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Useful model P Engineering networks

...even phllosophy © sdsr swrmrse

hvsics. chemistrv

FOSDEM 2016 / Schedule / Events / Developer rooms / Graph Processing / Modeling a Philosophical Inquiry: from MySQL to a graph database

Modeling a Philosophical Inquiry: from MySQL to a graph
database

The short story of a long refactoring process

A Track: Graph Processing devroom
A Room: AW1.126
Day: Saturday
» Start: 12:45
. mEnd: 13:35

Bruno Latour wrote a book about philosophy (an inquiry into modes of existence). He decided that the paper book was no
place for the humerous footnotes, documentation or glossary, instead giving access to all this information surrounding the
book through a web application which would present itself as a reading companion. He also offered to the community of
readers to submlt thelr contrlbutlons to hisi |an|ry by writing new documents to be added to the platform The first version

sk,
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Why do we care?

Quantum

[Quantum] error
correcting codes

Crrop=Correction

“We live in a system
of approximations” —
Ralph Waldo Emerson

Many, many
others...

Transplant matching
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Part 1: Seeking “the best paradigm?”,
we conducted a detailed analysis of
graph processing on FPGAs
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Reference Venue Generic  Considered Programming Model  Used Multi  Input 4 +
(scheme name) Design' Problems? (§ 2.4) or Technique® (§ 2.5) Language FPGAs® Location® " m W h at p rog ramm i N g
Kapre [71] spreading
(GraphStep) FCCM06 3 activation® [82]  BSP unsp. (6] BRAM 220k 550k pa rad |gm 3 nd Why?
Weisz [92] FCCM'14 Y TRW-5, Vertex-Centric ns e DRAM 110k 221k i
(GraphGen) CNN* [112] X : unsp-
Kapre [70] ASAP'15 SpMV Vertex-Centric, BSP  C++ (HLS) €3 BRAM 17k 126k
(GraphSoC) p ertex-Centric, ++ ( ) |
Dai [40]
(FPGP) FPGA'16 (&) BFS None unsp. (6] DRAM  41.6M  14B
Oguntebi [93] , BFS, SpMV, PR,
(GraphOps)  FPOA16 &) Vertew Cover None Max] (HLS) i@ BRAM 16M  128M
Zhou [134] FCCM’16 O SSSP, WCC, MST Edge-Centric unsp. ip DRAM 47M 65.8M
Engelhardt [49] , . Migen ;
(GraVF) FPL'16 L& BFS, PR, SSSP, CC Vertex-Centric (HLS) e BRAM 128k 512k
Dai [41]
(ForeGraph) FPGA'17 @] PR, BFS,WCC  None unsp. (&) DRAM  41.6M  1.4B

Hybrid (Vertex-
Zhou [136] SBAC-PAD’17 &) BFS, SSSP and Edge-Centric) unsp. ip DRAM 10M  160M
BFS, SSSP, CC, Transactional System-

Ma [85] FPGA’17 (4] TC. BC Memory [16, 59] Verilog (4] DRAM 24M  58M |
Lee [79] BFS, PR, CC, . o ‘
(ExtraV) FPGA'17 '@ AT* [60] Graph Virtualization ~ C++ (HLS) @ DRAM 124M  1.8B
Zhou [135] CF’18 (4] SpMV, PR Edge-Centric, GAS unsp. e DRAM 41.6M  14B|
Yang [125] report (2018) &3 BFS, PR, WCC None OpenCL @ 485M  69M |
Yao [127] report (2{}18) (4] BFS, PR, WCC None unsp. g BRAM 4.85M  69M

~15 FPGA graph

processing frameworks
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Reference Venue Generic  Considered Programming Model  Used Multi  Input nt ot woy~
(scheme name) Design' Problems? (§ 2.4) or Technique® (§ 2.5) Language FPGAs® Location® ® W h at p rog ramm i N g
Kapre [71] , spreading
(GraphStep) ~ FCCM06 @] activation® [82]  BSP unsp. (6] BRAM 220k 550k pa rad |gm 3 nd Why?
Weisz [92] FCCM'14 Y TRW-5, Vertex-Centric ns e DRAM 110k 221k i
(GraphGen) CNN* [112] X : unsp-
Kapre [70] ASAP’T
(GraphSoC) Babb [4] report (1996) @ SSSP None Verilog (6} Hardwired 512 2051
Dai [40] EPGA’1 Dandalis [43]  report (1999) @ SSSP None unsp. (6} Hardwired 2048 32k
(FPGP) Tommiska [116] report (2001) @ SSSP None VHDL P BRAM 64 4096
Oguntebi [93] , " ) Hardwired :
(GraphOps) FPGA™Y Mencer [87] FPL’02 g ggg;hablhty’ None i,;l(\)/\ks I L (3-state 88 7744
Zhou [134] FCCM’ buffers)
Engelhardt [49] Bondhugula [27] IPDPS’06 ip APSP Dynamic Program. unsp. ip DRAM unsp.
Gg VF FPL’16| Sridharan[110] TENCON’09 @ SSSP None VHDL P BRAM 64 88
(GraVF) Wang [121] ICFTP’10 @ BFS None SystemC DRAM 655k 1M
Dai [41] EPGA 1 Betkaoui [21]  FTP'11 L) GC Vertex-Centric Verilog € DRAM 300k  3M
(ForeGraph) Jagadeesh [65] report (2011) @ SSSpP None VHDL g Hardwired 128 466
Zhou [136] SBAC-H Betkaou? [22]  FPL'12 p APSP Vertex—Centr?c Ver!log (@] ~ DRAM 38k 72M
Betkaoui[23] ASAP’12 ip BFS Vertex-Centric Verilog (6} DRAM 16.8M  1.1B
Ma [85] Fpga| Attia 2] IPDPS'14 g BFS Vertex-Centric VHDL O DRAM  84M 536M |
(CyGraph)
. . DRAM,
}—Eit[r?\]/) FPGA’ 1 Ni[91] report (2014) @ BFS None Verilog L SRAM 16M  512M
Zhou [135] CF’18 Zhou [132] IPDPS’15 p SSSpP None unsp. L ] DRAM 1M unsp.
Y, 125 Zhou [133] ReConFig'15 @ PR Edge-Centric unsp. L ] DRAM 2.4M 5M
ang [125] report { ymuroglu [117] FPL'15 L) BFS None Chisel ~DRAM 2.IM  65M
Yao [127] report (| e [80] report (2016) @ SSSP None unsp. iy DRAM 23.9M 58.2M
Zhang [129] FPGA'17 L BFS MapReduce unsp. L ] HMC 33.6M 536.9M ~
Zhang [130] FPGA'18 L BFS None unsp. HMC 15 FPGA gra ph
Kohram [76] FPGA’18 g BFS None unsp. i HMC .
Besta [13] FPGA’19 ip MM Substream-Centric Verilog ip DRAM 4.8M  117M p rocessi ng fra mewo rks

~25 FPGA accelerators

for specific algorithms
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Reference v Generic  Considered Programming Model  Used Multi  Input 4 +
(scheme name) enue Design' Problems? (§ 2.4) or Technique® (§ 2.5) Language FPGAs® Location® " m
Kapre [71] , spreading
(GraphStep) FCCM06 activation® [s2]  BSP unsp. (4] BRAM 220k 550k
?c/.erl:; Eéln) FCCM'14 Y I:m/*s[; 2] Vertex-Centric unsp. P DRAM 110k 221k
Kapre [70] ASAP’T
(GraphSoC) Babb [4] report (1996) @ SSSP None Verilog (6} Hardwired 512 2051
Dai [40] EPGA’1 Dandalis [43]  report (1999) @ SSSP None unsp. (6} Hardwired 2048 32k
(FPGP) Tommiska [116] report (2001) @ SSSP None VHDL P BRAM 64 4096
Oguntebi [93 , e ) Hardwired
(C:graph0|[)s)] FPGA™Y Mencer [87] FPL’02 g ggg;hablhty’ None i,;l(\)/\ks I L (3-state 88 7744 |
Zhou [134] FCCM’ , , buffers)
Engelhardt [49] Bondhugula [27] IPDPS’06 g APSP Dynamic Program. unsp. ] DRAM unsp.
FPL’16| Sridharan[110] TENCON’09 "@ SSSP None VHDL P BRAM 64 88
(GraVF) Wang [121] ICFTP’10 @ BFS None SystemC DRAM 655k 1M
Dai [41] EPGA 1 Betkaoui [21]  FTP'11 L) GC Vertex-Centric Verilog € DRAM 300k  3M
(ForeGraph) Jagadeesh [65] report (2011) @ SSSpP None VHDL g Hardwired 128 466
Zhou [136] SBAC-H Betkaou? [22]  FPL'12 p APSP Vertex—Centr?c Ver!log (@] ~ DRAM 38k 72M
Betkaoui[23] ASAP’12 ip BFS Vertex-Centric Verilog (6} DRAM 16.8M  1.1B
Ma [85] Fpga| Attia 2] IPDPS’'14 i@ BFS Vertex-Centric VHDL &Y DRAM  8.4M 536M
(CyGraph)
}—Eit[r?\]/) FPGA’ 1 Ni[91] report (2014) @ BFS None Verilog L SDIE:‘I\T’ 16M  512M
Zhou [135] CF’18 Zhou [132] IPDPS’15 p SSSpP None unsp. L ] DRAM 1M unsp.
Zhou [133] ReConFig'15 @ PR Edge-Centric unsp. L ] DRAM 2.4M 5M
Yang [125] report { ymuroglu [117] FPL'15 L) BFS None Chisel ~DRAM 2.IM  65M
Yao [127] report (| e [80] report (2016) @ SSSP None unsp. iy DRAM 23.9M 58.2M
Zhang [129] FPGA'17 L BFS MapReduce unsp. L ] HMC 33.6M 536.9M
Zhang [130] FPGA'18 p BFS None unsp. HMC
Kohram [76] FPGA’18 g BFS None unsp. i HMC
Besta [13] FPGA’19 ip MM Substream-Centric Verilog ip DRAM 4.8M  117M

»

‘What programming

paradigm and why?

Key techniques, paradigms,

challenges, features, ...

