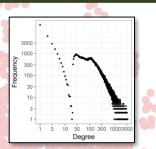
...Skews in degree distribution (b)



Higher order organization matters





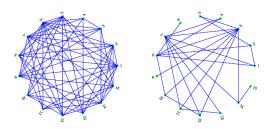


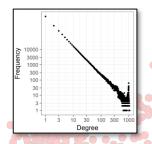
Not enough for graph mining!

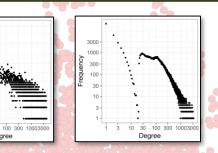
When benchmarking graph workloads, one picks graphs with different...

...Sparsities (a)

...Skews in degree distribution (b)

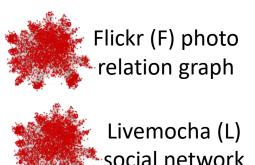






Not enough for graph mining!

Higher order organization matters

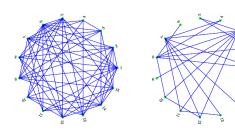


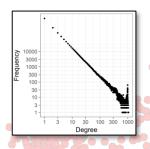
When benchmarking graph workloads, one picks graphs with different...

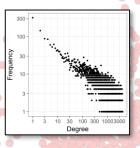
1

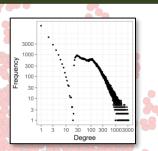
...Sparsities (a)

...Skews in degree distribution (b)









Not enough for graph mining!

Higher order organization matters

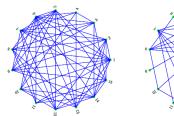
Both have similar (a) and (b)

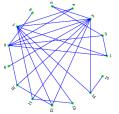
When benchmarking graph workloads, one picks graphs with different...

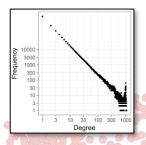
1

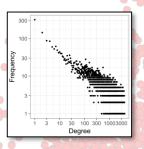
...Sparsities (a)

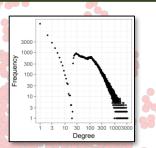
...Skews in degree distribution (b)











Not enough for graph mining!

Higher order organization matters

Flickr (F) photo relation graph

Livemocha (L) social network

Both have similar (a) and (b)

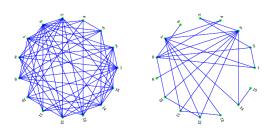
Yet, (L) has <u>4.4M</u> 4-cliques, and (F) has <u>9.6B</u> 4-cliques

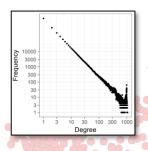
When benchmarking graph workloads, one picks graphs with different...

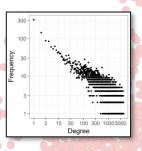
1

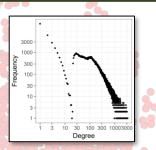
...Sparsities (a)

...Skews in degree distribution (b)









Not enough for graph mining!

Higher order organization matters

Flickr (F) photo relation graph

Livemocha (L) social network

Both have similar (a) and (b)

Yet, (L) has <u>4.4M</u> 4-cliques, and (F) has <u>9.6B</u> 4-cliques

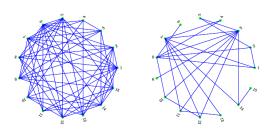
Different performance characteristics for mining problems

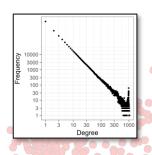
When benchmarking graph workloads, one picks graphs with different...

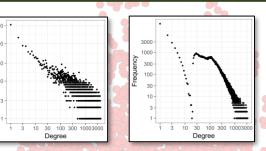
1

...Sparsities (a)

...Skews in degree distribution (b)







Not enough for graph mining!

Higher order organization matters

...Differences in "complex structure" (e.g., #triangles per vertex)

Flickr (F) photo relation graph

Livemocha (L)
-social network

→

Both have similar (a) and (b)

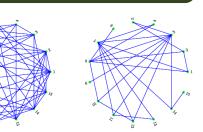
Yet, (L) has <u>4.4M</u> 4-cliques, and (F) has <u>9.6B</u> 4-cliques

Different performance characteristics for mining problems

When benchmarking graph workloads, one picks graphs with different...

1

...Sparsities (a)

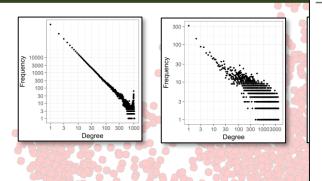


Higher order organization matters

Flickr (F) photo relation graph

Livemocha (L) social network

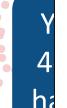
...Skews in degree distributions (15)



...Differences

Both have

similar (a) and (b)



