e e A

LA T e R . it B o i Linf.ethz.ch
ETH urich L el ey PR ot DINFK

MACIEJ BESTA, MARC FISCHER, TAL BEN-NUN, JOHANNES DE FINE LICHT, TORSTEN HOEFLER

Substream-Centric Maximum Matchings on FPGA

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Large graphes...

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Large graphes...

spcl.inf.ethz.ch L
v e ETHZUrich

Large graphes...

Why do we care?

spcl.inf.ethz.ch e x
v e en ETHzUrich

Large graphs... QEAEN el

spcl.inf.ethz.ch s
v e en ETHzUrich

Large graphs... BSEECNglelo[

Why do we care?

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Large graphes...

Why do we care?

Social networks

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

o Og;h—g ,”O o pul e o A‘... o ;3
G%_%FY- —Q;-o——o o -0 ¢ ¢

o==0 é N

—p o 3 3 3 g%
&JL &p i K
¥ 4 \ #@ — | —])
== |
Q@
®e

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Large graphs... BSEECNglelo[

Engineering networks

(. e
Biological networks 1““‘"‘ L

® P

. P (I - ":.‘,: # .,‘_:.‘ . .: sends Eﬁv@@
Social networks (s Fodge = o os

Sty
widne

[%
yoeric
24 was
® oyrecnca e g dhetasouaek sod @
2 P e I
PR, <~ _.m-xu.un’
." . {00 Ko s6d
e A

|7 X e 38
o Tibaommanncee IR

ot aod
progane-12.3 r.amm.\m

mosne s

4
PR S5 = s M TN e S ~
Why do we care?) WL ‘ o : o 5 em
‘ § Physics, chemistry SS8& Gt

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Large graphs... BSEECNglelo[
~

:
Biological networks 1“

&
My

H

Social networks

“Tae es

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Large graphs... QEAEN el

N0
A %‘ v,,,*M\\

0 \\\ DD "/ X0
‘\“‘ "0' ‘\“\"'5
!

0"‘ ‘
/4,/
/

A
A(‘“ (\\:
\ A

AP

Large graphes...

Why do we care?

spcl.inf.ethz.ch

Y @spcl_eth E'quriCh

Useful model P Engineering networks

...even phllosophy © sdsr swrmrse

hvsics. chemistrv

FOSDEM 2016 / Schedule / Events / Developer rooms / Graph Processing / Modeling a Philosophical Inquiry: from MySQL to a graph database

Modeling a Philosophical Inquiry: from MySQL to a graph
database

The short story of a long refactoring process

A Track: Graph Processing devroom
A Room: AW1.126
Day: Saturday
» Start: 12:45
. mEnd: 13:35

Bruno Latour wrote a book about philosophy (an inquiry into modes of existence). He decided that the paper book was no
place for the humerous footnotes, documentation or glossary, instead giving access to all this information surrounding the
book through a web application which would present itself as a reading companion. He also offered to the community of
readers to submlt thelr contrlbutlons to hisi |an|ry by writing new documents to be added to the platform The first version

sk,

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Large graphes...

spcl.inf.ethz.ch oo o
v enien ETHZzrich

Large graphes...

One particularly
important problem

spcl.inf.ethz.ch oo o
v enien ETHZzrich

Large graphes...

One particularly
important problem

spcl.inf.ethz.ch oo o
v enien ETHZzrich

Large graphes...

One particularly
important problem

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Large graphes...

One particularly
important problem

—
— —
—

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Large graphes...

One particularly
important problem

—
— —
—

spcl.inf.ethz.ch oo o
v enien ETHZzrich

Large graphes...

One particularly
important problem

spcl.inf.ethz.ch oo o
v enien ETHZzrich

Large graphes...

One particularly
important problem

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

~.
$§s. Matching: A set of edges such that no
®
'-0'\5 W, two edges share a common vertex

One particularly o Sime oo LRI
important problem . Maximum Weighted Matching (MWM): A matching
L

. , such that the sum of the edge weights is maximized
» .)“ v&“u("\’* ;: ,:f‘:‘ v v:'*- 2 o
1al8:8 G goe P el

Large graphs...

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

~.
$§s. Matching: A set of edges such that no
®
'-0'\5 W, two edges share a common vertex

One particularly L05° Bine. o KT
important problem - Maximum Weighted Matching (MWM): A matching
L

such that the sum of the edge weights is maximized

7 N '
;«"\‘\. A '} Py

Large graphs...

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

~.
$§s. Matching: A set of edges such that no
®
'-0'\5 W, two edges share a common vertex

One particularly L05° Bine. o KT
important problem - Maximum Weighted Matching (MWM): A matching
L

such that the sum of the edge weights is maximized

7 N '
;«"\‘\. A '} Py

Large graphs...

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

~.
$§s. Matching: A set of edges such that no
®
'-0'\5 W, two edges share a common vertex

One particularly L05° Bine. o KT
important problem - Maximum Weighted Matching (MWM): A matching
L

such that the sum of the edge weights is maximized

7 N '
;«"\‘\. A '} Py

Large graphs...

@ Weight = 30

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

~.
$§s. Matching: A set of edges such that no
®
'-0'\5 W, two edges share a common vertex

One particularly L05° Bine. o KT
important problem - Maximum Weighted Matching (MWM): A matching
L

such that the sum of the edge weights is maximized

% 2N ~
&«"\‘\ o , “,: B

Large graphes...

@ Weight =30 @ Weight = 15

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

~.
Q& Matching: A set of edges such that no

4
'-:'\? T e two edges share a common vertex
‘ o8 e ° © & RERY

Maximum Weighted Matching (MWM): A matching

such that the sum of the edge weights is maximized

% 2N ~
&“’\\ d , “,: B

Large graphes...

One particularly
important problem

// S 3
75 / i /
/ ; : /
// L € /
/
e > R /
» /
N .

@ @ Weight =30 @ Weight = 15

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

~.
$§s. Matching: A set of edges such that no
@
N '*'\5 * e two edges share a common vertex

o oPR% °e & RN
. Maximum Weighted Matching (MWM): A matching
such that the sum of the edge weights is maximized

: Sqy 2N, A J i Y C
iSO ’* T

o A 3 - ®
. ’ " 2 ‘\ ' { p
ok X a0 :

Large graphes...

One particularly
important problem

/
/

5
0

/
7 /
/
J/
/5
/
1 /

@ @ Weight =30 @ Weight = 15

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

~.
$§s. Matching: A set of edges such that no
@
N '*'\5 * e two edges share a common vertex

o oPR% °e & RN
. Maximum Weighted Matching (MWM): A matching
such that the sum of the edge weights is maximized

: Sqy 2N, A J i Y C
iSO ’* T

o A 3 - ®
. ’ " 2 ‘\ ' { p
ok X a0 :

Large graphes...

One particularly
important problem

/
/

5
0

/
7 /
/
J/
/5
/
1 /

@ @ Weight =30 @ Weight = 15

spcl.inf.ethz.ch -
Y @spcl_eth E'HZUFIC/’)

spcl.inf.ethz.ch L
v e ETHZUrich

Why do we care?

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Schedule

Scheduling

Why do we care?

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Schedule
m THU

Scheduling

Why do we care?

[Quantum] error

correcting codes
Quantum

Crrop=Correction

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Schedule

Scheduling

Why do we care?

[Quantum] error
correcting codes

Quantum
CreCP=C e ction

Transplant matching

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Schedule

Salesman
Problem

Scheduling

Why do we care?

[Quantum] error
correcting codes

Quantum
CreCP=C e ction

Transplant matching

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Schedule

S Many, many
Traveling & others...

Salesman |
Problem

Scheduling

Why do we care?

[Quantum] error

correcting codes
Quantum

Crrop=Correction

Transplant matching

spcl.inf.ethz.ch

ETH:zurich

L 4 @spcl_eth

Why do we care?

Quantum

[Quantum] error
correcting codes

Crrop=Correction

“We live in a system
of approximations” —
Ralph Waldo Emerson

Many, many
others...

Transplant matching

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Research Questions

v on o ETHzUrich
Research Questions

Which programming paradigm

to use for (approximate) MWM
(and other graph problems)?

v on o ETHzUrich
Research Questions

Which programming paradigm

to use for (approximate) MWM
(and other graph problems)?

How to design a high-

performance MWM
algorithm (as dictated
by the used paradigm)?

spcl.inf.ethz.ch

L 4 @spcl_eth

ETH:zurich

Research Questions

Which programming paradigm
to use for (approximate) MWM
(and other graph problems)?

How to design a high-

performance MWM
algorithm (as dictated
by the used paradigm)?

What is the HW FPGA
design that ensures
high performance?

spcl.inf.ethz.ch

L 4 @spcl_eth

ETH:zurich

Research Questions

Which programming paradigm
to use for (approximate) MWM
(and other graph problems)?

How to design a high-
performance MWM
algorithm (as dictated
by the used paradigm)? v
What is the HW FPGA
design that ensures

high performance?