~15 FPGA graph
processing frameworks

~25 FPGA accelerators

for specific algorithms
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Reference Venue Generic  Considered Programming Model  Used Multi  Input nt ot p
(scheme name) Design'! Problems? (§ 2.4) or Technique® (§ 2.5) Language FPGAs* Location’ ® 1
8 q at programming
Kapre [71] spreading
FCCM06 C e BSP unsp. 6] BRAM 220k 550k .
G hSt tivat 82
(GraphStep) activation” [52] paradigm and why?
Weisz [92] , TRW-S7, .
FCCM’'14 _ Vertex-Centric unsp. DRAM 110k 221k
(GraphGen)
Kapre [70] ASAP’T
(GraphsoC) Selected parts are in the FPGA Harduired 512 2051
Dai [40] EPGA'1 ) Hardwired 2048 32k
(FPGP) . . BRAM 64 4096
Oguntebi [93] o paper, the rest is in... Hardwired |
(GraphOps) (3-state 88 7744
Zhou [134] FCCM’ buffers)
Engelhardt [49] Bondhugula [27] IPDPS’06 ip APSP Dynamic Program. unsp. ip DRAM unsp.
Gg VF FPL’16| Sridharan[110] TENCON’09 "@ SSSP None VHDL P BRAM 64 88
(GraVF) Wang [121] ICFTP’10 @ BFS None SystemC DRAM 655k 1M
Dai [41] EPGA 1 Betkaoui [21]  FTP'11 L) GC Vertex-Centric Verilog € DRAM 300k  3M
(ForeGraph) Jagadeesh [65] report (2011) @ SSSpP None VHDL g Hardwired 128 466
Zhou [136] SBAC-|| Betkaoui [22]  FPL'12 p APSP Vertex-Centric Verilog (@] ~ DRAM 38k 72M
Betkaoui[23] ASAP’12 ip BFS Vertex-Centric Verilog (6} DRAM 16.8M  1.1B
Ma [85] FPGA’1 ?ét;z[rszh) IPDPS’'14  "p BFS Vertex-Centric VHDL O DRAM  84M 536M | : .
Lee [79] DRAM Key techniques, paradigms,
(ExtraV) FPGA’ 1 Ni[91] report (2014) @ BFS None Verilog L SRAM 16M  512M
xtra
Zhou [135] CE1g | Zhou [132] IPDPS’'15 SSSP None unsp. L) DRAM 1M unsp. chaIIenges, featu res, ...
Y, 125 Zhou [133] ReConFig'15 @ PR Edge-Centric unsp. L ] DRAM 2.4M 5M
ang [125] report { ymuroglu [117] FPL'15 L) BFS None Chisel ~DRAM 2.IM  65M
Yao [127] report (| e [80] report (2016) @ SSSP None unsp. iy DRAM 23.9M 58.2M
Zhang [129] FPGA'17 L BFS MapReduce unsp. L ] HMC 33.6M 536.9M ~
Zhang [130] FPGA'18 L BFS None unsp. HMC 15 FPGA gra ph
Kohram [76] FPGA’18 g BFS None unsp. i HMC .
Besta [13] FPGA’19 ip MM Substream-Centric Verilog ip DRAM 4.8M  117M p rocessi ng fra meworks

~25 FPGA accelerators

for specific algorithms
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Reference Venue Generic  Considered Programming Model  Used Multi  Input 4 +
(scheme name) Design' Problems? (§ 2.4) or Technique® (§ 2.5) Language FPGAs® Location® " m
Kapre [71] , spreading
(GraphStep) ~ FCCM06 @] activation® [82]  BSP unsp. (6] BRAM 220k 550k
Weisz [92] FCCM'14 TRWS, Vertex-Centric unsp. DRAM 110k 221k
(GraphGen)
Kapre [70] ASAP’T
GraphSoC i i
(GraphsoC) Selected parts are in the FPGA Harduired 512 2051
Dai [40] EPGA'1 Hardwired 2048 32k
(FPGP) o e BRAM 64 4096
Oguntebi [93] o paper, the rest is in... Hardwired |
(GraphOps) (3-state 88 7744
Zhou [134] FCCM’ . . buffers)
Engelhardt [49] Bondhugula [27] IPDPS’06 ip APSP Dynamic Program. unsp. ] DRAM unsp.
FPL’16| Sridharan[110] TENCON’09 "@ SSSP None VHDL P BRAM 64 88
(GraVF) Wang [121] ICFTP’10 @ BFS None SystemC DRAM 655k 1M
Dai [41] 300k 3M
(ForeGraph 128 466
Zhou [136] 38k 72M
16.8M 1.1B
Ma [85] 8.4M  536M |
Lee [79] 16M  512M
(ExtraV)
Zhou [135] 2m unsp
Yang [125] Graph Processing on FPGAs: Taxonomy, Survey, Challenges 2IM 65M
Yao [127] 239M 58.2M
Towards Understanding of Modern Graph Processing, Storage, and Analytics 33.6M 536.9M
MACIE] BESTA*, DIMITRI STANOJEVIC™, Department of Computer Science, ETH Zurich " "
4.3 117

JOHANNES DE FINE LICHT, TAL BEN-NUN, Department of Computer Science, ETH Zurich
TORSTEN HOEFLER, Department of Computer Science, ETH Zurich

Graph processing has become an important part of various areas, such as machine learning, computational
sciences, medical applications, social network analysis, and many others. Various graphs such as web or
social networks may contain up to trillions of edges. The sheer size of such datasets, combined with the
irregular nature of graph processing, poses unique challenges for the runtime and the consumed power. Field
Programmable Gate Arrays (FPGAs) can be an energy-efficient solution to deliver specialized hardware for

)

= What programming
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Key techniques, paradigms,

challenges, features, ...

~15 FPGA graph
processing frameworks

~25 FPGA accelerators

for specific algorithms
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Reference Venue Generic  Considered Programming Model Used Multi  Input " +
(scheme name) Design' Problems’ (§ 2.4) or Technique® (§ 2.5) Language FPGAs* Location® " m
Kapre [71] , spreading
(Graphstep)  TCCM06 (6] activation® [82]  BSP unsp. (6] BRAM 220k 550k
Weisz [92] FCCM'14 ) TRW-S,, Vertex-Centric unsp. ] DRAM 110k 221k
(GraphGen)
Kapre [70] ASAP’T
GraphSoC i i
(GraphSo€) Selected parts are in the FPGA Harduired | 5122051
Dai [40] FPGA'1 D2 Hardwired 2048 32k
(FPGP) To o« . BRAM 64 4096
Oguntebi [93] o paper, the rest is in... Hardired
(GraphOps) Me (3-state 88 7744
Zhou [134] FCCM’ : buffers)
Engelhardt [49] Bondhugula [27] IPDPS’06 ip DRAM unsp.
FPL’16| Sridharanli10 : BRAM 64 88
(GraVF) DRAM 655k 1M
Dai [41] 300k 3M
(ForeGraph 128 466
Zhou [136] . 38k 72M
iv, will appear tonight) fos - 11e
Ma [85] b itted to aer\I’ W‘ 8.4M 536M
Lee [79] (Su 16M  512M
(ExtraV)
Zhou [135] 2m unsp
Yang [125] Graph Processing on FPGAs: Taxonomy, Survey, Challenges 2IM  65M
Yao [127] 239M 58.2M
Towards Understanding of Modern Graph Processing, Storage, and Analytics 33.6M 536.9M
MACIE] BESTA*, DIMITRI STANOJEVIC™, Department of Computer Science, ETH Zurich " "
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JOHANNES DE FINE LICHT, TAL BEN-NUN, Department of Computer Science, ETH Zurich
TORSTEN HOEFLER, Department of Computer Science, ETH Zurich

Graph processing has become an important part of various areas, such as machine learning, computational
sciences, medical applications, social network analysis, and many others. Various graphs such as web or
social networks may contain up to trillions of edges. The sheer size of such datasets, combined with the
irregular nature of graph processing, poses unique challenges for the runtime and the consumed power. Field
Programmable Gate Arrays (FPGAs) can be an energy-efficient solution to deliver specialized hardware for

* What programming

paradigm and why?

Key techniques, paradigms,

challenges, features, ...

~15 FPGA graph
processing frameworks

~25 FPGA accelerators

for specific algorithms
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“(...) implementing graph * What programming
algorithms efficiently on pa radigm and why?
Pregel-like systems {...)

can be surprisingly

difficult and require

careful optimizations.” [1]

+ other issues

[1]S. Salihoglu and J. Widom,
“Optimizing graph algorithms on
Pregel-like systems”. VLDB. 2014.

Vertex-centric,
Gather-Apply-

Scatter, ... ? @
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* What programming

“(...) implementing graph
algorithms efficiently on
Pregel-like systems {...)
can be surprisingly
difficult and require
careful optimizations.” [1]

paradigm and why?

To be able to utilize pipelining

+ other issues

well, we really want to use

“Optimizing graph algorithms on Strea min (a ka edge'ce nt riC)
Pregel-like systems”. VLDB. 2014.

[1]S. Salihoglu and J. Widom,

Vertex-centric,
Gather-Apply-

Scatter, ... ?@




spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

= What programming
paradigm and why?




spcl.inf.ethz.ch
L 4 @spcl_eth




spcl.inf.ethz.ch
L 4 @spcl_eth




spcl.inf.ethz.ch
L 4 @spcl_eth




A L 4 @spcl_eth




LY\ spcl.inf.ethz.ch
AT % Goncl ot




-iy‘\ A FEL spcl.inf.ethz.ch
L 4 @spcl_eth




-iy‘\ A FEL spcl.inf.ethz.ch
L 4 @spcl_eth




-iy‘\ A FEL spcl.inf.ethz.ch
L 4 @spcl_eth




spcl.inf.ethz.ch
L 4 @spcl_eth

Streaming all edges in and out is one
“pass”. Repeat it a certain (algorithm- %
dependent) number of times
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...How to minimize the number of “passes” over edges? This can get
really bad in the “traditional” edge-centric approach (e.g., BFS needs
D passes; D = diameter [1]).

...Processing edges
is sequential — how
to incorporate

@ parallelism?

Streaming all edges in and out is one
“pass”. Repeat it a certain (algorithm-
dependent) number of times

Some processing unit
(CPU, GPU, FPGA, ..., for {2l
a moment we don’t care)

[1] A. Roy et al. X-stream: Edge-Centric Graph Processing using Streaming Partitions. SOSP. 2013.
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...Processing edges

is sequential — how
to incorporate

? parallelism?




