
1

Scalable High Performance 

Message Passing over 

Infiniband for Open MPI

Andrew Friedley, Torsten Hoefler

Matthew L. Leininger, Andrew Lumsdaine

December 12, 2007



2

Motivation

 MPI is the de facto standard for HPC

 InfiniBand growing in popularity

 Particularly on large-scale clusters

 June 2005 Top500: 3% of machines

 November 2007 Top500: 24% of machines

 Clusters growing in size

 Thunderbird, 4,500 node InfiniBand



3

InfiniBand (IB) Architecture

 Queue Pair concept (QP)

 Send a message by posting work to a queue

 Post receive buffers to a queue for use by 

hardware

 Completion Queue

 Signals local send completion

 Returns receive buffers filled with data

 Shared Receive Queue

 Multiple QPs share a single receive queue

 Reduces network resources



4

Reliable Connection (RC) Transport

 Traditional approach for MPI communication 
over InfiniBand

 Point-to-point connections

 Send/receive and RDMA semantics

 One queue pair per connection
 Out-of-band handshake required to establish

 Memory requirements scale with number of 
connections
 Memory buffer requirements reduced by using 

shared receive queue



5

Unreliable Datagram Transport

 Requires software (MPI) reliability protocol

 Memory-to-Memory, not HCA-to-HCA

 Message size limited to network MTU

 2 kilobytes on current hardware

 Connectionless model

 No setup overhead

 One QP can communicate with any peer

 Except for address information, memory 

requirement is constant



6

Open MPI Modular Component Architecture

 Framework consists of many components

 Component is instantiated into modules



7

PML Components

 OB1

 Implements MPI point-to-point semantics

 Fragmentation and scheduling of messages

 Optimized for performance in common use

 Data Reliability (DR)

 Extends OB1 with network fault tolerance

 Message reliability protocol

 Data checksumming



8

Byte Transport Layer (BTL)

 Components are interconnect specific

 TCP, shmem, GM, OpenIB, uDAPL, et. al.

 Send/Receive Semantics

 PML fragments, not MPI messages

 RDMA Put/Get Semantics

 Optional – not always supported!



9

Byte Transport Layer (BTL)

 Entirely Asynchronous
 Blocking is not allowed

 Progress made via polling

 Lazy connection establishment
 Point-to-point connections established as 

needed

 Option to multiplex physical interfaces in one 
module, or to provide many modules

 No MPI semantics
 Simple, peer-to-peer data transfer operations



10

UD BTL Implementation

 RDMA not supported

 Use with DR PML

 Receiver buffer management

 Messages dropped if no buffers available

 Allocate a large, static pool

 No flow control in current design



11

Queue Pair Striping

 Splitting sends across multiple queue pairs 

increases bandwidth

 Receive buffers still posted to one QP



12

Results

 LLNL Atlas

 1,152 quad dual-core (8 core) nodes

 InfiniBand DDR network

 Open MPI trunk r16080

 Code publicly available since June 2007

 UD results with both DR and OB1

 Compare DR reliability overhead

 RC with and without Shared Receive Queue



13

NetPIPE Latency



14

NetPIPE Bandwidth



15

Allconn Benchmark

 Each MPI process sends a 0-byte message 

to every other process

 Done in a ring-like fashion to balance load

 Measures time required to establish 

connections between all peers

 For connection-oriented networks, at least

 UD should only reflect time required to send 

messages – no establishment overhead



16

Allconn Startup Overhead



17

Allconn Memory Overhead



18

ABINIT



19

SMG2000 Solver



20

SMG2000 Solver Memory



21

Conclusion

 UD is an excellent alternative to RC

 Significantly reduced memory requirements
 More memory for the application

 Minimal startup/initialization overhead
 Helps with job turnaround on large, busy systems

 Advantage increases as scale increases
 Clusters will continue to increase in size

 DR-based reliability incurs penalty

 Minimal some some applications (ABINIT), 

significant for others (SMG2000)



22

Future Work

 Optimized reliability protocol in the BTL

 Initial implementation working right now

 Much lower latency impact

 Bandwidth optimization in progress

 Improved flow control & buffer management

 Hard problem



23

Flow Control Problems

 Lossy Network

 No guarantee flow control signals are received

 Probabilistic approaches are required

 Abstraction barrier

 PML hides packet loss from BTL

 Message storms are expected by PML, not BTL

 Throttling mechanisms

 Limited ability to control message rate

 Who do we notify when congestion occurs?



24

Flow Control Solutions

 Use throttle signals instead of absolute 

credit counts

 Maintain a moving average of receive 

completion rate

 Enable/disable endpoint striping to throttle 

message rate

 Use multicast to send throttle signals

 All peers receive information

 Scalable?