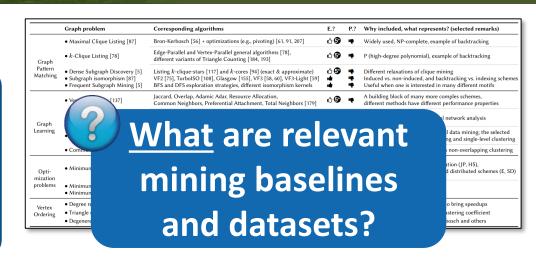
#t

Graph †	n	m	$\frac{m}{n}$	\widehat{d}_i	$\widehat{d_o}$	T	$\frac{T}{n}$	Why selected/special?
[so] (K) Orkut	3M	117M	38.1	33.3k	33.3k	628M	204.3	Common, relatively large
[so] (K) Flickr	2.3M	22.8M	9.9	21k	26.3k	838M	363.7	Large T but low m/n .
[so] (K) Libimseti	221k	17.2M	78	33.3k	25k	69M	312.8	Large m/n
[so] (K) Youtube	3.2M	9.3M	2.9	91.7k	91.7k	12.2M	3.8	Very low m/n and T
[so] (K) Flixster	2.5M	7.91M	3.1	1.4k	1.4k	7.89M	3.1	Very low m/n and T
[so] (K) Livemocha	104k	2.19M	21.1	2.98k	2.98k	3.36M	32.3	Similar to Flickr, but a lot fewer 4-cliques (4.36M)
[so] (N) Ep-trust	132k	841k	6	3.6k	3.6k	27.9M	212	Huge T -skew ($\widehat{T} = 108k$)
[so] (N) FB comm.	35.1k	1.5M	41.5	8.2k	8.2k	36.4M	1k	Large T -skew ($\widehat{T} = 159k$)
[wb] (K) DBpedia	12.1M	288M	23.7	963k	963k	11.68B	961.8	Rather low m/n but high T
[wb] (K) Wikipedia	18.2M	127M	6.9	632k	632k	328M	18.0	Common, very sparse
[wb] (K) Baidu	2.14M	17 <i>M</i>	7.9	97.9k	2.5k	25.2M	11.8	Very sparse
[wb] (N) WikiEdit	94.3k	5.7M	60.4	107k	107k	835M	8.9k	Large T -skew ($\widehat{T} = 15.7M$)
[st] (N) Chebyshev4	68.1k	5.3M	77.8	68.1k	68.1k	445M	6.5k	Very large T and T/n and T -skew ($\widehat{T} = 5.8M$)
[st] (N) Gearbox	154k	4.5M	29.2	98	98	141M	915	Low \widehat{d} but large T ; low T -skew ($\widehat{T} = 1.7k$)
[st] (N) Nemeth25	10k	751k	75.1	192	192	87M	9k	Huge T but low $\widehat{T} = 12k$
[st] (N) F2	71.5k	2.6M	36.5	344	344	110M	1.5k	Medium T -skew ($\widehat{T} = 9.6$ k)
[sc] (N) Gupta3	16.8k	4.7M	280	14.7k	14.7k	696M	41.5k	Huge T -skew ($\widehat{T} = 1.5M$)
[sc] (N) Idoor	952k	20.8M	21.5	76	76	567M	595	Very low T -skew ($\widehat{T} = 1.1$ k)
[re] (N) MovieRec	70.2k	10M	142.4	35.3k	35.3k	983M	14k	Huge T and $\widehat{T}=4.9M$
[re] (N) RecDate	169k	17.4M	102.5	33.4k	33.4k	286M	1.7k	Enormous T -skew ($\widehat{T} = 1.6M$)
[bi] (N) sc-ht (gene)	2.1k	63k	30	472	472	4.2M	2k	Large T -skew ($\widehat{T} = 27.7$ k)
[bi] (N) AntColony6	164	10.3k	62.8	157	157	1.1M	6.6k	Very low T -skew ($\widehat{T} = 9.7k$)
[bi] (N) AntColony5	152	9.1k	59.8	150	150	897k	5.9k	Very low T -skew ($\widehat{T} = 8.8$ k)
[co] (N) Jester2	50.7k	1.7M	33.5	50.8k	50.8k	127M	2.5k	Enormous <i>T</i> -skew ($\widehat{T} = 2.3M$)
[co] (K) Flickr (photo relations)	106k	2.31M	21.9	5.4k	5.4k	108M	1019	Similar to Livemocha, but many more 4-cliques (9.58B)
[ec] (N) mbeacxc	492	49.5k	100.5	679	679	9M	18.2k	Large T , low $\widehat{T} = 77.7$ k
[ec] (N) orani678	2.5k	89.9k	35.5	1.7k	1.7k	8.7M	3.4k	Large T , low $\widehat{T} = 80.8$ k
[ro] (D) USA roads	23.9M	28.8M	1.2	9	9	1.3M	0.1	Extremely low m/n and T

GraphMineSuite (GMS) comes with...

... Benchmark specification prescribing representative *problems*, *algorithms*, and *datasets*

... **Novel performance metric** that assesses algorithmic throughput



GraphMineSuite (GMS) comes with...

... Benchmark specification prescribing representative *problems*, *algorithms*, and *datasets*

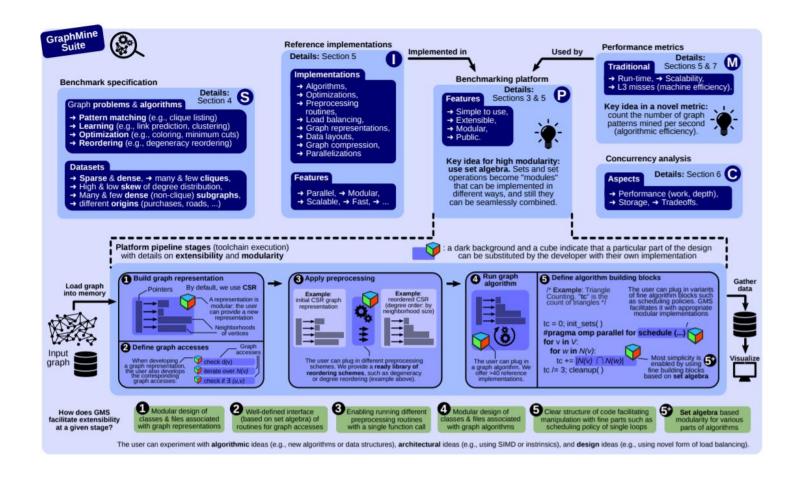
... **Novel performance metric** that assesses algorithmic throughput

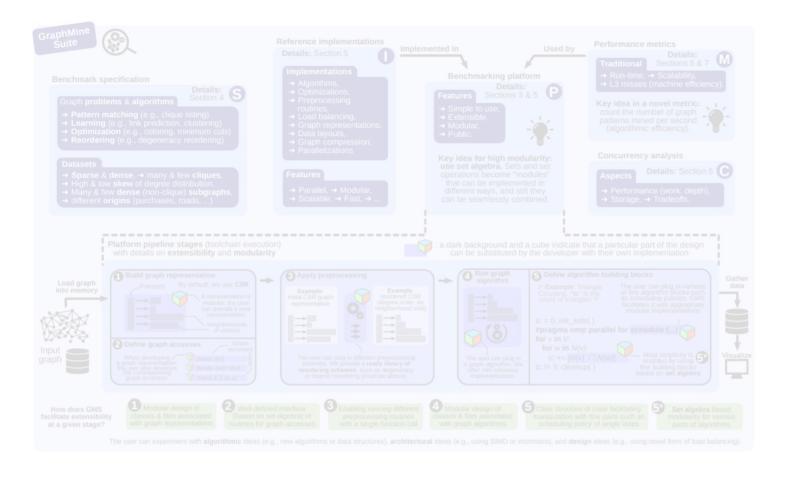
How to analyze performance/others, using what metrics?

2

2

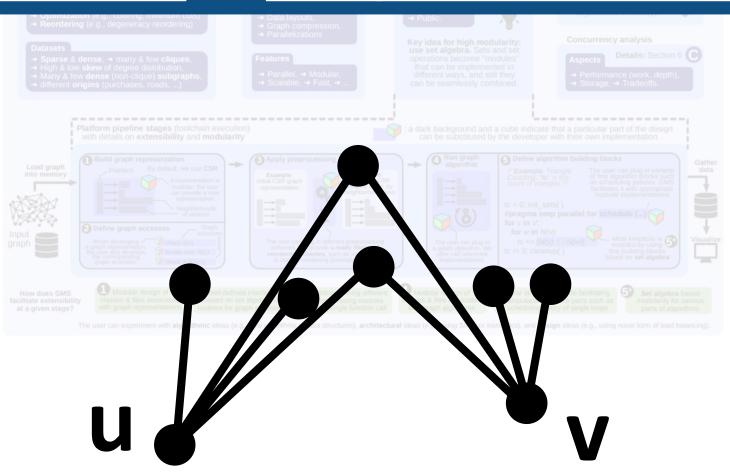
GMS software platform & reference implementations