What is the ultimate

performance, power

consumption, and the
related tradeoffs?

v on o ETHzUrich
Research Questions

Which programming paradigm

to use for (approximate) MWM
(and other graph problems)?

spcl.inf.ethz.ch -
Y @spcl_eth E'HZUI”IC/’)

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

= What programming
paradigm and why?

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

& What programming
paradigm and why?

Part 1: Seeking “the best paradigm?”,
we conducted a detailed analysis of
graph processing on FPGAs

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

= What programming
paradigm and why?

spcl.inf.ethz.ch

ETH:zurich

L 4 @spcl_eth

Reference Venue Generic Considered Programming Model Used Multi Input 4 +
(scheme name) Design' Problems? (§ 2.4) or Technique® (§ 2.5) Language FPGAs® Location® " m W h at p rog ramm i N g
Kapre [71] spreading
(GraphStep) FCCM06 3 activation® [82] BSP unsp. (6] BRAM 220k 550k pa rad |gm 3 nd Why?
Weisz [92] FCCM'14 Y TRW-5, Vertex-Centric ns e DRAM 110k 221k i
(GraphGen) CNN* [112] X : unsp-
Kapre [70] ASAP'15 SpMV Vertex-Centric, BSP C++ (HLS) €3 BRAM 17k 126k
(GraphSoC) p ertex-Centric, ++ () |
Dai [40]
(FPGP) FPGA'16 (&) BFS None unsp. (6] DRAM 41.6M 14B
Oguntebi [93] , BFS, SpMV, PR,
(GraphOps) FPOA16 &) Vertew Cover None Max] (HLS) i@ BRAM 16M 128M
Zhou [134] FCCM’16 O SSSP, WCC, MST Edge-Centric unsp. ip DRAM 47M 65.8M
Engelhardt [49] , . Migen ;
(GraVF) FPL'16 L& BFS, PR, SSSP, CC Vertex-Centric (HLS) e BRAM 128k 512k
Dai [41]
(ForeGraph) FPGA'17 @] PR, BFS,WCC None unsp. (&) DRAM 41.6M 1.4B

Hybrid (Vertex-
Zhou [136] SBAC-PAD’17 &) BFS, SSSP and Edge-Centric) unsp. ip DRAM 10M 160M
BFS, SSSP, CC, Transactional System-

Ma [85] FPGA’17 (4] TC. BC Memory [16, 59] Verilog (4] DRAM 24M 58M |
Lee [79] BFS, PR, CC, . o ‘
(ExtraV) FPGA'17 '@ AT* [60] Graph Virtualization ~ C++ (HLS) @ DRAM 124M 1.8B
Zhou [135] CF’18 (4] SpMV, PR Edge-Centric, GAS unsp. e DRAM 41.6M 14B|
Yang [125] report (2018) &3 BFS, PR, WCC None OpenCL @ 485M 69M |
Yao [127] report (2{}18) (4] BFS, PR, WCC None unsp. g BRAM 4.85M 69M

~15 FPGA graph

processing frameworks

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Reference Venue Generic Considered Programming Model Used Multi Input nt ot woy~
(scheme name) Design' Problems? (§ 2.4) or Technique® (§ 2.5) Language FPGAs® Location® ® W h at p rog ramm i N g
Kapre [71] , spreading
(GraphStep) ~ FCCM06 @] activation® [82] BSP unsp. (6] BRAM 220k 550k pa rad |gm 3 nd Why?
Weisz [92] FCCM'14 Y TRW-5, Vertex-Centric ns e DRAM 110k 221k i
(GraphGen) CNN* [112] X : unsp-
Kapre [70] ASAP’T
(GraphSoC) Babb [4] report (1996) @ SSSP None Verilog (6} Hardwired 512 2051
Dai [40] EPGA’1 Dandalis [43] report (1999) @ SSSP None unsp. (6} Hardwired 2048 32k
(FPGP) Tommiska [116] report (2001) @ SSSP None VHDL P BRAM 64 4096
Oguntebi [93] , ") Hardwired :
(GraphOps) FPGA™Y Mencer [87] FPL’02 g ggg;hablhty’ None i,;l(\)/\ks I L (3-state 88 7744
Zhou [134] FCCM’ buffers)
Engelhardt [49] Bondhugula [27] IPDPS’06 ip APSP Dynamic Program. unsp. ip DRAM unsp.
Gg VF FPL’16| Sridharan[110] TENCON’09 @ SSSP None VHDL P BRAM 64 88
(GraVF) Wang [121] ICFTP’10 @ BFS None SystemC DRAM 655k 1M
Dai [41] EPGA 1 Betkaoui [21] FTP'11 L) GC Vertex-Centric Verilog € DRAM 300k 3M
(ForeGraph) Jagadeesh [65] report (2011) @ SSSpP None VHDL g Hardwired 128 466
Zhou [136] SBAC-H Betkaou? [22] FPL'12 p APSP Vertex—Centr?c Ver!log (@] ~ DRAM 38k 72M
Betkaoui[23] ASAP’12 ip BFS Vertex-Centric Verilog (6} DRAM 16.8M 1.1B
Ma [85] Fpga| Attia 2] IPDPS'14 g BFS Vertex-Centric VHDL O DRAM 84M 536M |
(CyGraph)
. . DRAM,
}—Eit[r?\]/) FPGA’ 1 Ni[91] report (2014) @ BFS None Verilog L SRAM 16M 512M
Zhou [135] CF’18 Zhou [132] IPDPS’15 p SSSpP None unsp. L] DRAM 1M unsp.
Y, 125 Zhou [133] ReConFig'15 @ PR Edge-Centric unsp. L] DRAM 2.4M 5M
ang [125] report { ymuroglu [117] FPL'15 L) BFS None Chisel ~DRAM 2.IM 65M
Yao [127] report (| e [80] report (2016) @ SSSP None unsp. iy DRAM 23.9M 58.2M
Zhang [129] FPGA'17 L BFS MapReduce unsp. L] HMC 33.6M 536.9M ~
Zhang [130] FPGA'18 L BFS None unsp. HMC 15 FPGA gra ph
Kohram [76] FPGA’18 g BFS None unsp. i HMC .
Besta [13] FPGA’19 ip MM Substream-Centric Verilog ip DRAM 4.8M 117M p rocessi ng fra mewo rks

~25 FPGA accelerators

for specific algorithms

spcl.inf.ethz.ch

ETH:zurich

L 4 @spcl_eth

Reference v Generic Considered Programming Model Used Multi Input 4 +
(scheme name) enue Design' Problems? (§ 2.4) or Technique® (§ 2.5) Language FPGAs® Location® " m
Kapre [71] , spreading
(GraphStep) FCCM06 activation® [s2] BSP unsp. (4] BRAM 220k 550k
?c/.erl:; Eéln) FCCM'14 Y I:m/*s[; 2] Vertex-Centric unsp. P DRAM 110k 221k
Kapre [70] ASAP’T
(GraphSoC) Babb [4] report (1996) @ SSSP None Verilog (6} Hardwired 512 2051
Dai [40] EPGA’1 Dandalis [43] report (1999) @ SSSP None unsp. (6} Hardwired 2048 32k
(FPGP) Tommiska [116] report (2001) @ SSSP None VHDL P BRAM 64 4096
Oguntebi [93 , e) Hardwired
(C:graph0|[)s)] FPGA™Y Mencer [87] FPL’02 g ggg;hablhty’ None i,;l(\)/\ks I L (3-state 88 7744 |
Zhou [134] FCCM’ , , buffers)
Engelhardt [49] Bondhugula [27] IPDPS’06 g APSP Dynamic Program. unsp.] DRAM unsp.
FPL’16| Sridharan[110] TENCON’09 "@ SSSP None VHDL P BRAM 64 88
(GraVF) Wang [121] ICFTP’10 @ BFS None SystemC DRAM 655k 1M
Dai [41] EPGA 1 Betkaoui [21] FTP'11 L) GC Vertex-Centric Verilog € DRAM 300k 3M
(ForeGraph) Jagadeesh [65] report (2011) @ SSSpP None VHDL g Hardwired 128 466
Zhou [136] SBAC-H Betkaou? [22] FPL'12 p APSP Vertex—Centr?c Ver!log (@] ~ DRAM 38k 72M
Betkaoui[23] ASAP’12 ip BFS Vertex-Centric Verilog (6} DRAM 16.8M 1.1B
Ma [85] Fpga| Attia 2] IPDPS’'14 i@ BFS Vertex-Centric VHDL &Y DRAM 8.4M 536M
(CyGraph)
}—Eit[r?\]/) FPGA’ 1 Ni[91] report (2014) @ BFS None Verilog L SDIE:‘I\T’ 16M 512M
Zhou [135] CF’18 Zhou [132] IPDPS’15 p SSSpP None unsp. L] DRAM 1M unsp.
Zhou [133] ReConFig'15 @ PR Edge-Centric unsp. L] DRAM 2.4M 5M
Yang [125] report { ymuroglu [117] FPL'15 L) BFS None Chisel ~DRAM 2.IM 65M
Yao [127] report (| e [80] report (2016) @ SSSP None unsp. iy DRAM 23.9M 58.2M
Zhang [129] FPGA'17 L BFS MapReduce unsp. L] HMC 33.6M 536.9M
Zhang [130] FPGA'18 p BFS None unsp. HMC
Kohram [76] FPGA’18 g BFS None unsp. i HMC
Besta [13] FPGA’19 ip MM Substream-Centric Verilog ip DRAM 4.8M 117M

»

‘What programming

paradigm and why?