Part 2: Substream-Centric: A new

paradigm for processing graphs
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Substream-Centric Graph Processing

Part 2: A new paradigm for processing graphs

...Processing edges
is sequential — how
to incorporate

? parallelism?
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Substream-Centric Graph Processing

Part 2: A new paradigm for processing graphs approaches

...Processing edges
is sequential — how
to incorporate

? parallelism?




spcl.inf.ethz.ch

L 4 @spcl_eth

It enhances edge-
centric streaming

Substream-Centric Graph Processing

Part 2: A new paradigm for processing graphs approaches

...Processing edges
is sequential — how
to incorporate

? parallelism?

Weighted
edges
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centric streaming

Part 2: A new paradigm for processing graphs approaches

Substream-Centric Graph Processing

P : g Divide the input stream of
- PTOCESSING €dses edges according to some

is sequential — how (algorithm-specific) pattern
to incorporate

@ parallelism?

Weighted
edges
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It enhances edge-
centric streaming

Substream-Centric Graph Processing

Part 2: A new paradigm for processing graphs approaches

Divide the input stream of
edges according to some

is sequential — how (algorithm-specific) pattern
to incorporate

? parallelism?

...Processing edges

Weighted
edges
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centric streaming

Part 2: A new paradigm for processing graphs approaches

Substream-Centric Graph Processing

Process “substreams”
independently Divide the input stream of

..Processing edges edges according to some

is sequential — how (algorithm-specific) pattern
to incorporate

@ parallelism?

Weighted
edges
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Substream-Centric Graph Processing

Process “substreams”
independently Divide the input stream of

..Processing edges edges according to some

is sequential — how (algorithm-specific) pattern
to incorporate
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Weighted
edges
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It enhances edge-
centric streaming

Part 2: A new paradigm for processing graphs approaches

Substream-Centric Graph Processing

Process “substreams”
independently Divide the input stream of

..Processing edges edges according to some

is sequential — how (algorithm-specific) pattern
to incorporate

@ parallelism?

Weighted

edges
Merge

substreams
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It enhances edge-
centric streaming

Part 2: A new paradigm for processing graphs approaches

Substream-Centric Graph Processing

Process “substreams”
independently Divide the input stream of

....Proce55|.ng edges edges according to some
is sequential — how (algorithm-specific) pattern
to incorporate

Weighted

edges
Merge

substreams
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It enhances edge-
centric streaming

Substream-Centric Graph Processing
Part 2: A new paradigm for processing graphs approaches

Process “substreams”
independently Divide the input stream of

edges according to some
(algorithm-specific) pattern

Weighted
edges

substreams

!

!

' \Y/

" erge
!

!

!
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It enhances edge-
centric streaming
2n=-23ches

Substream-Centric Graph Processing

_aedms”
independently Divide the input stream of

edges according to some
(algorithm-specific) pattern

Weighted
edges

substreams

|

|

! \Y/

" erge
|

|

|
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It enhances edge-
centric streaming

Substream-Centric Graph Processing

Part 2: A new paradigm for processing graphs "n7 aches
os (tunable)
and a (tunab\e)

Also, it enabl
ation

number of passés o~
independently Divide the input stream of

edges according to some
(algorithm-specific) pattern

How to express MWM in this

paradigm?
substreams
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Research Questions

Which programming paradigm

to use for (approximate) MWM
(and many other problems)?
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Research Questions

How to design a high-

performance MWM
algorithm (as dictated
by the used paradigm)? v
What is the HW FPGA
design that ensures

high performance?
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for streaming graph
processing

ldea: let’s check the (rich) world of
streaming theory and see if there is
anything out there that we could use ©
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Part 3: Analysis of
models and algorithms
for streaming graph
processing

~30 algorithms for streaming

(approximate) MWM

ldea: let’s check the (rich) world of
streaming theory and see if there is
anything out there that we could use ©
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Reference Approx. Space #Passes Wgh! Gen? Par’ Pa rt 3: Analysis Of

[26] 1/2 O(n) 1 . O b i

[41, Theorem 6]  1/2+0.0071 O(n polylog(n)) 2 . O models and algorithms

6. Theorem 111 Olpolylog(n)) O(paiogr)) 1 « 0 0 -

e Theorem 11 2B O Ouegrose W W @ for streaming graph

[6, Theorem 19] 1 —¢ O (n polylog(n)/e2) O (loglog(1/¢) /%) W W .

[41, Theorem 5]  1/2+0.019, O((n polylog(n)) ) 2 ( ) L T b prOCESSIng

[41, Theorem 1] 1/240.005 O(nlogn) 1 b L

[41, Theorem 4] 1/240.0071" O(n polylog(n)) 2 L T

[39] 1—1/e O(n polylog(n)) 1 T 9 @

[28, Theorem 20] 1 — liikk—l O(n) 1 i ip 7 )

[35, Theorem2] 1— e(k—ilj! O(n) k L T b ~ . -

. 1 o (k) 1 . O 0 30 algorithms for streaming

[14] 1/¢ 0 (n2/¢3 1 . 0 O (approximate) MWM

(7, Theorem 1]  n® O (n3 + nl_e) 1 D . 0

[26, Theorem 2] 6 O(nlogn) 1 (&) @)

[44, Theorem 3] 2+¢ O(n polylog(n)) 0(1) (&) O

[44, Theorem 3] 5.82 O(n polylog(n)) 1 (&) @)

[63] 5.58 O(n polylog(n)) 1 (&) O

[25] 4911 +¢ O(n polylog(n)) 1 @] @]

[29] 35+¢ O(n polylog(n)) 1 (&) @)

[53] 2+¢ 0] (nlog2 n 1 (&) &)

[27] 2+4¢ O(nlogn) 1 (&) (&) -

126, Section 32] 2+¢ O(nlogn) Oflog.sn) O O ldea: let’s check the (rich) world of
i nlog(n)/&* e dlogn H 1 1

o Theoremz) iz O(mogln/el) | O(lgn) 00 streaming theory and see if there is

[6, Theorem 22] T0 9 Oln (%)) O (e “log (E_ )) 4] O b )

6 Theorem22] L NC P IEN EPIESE  anything out there that we could use ©

Crouch and Stubbs [1] - ¢ O(n polylog(n)) 1 4§ O O
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~30 algorithms for streaming
(approximate) MWM

No worries, no need to Idea: let’s check the (rich) world of
analyze it here, all the streaming theory and see if there is

details are in the paper © anything out there that we could use ©
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processing

~30 algorithms for streaming
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ldea: let’s check the (rich) world of
streaming theory and see if there is
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Reference Approx. Space #Passes

Most
important
goals:

Maximize
accuracy

Minimize
local space

No worries, no need to
analyze it here, all the
details are in the paper ©
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Part 3: Analysis of
models and algorithms
for streaming graph
processing

~30 algorithms for streaming
(approximate) MWM

ldea: let’s check the (rich) world of
streaming theory and see if there is
anything out there that we could use ©

ETH:zurich
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Reference Approx. Space #Passes Wgh! Gen? Par’ vv Part 3: Analysis Of
Most models and algorithms
important for streaming graph
goals: processing

Minimize
Hpasses

Maximize
accuracy

Minimize
local space

~30 algorithms for streaming
(approximate) MWM

No worries, no need to Idea: let’s check the (rich) world of
analyze it here, all the streaming theory and see if there is

details are in the paper © anything out there that we could use ©
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Most
important
goals:

Minimize
Hpasses

Maximize
accuracy

Minimize
local space

No worries, no need to
analyze it here, all the
details are in the paper ©

Reference Approx. Space #Passes Wgh! Gen? Par’ Expose Pa rt 3: An a Iysis Of

arallelism ]
i [ models and algorithms

substream- for streaming graph
centric) processing

~30 algorithms for streaming
(approximate) MWM

ldea: let’s check the (rich) world of
streaming theory and see if there is
anything out there that we could use ©
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Most
important
goals:

Minimize
Hpasses

Maximize
accuracy

Minimize
local space

No worries, no need to
analyze it here, all the

details are in the paper ©

Crouch and Stubbs [1] . ¢ O(n polylog(n)) 1
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Expose
parallelism
(match
substream-
centric)

Part 3: Analysis of
models and algorithms
for streaming graph
processing

~30 algorithms for streaming
(approximate) MWM

ldea: let’s check the (rich) world of
streaming theory and see if there is
anything out there that we could use ©
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Substream-Centric Graph Processing + Crouch and Stubbs MWM [1]

N

ﬂ

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.
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Substream-Centric Graph Processing + Crouch and Stubbs MWM [1]
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[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.
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Substream-Centric Graph Processing + Crouch and Stubbs MWM [1]

Select edges
with weights:
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[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.
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Substream-Centric Graph Processing + Crouch and Stubbs MWM [1]

Select edges
with weights:

A parameter
that controls
accuracy
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Substream 0]
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[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.
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Substream-Centric Graph Processing + Crouch and Stubbs MWM [1]

Select edges
with weights:

A parameter
that controls

/’xr)xr) R:
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[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.
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Substream-Centric Graph Processing + Crouch and Stubbs MWM [1]

Select edges
with weights:

Substream 0]

K
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Substream L-1 xx \ ,’
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| \

|

|
l_________________________________

A parameter
that controls
accuracy

S0

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.
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Substream-Centric Graph Processing + Crouch and Stubbs MWM [1]

Compute unweighted Select edges
matchings separately with weights:

A parameter
that controls
accuracy

- % SIS - N
" X Substream i

|

|

|

|

: Substream L-1

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.
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Substream-Centric Graph Processing + Crouch and Stubbs MWM [1]

Compute unweighted Select edges
matchings separately with weights:

Greedy merge of
matchings into
the final MWM

A parameter
that controls
accuracy

*--- Q ) GED GED GED G G G G G G
Substream i

Substream L-1

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.
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Substream-Centric Graph Processing + Crouch and Stubbs MWM [1]

Compute unweighted Select edges
matchings separately with weights:

Greedy merge of
matchings into
the final MWM

How to minimize the = &

number of “passes”?

A parameter
that controls
accuracy

*--- Q ) GED GED GED G G G G G G
Substream i

Substream L-1

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.
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Substream-Centric Graph Processing + Crouch and Stubbs MWM [1]

Compute unweighted Select edges
matchings separately with weights:

Greedy merge of
matchings into
the final MWM

A parameter
that controls
accuracy
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|
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[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.
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Compute unweighted Select edges
matchings separately with weights:

Greedy merge of
matchings into
the final MWM

A parameter
that controls
accuracy

*--- Q ) GED GED GED G G G G G G
Substream i

Substream L-1

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.
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Substream-Centric Graph Processing + Crouch and Stubbs MWM [1]
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[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.
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Substream-Centric Graph Processing + Crouch and Stubbs MWM [1]

Part 4: Mapping the algorithm to the
,right” hardware configuration

Substream L-1

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.
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Substream-Centric Graph Processing + Crouch and Stubbs MWM [1]
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[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.
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Substream-Centric Graph Processing + Crouch and Stubbs MWM [1]
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[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.
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[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.
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‘ B Work: O(Lm)
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[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.
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[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.
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Substream-Centric Graph Processing + Crouch and Stubbs MWM [1]

Use a hybrid

CPU-FPGA
setting!