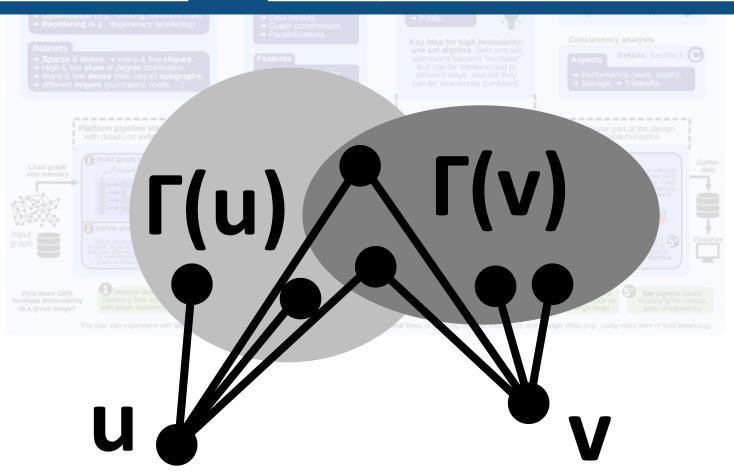


2

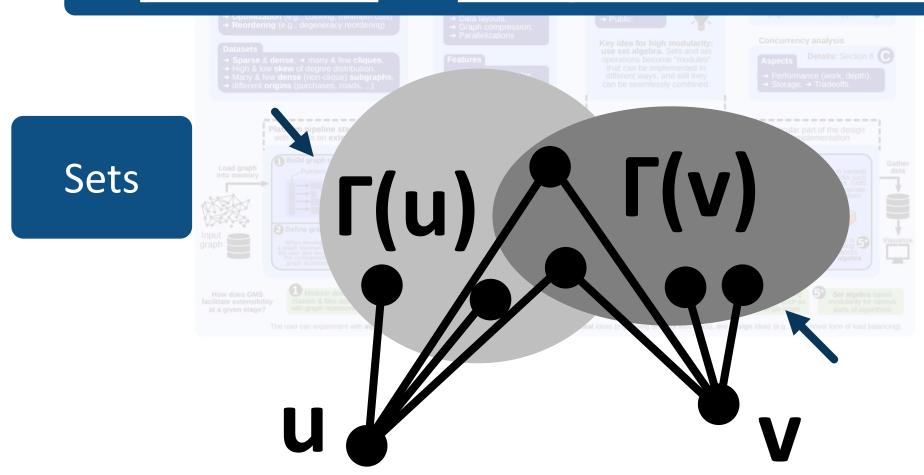
2



2

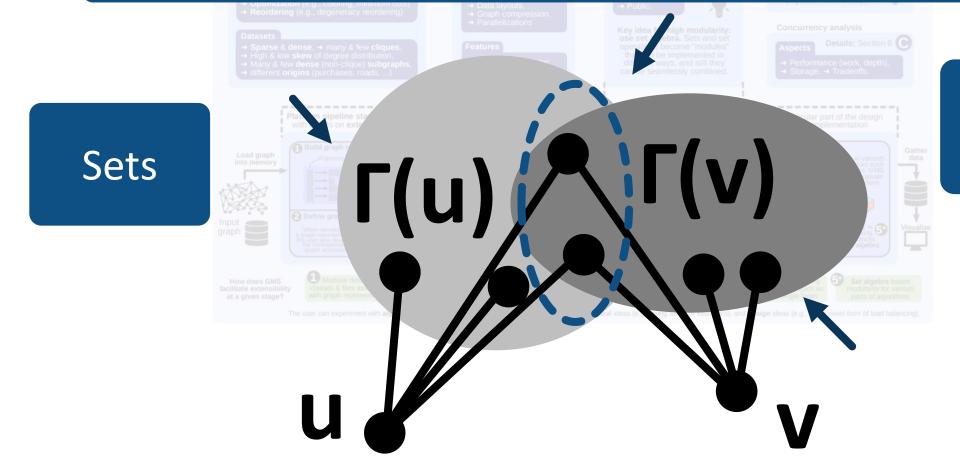


2



2

Central concept for both <u>programmability</u> and <u>high</u> <u>performance</u> are <u>set-algebraic formulations</u>



Set operations


```
algorithm BronKerbosch (R, P, X) is
   if P and X are both empty then
     report R as a maximal clique
   choose a pivot vertex u in P ∪ X
   for each vertex v in P \ N(u) do
     BronKerbosch (R U {v}, P ∩ N(v), X ∩ N(v))
     P := P \ {v}
     X := X U {v}
```


Key idea for both: use **set algebra** building blocks

```
algorithm BronKerbosch (R, P, X) is
  if P and X are both empty then
    report R as a maximal clique
  choose a pivot vertex u in P ∪ X
  for each vertex v in P \ N(u) do
    BronKerbosch (R ∪ {v}, P ∩ N(v), X ∩ N(v))
  P := P \ {v}
  X := X ∪ {v}
```


Key idea for both: use **set algebra** building blocks

```
algorithm BronKerbosch (R, P, X) is
  if P and X are both empty then
    report R as a maximal clique
  choose a pivot vertex u in P U X
  for each vertex v in P \ N(u) do
    BronKerbosch (R U {v}, P \ N(v), X \ N(v))
    P := P \ {v}
    X := X U {v}
```


Key idea for both: use set algebra building blocks

```
algorithm BronKerbosch (R, P, X) is
  if P and X are both empty then
    report R as a maximal clique
  choose a pivot vertex u in P U X
  for each vertex v in P \ N(u) do
    BronKerbosch (R U {v}, P \ N(v), X \ N(v))
    P := P \ {v}
    X := X U {v}
```

Prevalence of set operations in graph mining algorithms & problems

Key idea for both: use **set algebra** building blocks

```
algorithm BronKerbosch (R, P, X) is
  if P and X are both empty then
    report R as a maximal clique
  choose a pivot vertex u in P U X
  for each vertex v in P \ N(u) do
    BronKerbosch (R U {v}, P \ N(v), X \ N(v))
    P := P \ {v}
    X := X U {v}
```

Prevalence of set operations in graph mining algorithms & problems

Key idea for both: use set algebra building blocks

```
algorithm BronKerbosch (R, P, X) is
  if P and X are both empty then
    report R as a maximal clique
  choose a pivot vertex u in P U X
  for each vertex v in P \ N(u) do
    BronKerbosch (R U {v}, P \ N(v), X \ N(v))
    P := P \ {v}
    X := X U {v}
```

Prevalence of set operations in graph mining algorithms & problems

Breaking down complex graph mining algorithms into simple building blocks, which can be separately optimized and coded

Simplicity

Programmable and High Performance Graph Mining: A Brief Summary

Key idea for both: use **set algebra** building blocks

```
algorithm BronKerbosch (R, P, X) is
  if P and X are both empty then
    report R as a maximal clique
  choose a pivot vertex u in P U X
  for each vertex v in P \ N(u) do
    BronKerbosch (R U {v}, P \ N(v), X \ N(v))
  P := P \ {v}
```

Prevalence of set operations in graph mining algorithms & problems

Breaking down complex graph mining algorithms into simple building blocks, which can be separately optimized and coded

 $X := X \cup \{v\}$

Simplicity

Programmable and High Performance Graph Mining: A Brief Summary

Key idea for both: use **set algebra** building blocks

```
algorithm BronKerbosch (R, P, X) is
  if P and X are both empty then
    report R as a maximal clique
  choose a pivot vertex u in P U X
  for each vertex v in P \ N(u) do
    BronKerbosch (R U {v}, P \ N(v), X \ N(v))
  P := P \ {v}
```