Key techniques, paradigms,

challenges, features, ...

~15 FPGA graph
processing frameworks

~25 FPGA accelerators

for specific algorithms

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Reference Venue Generic Considered Programming Model Used Multi Input nt ot p
(scheme name) Design'! Problems? (§ 2.4) or Technique® (§ 2.5) Language FPGAs* Location’ ® 1
8 q at programming
Kapre [71] spreading
FCCM06 C e BSP unsp. 6] BRAM 220k 550k .
G hSt tivat 82
(GraphStep) activation” [52] paradigm and why?
Weisz [92] , TRW-S7, .
FCCM’'14 _ Vertex-Centric unsp. DRAM 110k 221k
(GraphGen)
Kapre [70] ASAP’T
(GraphsoC) Selected parts are in the FPGA Harduired 512 2051
Dai [40] EPGA'1) Hardwired 2048 32k
(FPGP) . . BRAM 64 4096
Oguntebi [93] o paper, the rest is in... Hardwired |
(GraphOps) (3-state 88 7744
Zhou [134] FCCM’ buffers)
Engelhardt [49] Bondhugula [27] IPDPS’06 ip APSP Dynamic Program. unsp. ip DRAM unsp.
Gg VF FPL’16| Sridharan[110] TENCON’09 "@ SSSP None VHDL P BRAM 64 88
(GraVF) Wang [121] ICFTP’10 @ BFS None SystemC DRAM 655k 1M
Dai [41] EPGA 1 Betkaoui [21] FTP'11 L) GC Vertex-Centric Verilog € DRAM 300k 3M
(ForeGraph) Jagadeesh [65] report (2011) @ SSSpP None VHDL g Hardwired 128 466
Zhou [136] SBAC-|| Betkaoui [22] FPL'12 p APSP Vertex-Centric Verilog (@] ~ DRAM 38k 72M
Betkaoui[23] ASAP’12 ip BFS Vertex-Centric Verilog (6} DRAM 16.8M 1.1B
Ma [85] FPGA’1 ?ét;z[rszh) IPDPS’'14 "p BFS Vertex-Centric VHDL O DRAM 84M 536M | : .
Lee [79] DRAM Key techniques, paradigms,
(ExtraV) FPGA’ 1 Ni[91] report (2014) @ BFS None Verilog L SRAM 16M 512M
xtra
Zhou [135] CE1g | Zhou [132] IPDPS’'15 SSSP None unsp. L) DRAM 1M unsp. chaIIenges, featu res, ...
Y, 125 Zhou [133] ReConFig'15 @ PR Edge-Centric unsp. L] DRAM 2.4M 5M
ang [125] report { ymuroglu [117] FPL'15 L) BFS None Chisel ~DRAM 2.IM 65M
Yao [127] report (| e [80] report (2016) @ SSSP None unsp. iy DRAM 23.9M 58.2M
Zhang [129] FPGA'17 L BFS MapReduce unsp. L] HMC 33.6M 536.9M ~
Zhang [130] FPGA'18 L BFS None unsp. HMC 15 FPGA gra ph
Kohram [76] FPGA’18 g BFS None unsp. i HMC .
Besta [13] FPGA’19 ip MM Substream-Centric Verilog ip DRAM 4.8M 117M p rocessi ng fra meworks

~25 FPGA accelerators

for specific algorithms

spcl.inf.ethz.ch
L 4 @spcl_eth

ETH:zurich

Reference Venue Generic Considered Programming Model Used Multi Input 4 +
(scheme name) Design' Problems? (§ 2.4) or Technique® (§ 2.5) Language FPGAs® Location® " m
Kapre [71] , spreading
(GraphStep) ~ FCCM06 @] activation® [82] BSP unsp. (6] BRAM 220k 550k
Weisz [92] FCCM'14 TRWS, Vertex-Centric unsp. DRAM 110k 221k
(GraphGen)
Kapre [70] ASAP’T
GraphSoC i i
(GraphsoC) Selected parts are in the FPGA Harduired 512 2051
Dai [40] EPGA'1 Hardwired 2048 32k
(FPGP) o e BRAM 64 4096
Oguntebi [93] o paper, the rest is in... Hardwired |
(GraphOps) (3-state 88 7744
Zhou [134] FCCM’ . . buffers)
Engelhardt [49] Bondhugula [27] IPDPS’06 ip APSP Dynamic Program. unsp.] DRAM unsp.
FPL’16| Sridharan[110] TENCON’09 "@ SSSP None VHDL P BRAM 64 88
(GraVF) Wang [121] ICFTP’10 @ BFS None SystemC DRAM 655k 1M
Dai [41] 300k 3M
(ForeGraph 128 466
Zhou [136] 38k 72M
16.8M 1.1B
Ma [85] 8.4M 536M |
Lee [79] 16M 512M
(ExtraV)
Zhou [135] 2m unsp
Yang [125] Graph Processing on FPGAs: Taxonomy, Survey, Challenges 2IM 65M
Yao [127] 239M 58.2M
Towards Understanding of Modern Graph Processing, Storage, and Analytics 33.6M 536.9M
MACIE] BESTA*, DIMITRI STANOJEVIC™, Department of Computer Science, ETH Zurich " "
4.3 117

JOHANNES DE FINE LICHT, TAL BEN-NUN, Department of Computer Science, ETH Zurich
TORSTEN HOEFLER, Department of Computer Science, ETH Zurich

Graph processing has become an important part of various areas, such as machine learning, computational
sciences, medical applications, social network analysis, and many others. Various graphs such as web or
social networks may contain up to trillions of edges. The sheer size of such datasets, combined with the
irregular nature of graph processing, poses unique challenges for the runtime and the consumed power. Field
Programmable Gate Arrays (FPGAs) can be an energy-efficient solution to deliver specialized hardware for

)

= What programming

paradigm and why?

Key techniques, paradigms,

challenges, features, ...

~15 FPGA graph
processing frameworks

~25 FPGA accelerators

for specific algorithms

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Reference Venue Generic Considered Programming Model Used Multi Input " +
(scheme name) Design' Problems’ (§ 2.4) or Technique® (§ 2.5) Language FPGAs* Location® " m
Kapre [71] , spreading
(Graphstep) TCCM06 (6] activation® [82] BSP unsp. (6] BRAM 220k 550k
Weisz [92] FCCM'14) TRW-S,, Vertex-Centric unsp.] DRAM 110k 221k
(GraphGen)
Kapre [70] ASAP’T
GraphSoC i i
(GraphSo€) Selected parts are in the FPGA Harduired | 5122051
Dai [40] FPGA'1 D2 Hardwired 2048 32k
(FPGP) To o« . BRAM 64 4096
Oguntebi [93] o paper, the rest is in... Hardired
(GraphOps) Me (3-state 88 7744
Zhou [134] FCCM’ : buffers)
Engelhardt [49] Bondhugula [27] IPDPS’06 ip DRAM unsp.
FPL’16| Sridharanli10 : BRAM 64 88
(GraVF) DRAM 655k 1M
Dai [41] 300k 3M
(ForeGraph 128 466
Zhou [136] . 38k 72M
iv, will appear tonight) fos - 11e
Ma [85] b itted to aer\I’ W‘ 8.4M 536M
Lee [79] (Su 16M 512M
(ExtraV)
Zhou [135] 2m unsp
Yang [125] Graph Processing on FPGAs: Taxonomy, Survey, Challenges 2IM 65M
Yao [127] 239M 58.2M
Towards Understanding of Modern Graph Processing, Storage, and Analytics 33.6M 536.9M
MACIE] BESTA*, DIMITRI STANOJEVIC™, Department of Computer Science, ETH Zurich " "
4.3 117

JOHANNES DE FINE LICHT, TAL BEN-NUN, Department of Computer Science, ETH Zurich
TORSTEN HOEFLER, Department of Computer Science, ETH Zurich

Graph processing has become an important part of various areas, such as machine learning, computational
sciences, medical applications, social network analysis, and many others. Various graphs such as web or
social networks may contain up to trillions of edges. The sheer size of such datasets, combined with the
irregular nature of graph processing, poses unique challenges for the runtime and the consumed power. Field
Programmable Gate Arrays (FPGAs) can be an energy-efficient solution to deliver specialized hardware for

* What programming

paradigm and why?

Key techniques, paradigms,

challenges, features, ...