Time: O(Ln)
Work: O(Ln)

o

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.
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Use a hybrid AP | Time: O(m)
CPU-FPGA "
setting!

CPU ’ xf) xf) X
Time: O(Ln) . s
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[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.



spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

FPGA
Use a hybrid P | Time: O(m)

CPU-FPGA

setting!

CPU
Time: O(Ln)
Work: O(Ln)

[1] M. Cro and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.
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Substream-Centric MWM: FPGA optimizations

Centaur framework (described in more detail in Evaluation, § 5)

3
‘I Accelerator Functional Unit (AFU)
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Centaur framework (described in more detail in Evaluation, § 5)

elerator Functional Unit (AFU)
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Substream-Centric MWM: FPGA optimizations

All the details are in the paper.

Let’s focus on the key FPGA
design ideas and optimizations
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Substream-Centric MWM: FPGA optimizations

Prefetching

Pipelining
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Blocking
e All the details are in the paper.
Vectorization Let’s focus on the key FPGA

design ideas and optimizations

Substream-Centric MWM: FPGA optimizations

They are often used in graph e i
Prefetching processing schemes on FPGAs; P g

we apply them as well.
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Let’s focus on the key FPGA
design ideas and optimizations
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Blocking

o
R SR G
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O O R O
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Adjacency Matrix
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Adjacency Matrix
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Blocking
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Adjacency Matrix
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0
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0 \ 1 \2 3 4 5
of]0 1 1 1 0 1
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2 0 1 0 1
Row IDs

correspond 3 O 1 O
to vertex IDs 4 O 1
> 0

Adjacency Matrix
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Blocking
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An edge between AN e(?lge between
vertices0and 1, VerticesOand2 t?\:;i:;?rgs
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Row IDs
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> 0

Adjacency Matrix



spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

Substream-Centric MWM: FPGA optimizations

Blockin
8 An edge between An e(?lge between Sc?rlren;pncjl?j
vertices 0 and 1 vertices 0 and 2 to vertex IDs
0 \ 1 \2 3 4 5
ofO 1 1 1 0 1
1 0O 1 0 1 O
2 0O 1 0 1
Row IDs

correspond 3 O 1 O
tovertexIDs g O 1
5 0

Adjacency Matrix
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Substream-Centric MWM: FPGA optimizations

Blockin
g An edge between An edge between Column IDs
vertices 0 and 1. Vvertices 0 and 2 correspond
to vertex IDs

1 0O 1 0 1 0
Row IDs 3 H
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tovertex IDs g w
5 0

Adjacency Matrix
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Blockin
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\ to vertex IDs
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Substream-Centric MWM: FPGA optimizations
Blocking
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Blockin
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Substream-Centric MWM: FPGA optimizations
Blocking

Introduce a (tunable)
Column IDs ,blocking parameter” K
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Blocking

Introduce a (tunable)
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vertices 0 and 2 correspond
to vertex IDs
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K determines how many
stalls are allowed

Row IDs 3
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to vertex IDs 4
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Substream-Centric MWM: FPGA optimizations
Blocking

Introduce a (tunable)
An edge between Column IDs ,blocking parameter” K

vertices 0 and 2 correspond

tovertexIDs K =3 .
\2 3 a 5 K determines how many
stalls are allowed

An edge between
vertices 0 and 1

Row IDs 3
correspond
to vertex IDs 4
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. Introduce a (tunable)
BIOCkmg ,blocking parameter” K

B K determines how many
stalls are allowed

Portions of rows are
ordered ,lexicographically”
(i.e., no strict ordering that
enforces a stall is required)

. i Algorithm still
Adjacency Matrix
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Substream-Centric MWM: FPGA optimizations
. Introduce a (tunable)
BIOCkmg ,blocking parameter” K

B K determines how many
O stalls are allowed

Portions of rows are
ordered ,lexicographically”
(i.e., no strict ordering that
enforces a stall is required)

K is tunable: it
controls the tradeoff
between the amount

of the used FPGA
resources and the
performance

. i Algorithm still
Adjacency Matrix
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Research Questions

How to design a high-

performance MWM
algorithm (as dictated
by the used paradigm)? v
What is the HW FPGA
design that ensures

high performance?
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Research Questions

What is the ultimate

performance, power

consumption, and the
related tradeoffs?
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PERFORMANCE ANALYSIS
TYPES OF MACHINES

Part 5: Evaluation
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PERFORMANCE ANALYSIS CPU: Intel Broadwell

TYPES OF MACHINES Xeon E5-2680 v4 @3.3 GHz e
14 Cores (28 Threads) '

Sasd s, i

Altera Arria 10 @200MHz
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PERFORMANCE ANALYSIS
TYPES OF GRAPHS

Synthetic graphs

Kronecker [1]

[1] J. Leskovec et al. Kronecker Graphs: An Approach to Modeling Networks. J. Mach. Learn. Research. 2010.
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PERFORMANCE ANALYSIS

Real-world graphs (SNAP [2], KONECT [3], DIMACS [4
TYPES OF GRAPHS graphs { 2] 3] [41)

Synthetic graphs

Kronecker [1]

[2] SNAP. https://snap.stanford.edu

[1] J. Leskovec et al. Kronecker Graphs: An Approach to Modeling Networks. J. Mach. Learn. Research. 2010.


https://snap.stanford.edu/
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PERFORMANCE ANALYSIS
TYPES OF GRAPHS

Synthetic graphs

Road networks
Kronecker [1]

LN
S .
[ »
‘\\‘ / .
= o, ¢

/‘>/

Purchase networks o unication graphs  Citation graphs

[2] SNAP. https://snap.stanford.edu
[3] KONECT. https://konect.cc
[1] J. Leskovec et al. Kronecker Graphs: An Approach to Modeling Networks. J. Mach. Learn. Research. 2010. [4] DIMACS Challenge
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PERFORMANCE ANALYSIS
ALGORITHMS

Algorithm Platform

Crouch et al. [1] Sequential (CS-SEQ) CPU
Crouch et al. [1] Parallel (CS-PAR) CPU
Ghaffari [2] Sequential (G-SEQ) CPU
Substream-Centric (SC-OPT) Hybrid

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.
[2] M. Ghaffari. Space-optimal semi-streaming for(2+&)-approximatematching. arXiv:1701.03730, 2017.
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Crouch et al. [1] Sequential (CS-SEQ) CPU
Crouch et al. [1] Parallel (CS-PAR) CPU
Ghaffari [2] Sequential (G-SEQ) CPU
Substream-Centric (SC-OPT) Hybrid

Our FPGA design,

(4+€)-approximation

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.
[2] M. Ghaffari. Space-optimal semi-streaming for(2+&)-approximatematching. arXiv:1701.03730, 2017.
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ALGORITHMS CPU implementations of the

original Crouch scheme,
(4+€)-approximation

Algorithm Platform
Crouch et al. [1] Sequential (CS-SEQ) CPU
Crouch et al. [1] Parallel (CS-PAR) CPU
Ghaffari [2] Sequential (G-SEQ) CPU
Substream-Centric (SC-OPT) Hybrid

Our FPGA design,

(4+€)-approximation

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.
[2] M. Ghaffari. Space-optimal semi-streaming for(2+&)-approximatematching. arXiv:1701.03730, 2017.
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ALGORITHMS CPU implementations of the
original Crouch scheme,

State-of-the-art MWM
algorithm, space-optimal,

(4+€)-approximation time-optimal (O(m

(2+€)-approximation

Algorithm

Crouch et al. [1] Sequential (CS-SEQ)
Crouch et al. [1] Parallel (CS-PAR)
Ghaffari [2] Sequential (G-SEQ) CPU

Substream-Centric (SC-OPT) Hybrid

Our FPGA design,

(4+€)-approximation

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.
[2] M. Ghaffari. Space-optimal semi-streaming for(2+&)-approximatematching. arXiv:1701.03730, 2017.
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PERFORMANCE ANALYSIS
ALGORITHMS CPU implementations of the
original Crouch scheme,

State-of-the-art MWM
algorithm, space-optimal,

(4+€)-approximation time-optimal (O(m

(2+€)-approximation

Algorithm

Crouch et al. [1] Sequential (CS-SEQ)
Crouch et al. [1] Parallel (CS-PAR)
Ghaffari [2] Sequential (G-SEQ) CPU

Substream-Centric (SC-OPT) Hybrid

Our FPGA design, We test both CPU and

(4+€)-approximation

hybrid (FPGA+CPU)
platforms

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.
[2] M. Ghaffari. Space-optimal semi-streaming for(2+&)-approximatematching. arXiv:1701.03730, 2017.
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VARIOUS GRAPHS

Algorithm

Platform

Crouch et al. [1] Sequential (CS-SEQ)
Crouch et al. [1] Parallel (CS-PAR)

Ghaffari [2] Sequential (G-SEQ)
Substream-Centric (SC-OPT)

CPU
CPU
CPU
Hybrid

Parameters:
Blocking size (K) = 32,
#Substreams (L) = 64
HThreads =4, =0.1
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m n

Graph Type

Kronecker  Synthetic power-law ~48n
Gowalla Social network

Flickr Social network

LiveJournal1 Social network

Orkut Social network

Stanford Hyperlink graph
Berkeley Hyperlink graph
arXiv hep-th Citation graph

2%k =1e6,...,21
950,327 196,591
33,140,017 2,302,925
68,993,773 4,847,571
117,184,899 3,072,441
2,312,497 281,903

7,600,595 685,230

352,807 27,770
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Parameters: :