Prevalence of set operations in graph mining algorithms & problems

Parallelism across and within set operations

Breaking down complex graph mining algorithms into simple building blocks, which can be separately optimized and coded

 $X := X \cup \{v\}$

Programmable and High Performance Graph Mining: A Brief Summary

Key idea for both: use **set algebra** building blocks

```
algorithm BronKerbosch (R, P, X) is
  if P and X are both empty then
    report R as a maximal clique
  choose a pivot vertex u in P U X
  for each vertex v in P \ N(u) do
    BronKerbosch (R U {v}, P \ N(v), X \ N(v))
  P := P \ {v}
```

Prevalence of set operations in graph mining algorithms & problems

Parallelism across and within set operations

Breaking down complex graph mining algorithms into simple building blocks, which can be separately optimized and coded

 $X := X \cup \{v\}$

Programmable and High Performance Graph Mining: A Brief Summary

Key idea for both: use **set algebra** building blocks

```
algorithm BronKerbosch (R, P, X) is
  if P and X are both empty then
    report R as a maximal clique
  choose a pivot vertex u in P U X
  for each vertex v in P \ N(u) do
    BronKerbosch (R U {v}, P \ N(v), X \ N(v))
  P := P \ {v}
```

Prevalence of set operations in graph mining algorithms & problems

Parallelism across and within set operations

Breaking down complex graph mining algorithms into simple building blocks, which can be separately optimized and coded

 $X := X \cup \{v\}$

Variants of a set operation

Programmable and High Performance Graph Mining: A Brief Summary

Key idea for both: use **set algebra** building blocks

Variants of a set representation

Generality

```
algorithm BronKerbosch (R, P, X) is
  if P and X are both empty then
    report R as a maximal clique
  choose a pivot vertex u in P ∪ X
  for each vertex v in P \ N(u) do
    BronKerbosch (R ∪ {v}, P ∩ N(v), X ∩ N(v))
```

 $P := P \setminus \{v\}$

 $X := X \cup \{v\}$

Breaking down complex graph mining algorithms into simple building blocks, which can be separately optimized and coded

Variants of a set operation

Prevalence of set operations in graph mining algorithms & problems

Parallelism across and within set operations

Programmable and **High Performance** Graph Mining: A Brief Summary

Key idea for both: use set algebra building blocks

Variants of a set representation

algorithm BronKerbosch (R, P, X) is if P and X are both empty then report R as a maximal clique choose a pivot vertex u in $P \cup X$ for each vertex v in $P \setminus N(u)$ do

Prevalence of set operations in graph mining algorithms & problems

BronKerbosch $(R \cup \{v\}, P \cap N(v), X \cap N(v))$ $P := P \setminus \{v\}$ $X := X \cup \{v\}$

Parallelism across and within set operations

Breaking down complex graph mining algorithms into simple building blocks, which can be separately optimized and coded

Variants of a set operation

Generality

High

performance

Input set

n = 16 (#vertices)

{0, ..., 15}

An example set:

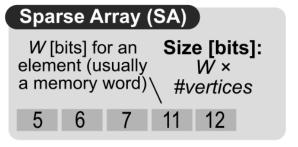
{5, 6, 7, 11, 12}

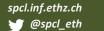
Input set

n = 16 (#vertices) **{0, ..., 15}**

An example set:

{5, 6, 7, 11, 12}





Input set

n = 16 (#vertices) **{0, ..., 15}**

An example set:

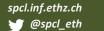
{5, 6, 7, 11, 12}

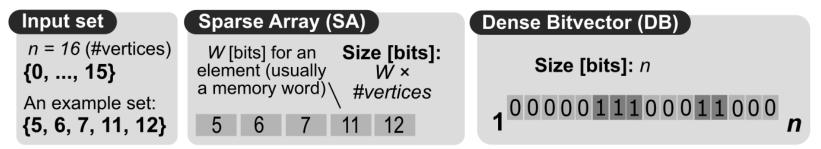
W [bits] for an element (usually a memory word) \ #vertices

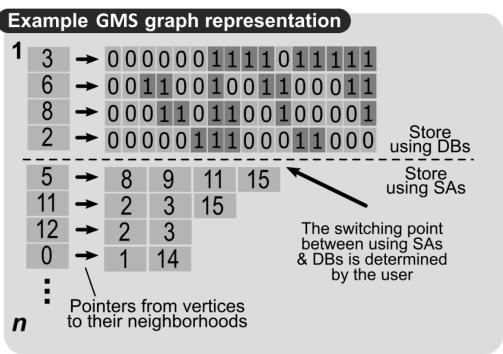
Dense Bitvector (DB)