~15 FPGA graph
processing frameworks

~25 FPGA accelerators

for specific algorithms

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

= What programming
paradigm and why?

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

“(...) implementing graph * What programming
algorithms efficiently on pa radigm and why?
Pregel-like systems {...)

can be surprisingly

difficult and require

careful optimizations.” [1]

+ other issues

[1]S. Salihoglu and J. Widom,
“Optimizing graph algorithms on
Pregel-like systems”. VLDB. 2014.

Vertex-centric,
Gather-Apply-

Scatter, ... ? @

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

@

* What programming

“(...) implementing graph
algorithms efficiently on
Pregel-like systems {...)
can be surprisingly
difficult and require
careful optimizations.” [1]

paradigm and why?

To be able to utilize pipelining

+ other issues

well, we really want to use

“Optimizing graph algorithms on Strea min (a ka edge'ce nt riC)
Pregel-like systems”. VLDB. 2014.

[1]S. Salihoglu and J. Widom,

Vertex-centric,
Gather-Apply-

Scatter, ... ?@

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

= What programming
paradigm and why?

spcl.inf.ethz.ch
L 4 @spcl_eth

spcl.inf.ethz.ch
L 4 @spcl_eth

spcl.inf.ethz.ch
L 4 @spcl_eth

A L 4 @spcl_eth

LY\ spcl.inf.ethz.ch
AT % Goncl ot

-iy‘\ A FEL spcl.inf.ethz.ch
L 4 @spcl_eth

-iy‘\ A FEL spcl.inf.ethz.ch
L 4 @spcl_eth

-iy‘\ A FEL spcl.inf.ethz.ch
L 4 @spcl_eth

spcl.inf.ethz.ch
L 4 @spcl_eth

Streaming all edges in and out is one
“pass”. Repeat it a certain (algorithm- %
dependent) number of times

spcl.inf.ethz.ch
L 4 @spcl_eth

Streaming all edges in and out is one
“pass”. Repeat it a certain (algorithm- ==
dependent) number of times s

spcl.inf.ethz.ch
L 4 @spcl_eth

...How to minimize the number of “passes” over edges? This can get
really bad in the “traditional” edge-centric approach (e.g., BFS needs
D passes; D = diameter [1]).

...Processing edges
is sequential — how
to incorporate

@ parallelism?

Streaming all edges in and out is one
“pass”. Repeat it a certain (algorithm-
dependent) number of times

Some processing unit
(CPU, GPU, FPGA, ..., for {2l
a moment we don’t care)

[1] A. Roy et al. X-stream: Edge-Centric Graph Processing using Streaming Partitions. SOSP. 2013.

spcl.inf.ethz.ch
L 4 @spcl_eth

...Processing edges

is sequential — how
to incorporate

? parallelism?

Part 2: Substream-Centric: A new

paradigm for processing graphs

spcl.inf.ethz.ch

L 4 @spcl_eth

Substream-Centric Graph Processing

Part 2: A new paradigm for processing graphs

...Processing edges
is sequential — how
to incorporate

? parallelism?

spcl.inf.ethz.ch

L 4 @spcl_eth

It enhances edge-
centric streaming

Substream-Centric Graph Processing

Part 2: A new paradigm for processing graphs approaches

...Processing edges
is sequential — how
to incorporate

? parallelism?

spcl.inf.ethz.ch

L 4 @spcl_eth

It enhances edge-
centric streaming

Substream-Centric Graph Processing

Part 2: A new paradigm for processing graphs approaches

...Processing edges
is sequential — how
to incorporate

? parallelism?

Weighted
edges

spcl.inf.ethz.ch

L 4 @spcl_eth

It enhances edge-
centric streaming

Part 2: A new paradigm for processing graphs approaches

Substream-Centric Graph Processing

P : g Divide the input stream of
- PTOCESSING €dses edges according to some

is sequential — how (algorithm-specific) pattern
to incorporate

@ parallelism?

Weighted
edges

spcl.inf.ethz.ch
L 4 @spcl_eth

It enhances edge-
centric streaming

Substream-Centric Graph Processing

Part 2: A new paradigm for processing graphs approaches

Divide the input stream of
edges according to some

is sequential — how (algorithm-specific) pattern
to incorporate

? parallelism?

...Processing edges

Weighted
edges

spcl.inf.ethz.ch

L 4 @spcl_eth

It enhances edge-
centric streaming

Part 2: A new paradigm for processing graphs approaches

Substream-Centric Graph Processing

Process “substreams”
independently Divide the input stream of

..Processing edges edges according to some

is sequential — how (algorithm-specific) pattern
to incorporate

@ parallelism?

Weighted
edges

spcl.inf.ethz.ch
L 4 @spcl_eth

It enhances edge-
centric streaming

Part 2: A new paradigm for processing graphs approaches

Substream-Centric Graph Processing

Process “substreams”
independently Divide the input stream of

..Processing edges edges according to some

is sequential — how (algorithm-specific) pattern
to incorporate

@ parallelism?

Weighted
edges

spcl.inf.ethz.ch
L 4 @spcl_eth

It enhances edge-
centric streaming

Part 2: A new paradigm for processing graphs approaches

Substream-Centric Graph Processing

Process “substreams”
independently Divide the input stream of

..Processing edges edges according to some

is sequential — how (algorithm-specific) pattern
to incorporate

@ parallelism?

Weighted

edges
Merge

substreams

spcl.inf.ethz.ch

L 4 @spcl_eth

It enhances edge-
centric streaming

Part 2: A new paradigm for processing graphs approaches

Substream-Centric Graph Processing

Process “substreams”
independently Divide the input stream of

....Proce55|.ng edges edges according to some
is sequential — how (algorithm-specific) pattern
to incorporate

Weighted

edges
Merge

substreams

spcl.inf.ethz.ch
L 4 @spcl_eth

It enhances edge-
centric streaming

Substream-Centric Graph Processing
Part 2: A new paradigm for processing graphs approaches

Process “substreams”
independently Divide the input stream of

edges according to some
(algorithm-specific) pattern

Weighted
edges

substreams

!

!

' \Y/

" erge
!

!

!

spcl.inf.ethz.ch
L 4 @spcl_eth

It enhances edge-
centric streaming
2n=-23ches

Substream-Centric Graph Processing

_aedms”
independently Divide the input stream of

edges according to some
(algorithm-specific) pattern

Weighted
edges

substreams

|

|

! \Y/

" erge
|

|

|

‘MFEL < Sp;lg)fsszj'l_zei: m 7,.‘: - *h

It enhances edge-
centric streaming

Substream-Centric Graph Processing

Part 2: A new paradigm for processing graphs "n7 aches
os (tunable)
and a (tunab\e)

Also, it enabl
ation

number of passés o~
independently Divide the input stream of

edges according to some
(algorithm-specific) pattern

How to express MWM in this

paradigm?
substreams

v on o ETHzUrich
Research Questions

Which programming paradigm

to use for (approximate) MWM
(and many other problems)?

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Research Questions

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Research Questions

How to design a high-

performance MWM
algorithm (as dictated
by the used paradigm)? v
What is the HW FPGA
design that ensures

high performance?

spcl.inf.ethz.ch -
Y @spcl_eth E'HZUI”IC/’)

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Part 3: Analysis of models and algorithms
for streaming graph processing

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Part 3: Analysis of
models and algorithms
for streaming graph
processing

ldea: let’s check the (rich) world of
streaming theory and see if there is
anything out there that we could use ©

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Part 3: Analysis of
models and algorithms
for streaming graph
processing

~30 algorithms for streaming

(approximate) MWM

ldea: let’s check the (rich) world of
streaming theory and see if there is
anything out there that we could use ©

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Reference Approx. Space #Passes Wgh! Gen? Par’ Pa rt 3: Analysis Of

[26] 1/2 O(n) 1 . O b i

[41, Theorem 6] 1/2+0.0071 O(n polylog(n)) 2 . O models and algorithms

6. Theorem 111 Olpolylog(n)) O(paiogr)) 1 « 0 0 -

e Theorem 11 2B O Ouegrose W W @ for streaming graph

[6, Theorem 19] 1 —¢ O (n polylog(n)/e2) O (loglog(1/¢) /%) W W .