PERFORMANCE ANALYSIS Blocking size (K) = 32, Graph Type m n
VARIOUS GRAPHS #Substreams (L) =64 Kronecker  Synthetic power-law ~48n 2% k=16,...,21
Gowalla Social network 950,327 196,591
#Threads=4,e=0.1 Flickr Social network 33,140,017 2,302,925
Algorithm Platform LiveJournal1 Social network 68,993,773 4,847,571
- Orkut Social network 117,184,899 3,072,441
Crouch et al. [1] Sequential (CS-SEQ) CPU Stanford Hyperlink graph 2,312,497 281,903
Crouch et al. [1] Parallel (CS-PAR) CPU Berkeley — Hyperlink graph 7,600,595 685,230
Ghaffari [2] Sequential (G-SEQ) CPU arXiv hep-th Citation graph 352,807 27,770
Substream-Centric (SC-OPT) Hybrid
20000 - Runtime (lower is better) Throughput (higher is better)
i — CS-PAR
140
SC-OPT G5-5EQ
16000 - ' 120
G-SEQ —
g 100
@ 12000 | CS-PAR — S
£ S
@ o 80
e
E CS-SEQ §
8000 = 60
40
4000
20
0 0
Gowalla Stanf. Berk./Stanf. Flickr LiveJournall Orkut Gowalla Stanf. Berk./Stanf. Flickr LiveJournali Orkut

Graph Graph
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Parameters: . .
PERFORMANCE ANALYSIS Blocking size (K) = 32, Graph Type m n
VARlOUS GRAPHS H#Substreams (L) =64 Kronecker  Synthetic power-law ~48n 2%k =16,...,21
Gowalla Social network 950,327 196,591
#Threads =4,e=0.1 Flickr Social network 33,140,017 2,302,925
Algorithm Platform LiveJournal1 Social network 68,993,773 4,847,571
- Orkut Social network 117,184,899 3,072,441
Crouch et al. [1] Sequential (CS-SEQ) CPU Stanford Hyperlink graph 2,312,497 281,903
Crouch et al. [1] Parallel (CS-PAR) CPU Berkeley ~ Hyperlink graph 7,600,595 685,230
Ghaffari [2] Sequential (G-SEQ) CPU arXiv hep-th Citation graph 352,807 27,770
Substream-Centric (SC-OPT) Hybrid
20000 - Runtime (lower is better) Throughput (higher is better)
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Parameters: . .
PERFORMANCE ANALYSIS Blocking size (K) = 32, Graph Type m n
VARlOUS GRAPHS H#Substreams (L) =64 Kronecker  Synthetic power-law ~48n 2%k =16,...,21
Gowalla Social network 950,327 196,591
#Threads =4,e=0.1 Flickr Social network 33,140,017 2,302,925
Algorithm Platform LiveJournal1 Social network 68,993,773 4,847,571
- Orkut Social network 117,184,899 3,072,441
Crouch et al. [1] Sequential (CS-SEQ) CPU Stanford Hyperlink graph 2,312,497 281,903
Crouch et al. [1] Parallel (CS-PAR) CPU Berkeley ~ Hyperlink graph 7,600,595 685,230
Ghaffari [2] Sequential (G-SEQ) CPU arXiv hep-th Citation graph 352,807 27,770
Substream-Centric (SC-OPT) Hybrid
20000 - Runtime (lower is better) Throughput (higher is better)
Hybrid 140 | — CS-PAR  Hybrid
- SR Gseq
16000 CPU 120 / -
G-SEQ —
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‘@ 12000 CS-PAR —— S
S S
© 3 80
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Even > 4x over 40
4000 - parallel CPU
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PERFORMANCE ANALYSIS
APPROXIMATION (ACCURACY)

Algorithm Platform

Crouch et al. [1] Sequential (CS-SEQ) CPU

Crouch et al. [1] Parallel (CS-PAR) CPU

Ghaffari [2] Sequential (G-SEQ) CPU

Substream-Centric (SC-OPT) Hybrid
Parameters:

#Substreams (L) = 128,
Blocking size (K) = 32,
#threads = 4, #edges = 8M
(Kronecker)



PERFORMANCE ANALYSIS
APPROXIMATION (ACCURACY)

Algorithm Platform
Crouch et al. [1] Sequential (CS-SEQ) CPU
Crouch et al. [1] Parallel (CS-PAR) CPU
Ghaffari [2] Sequential (G-SEQ) CPU
Substream-Centric (SC-OPT) Hybrid

Parameters:

#Substreams (L) = 128,
Blocking size (K) = 32,
#threads = 4, #edges = 8M
(Kronecker)

Approximation ratio (relative)
© o o o9 - -~ =
N e (0)) oo — N e (o))

o
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PERFORMANCE ANALYSIS L: #Substreams (pipelines), Algorithm Platform
. i i Crouch et al. Sequential (CS-S C
ENERGY CONSUMPTION, RESOURCE UTILIZATION 6 Blelding £ o L ] P s Y &y
T: #CPU threads Ghaffari [2] Sequential (G-SEQ) CPU

Substream-Centric (SC-OPT) Hybrid
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Parameters:
L: #Substreams (pipelines),

T: #CPU threads

Algorithm  Parameters Energy Consumption [W]
SC-OPT K=32,L =512 14.789

SC-OPT K=256,L =128 14.789

SC-OPT K=32,L =64 14.657

CS-PAR T'=64 120
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Algorithm Platform
Crouch et al. [1] Sequential (CS-SEQ) CPU
Crouch et al. [1] Parallel (CS-PAR) CPU
Ghaffari [2] Sequential (G-SEQ) CPU
Substream-Centric (SC-OPT) Hybrid

Algorithm  Parameters Energy Consumption [W]
SC-OPT K=32,L =512 14.789
SC-OPT K=256,L =128 14.789
SC-OPT K=32,L =64 14.657
CS-PAR T =64 120
FPGA Algorithm Parameters Used BRAM  Used ALMs
SC-OPT K=32L =512 11.5MBit (21%) 151,998 (32%)

SC-OPT K =256,L = 128 24.8 MBit (45%) 350,556 (82%)

SC-OPT (Hybrid) is ~8x
more power-efficient
than the CPU
implementation
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Algorithm Platform
Crouch et al. [1] Sequential (CS-SEQ) CPU
Crouch et al. [1] Parallel (CS-PAR) CPU
Ghaffari [2] Sequential (G-SEQ) CPU
Substream-Centric (SC-OPT) Hybrid

Algorithm  Parameters Energy Consumption [W]

SC-OPT K=32,L =512 14.789

SC-OPT K=256,L =128 14.789

SC-OPT K=32,L =64 14.657

CS-PAR T =64 120
FPGA Algorithm Parameters Used BRAM  Used ALMs
SC-OPT K=32L =512 11.5MBit (21%) 151,998 (32%)
SC-OPT K =256,L =128 24.8 MBit (45%) 350,556 (82%)

SC-OPT (Hybrid) is ~8x
more power-efficient
than the CPU
implementation

Blocking needs
more resources
(but is tunable!)
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PERFORMANCE ANALYSIS B — BRAM size allocated for matching data structures,
DESIGN SPACE EXPLORATION L — number of substreams (pipelines)
g8 > L 400 MHz 200 MHz

1 2 3 4 5 6 7 8 91011 1213141516 17 18

128 X
256 X
512

X - the highest possible value of B for a given L
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Graph | ) del Prob. Input  Order Reference Approx Space Time Passes Method to
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Graph processing has become an important part of various areas of computer science, including m|
ing, social network analysis, computational sciences, and others. Two key challenges that hinder|
graph processing are (1) sizes of input datasets, reaching trillions of edges, and (2) the growing

updates, with millions of edges added or removed per second. Graph streaming algorithms arg

Arafted ta eliminate thece icertec: The innnt oranh ic naceed ac a4 ctream nf 1indatee allauring a a4 0

Graph processing has become an important part of various areas, such as machine learning, computational
sciences, medical applications, social network analysis, and many others. Various graphs such as web or
social networks may contain up to trillions of edges. The sheer size of such datasets, combined with the

irregular nature of graph processing, poses unique challenges for the runtime and the consumed power. Field
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Graph processing has become an important part of various areas, such as machine learning, computational
sciences, medical applications, social network analysis, and many others. Various graphs such as web or
social networks may contain up to trillions of edges. The sheer size of such datasets, combined with the
irregular nature of graph proce: ses unique challenges for the runtime and the consumed power. Field

(1] M. Crouch and D. M. Stubbs. improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz informatics. 2014.
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Graph processing has become an important part of various areas, such as machine learning, computational
sciences, medical applications, social network analysis, and many others. Various graphs such as web or
social networks may contain up to trillions of edges. The sheer size of such datasets, combined with the
irregular nature of graph processing, poses unique challenges for the runtime and the consumed power. Field
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[1] A. Roy et al. X-stream: Edge-Centric Graph

Processing using Streaming Partitions. ACM MST
Symposium on Operating Syst. 2013.

[2] S. Zhou et al. High-throughput and Energy-
efficient Graph Processing on FPGA. FCCM. 2016.
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Let’s use FPGAs for

Maximum Matchings...

Graph
Problem CPU (MTEPS/Watt) [1] FPGA (MTEPS/Watt) [2]

1.9 30.2
0.5 48.1

0.6 44.3
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Useful model P Engineering networks

...even phllosophy © sdsr swrmrse

hvsics. chemistrv

FOSDEM 2016 / Schedule / Events / Developer rooms / Graph Processing / Modeling a Philosophical Inquiry: from MySQL to a graph database

Modeling a Philosophical Inquiry: from MySQL to a graph
database

The short story of a long refactoring process

A Track: Graph Processing devroom
A Room: AW1.126
Day: Saturday
» Start: 12:45
. mEnd: 13:35

Bruno Latour wrote a book about philosophy (an inquiry into modes of existence). He decided that the paper book was no
place for the humerous footnotes, documentation or glossary, instead giving access to all this information surrounding the
book through a web application which would present itself as a reading companion. He also offered to the community of
readers to submlt thelr contrlbutlons to hisi |an|ry by writing new documents to be added to the platform The first version

sk,



spcl.inf.ethz.ch -
Y @spcl_eth E'HZUI”IC/’)



spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

() )

Most reliable grid = e
network?

Shortest
network path?

Least expensive
computer network?

e Disease spread
channels?

Best phone
connection?

? . vMost relevant @

. ! | :
Collaborator experience? protein: *  Brain
structure?

e Terrorism @

e Most efficient
road network?

Shortest

prevention?

path?




spcl.inf.ethz.ch -
Y @spcl_eth E'HZUI”IC/’)




spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

= What programming

paradigm and why?




spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

* What programming
paradigm and why?

. 'What are the most
promising techniques?




spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

q‘What programming
paradigm and why?

| "What are the most
promising techniques?