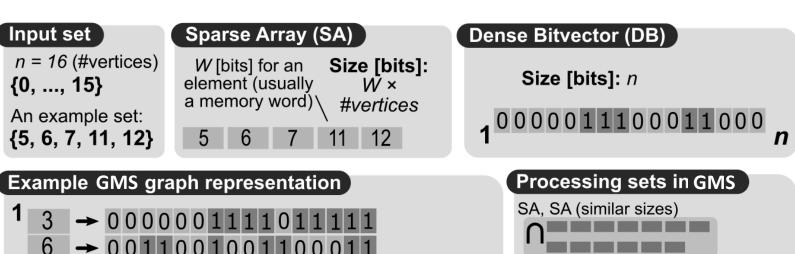
Size [bits]: n

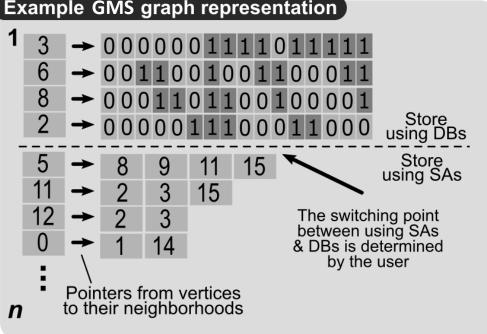
10000011100011000

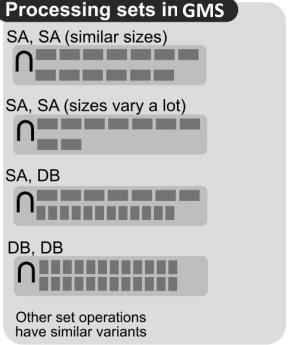


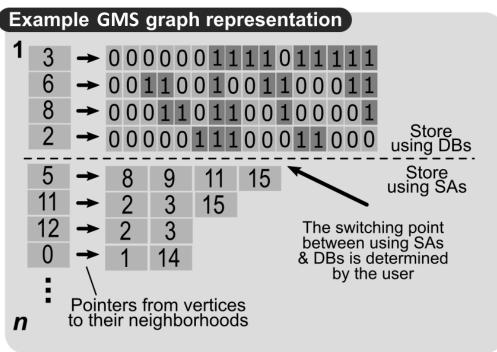


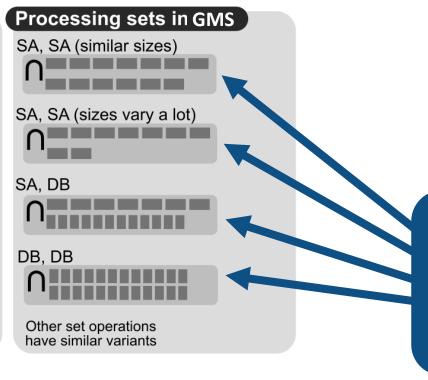




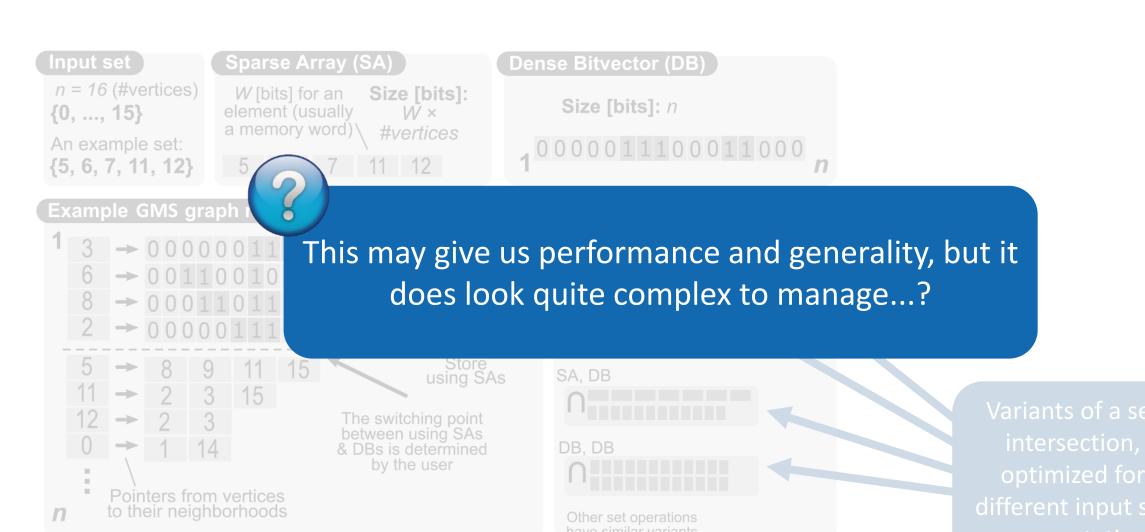


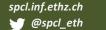






Variants of a set intersection, optimized for different input set representations






```
algorithm BronKerbosch (R, P, X) is

if P and X are both empty then

report R as a maximal clique

choose a pivot vertex u in P \cup X

for each vertex v in P \setminus N(u) do

BronKerbosch (R \cup \{v\}, P \cap N(v), X \cap N(v))

P := P \setminus \{v\}

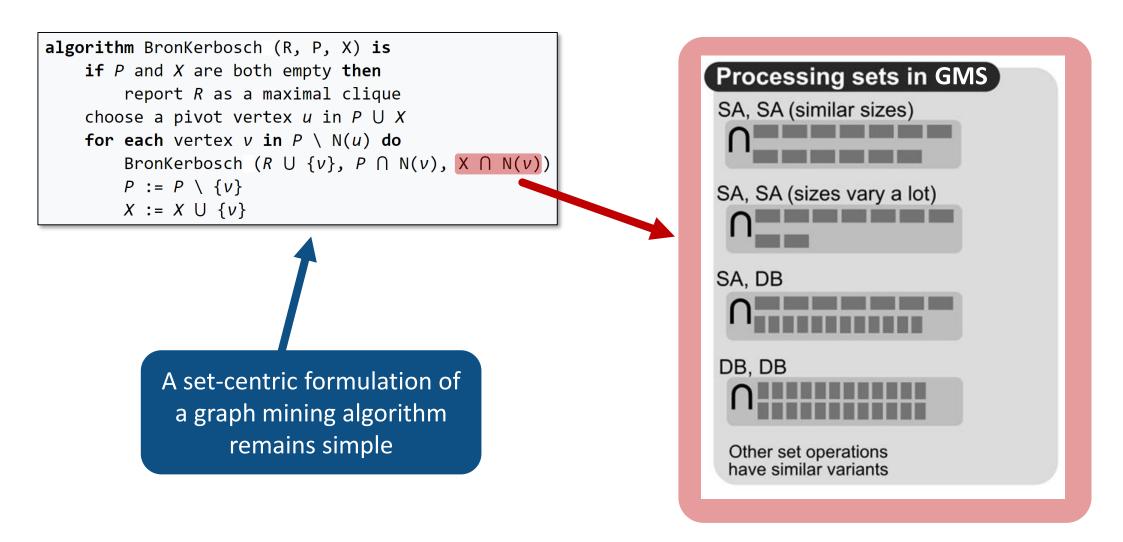
X := X \cup \{v\}
```



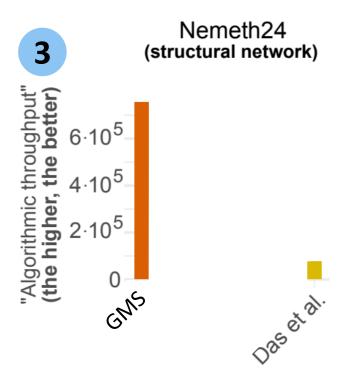
```
algorithm BronKerbosch (R, P, X) is
  if P and X are both empty then
    report R as a maximal clique
  choose a pivot vertex u in P U X
  for each vertex v in P \ N(u) do
    BronKerbosch (R U \{v\}, P \ N(v), X \ N(v))
    P := P \ \{v\}
    X := X U \{v\}
```

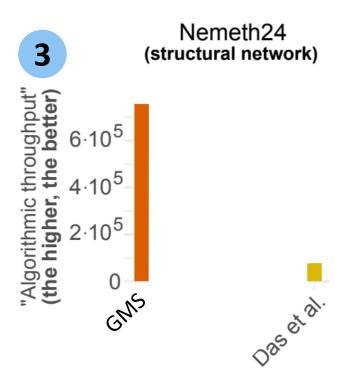


```
algorithm BronKerbosch (R, P, X) is
  if P and X are both empty then
    report R as a maximal clique
  choose a pivot vertex u in P U X
  for each vertex v in P \ N(u) do
    BronKerbosch (R U {v}, P \ N(v), X \ N(v))
    P := P \ {v}
    X := X U {v}
```