[41, Theorem 5] 1/2+0.019, O((n polylog(n))) 2 () L T b prOCESSIng

[41, Theorem 1] 1/240.005 O(nlogn) 1 b L

[41, Theorem 4] 1/240.0071" O(n polylog(n)) 2 L T

[39] 1—1/e O(n polylog(n)) 1 T 9 @

[28, Theorem 20] 1 — liikk—l O(n) 1 i ip 7)

[35, Theorem2] 1— e(k—ilj! O(n) k L T b ~ . -

. 1 o (k) 1 . O 0 30 algorithms for streaming

[14] 1/¢ 0 (n2/¢3 1 . 0 O (approximate) MWM

(7, Theorem 1] n® O (n3 + nl_e) 1 D . 0

[26, Theorem 2] 6 O(nlogn) 1 (&) @)

[44, Theorem 3] 2+¢ O(n polylog(n)) 0(1) (&) O

[44, Theorem 3] 5.82 O(n polylog(n)) 1 (&) @)

[63] 5.58 O(n polylog(n)) 1 (&) O

[25] 4911 +¢ O(n polylog(n)) 1 @] @]

[29] 35+¢ O(n polylog(n)) 1 (&) @)

[53] 2+¢ 0] (nlog2 n 1 (&) &)

[27] 2+4¢ O(nlogn) 1 (&) (&) -

126, Section 32] 2+¢ O(nlogn) Oflog.sn) O O ldea: let’s check the (rich) world of
i nlog(n)/&* e dlogn H 1 1

o Theoremz) iz O(mogln/el) | O(lgn) 00 streaming theory and see if there is

[6, Theorem 22] T0 9 Oln (%)) O (e “log (E_)) 4] O b)

6 Theorem22] L NC P IEN EPIESE anything out there that we could use ©

Crouch and Stubbs [1] - ¢ O(n polylog(n)) 1 4§ O O

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

‘ Reference Approx. Space #Passes Wgh! Gen? Par’ | Part 3: Analysis Of
models and algorithms
for streaming graph
processing

~30 algorithms for streaming
(approximate) MWM

No worries, no need to Idea: let’s check the (rich) world of
analyze it here, all the streaming theory and see if there is

details are in the paper © anything out there that we could use ©

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Reference Approx. Space #Passes

Wgh! Gen? Par’

Most

important
goals:

No worries, no need to
analyze it here, all the
details are in the paper ©

Part 3: Analysis of
models and algorithms
for streaming graph
processing

~30 algorithms for streaming
(approximate) MWM

ldea: let’s check the (rich) world of
streaming theory and see if there is
anything out there that we could use ©

Reference Approx. Space #Passes

Wgh! Gen? Par® |

Most
important

goals:

Maximize
accuracy

No worries, no need to
analyze it here, all the
details are in the paper ©

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Part 3: Analysis of
models and algorithms
for streaming graph
processing

~30 algorithms for streaming
(approximate) MWM

ldea: let’s check the (rich) world of
streaming theory and see if there is
anything out there that we could use ©

spcl.inf.ethz.ch

Wgh! Gen? Par® |

Reference Approx. Space #Passes

Most
important
goals:

Maximize
accuracy

Minimize
local space

No worries, no need to
analyze it here, all the
details are in the paper ©

L 4 @spcl_eth

Part 3: Analysis of
models and algorithms
for streaming graph
processing

~30 algorithms for streaming
(approximate) MWM

ldea: let’s check the (rich) world of
streaming theory and see if there is
anything out there that we could use ©

ETH:zurich

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Reference Approx. Space #Passes Wgh! Gen? Par’ vv Part 3: Analysis Of
Most models and algorithms
important for streaming graph
goals: processing

Minimize
Hpasses

Maximize
accuracy

Minimize
local space

~30 algorithms for streaming
(approximate) MWM

No worries, no need to Idea: let’s check the (rich) world of
analyze it here, all the streaming theory and see if there is

details are in the paper © anything out there that we could use ©

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Most
important
goals:

Minimize
Hpasses

Maximize
accuracy

Minimize
local space

No worries, no need to
analyze it here, all the
details are in the paper ©

Reference Approx. Space #Passes Wgh! Gen? Par’ Expose Pa rt 3: An a Iysis Of

arallelism]
i [models and algorithms

substream- for streaming graph
centric) processing

~30 algorithms for streaming
(approximate) MWM

ldea: let’s check the (rich) world of
streaming theory and see if there is
anything out there that we could use ©

spcl.inf.ethz.ch

Reference Approx. Space #Passes

Wgh! Gen? Par’

Most
important
goals:

Minimize
Hpasses

Maximize
accuracy

Minimize
local space

No worries, no need to
analyze it here, all the

details are in the paper ©

Crouch and Stubbs [1] . ¢ O(n polylog(n)) 1

ﬁﬂbib‘

L 4 @spcl_eth

Expose
parallelism
(match
substream-
centric)

Part 3: Analysis of
models and algorithms
for streaming graph
processing

~30 algorithms for streaming
(approximate) MWM

ldea: let’s check the (rich) world of
streaming theory and see if there is
anything out there that we could use ©

ETH:zurich

spcl.inf.ethz.ch P
v owien ETH ZUrich

Substream-Centric Graph Processing

N

ﬂ

spcl.inf.ethz.ch P
v owien ETH ZUrich

Substream-Centric Graph Processing + Crouch and Stubbs MWM [1]

N

ﬂ

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Substream-Centric Graph Processing + Crouch and Stubbs MWM [1]

'@ ’)
e _ \\\

r--l Q *-----) GED GED G GP G GD GD G» @
W
/

|
|
V4
gy
: \\\/

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Substream-Centric Graph Processing + Crouch and Stubbs MWM [1]

Select edges
with weights:

\\\

K
r--l *-----) GED GED GD GD G G G G
) W
/

V4
Sy
\\\’

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Substream-Centric Graph Processing + Crouch and Stubbs MWM [1]

Select edges
with weights:

A parameter
that controls
accuracy

S0

Substream 0]

K
r--. *-----
) W
/

|
|
V4
A \9 »«
: \\\/

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Substream-Centric Graph Processing + Crouch and Stubbs MWM [1]

Select edges
with weights:

A parameter
that controls

/’xr)xr) R:

/ \ DRAM
,/ Substream 0 xx \
o . '

Fe Q k.--—...- Q 7 PR i

\\ /

|
,
’ \ /

: NN

| AR

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Substream-Centric Graph Processing + Crouch and Stubbs MWM [1]

Select edges
with weights:

Substream 0]

K
-G a» « *-----
ro N ,
p m
\ xf) ¥
Substream L-1 xx \ ,’

|

|

|

| \

|

|
l_________________________________

A parameter
that controls
accuracy

S0

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Substream-Centric Graph Processing + Crouch and Stubbs MWM [1]

Compute unweighted Select edges
matchings separately with weights:

A parameter
that controls
accuracy

- % SIS - N
" X Substream i

|

|

|

|

: Substream L-1

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Substream-Centric Graph Processing + Crouch and Stubbs MWM [1]

Compute unweighted Select edges
matchings separately with weights:

Greedy merge of
matchings into
the final MWM

A parameter
that controls
accuracy

*--- Q) GED GED GED G G G G G G
Substream i

Substream L-1

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Substream-Centric Graph Processing + Crouch and Stubbs MWM [1]

Compute unweighted Select edges
matchings separately with weights:

Greedy merge of
matchings into
the final MWM

How to minimize the = &

number of “passes”?

A parameter
that controls
accuracy

*--- Q) GED GED GED G G G G G G
Substream i

Substream L-1

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Substream-Centric Graph Processing + Crouch and Stubbs MWM [1]

Compute unweighted Select edges
matchings separately with weights:

Greedy merge of
matchings into
the final MWM

A parameter
that controls
accuracy

- % SIS - N
" X Substream i

|

|

|

|

: Substream L-1

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Compute unweighted Select edges
matchings separately with weights:

Greedy merge of
matchings into
the final MWM

A parameter
that controls
accuracy

*--- Q) GED GED GED G G G G G G
Substream i

Substream L-1

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

spcl.inf.ethz.ch P
v owien ETH ZUrich

Substream-Centric Graph Processing + Crouch and Stubbs MWM [1]

i e

.
N\
\

N\

ﬂ

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Substream-Centric Graph Processing + Crouch and Stubbs MWM [1]

Part 4: Mapping the algorithm to the
,right” hardware configuration

Substream L-1

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

spcl.inf.ethz.ch P
v owien ETH ZUrich

Substream-Centric Graph Processing + Crouch and Stubbs MWM [1]

i e

.
N\
\

N\

ﬂ

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Substream-Centric Graph Processing + Crouch and Stubbs MWM [1]

- a» a» . *--

ﬂ

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

NN
' n D.’.'.S!.'S'.-

: *---
/

*
\

\

—
/ \m}w NN -

P----

..
l
!
»
AR

o

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

FPGA
B Time: O(m)
‘ B Work: O(Lm)

NN
9
F==0) {.J.----

*--- Q
It

/

.P--------

\

y \m}?ﬂ ' ONNA -

o

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

FPGA
B Time: O(m)

Time: O(Ln) | ,’
Work: O(Ln)

Heeo : o7
10

/

.P--------

\

y m}g ' NSNS -

o

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

spcl.inf.ethz.ch
L 4 @spcl_eth

ETH:zurich

Substream-Centric Graph Processing + Crouch and Stubbs MWM [1]

Use a hybrid

CPU-FPGA
setting!