Part 1: To understand the domain well,
we conducted a detailed analysis of
graph processing on FPGAs




v owien  ETHZzirich
Part 1: To understand the domain well, we conducted
a detailed analysis of graph processing on FPGAs

& \What programming
paradigm and why?

" . "What are the most
promising techniques?




spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

)

& What programming
paradigm and why?

Part 1: To understand the domain well, we conducted
a detailed analysis of graph processing on FPGAs

=/ /A

f More details
More details .
/|n§25,§6 |n§24§5

More details
in§ 4

\ PR g

P | . What are the most

AN
==
e, e promising techniques?
T

More
Specific details
toe_;raphs General Yes No - - in g %.4.
s
Specific . i .
topFPGAs What is the used cc?nos%ist&tte Natwr? -
programmin | a generic l";p
paradigm, model, g2 TEUE o problems -

or technique?

What are

Graph

Does it scale to scheme the considered
No multiple FPGAs? on FPGA graph problems? - -
7 paradigms
What is the used Where is the whole Graph-related
programming language? input dataset located? applications

theFroa  (SRAM)
VHDL DRAM

On the
FPGA

e

S G /

Mo?e details
in§ 2.6

More details
in§2.6

Fig. 2. The categorization of the considered domains of graph processing on FPGAs.
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Reference Venue Generic  Considered Programming Model  Used Multi  Input ¥
Moriﬁ‘gef (scheme name) Design' Problems? (§ 2.4) or Technique® (§ 2.5) Language FPGAs* Location’ " .
Kapre [71] , spreading
(Cranhstep) FCCM06 O R nation® [s2]  BSP unsp. b6, BRAM 220k What are the most
Weisz [92] , TRW-S*, ) , . . . .
(GraphGen) FCCM'14 O CNN* [112] Vertex-Centric unsp.  J DRAM 110k p r‘o MiI Sl ng tech ] |q u ES?
Kapre [70] , ;
(GraphSoC)  ASAP'TS &, SpMV Vertex-Centric, BSP C++ (HLS) &) BRAM 17k
Dai [40] ,
& (FPGP) FPGA'16 (6] BFS None unsp. (@] DRAM  41.6M
to ¢ F
Oguntebi [93] , BFS, SpMYV, PR, .
soecit| (GraphOps) FPGA’16 (6] Vertex Cover None Max) (HLS) BRAM 16M
0 FPGAS | Zhou [134] FCCM’16 '@, SSSP, WCC, MST Edge-Centric unsp. P DRAM 4.7M
Engelhardt [49] , . Migen .
- (GraVF) FPL’16 '@, BFS, PR, SSSP, CC Vertex-Centric (HLS) L BRAM 128k
Dai [41] ,
< 8 (ForeGraph) FPGA'17 (6] PR, BFS, WCC  None unsp. &) DRAM  41.6M ., T
, Hybrid (Vertex- . aradiems
wid Zhou [136] SBAC-PAD’17 O BFS, SSSP and Edge-Centric) unsp. ] DRAM 10M p g
program , BFS, SSSP, CC, Transactional System-
Ma [85] FPGATT O TC, BC Memory [16, 59] Verilog O DRAM 24M
H ~
e (Léit[r?\]/) FPGA17 oY E\S’[Egj CC Graph Virtualization  Ci+ (HLS) DRAM  124M 15 FPGA graph
Zhou [135] CF’18 6] SpMV, PR Edge-Centric, GAS  unsp. L DRAM  41.6M processing frameworks
Yang [125] report (2018) BFS, PR, WCC None OpenCL " 4.85M
: Yao [127] report (2018) o BFS, PR, WCC None unsp. i BRAM 4.85M
- ~_\ Mo?e detaIils
More details in§2.6
in§2.6
Fig. 2. The categorization of the considered domains of graph processing on FPGAs.
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s (FPG) Reachabilit PAM- Hardwired 4
to{ Ogun{ Mencer [87] FPL’02 g Y None L ] (3-state 88 7744
G SSSP -Bloks Il buffers) 28 M
. ra
tgpﬁfg;\cs Zhoup Bondhugula [27] IPDPS’06 P APSP Dynamic Program. unsp. i DRAM unsp. &M
Engell Sridharan[110] TENCON’09 @ SSSP None VHDL i BRAM 64 88
Gg \ Wang [121] ICFTP’10 L ] BFS None SystemC DRAM 65.5k ™M B12k |
Yes ( '_'a Betkaoui [21] FTP’11 g GC Vertex-Centric Verilog &) DRAM 300k 3M
h Dai [4 Jagadeesh [65] report (2011) @ SSSP None VHDL i Hardwired 128 466 |1 4B
No | (Fore| Betkaoui [22] FPL12 g APSP Vertex-Centric Verilog &) ~ DRAM 38k 72M .
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ang | Lei [80] report (2016) "@ SSSP None unsp. L ] DRAM 23.9M 58.2M |
Yao [1 zhang [129]  FPGA'17 P BFS MapReduce unsp. L) HMC 33.6M 536.9M [69M
Zhang [130] FPGA’'18 iy BFS None unsp. HMC
Kohram [76] ~ FPGA'18 @ BFS None unsp. ") HMC ~25 FPGA accelerators
Besta [13] FPGA’19 ] MM Substream-Centric Verilog L ] DRAM 48M  117M o .
Fig. 2. The categorization of the considered domains of graph processing on FPGAs. fo rs peCIfI Ccad |go rlt h ms
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Ma [g| (CYCraph) 58M
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Hl Lee [7 , SRAM - ~15 FPGA graph
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Zhou [133] ReConFig'15 @ PR Edge-Centric unsp. i DRAM 2.4M 5M 5
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“(...) implementing graph algorithms
efficiently on Pregel-like systems (...) can
be surprisingly difficult and require careful
optimizations.” [1]

Vertex-Centric (aka Pregel-
like) approach is complex for
problems such as matchings,

spanning trees, etc.

[1] S. Salihoglu and J. Widom,
“Optimizing graph algorithms on
Pregel-like systems”. VLDB. 2014.
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Can be used but it was accessing & < What programming

designed with the “batch” parallelization paradigm and why?
analytics in mind become complex

Assumes the whole input

[=1)] L"JIKIUHUII:I SIS TETT) E W B = = JULTOT 39L STE T LT E

graph is accessible... T Twitter (WWW) (VERL Bl v R 41,652,230(1,468,365,182

TF Twitter (MP1) @D=r 52,579,682 1,963,263 821

FR Friendster @D=k 68,349,466 2,586, 147,869

..when in BRAM, size u UK domain (2007) BLOUW=Ew®= 1057153952 3,301,876,564
[ B rely IImItEd ® KONECT graph datasets Graph ¢ Crawl date ¢ Nodes ¢ | Arcs ]
uk-2014 2014 787801471 47614527250
eu-2015 2015 1070557254 91792261600
gsh-2015 2015 988490691 33877399152
Ve rtex_ce nt ri C uk-2014-host 2014 4769354 50829923
» ,, eu-2015-host 2015 11264052 386915963
t - gsh-2015-host 2015 68660142 1802747600
Gather-Applyt uk-2014-tpd 2014 1766010 18244650
Et eu-2015-tpd 2015 6650532 170145510

Scatter P, .’?t = gsh-2015-tpd 2015 30809122 602119716
CC t - Webgraph | coch12 2012 978408098 | 42574107469
-

datasets uk-2002 2002 18520486 298113762
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How to implement Q How to minimize the number of “passes”
efficiently on an FPGA? over edges? (This can get really bad in
the “traditional” edge-centric approach,
e.g., BFS normally needs O(m+n) work,
while in the edge-centric approach it m: #edges in a graph

sequential —how to takes O(D m) work (D passes [1]), @ n: #vertices in a graph
incorporate parallelism?

Processing edgesis = ¢

D: graph’s diameter
(usually ~5-15)

Some processing unit
(CPU, GPU, FPGA, ...)

[1] A. Roy et al. X-stream: Edge-Centric Graph Processing using Streaming Partitions. SOSP. 2013.
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Survey and Taxonomy of Models and Algorithms
for Streaming Graph Processing

Towards Understanding of Modern Graph Processing and Storage ~30 d Igo rlth mSs fo r Strea mi ng
MARC FISCHER, Department of Computer Science, ETH Zurich ( a p p rOXI m a te ) M W M

MACIE) BESTA, Department of Computer Science, ETH Zurich
TAL BEN-NUN, Department of Computer Science, ETH Zurich
TORSTEN HOEFLER, Department of Computer Science, ETH Zurich

Any interesting idea to use . |
ing, social network analysis, computational sciences, and others. Two key challenges that hinder accelerating i n t h e CO nteXt Of F P G AS a n d

graph processing are (1) sizes of input datasets, reaching trillions of edges, and (2) the growing rate of graph
updates, with millions of edges added or removed per second. Graph streaming algorithms are specifically _ 1 1 ?
crafted to eliminate these issues: The input graph is passed as a stream of updates, allowing to add and remove Su bSt ream-ce nt ric p rocessin g *
edges in a simple way. Recent years have seen the development of many such algorithms. However, they differ
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Graph processing has become an important part of various areas of computer science, including machine learn-
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reaming Sliding
Model Vﬂ"ﬂ"}"
No color change 0C€
indicates the informal Graph
"instanceé" Irc-:tlél';\tionship: Sk h
a model "below" MapReduce etchin
is a particular Dynamic Graph I?ﬂodel ' #
instance of Stream Model
a streaming (Adversarial
model Ordering)
Dynamic Graph

Insert-Only tream Model
Model (Adversarial
Ordering)

(Random QOrdering)

Insert-Only
; Model (Random
Adjacency W-Stream Ordering)
List Order Model
Model

T A change of color indicates
the formal "reduction" relationship:
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StreamSort to execute an algorithm that was

Model developed in a model "below"

Fig. 1. The hierarchy of the graph streaming models.
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Insert-only "~ e

— @

Any graph streaming algorithm
belongs to the semi-streaming model ) )
if it uses at most O(n polylog(n)) spaca emi-streaming @

° Adjacency-list

Graph
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~15 models for streaming

graph processing

A change of color indicates ~
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a model "above" can be used
StreamSort to execute an algorithm that was

Model developed in a model "below"
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Fig. 1. The hierarchy of the graph streaming models. ‘ , ‘
register ' ¢ Annotated @ .
streaming e Turnstile




spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

[1] J. Feigenbaum et al. On graph problems in a semi-streaming model. Theoretical CS, 2005

Semi-streaming [1]
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Why semi-streaming, and Semi-streaming [1]

@ what does it mean?
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[1] J. Feigenbaum et al. On graph problems in a semi-streaming model. Theoretical CS, 2005

Covers a general streaming
setting (= works for

0) substream-centric)

Why semi-streaming, and Semi-streaming [1]

@ what does it mean?
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[1] J. Feigenbaum et al. On graph problems in a semi-streaming model. Theoretical CS, 2005

Why semi-streaming, and
? what does it mean?