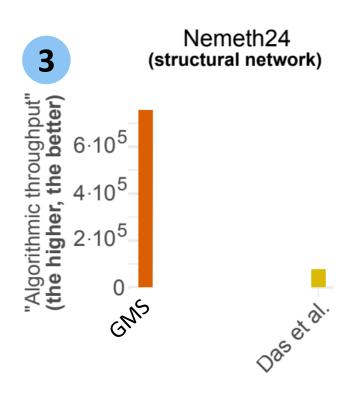



Problem: Maximal Clique Listing



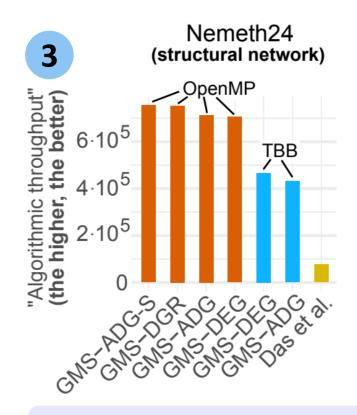


Goal 2: Facilitate Analysis



Problem: Maximal Clique Listing

Goal 2: Facilitate Analysis

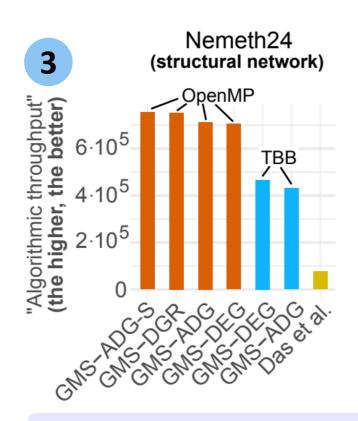


BK with the GMS code, OpenMP

BK by Das et al. (a recent baseline)

Problem: Maximal Clique Listing

Goal 2: Facilitate Analysis



BK with the GMS code, OpenMP

BK with the GMS code, Intel TBB

BK by Das et al. (a recent baseline)

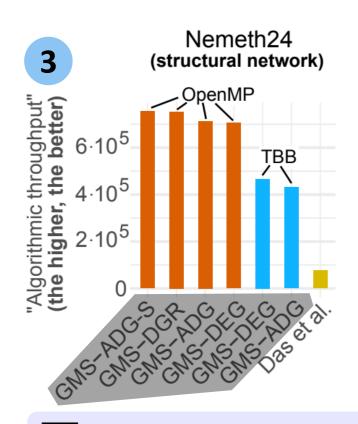
GMS-DGR: BK with degeneracy reordering (a variant by Eppstein et al.) GMS-DEG: BK with simple degree reordering

GMS-ADG : BK with approximate degeneracy reordering (a baseline obtained with GMS)

GMS-ADG-S: BK-GMS-ADG plus subgraph optimization (a baseline obtained with GMS)

Problem: Maximal Clique Listing

Goal 2: Facilitate Analysis



BK with the GMS code, OpenMP

BK with the GMS code, Intel TBB

BK by Das et al. (a recent baseline)

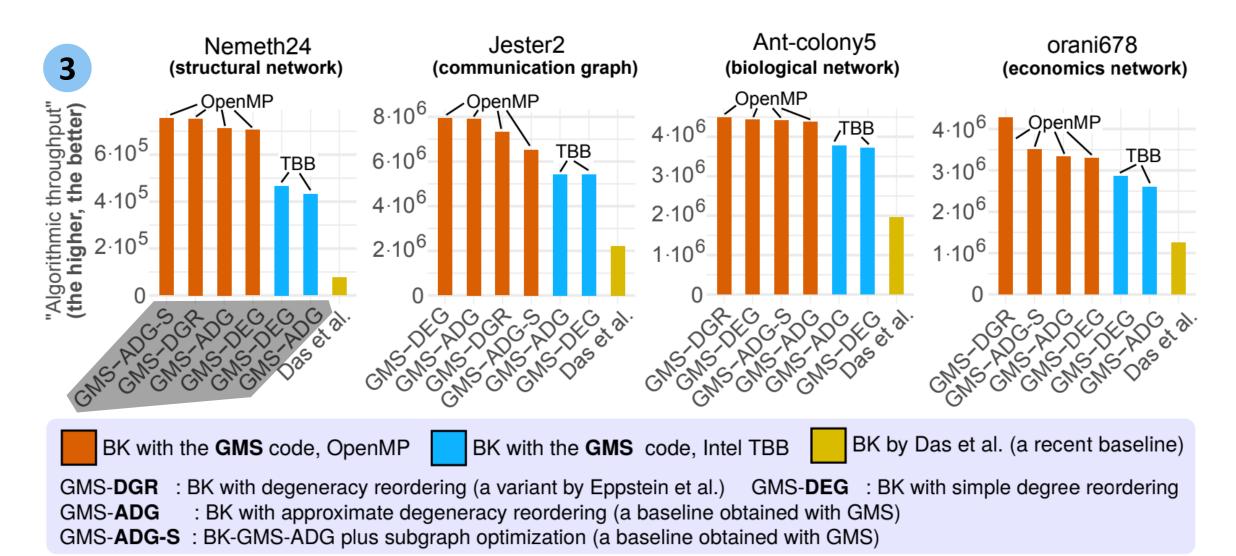
GMS-**DGR**: BK with degeneracy reordering (a variant by Eppstein et al.) GMS-**DEG**: BK with simple degree reordering

GMS-ADG : BK with approximate degeneracy reordering (a baseline obtained with GMS)

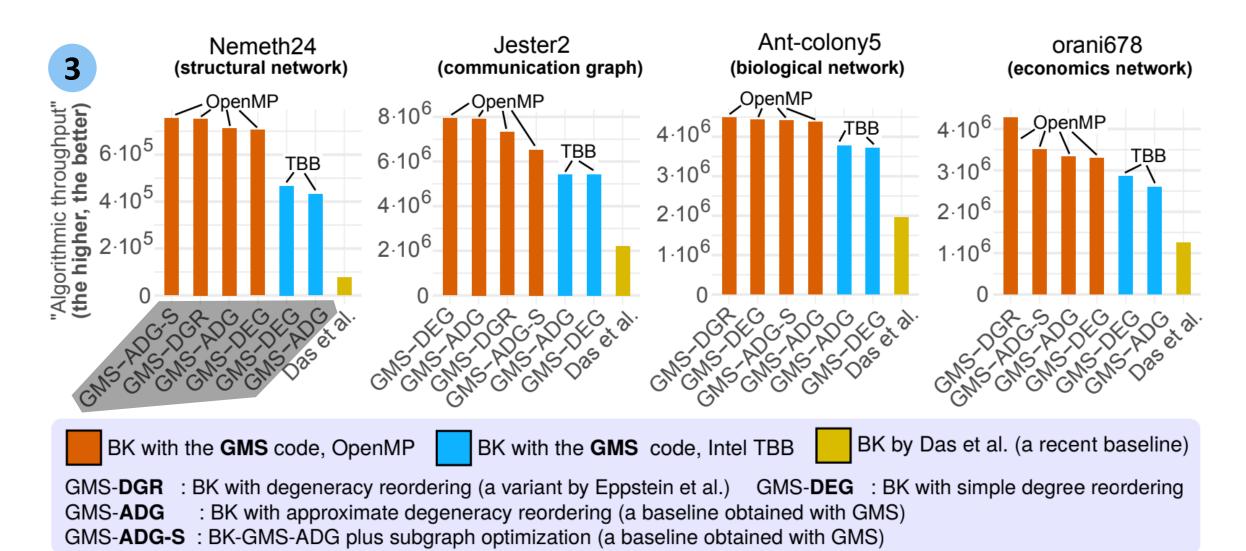
GMS-ADG-S: BK-GMS-ADG plus subgraph optimization (a baseline obtained with GMS)