Time: O(Ln)
Work: O(Ln)

o

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

L----

,"89'\?

l

N\

.\

N substream L1 _

*---

¥

-~ | Time: O(m)
- G Work: O(Lm)

/

FPGA

AT,

spcl.inf.ethz.ch oo o
v o ETHzUrich

Use a hybrid AP | Time: O(m)
CPU-FPGA "
setting!

CPU ’ xf) xf) X
Time: O(Ln) . s

/ l
Work: OfLn) .

10

\

N\

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

FPGA
Use a hybrid P | Time: O(m)

CPU-FPGA

setting!

CPU
Time: O(Ln)
Work: O(Ln)

[1] M. Cro and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Substream-Centric MWM: FPGA optimizations

Centaur framework (described in more detail in Evaluation, § 5)

3
‘I Accelerator Functional Unit (AFU)
Starting Me
_— rger Pointer Requester Stream of edges Matching Bits

—aCTe, dueue (mergin Request the pointers ?erg(:ni:ﬁ;g:;twom %% Requester: request Matching Bits Acknowledgement

network to the rows of the using a binary tree in lexicographic v-matching bits Writ 9 it Receiver: receive
— T details adjacency matrix order o for edges matcﬁ?r.l wlralit?s acknowledgements

(1) (pointer_data) | | 0O Lo of mat%hmg bits that
ave been written
— T \ .- Queue \part 1 Matching Bits @
9 Pointer Receiver SEenc DL Recel\;erl; ; ref,‘?ti"e |
v-matching bits
—Ez. ecRRchTiEE | o | lexicographic | @) Tom DRAM Queue OBits Receiver. Dits Requester
P he four Gueee Edge Receiver order | | Receive matching Request matching
q Receive a new edge, ___ bits for the next bits for the next
—ID Y v put them into one Bit-Q — Edge Processor epoch for BRAM epoch for BRAM
5 5 of the queues / HEUe Process edges,
ueue -+« Queue . _____ update
— + + Part 2 / Pending-Queue e values Edge Writer
FPGA (§4.4.3):) Writes edges
& Edge Requester modules that Derive L 1‘ back to DRAM @
Ask Tor t"%“’ e{’,?fﬁ' us§ pointers enerate tﬂle m:gc'm#n; BRAM Valid- FPGA modules that compute
associated wi € edge queue exicographic : Double buffered arra _ the L maximum matchings in parallel

— that have space left order of edges in parall%:l storing u-matching bi¥s Array g p

spcl.inf.ethz.ch

ETH:zurich

L 4 @spcl_eth

Substream-Centric MWM: FPGA optimizations

Starting
—@Tw, dueue

Merger

(mergi

network%
details

=

Pointer Requester
Request the pointers
to the rows of the
adjacency matrix
o (pointer_data)

9 Pointer Receiver
Receive pointers,
put them into one
of the four queues

Y Y

Queue -+ Queue

Y \

Edge Requester

Ask Tor new edges, use pointers
associated with the edge queue
that have space left

Centaur framework (described in more detail in Evaluation, § 5)

elerator Functional Unit (AFU)

9 Merger

Merge the network
using a binary tree

Matching Bits
Requesttﬁ_n reI;;'l;Jsest
lexicographic v-matching bi

order o for edges

\Part 1

ream of edges

Matching Bits

Writer: write

matching bits
to DRAM

| .. Queue Matching Bits

Queue (§ 4.4.2): Receiver: receive
| Generate v-matching bits
lexicographic from DRAM
Edge Receiver order

Recelve a new edge,
put them into one
of the queues

Edge Processor

Bit-Queue — “p o oo edges,

Part 2

Bits Receiver
Receive matching

bits for the next

eepoch for BRAM

Acknowledgement
Receiver: receive
acknowledgements

of matching bits that
have been written @

Bits Requester

Request matching
bits for the next
Oepoch for BRAM

P update BRAM
Pending-Queue e values

FPGA (§ 4.4.3):
modules that Derive L A A
enerate the Maximum BRAM Valid-
exicographic MatCh'”Igs Double buffered array
order of edges in parallel storing u-matching bits

FPGA modules that compute
-Array e L maximum matchings in parallel

Edge Writer
Seekcs DR @
ack to

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Substream-Centric MWM: FPGA optimizations

Centaur framework (described in more detail in Evaluation, § 5)

elerator Functional Unit (AFU)

tarti
SCI?IEU.'lneg Merger Pointer Reaueste -- 5 o ream of edges Matching Bits

(n";a;% 'r';(Requester: request : Acknowledgement

e |exicographic v—matching bits Receiver: receive

Edge reordering on the fly \order for edges , °'ﬁ,9§ﬂ?§t“£b
(more details in a bit) £352): Receiver: eceite

o Iexico%raphic e from DRAM
F Lot order
of the four queues ReE‘e’i?.rg : ﬁgsvhéﬁge,

‘l " put them into one
Queue - Queue ofthe quees Part 2 Parallel
v v FPGA (§ 4.4.3):

Edge Requester modules that Derive L
Ask Tor tnedw e_g??ﬁ. usde pointers enerate t'r:_e mgt"c'm#”; SuU bSt ASEIN FPGA modules that compute
associated wi e edge queue exicographic . | e L maximum matchings in parallel
that have space left order of edges in parall%l 9= 1P

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Substream-Centric MWM: FPGA optimizations

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Substream-Centric MWM: FPGA optimizations

All the details are in the paper.

Let’s focus on the key FPGA
design ideas and optimizations

v onies [ETHziirich
Blocking

All the details are in the paper.
Let’s focus on the key FPGA
design ideas and optimizations

Substream-Centric MWM: FPGA optimizations

Prefetching

Pipelining

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Blocking
e All the details are in the paper.
Vectorization Let’s focus on the key FPGA

design ideas and optimizations

Substream-Centric MWM: FPGA optimizations

They are often used in graph e i
Prefetching processing schemes on FPGAs; P g

we apply them as well.

v onies [ETHziirich
Blocking

All the details are in the paper.

Substream-Centric MWM: FPGA optimizations

Let’s focus on the key FPGA
design ideas and optimizations

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Substream-Centric MWM: FPGA optimizations
Blocking

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Substream-Centric MWM: FPGA optimizations
Blocking

o
R SR G
O~ O R

O O R O
OO R O

Adjacency Matrix

n EETHZzUrich

Substream-Centric MWM: FPGA optimizations
Blocking

0o 1 2 3 4
of]0 1 1 1 O
1 0 1 0 1
2 0 1 O
3 0 1
4 0
5

Adjacency Matrix

O RO R O RV

n EETHZzUrich

Substream-Centric MWM: FPGA optimizations

Blocking Column IDs

correspond
to vertex IDs

= O
O o
O =r

o QY UG

3
1
0
1
0

Row IDs 3
correspond
to vertex IDs 4

Ok= O = O+

5
Adjacency Matrix

O RO R O RV

n EETHZzUrich

Substream-Centric MWM: FPGA optimizations

Blocking

An edge between

vertices 0 and 1
2\
o[0 1
1 0

2

o QY UG

Row IDs 3
correspond
to vertex IDs 4

5
Adjacency Matrix

3
1
0
1
0

Column IDs
correspond
to vertex IDs

Ok= O = O+

O RO R O RV

n EETHZzUrich

Substream-Centric MWM: FPGA optimizations

Blocking

An edge between

vertices 0 and 1
0 \ 1
of0 1
1 0

2

o QY UG

Row IDs 3
correspond
to vertex IDs 4

5
Adjacency Matrix

3
1
0
1
0

Column IDs
correspond
to vertex IDs

Ok= O = O+

O RO R O RV

n EETHZzUrich

Substream-Centric MWM: FPGA optimizations

Blocking

An edge between

vertices 0 and 1
2\
o[0 1
1 0

2

o QY UG

Row IDs 3
correspond
to vertex IDs 4

5
Adjacency Matrix

3
1
0
1
0

Column IDs
correspond
to vertex IDs

Ok= O = O+

O RO R O RV

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Substream-Centric MWM: FPGA optimizations
Blocking

Column IDs
An edge between AN e(?lge between
vertices0and 1, VerticesOand2 t?\:;i:;?rgs
0 \ 1 \2 3 4 5
of]0 1 1 1 0 1
1 O 1 0 1 O
2 0 1 0 1
Row IDs

correspond 3 O 1 O
to vertex IDs 4 O 1
> 0

Adjacency Matrix

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Substream-Centric MWM: FPGA optimizations
Blocking

Column IDs
An edge between AN e(?lge between
vertices0and 1, VerticesOand2 t?\:;i:;?rgs
0 \ 1 \2 3 4 5
of]0 1 1 1 0 1
1 O 1 0 1 O
2 0 1 0 1
Row IDs

correspond 3 O 1 O
to vertex IDs 4 O 1
> 0

Adjacency Matrix

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Substream-Centric MWM: FPGA optimizations
Blocking