Semi-streaming [1]

Some processing unit
(CPU, GPU, FPGA, ...)

Use some form
of streaming
(aka edge-
centric)

Covers a general streaming
setting (= works for
0] substream-centric)

spcl.inf.ethz.ch i
v ewien  ETHZzUrich

= What programming
paradigm and why?




spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

[1] J. Feigenbaum et al. On graph problems in a semi-streaming model. Theoretical CS, 2005

* Semi-streaming [1]

Covers a general streaming
setting (= works for
0] substream-centric)

Why semi-streaming, and
? what does it mean?
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0] ?What programming

Y —Assumes O(n log® n) local space that paradigm and why?
can be used for processing an edge =2 —
fits well FPGA BRAM constraints! S(f:gbe, Zfﬁ,eiigi?il)t

Use some form
of streaming
(aka edge-
centric)




spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

[1] J. Feigenbaum et al. On graph problems in a semi-streaming model. Theoretical CS, 2005

Covers a general streaming
setting (= works for

0) substream-centric)

Why semi-streaming, and Semi-streaming [1]

=% what does it mean?
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0) ?'What programming

Y Assumes O(n log® n) local space that paradigm and why?
can be used for processing an edge =2 —
fits well FPGA BRAM constraints! e .

Use some form
of streaming
(aka edge-
centric)

Offers (potentially
powerful) MWM

Y  algorithms
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Research Questions

Which programming

paradigm to use for
(approximate) MWM?
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Research Questions

(approximate) MWM?
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Research Questions
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Research Questions

How to design a high-

performance MWM
algorithm (as dictated
by the used paradigm)?
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Part 3 continued: Analysis of models and
algorithms for streaming graph processing
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Part 3 continued: Analysis of models and
algorithms for streaming graph processing
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Part 3 continued :

Analysis of models and
algorithms for streaming
graph processing




spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

Part 3 continued :
Analysis of models and
algorithms for streaming
graph processing

~30 algorithms for streaming
(approximate) MWM (in the
semi-streaming model)
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Part 3 continued :
Analysis of models and
algorithms for streaming
graph processing

~30 algorithms for streaming
(approximate) MWM (in the
semi-streaming model)

Any interesting ideato use © ¢
in the context of FPGAs and
substream-centric processing?




spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

Part 3 continued :
Analysis of models and
algorithms for streaming
graph processing

~30 algorithms for streaming
(approximate) MWM (in the
semi-streaming model)

Any interesting ideato use © ¢
in the context of FPGAs and
substream-centric processing?

More specifically...
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Reference Approx. Space #Passes Wgh! Gen? Par’ | Part 3 continued .
Analysis of models and
algorithms for streaming
graph processing

~30 algorithms for streaming
(approximate) MWM (in the
semi-streaming model)

Any interesting idea to use . |
in the context of FPGAs and
substream-centric processing?

More specifically...
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Reference

Approx.
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#Passes
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Our

goals:

Part 3 continued :
Analysis of models and
algorithms for streaming
graph processing

~30 algorithms for streaming
(approximate) MWM (in the
semi-streaming model)

Any interesting idea to use . |
in the context of FPGAs and
substream-centric processing?

More specifically...
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Part 3 continued :
Analysis of models and
algorithms for streaming
graph processing

~30 algorithms for streaming
(approximate) MWM (in the
semi-streaming model)

Any interesting idea to use . ‘
in the context of FPGAs and
substream-centric processing?

More specifically...




spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

Reference Approx. Space #Passes Wgh! Gen? Par® |

Our
goals:

Maximize
accuracy

Minimize
local space

Part 3 continued :
Analysis of models and
algorithms for streaming
graph processing

~30 algorithms for streaming
(approximate) MWM (in the
semi-streaming model)

Any interesting idea to use . ‘
in the context of FPGAs and
substream-centric processing?

More specifically...
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Reference Approx. Space #Passes Wgh! Gen? Par’ vv Part 3 continued :
Our Analysis of models and
goals: algorithms for streaming

graph processing

Minimize
Hpasses

Maximize
accuracy

~30 algorithms for streaming
(approximate) MWM (in the
semi-streaming model)

Minimize
local space

Any interesting idea to use . ‘
in the context of FPGAs and
substream-centric processing?

More specifically...
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Part 3 continued :
Analysis of models and
algorithms for streaming
graph processing

~30 algorithms for streaming
(approximate) MWM (in the
semi-streaming model)

Any interesting idea to use . |
in the context of FPGAs and
substream-centric processing?

More specifically...
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Reference Approx. Space #Passes Wgh! Gen? Par’ | Part 3 continued :
Our Analysis of models and
goals: algorithms for streaming

graph processing

Minimize
Hpasses

Accept

general (not
just bipartite)
graphs

Accept
weighted
graphs

Maximize
accuracy

~30 algorithms for streaming
(approximate) MWM (in the
semi-streaming model)

Minimize
local space

Any interesting idea to use . ‘
in the context of FPGAs and
substream-centric processing?

More specifically...
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Reference Approx. Space #Passes Wgh! (‘]en2 Par’ Expose Pa rt 3 continued .

arallelism .
Our i Analysis of models and

(match
goals: Accept substream- algorithms for streaming

P— general (not centric) graph processing
] just bipartite)
weighted

- graphs

Minimize
Hpasses

Maximize
accuracy

~30 algorithms for streaming
(approximate) MWM (in the
semi-streaming model)

Minimize
local space

Any interesting idea to use ?
in the context of FPGAs and

substream-centric processing?

More specifically...
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Reference Approx. Space #Passes Wgh! (‘]en2 Par’ Expose Pa rt 3 continued .

arallelism .
Our i Analysis of models and

(match
goals: Accept substream- algorithms for streaming

P— general (not centric) graph processing
] just bipartite)
weighted

- graphs

Minimize
Hpasses

Maximize
accuracy

~30 algorithms for streaming
(approximate) MWM (in the
semi-streaming model)

Minimize
local space

Any interesting idea to use ’
in the context of FPGAs and

substream-centric processing?

More specifically...

[17] 4+¢ O(n polylog (1)) 1 O 4 0
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Research Questions

How to design a high-

performance MWM
algorithm (as dictated
by the used paradigm)?
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Research Questions
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Research Questions

What is the HW FPGA
design that ensures
high performance?
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Substream-Centric MWM: FPGA optimizations

Centaur framework (described in more detail in Evaluation, § 5)

3
‘I Accelerator Functional Unit (AFU)
Starting Me
_— rger Pointer Requester Stream of edges Matching Bits

—aCTe,  dueue (mergin Request the pointers ?erg(:ni:ﬁ;g:;twom %% Requester: request Matching Bits Acknowledgement

network to the rows of the using a binary tree in lexicographic v-matching bits Writ 9 it Receiver: receive
— T details adjacency matrix order o for edges matcﬁ?r.l wlralit?s acknowledgements

(1) (pointer_data) | | 0O Lo of mat%hmg bits that
ave been written
— T \ .- Queue \part 1 Matching Bits @
9 Pointer Receiver SEenc DL Recel\;erl; ; ref,‘?ti"e |
v-matching bits
—Ez. ecRRchTiEE | o | lexicographic | @) Tom DRAM Queue OBits Receiver. Dits Requester
P he four Gueee Edge Receiver order | | Receive matching Request matching
q Receive a new edge, ___ bits for the next bits for the next
—ID Y v put them into one Bit-Q — Edge Processor epoch for BRAM epoch for BRAM
5 5 of the queues / HEUe Process edges,
ueue -+« Queue . _____ update
— + + Part 2 / Pending-Queue e values Edge Writer
FPGA (§4.4.3): ) Writes edges
& Edge Requester modules that Derive L 1‘ back to DRAM @
Ask Tor t"%“’ e{’,?fﬁ' us§ pointers enerate tﬂle m:gc'm#n; BRAM Valid- FPGA modules that compute
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Substream-Centric MWM: FPGA optimizations



spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

Substream-Centric MWM: FPGA optimizations
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Substream-Centric MWM: FPGA optimizations

Blocking / Tiling

Prefetching Pipelining
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Substream-Centric MWM: FPGA optimizations

Blocking / Tiling

They are often used in graph e i
Prefetching processing schemes on FPGAs; P g

we apply them as well.
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Blocking / Tiling

Substream-Centric MWM: FPGA optimizations

They are often used in graph
processing schemes on FPGAs;
we apply them as well.
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THE SPACE OF SUBSTREAM-CENTRIC

Performance

Accuracy
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Research Questions

What is the HW FPGA
design that ensures
high performance?
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Research Questions
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Research Questions

What is the ultimate

performance, power

consumption, and the
related tradeoffs?
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PERFORMANCE ANALYSIS Parameters:
VARIOUS GRAPHS Blocking size = 32, #Substreams = 64

H#Threads=4,e=0.1

Algorithm Platform
Crouch et al. [1] Sequential (CS-SEQ) CPU
Crouch et al. [1] Parallel (CS-PAR) CPU
Ghaffari [2] Sequential (G-SEQ) CPU
Substream-Centric (SC-OPT) Hybrid

Hybrid Hybrid

. yd

CPU
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PERFORMANCE ANALYSIS Parameters: Graph _ Type m n
i ize = = Kronecker  Synthetic power-law ~48n 2% k=16,...,21
VARIOUS GRAPHS Blocking size = 32, #Substreams = 64 Gowalla Social network 950,327 196,591
H#Threads=4,e=0.1 Flickr Social network 33,140,017 2,302,925
Algorithm Platform LiveJournal1 Social network 68,993,773 4,847,571
- Orkut Social network 117,184,899 3,072,441
Crouch et al. [1] Sequential (CS-SEQ) CPU Stanford Hyperlink graph 2,312,497 281,903
Crouch 'et al. [1] Par?:llle[ (CS-PAR) CPU Berkeley Hyperlink graph 7,600,595 685,230
Ghaffari [2] Sequential (G-SEQ) CPU arXiv hep-th Citation graph 352,807 27,770
Substream-Centric (SC-OPT) Hybrid
20000 - Runtime (lower is better) Throughput (higher is better)
Hybrid 140 | — CS-PAR  Hybrid
SC-OPT OSEQY Gseq
16000 f CPU - 120 - -SEQ
G-SEQ — SC-OPT
\ =4 100 CPU S——
212000 r CS-PAR — S
E S
) o 80
c
E CS-SEQ §
8000 S 60
40
4000
20
0 0
Gowalla Stanf. Berk./Stanf. Flickr LiveJournall Orkut Gowalla Stanf. Berk./Stanf. Flickr LivedJournall Orkut