Problem: Maximal Clique Listing

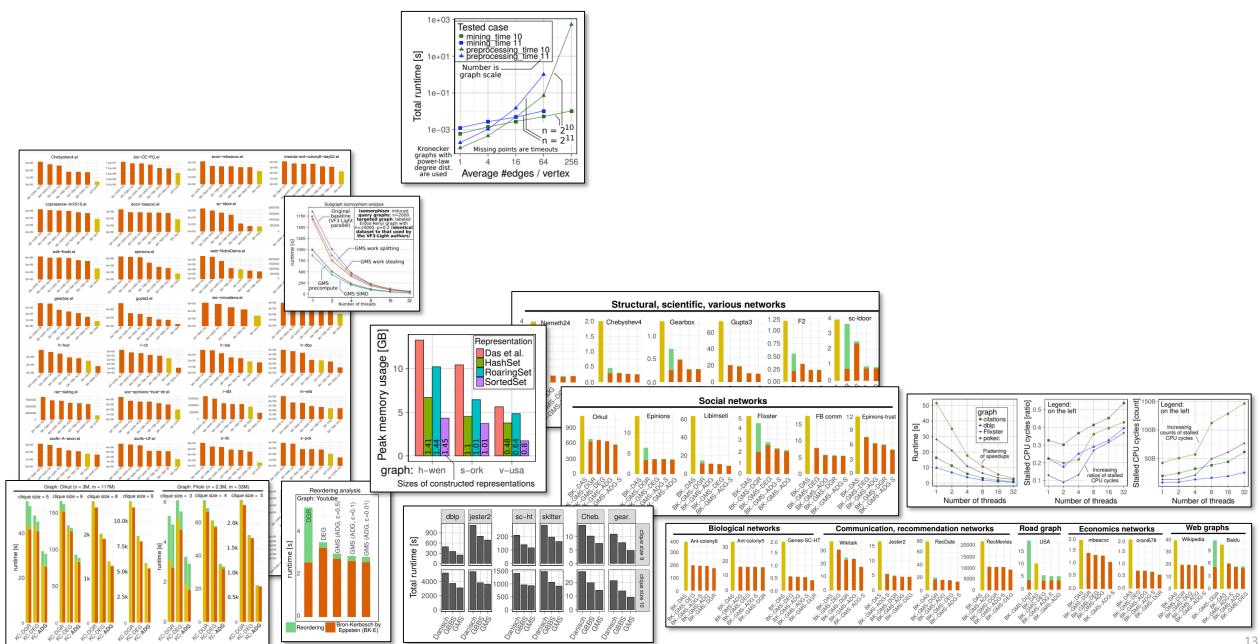
Goal 2: Facilitate Analysis

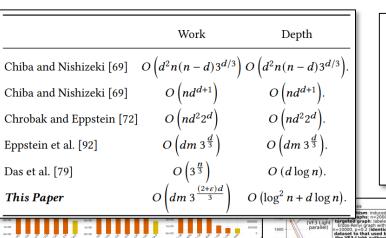


Problem: Maximal Clique Listing

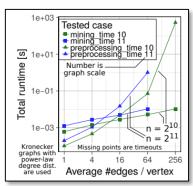


Problem: Maximal Clique Listing

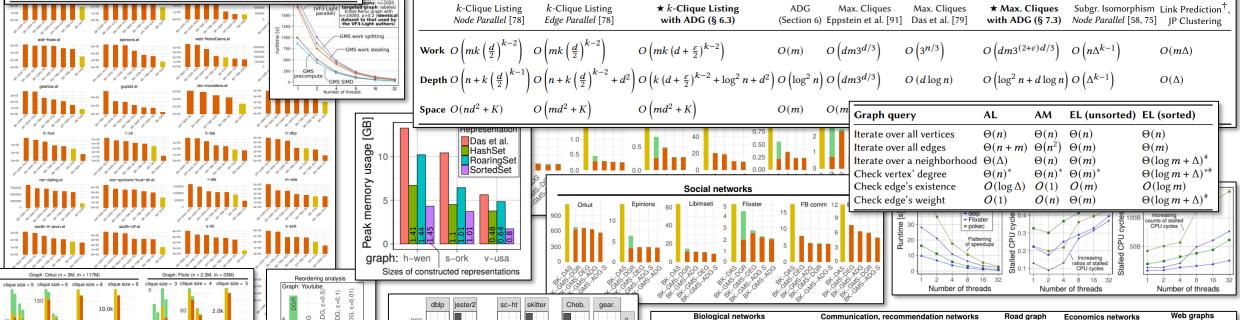


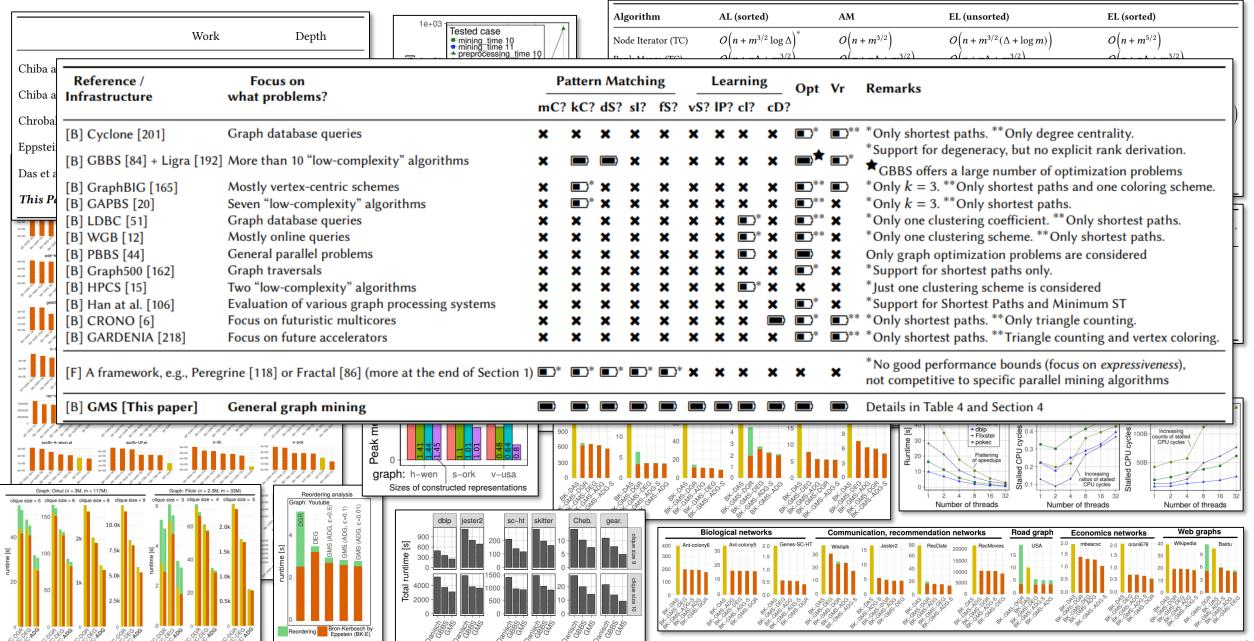


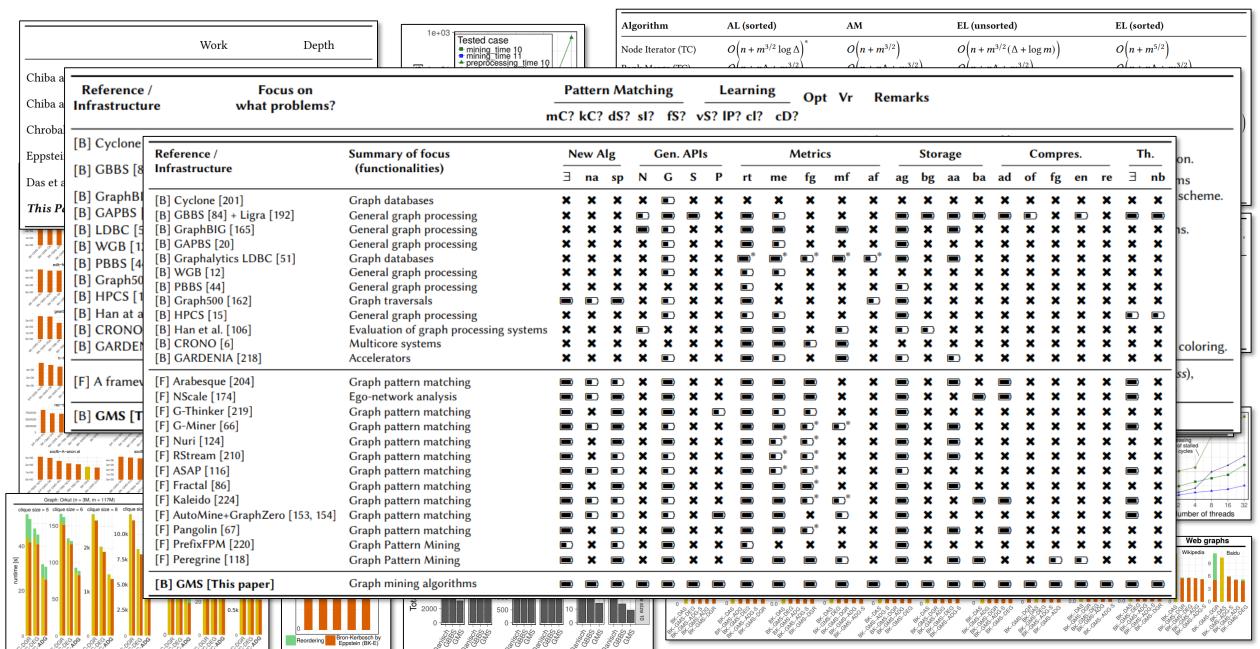
Reordering Bron-Kerbosch by Eppstein (BK-E)



Algorithm	AL (sorted)	AM	EL (unsorted)	EL (sorted)
Node Iterator (TC)	$O\left(n+m^{3/2}\log\Delta\right)^*$	$O(n+m^{3/2})$	$O\Big(n+m^{3/2}(\Delta+\log m)\Big)$	$O(n+m^{5/2})$
Rank Merge (TC)	$O(n+n\Delta+m^{3/2})$	$O(n + n\Delta + m^{3/2})$	$O(n+n\Delta+m^{3/2})$	$O(n+n\Delta+m^{3/2})$
BFS, top-down	$\Theta(n+m)$	$\Theta(n+m)$	$O(n\log m + m)$	O(nm+n+m)
PageRank, pushing	$O(n+m^{3/2}\log\Delta)^*$	$O(n+m^{3/2})$	$O\Big(n+m^{3/2}(\Delta+\log m)\Big)$	$O(n+m^{5/2})$
D-Stepping (SSSP)	$O\left(n+m+\frac{L}{D}+n_D+m_D\right)$	$O\left(n^2 + \frac{L}{D} + nn_D + m_D\right)$	$O\left(nm + \frac{L}{D} + n_D(\log m + \Delta) + m_D\right)$	$O\left(nm+m+\frac{L}{D}+n_Dm+m_D\right)$
Bellman-Ford (SSSP)	$O(n^2 + nm)$	$O(n^3)$	O(n+nm)	O(n+nm)
Boruvka (MST)	$O(m \log n)$	$O(n^2 \log n)$	$O(nm \log n \log m)$	$O(n^2m)$
Boman (Graph Coloring)	O(n+m)	$O(n^2)$	$O(n^2)$	O(n+nm)
Betweenness Centrality	O(nm)	$O(n^3)$	$O(nm\log m)$	$O(nm^2)$