Column IDs
An edge between AN e(?lge between
vertices0and 1, VerticesOand2 t?\:;i:;?rgs
0 \ 1 \2 3 4 5
of]0 1 1 1 0 1
1 O 1 0 1 O
2 0 1 0 1
Row IDs

correspond 3 O 1 O
to vertex IDs 4 O 1
> 0

Adjacency Matrix

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Substream-Centric MWM: FPGA optimizations

Blockin
8 An edge between An e(?lge between Sc?rlren;pncjl?j
vertices 0 and 1 vertices 0 and 2 to vertex IDs
0 \ 1 \2 3 4 5
ofO 1 1 1 0 1
1 0O 1 0 1 O
2 0O 1 0 1
Row IDs

correspond 3 O 1 O
tovertexIDs g O 1
5 0

Adjacency Matrix

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Substream-Centric MWM: FPGA optimizations

Blockin
g An edge between An edge between Column IDs
vertices 0 and 1. Vvertices 0 and 2 correspond
to vertex IDs

1 0O 1 0 1 0
Row IDs 3 H

correspond

tovertex IDs g w
5 0

Adjacency Matrix

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Substream-Centric MWM: FPGA optimizations

Blockin
8 An edge between An edge between Column IDs
vertices 0 and 1. Vvertices 0 and 2 correspond
\ to vertex IDs
2

e
fowiDs 3 ¢ X010
8s°®

correspond

e\
tovertexIDs g4 3ef] (\k’ H

5 669

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Substream-Centric MWM: FPGA optimizations
Blocking

An edge between An edge between Column IDs
vertices 0 and 1. Vvertices 0 and 2 correspond
\ to vertex IDs

2

Q
ef®
%2 0(\\- %
on0® Stalling between

Row IDs 3 3e® “&. H every row needed...
correspond a0s©
tovertex IDs g 3eo” k, H

o™

5 669

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Substream-Centric MWM: FPGA optimizations
Blocking

An edge between An edge between Column IDs

vertices 0 and 1. Vvertices 0 and 2 correspond

to vertex IDs

\2 3 4 5
0
1
e\
3e®
2
Stalling between
Row IDs 3 every row needed...
correspond

to vertex IDs 4

5

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Substream-Centric MWM: FPGA optimizations

Blockin
. An edge between An edge between Column IDs
vertices 0 and 1. Vvertices 0 and 2 correspond
to vertex IDs
\2 3 4 5

0

1

i\

3ev®
2
Row IDs 3
correspond

to vertex IDs 4

5

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Substream-Centric MWM: FPGA optimizations
Blocking

Introduce a (tunable)
Column IDs ,blocking parameter” K
correspond

An edge between

An edge between
vertices 0 and 2

vertices 0 and 1

to vertex IDs
\2 3 4 5
0
1
e@e‘\
S 2
Row IDs 3

correspond
to vertex IDs 4

5

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Substream-Centric MWM: FPGA optimizations
Blocking

Introduce a (tunable)
An edge between Column IDs ,blocking parameter” K

vertices 0 and 2 correspond
to vertex IDs
\2

3 4 5

An edge between
vertices 0 and 1

K determines how many
stalls are allowed

Row IDs 3
correspond
to vertex IDs 4

5

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Substream-Centric MWM: FPGA optimizations
Blocking

Introduce a (tunable)
An edge between Column IDs ,blocking parameter” K

vertices 0 and 2 correspond

tovertexIDs K =3 .
\2 3 a 5 K determines how many
stalls are allowed

An edge between
vertices 0 and 1

Row IDs 3
correspond
to vertex IDs 4

5

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Substream-Centric MWM: FPGA optimizations
. Introduce a (tunable)
BIOCkmg ,blocking parameter” K

B K determines how many
stalls are allowed

Portions of rows are
ordered ,lexicographically”
(i.e., no strict ordering that
enforces a stall is required)

. i Algorithm still
Adjacency Matrix

v ewien ETHzUrich
Substream-Centric MWM: FPGA optimizations
. Introduce a (tunable)
BIOCkmg ,blocking parameter” K

B K determines how many
O stalls are allowed

Portions of rows are
ordered ,lexicographically”
(i.e., no strict ordering that
enforces a stall is required)

K is tunable: it
controls the tradeoff
between the amount

of the used FPGA
resources and the
performance

. i Algorithm still
Adjacency Matrix

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Research Questions

How to design a high-

performance MWM
algorithm (as dictated
by the used paradigm)? v
What is the HW FPGA
design that ensures

high performance?

spcl.inf.ethz.ch P
v owien ETH ZUrich

Research Questions

spcl.inf.ethz.ch P
v owien ETH ZUrich

Research Questions

What is the ultimate

performance, power

consumption, and the
related tradeoffs?

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

PERFORMANCE ANALYSIS
TYPES OF MACHINES

Part 5: Evaluation

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

PERFORMANCE ANALYSIS
TYPES OF MACHINES

v eseen ETHzUrich
PERFORMANCE ANALYSIS CPU: Intel Broadwell

TYPES OF MACHINES Xeon E5-2680 v4 @3.3 GHz e
14 Cores (28 Threads) '

Sasd s, i

Altera Arria 10 @200MHz

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

PERFORMANCE ANALYSIS
TYPES OF GRAPHS

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

PERFORMANCE ANALYSIS
TYPES OF GRAPHS

Synthetic graphs

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

PERFORMANCE ANALYSIS
TYPES OF GRAPHS

Synthetic graphs

Kronecker [1]

[1] J. Leskovec et al. Kronecker Graphs: An Approach to Modeling Networks. J. Mach. Learn. Research. 2010.

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

PERFORMANCE ANALYSIS

Real-world graphs (SNAP [2], KONECT [3], DIMACS [4
TYPES OF GRAPHS graphs { 2] 3] [41)

Synthetic graphs

Kronecker [1]

[2] SNAP. https://snap.stanford.edu

[1] J. Leskovec et al. Kronecker Graphs: An Approach to Modeling Networks. J. Mach. Learn. Research. 2010.

https://snap.stanford.edu/

v oren ETHZzUrich
PERFORMANCE ANALYSIS
TYPES OF GRAPHS

Synthetic graphs

Road networks
Kronecker [1]

LN
S .
[»
‘\\‘ / .
= o, ¢

/‘>/

Purchase networks o unication graphs Citation graphs

[2] SNAP. https://snap.stanford.edu
[3] KONECT. https://konect.cc
[1] J. Leskovec et al. Kronecker Graphs: An Approach to Modeling Networks. J. Mach. Learn. Research. 2010. [4] DIMACS Challenge

https://snap.stanford.edu/
https://konect.cc/

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

PERFORMANCE ANALYSIS
ALGORITHMS

Algorithm Platform

Crouch et al. [1] Sequential (CS-SEQ) CPU
Crouch et al. [1] Parallel (CS-PAR) CPU
Ghaffari [2] Sequential (G-SEQ) CPU
Substream-Centric (SC-OPT) Hybrid

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.
[2] M. Ghaffari. Space-optimal semi-streaming for(2+&)-approximatematching. arXiv:1701.03730, 2017.

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

PERFORMANCE ANALYSIS
ALGORITHMS

Algorithm Platform
Crouch et al. [1] Sequential (CS-SEQ) CPU
Crouch et al. [1] Parallel (CS-PAR) CPU
Ghaffari [2] Sequential (G-SEQ) CPU
Substream-Centric (SC-OPT) Hybrid

Our FPGA design,

(4+€)-approximation

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.
[2] M. Ghaffari. Space-optimal semi-streaming for(2+&)-approximatematching. arXiv:1701.03730, 2017.

v on o ETHzUrich
PERFORMANCE ANALYSIS
ALGORITHMS CPU implementations of the

original Crouch scheme,
(4+€)-approximation

Algorithm Platform
Crouch et al. [1] Sequential (CS-SEQ) CPU
Crouch et al. [1] Parallel (CS-PAR) CPU
Ghaffari [2] Sequential (G-SEQ) CPU
Substream-Centric (SC-OPT) Hybrid

Our FPGA design,

(4+€)-approximation

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.
[2] M. Ghaffari. Space-optimal semi-streaming for(2+&)-approximatematching. arXiv:1701.03730, 2017.

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

PERFORMANCE ANALYSIS
ALGORITHMS CPU implementations of the
original Crouch scheme,

State-of-the-art MWM
algorithm, space-optimal,

(4+€)-approximation time-optimal (O(m

(2+€)-approximation

Algorithm

Crouch et al. [1] Sequential (CS-SEQ)
Crouch et al. [1] Parallel (CS-PAR)
Ghaffari [2] Sequential (G-SEQ) CPU

Substream-Centric (SC-OPT) Hybrid

Our FPGA design,

(4+€)-approximation

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.
[2] M. Ghaffari. Space-optimal semi-streaming for(2+&)-approximatematching. arXiv:1701.03730, 2017.