Graph Graph
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PERFORMANCE ANALYSIS Parameters: Graph  Type m n
i i7e = = Kronecker  Synthetic power-law ~48n 2%k =16,...,21
VARIOUS GRAPHS Blocking size = 32, #Substreams = 64 Gowalla Social network 950,327 196,591
H#Threads=4,e=0.1 Flickr Social network 33,140,017 2,302,925
Algorithm Platform LiveJournal1 Social network 68,993,773 4,847,571
- Orkut Social network 117,184,899 3,072,441
Crouch et al. [1] Sequential (CS-SEQ) CPU SC-OPT secures Stanford  Hyperlink graph 2,312,497 281,903
Crouch et al. [1] Parallel (CS-PAR) CPU Berkeley Hyperlink graph 7,600,595 685,230
Ghaffari [2] Sequential (G-SEQ) CPU . arXiv hep-th Citation graph 352,807 27,770
Substream-Centric (5C-OPT) Hybrid highest performance
20000 - Runtime (lower is better) Throughput (higher is better)
Hybrid 140 | — CS-PAR  Hybrid
CS-SEQ
: —Gseq [/
16000 CPU Ji: OPT 120 G-SEQ

e

@ 100
% 12000 o3
(4b])
(]
E S
= 8000 = 60

40
4000
20
0 0
Gowalla Stanf. Berk./Stanf. Flickr LivedJournali Orkut Gowalla Stanf. Berk./Stanf. Flickr LivedJournal1l Orkut

Graph Graph
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PERFORMANCE ANALYSIS
VARIOUS THREAD (CPU) COUNTS

Algorithm

Crouch et al. [1] Sequential (CS-SEQ)
Crouch et al. [1] Parallel (CS-PAR)

Ghaffari [2] Sequential (G-SEQ)
Substream-Centric, no blocking (SC-SIMPLE)
Substream-Centric, with blocking (SC-OPT)
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PERFORMANCE ANALYSIS Blocking size = 32, #Substreams = 64
VARIOUS THREAD (CPU) COUNTS #edges = 16M (Kronecker), € = 0.1
Algorithm

Crouch et al. [1] Sequential (CS-SEQ)
Crouch et al. [1] Parallel (CS-PAR)

Ghaffari [2] Sequential (G-SEQ)
Substream-Centric, no blocking (SC-SIMPLE)
Substream-Centric, with blocking (SC-OPT)

14000 |- Runtime (lower is better) Throughput (higher is better)
140 ¢ 4 4 © © © © ©
12000 ¢ SC-OPT
CS-PAR 120 |
10000
2100+ G-SEQ

0 ()
£ 8000 fe2
° © 80
£ 5
= =

6000 = g0l

4000 40 -

2000 20

0 0 e

1 2 4 8 16 32 64
Threads (T) Threads (T)
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PERFORMANCE ANALYSIS Blocking size = 32, #Substreams = 64
VARIOUS THREAD (CPU) COUNTS #edges = 16M (Kronecker), € = 0.1
Algorithm

Crouch et al. [1] Sequential (CS-SEQ)
Crouch et al. [1] Parallel (CS-PAR)

Ghaffari [2] Sequential (G-SEQ)
Substream-Centric, no blocking (SC-SIMPLE)
Substream-Centric, with blocking (SC-OPT)

14000 |- Runtime (lower is better) Throughput (higher is better)
A A D A A
140 + ¢ A4 A4 v v A4 O
12000
CS-PAR 120 -
10000
2 100 | G-5EQ
) o
£ 8000 =)
o e} © 807
£ o
= - =
6000 = g0l
4000 40 -
2000- G-SEQ 20

o

1 2 4 8 16 32 64
Threads (T) Threads (T)
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PERFORMANCE ANALYSIS
VARIOUS BLOCKING SIZE (K) AND #SUBSTREAMS (L)

Algorithm

Crouch et al. [1] Sequential (CS-SEQ)
Crouch et al. [1] Parallel (CS-PAR)

Ghaffari [2] Sequential (G-SEQ)
Substream-Centric, no blocking (SC-SIMPLE)
Substream-Centric, with blocking (SC-OPT)
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PERFORMANCE ANALYSIS
VARIOUS BLOCKING SIZE (K) AND #SUBSTREAMS (L)

Algorithm

Crouch et al. [1] Sequential (CS-SEQ)
Crouch et al. [1] Parallel (CS-PAR)

Ghaffari [2] Sequential (G-SEQ)
Substream-Centric, no blocking (SC-SIMPLE)

Substream-Centric, with blocking (SC-OPT) Blocking size (K) = 32, #threads =4, #Substreams (L) = 128, #threads = 4,
#edges = 16M (Kronecker), € = 0.1 #edges = 16M (Kronecker), € = 0.1
200 Throughput (higher is better) 180 ' Throughput (higher is better)
180 | ]
160 - SC OP\T
160
140 f
_40f .
o 2 420
® 120 f o
g g 100 G-SEQ
® 100+ o L \ . e
2 2 80t F—F "+ !
60
o7 1 CS-PAR
ool 20| cs-SE\Q |
0 1 | | | " = = i 0 é e e e . é 6 é 6 é é
— N
1 2 4 8 16 32 64 128 256 512 order 1 2 4 8 16 32 64 128 256

Maximum Matchings (L) Block Size (K)
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PERFORMANCE ANALYSIS
VARIOUS BLOCKING SIZE (K) AND #SUBSTREAMS (L)

Algorithm

Crouch et al. [1] Sequential (CS-SEQ)
Crouch et al. [1] Parallel (CS-PAR)

Ghaffari [2] Sequential (G-SEQ)
Substream-Centric, no blocking (SC-SIMPLE)

Substream-Centric, with blocking (SC-OPT) Blocking size (K) = 32, #threads =4, #Substreams (L) = 128, #threads = 4,
#edges = 16M (Kronecker), € = 0.1 #edges = 16M (Kronecker), € = 0.1
200 r Throughput (higher is better) 180 ' Throughput (higher is better)
180
160 |
1007 W 140
40} ¢ —— )
) . 120
S 120 A —A S
g ‘ g 100 G-SEQ
® 100 - —— 2 L \ L
2 \—\_—‘ 2 80 F——F +
S 80y « CS-PAR = ol
60 f /
o1 1 CS-PAR
ool 20| CS-SE\Q |
. — . g b—b—————0—b—06—%

1 1 1 o a No
1 2 4 8 16 32 64 128 256 512 order ' 2 4 8 16 32 64 128 256
Maximum Matchings (L) Block Size (K)
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PERFORMANCE ANALYSIS Ateerithm

Crouch et al. [1] Sequential (CS-SEQ)
Crouch et al. [1] Parallel (CS-PAR)
APPROXIMATION Ghaffari [2] Sequential (G-SEQ)
Substream-Centric, no blocking (SC-SIMPLE)
Substream-Centric, with blocking (SC-OPT)
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PERFORMANCE ANALYSIS Ateerithm

Crouch et al. [1] Sequential (CS-SEQ)
Crouch et al. [1] Parallel (CS-PAR)
APPROXIMATION Ghaffari [2] Sequential (G-SEQ)
Substream-Centric, no blocking (SC-SIMPLE)
Substream-Centric, with blocking (SC-OPT)

#Substreams (L) = 128, Blocking size (K) = 32, Blocking size (K) = 32, #threads =4,
#threads = 4, #edges = 8M (Kronecker) #Substreams (L) =128, =0.1
| & | Approximation (lower is better) G-SEQ 6  Approximation (lower is better)
. \ .

1.4} = 40 — ——4% —% N =
[ =
Z12f 812f \ G-SEQ
o = CS-SEQ,
o 1p CS-SEQ g 1 CS-PAR
g | CSPAR, - SC-OPT
c 08 SC-SIMPLE, S08Ff
= SC-OPT s
Eosr X067
= Each data point is the ratio | & - .
S04y of the exact MWM size to the | < 0.4 I?ach data point is the ratio

imated MWM size. of the exact MWM size to the
approxima: - approximated MWM size
0.21 Exact-matenings are derived 0.27 Exact matchings are derived
with Lemon Graph Library with Lemon Graph Library
0 | | | | 1 1 1 1 1 1 1 1 0 | | | | | |

0.010.05 0.1 0.2 03 0.4 05 04 0.6 0.7 0.8 0.9 K16 K17 K18. K19 K20 K21
€ Graph
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PERFORMANCE ANALYSIS Ateerithm

Crouch et al. [1] Sequential (CS-SEQ)
Crouch et al. [1] Parallel (CS-PAR)
APPROXIMATION Ghaffari [2] Sequential (G-SEQ)
Substream-Centric, no blocking (SC-SIMPLE)
Substream-Centric, with blocking (SC-OPT)

#Substreams (L) = 128, Blocking size (K) = 32, Blocking size (K) = 32, #threads =4,
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Survey and Taxonomy of Models and Algorithms
for Streaming Graph Processing

Towards Understanding of Modern Graph Processing and Storage

MARC FISCHER, Department of Computer Science, ETH Zurich z
MACIE] BESTA, Department of Computer Science, ETH Zurich g
TAL BEN-NUN, Department of Computer Science, ETH Zurich 8
TORSTEN HOEFLER, Department of Computer Science, ETH Zurich e

Graph processing has become an important part of various areas of computer science, including machine learn-
ing, social network analysis, computational sciences, and others. Two key challenges that hinder accelerating
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VARIOUS #SUBSTREAMS (L)

Algorithm Platform

Crouch et al. [1] Sequential (CS-SEQ) CPU

Crouch et al. [1] Parallel (CS-PAR) CPU

Ghaffari [2] Sequential (G-SEQ) CPU

Substream-Centric (SC-OPT) Hybrid
Parameters:

Blocking size (K) = 32,
#threads =4,

#edges = 16M
(Kronecker), e = 0.1

#Substreams (pipelines)
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140 —s o
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