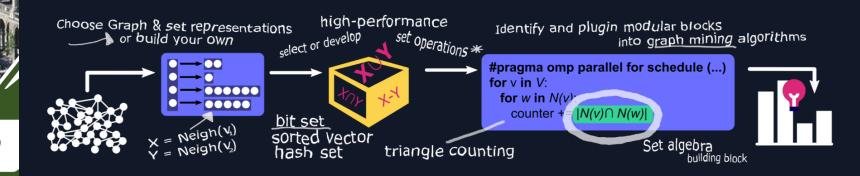
MACIEJ BESTA, ZUR VONARBURG-SHMARIA, YANNICK SCHAFFNER, LEONARDO SCHWARZ, GRZEGORZ KWASNIEWSKI, LUKAS GIANINAZZI, JAKUB BERANEK, KACPER JANDA, TOBIAS HOLENSTEIN, SEBASTIAN LEISINGER, PETER TATKOWSKI, ESREF OZDEMIR, ADRIAN BALLA, MARCIN COPIK, PHILIPP LINDENBERGER, PAVEL KALVODA, MAREK KONIECZNY, ONUR MUTLU, TORSTEN HOEFLER

MACIEJ BESTA, ZUR VONARBURG-SHMARIA, YANNICK SCHAFFNER, LEONARDO SCHWARZ, GRZEGORZ KWASNIEWSKI, LUKAS GIANINAZZI, JAKUB BERANEK, KACPER JANDA, TOBIAS HOLENSTEIN, SEBASTIAN LEISINGER, PETER TATKOWSKI, ESREF OZDEMIR, ADRIAN BALLA, MARCIN COPIK, PHILIPP LINDENBERGER, PAVEL KALVODA, MAREK KONIECZNY, ONUR MUTLU, TORSTEN HOEFLER

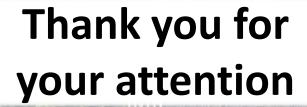
GMS SISA Docs Code

Design Run Compare Profile

Creating high-performance graph mining algorithms made simple using set algebra



MACIEJ BESTA, ZUR VONARBURG-SHMARIA, YANNICK SCHAFFNER, LEONARDO SCHWARZ, GRZEGORZ KWASNIEWSKI, LUKAS GIANINAZZI, JAKUB BERANEK, KACPER JANDA, TOBIAS HOLENSTEIN, SEBASTIAN LEISINGER, PETER TATKOWSKI, ESREF OZDEMIR, ADRIAN BALLA, MARCIN COPIK, PHILIPP LINDENBERGER, PAVEL KALVODA, MAREK KONIECZNY, ONUR MUTLU, TORSTEN HOEFLER



GMS SISA Docs Cod

Design Run Compare Profile

Creating high-performance graph mining algorithms made simple using set algebra