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

PERFORMANCE ANALYSIS
ALGORITHMS CPU implementations of the
original Crouch scheme,

State-of-the-art MWM
algorithm, space-optimal,

(4+€)-approximation time-optimal (O(m

(2+€)-approximation

Algorithm

Crouch et al. [1] Sequential (CS-SEQ)
Crouch et al. [1] Parallel (CS-PAR)
Ghaffari [2] Sequential (G-SEQ) CPU

Substream-Centric (SC-OPT) Hybrid

Our FPGA design, We test both CPU and

(4+€)-approximation

hybrid (FPGA+CPU)
platforms

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.
[2] M. Ghaffari. Space-optimal semi-streaming for(2+&)-approximatematching. arXiv:1701.03730, 2017.

PERFORMANCE ANALYSIS

VARIOUS GRAPHS

Algorithm

Platform

Crouch et al. [1] Sequential (CS-SEQ)
Crouch et al. [1] Parallel (CS-PAR)

Ghaffari [2] Sequential (G-SEQ)
Substream-Centric (SC-OPT)

CPU
CPU
CPU
Hybrid

Parameters:
Blocking size (K) = 32,
#Substreams (L) = 64
HThreads =4, =0.1

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

m n

Graph Type

Kronecker Synthetic power-law ~48n
Gowalla Social network

Flickr Social network

LiveJournal1 Social network

Orkut Social network

Stanford Hyperlink graph
Berkeley Hyperlink graph
arXiv hep-th Citation graph

2%k =1e6,...,21
950,327 196,591
33,140,017 2,302,925
68,993,773 4,847,571
117,184,899 3,072,441
2,312,497 281,903

7,600,595 685,230

352,807 27,770

. spcl.inf.ethz.ch P
w e ETHZUrICH
Parameters: :

PERFORMANCE ANALYSIS Blocking size (K) = 32, Graph Type m n
VARIOUS GRAPHS #Substreams (L) =64 Kronecker Synthetic power-law ~48n 2% k=16,...,21
Gowalla Social network 950,327 196,591
#Threads=4,e=0.1 Flickr Social network 33,140,017 2,302,925
Algorithm Platform LiveJournal1 Social network 68,993,773 4,847,571
- Orkut Social network 117,184,899 3,072,441
Crouch et al. [1] Sequential (CS-SEQ) CPU Stanford Hyperlink graph 2,312,497 281,903
Crouch et al. [1] Parallel (CS-PAR) CPU Berkeley — Hyperlink graph 7,600,595 685,230
Ghaffari [2] Sequential (G-SEQ) CPU arXiv hep-th Citation graph 352,807 27,770
Substream-Centric (SC-OPT) Hybrid
20000 - Runtime (lower is better) Throughput (higher is better)
i — CS-PAR
140
SC-OPT G5-5EQ
16000 - ' 120
G-SEQ —
g 100
@ 12000 | CS-PAR — S
£ S
@ o 80
e
E CS-SEQ §
8000 = 60
40
4000
20
0 0
Gowalla Stanf. Berk./Stanf. Flickr LiveJournall Orkut Gowalla Stanf. Berk./Stanf. Flickr LiveJournali Orkut

Graph Graph

. spcl.inf.ethz.ch P
w e ETHZUrICH
Parameters: :

PERFORMANCE ANALYSIS Blocking size (K) = 32, Graph Type m n
VARIOUS GRAPHS #Substreams (L) =64 Kronecker Synthetic power-law ~48n 2% k=16,...,21
Gowalla Social network 950,327 196,591
#Threads=4,e=0.1 Flickr Social network 33,140,017 2,302,925
Algorithm Platform LiveJournal1 Social network 68,993,773 4,847,571
- Orkut Social network 117,184,899 3,072,441
Crouch et al. [1] Sequential (CS-SEQ) CPU Stanford Hyperlink graph 2,312,497 281,903
Crouch et al. [1] Parallel (CS-PAR) CPU Berkeley — Hyperlink graph 7,600,595 685,230
Ghaffari [2] Sequential (G-SEQ) CPU arXiv hep-th Citation graph 352,807 27,770
Substream-Centric (SC-OPT) Hybrid
20000 - Runtime (lower is better) Throughput (higher is better)
Hybrid 140 | — CS-PAR Hybrid
- SR Geeq
16000 CPU 120 | / -
G-SEQ —
2 100
‘@ 12000 CS-PAR —— S
S S
° 3 80
c
E CS-SEQ §
8000 = 60
40
4000
20
0 0
Gowalla Stanf. Berk./Stanf. Flickr LiveJournall Orkut Gowalla Stanf. Berk./Stanf. Flickr LiveJournall Orkut

Graph Graph

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Parameters: . .
PERFORMANCE ANALYSIS Blocking size (K) = 32, Graph Type m n
VARlOUS GRAPHS H#Substreams (L) =64 Kronecker Synthetic power-law ~48n 2%k =16,...,21
Gowalla Social network 950,327 196,591
#Threads =4,e=0.1 Flickr Social network 33,140,017 2,302,925
Algorithm Platform LiveJournal1 Social network 68,993,773 4,847,571
- Orkut Social network 117,184,899 3,072,441
Crouch et al. [1] Sequential (CS-SEQ) CPU Stanford Hyperlink graph 2,312,497 281,903
Crouch et al. [1] Parallel (CS-PAR) CPU Berkeley ~ Hyperlink graph 7,600,595 685,230
Ghaffari [2] Sequential (G-SEQ) CPU arXiv hep-th Citation graph 352,807 27,770
Substream-Centric (SC-OPT) Hybrid
20000 - Runtime (lower is better) Throughput (higher is better)
Hybrid 140 | — CS-PAR Hybrid
- SR Gseq
16000 CPU 120 / -
G-SEQ —
g 100
‘@ 12000 CS-PAR —— S
S S
© S 80
c
= CS-SEQ §
8000 r ‘ = 60
40
4000 r
20
0 i [0 S 0
Gowalla Stanf. Berk./Stanf. Flickr LiveJournall Orkut Gowalla Stanf. Berk./Stanf. Flickr LivedJournall Orkut

Graph Graph

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Parameters: . .
PERFORMANCE ANALYSIS Blocking size (K) = 32, Graph Type m n
VARlOUS GRAPHS H#Substreams (L) =64 Kronecker Synthetic power-law ~48n 2%k =16,...,21
Gowalla Social network 950,327 196,591
#Threads =4,e=0.1 Flickr Social network 33,140,017 2,302,925
Algorithm Platform LiveJournal1 Social network 68,993,773 4,847,571
- Orkut Social network 117,184,899 3,072,441
Crouch et al. [1] Sequential (CS-SEQ) CPU Stanford Hyperlink graph 2,312,497 281,903
Crouch et al. [1] Parallel (CS-PAR) CPU Berkeley ~ Hyperlink graph 7,600,595 685,230
Ghaffari [2] Sequential (G-SEQ) CPU arXiv hep-th Citation graph 352,807 27,770
Substream-Centric (SC-OPT) Hybrid
20000 - Runtime (lower is better) Throughput (higher is better)
Hybrid 140 | — CS-PAR Hybrid
- SR Gseq
16000 CPU 120 / -
G-SEQ —
g 100
‘@ 12000 CS-PAR —— S
S S
© 3 80
c
= CS-SEQ §
8000 r ‘ = 60
Even > 4x over 40
4000 - parallel CPU
baselines! 20
0 i [0 S 0
Gowalla Stanf. Berk./Stanf. Flickr LiveJournall Orkut Gowalla Stanf. Berk./Stanf. Flickr LivedJournall Orkut

Graph Graph

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

PERFORMANCE ANALYSIS
APPROXIMATION (ACCURACY)

Algorithm Platform

Crouch et al. [1] Sequential (CS-SEQ) CPU

Crouch et al. [1] Parallel (CS-PAR) CPU

Ghaffari [2] Sequential (G-SEQ) CPU

Substream-Centric (SC-OPT) Hybrid
Parameters:

#Substreams (L) = 128,
Blocking size (K) = 32,
#threads = 4, #edges = 8M
(Kronecker)

PERFORMANCE ANALYSIS
APPROXIMATION (ACCURACY)

Algorithm Platform
Crouch et al. [1] Sequential (CS-SEQ) CPU
Crouch et al. [1] Parallel (CS-PAR) CPU
Ghaffari [2] Sequential (G-SEQ) CPU
Substream-Centric (SC-OPT) Hybrid

Parameters:

#Substreams (L) = 128,
Blocking size (K) = 32,
#threads = 4, #edges = 8M
(Kronecker)

Approximation ratio (relative)
© o o o9 - -~ =
N e (0)) oo — N e (o))

o

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

I

Approximation (lower is better) G-SEQ
AN

n
O
o
3
—

Each data point is the ratio
of the exact MWM size to the
approximated MWM size.
Exact matchings are derived
with Lemon Graph Library

0.01

0.05

0.1

0.2 0.3 04 05 04 0.6 07 0.8 0.9
€

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

PERFORMANCE ANALYSIS

APPROXIMATION (ACCURACY) 16 Approximation (lower is better) G—SES
Algorithm Platform
Crouch et al. [1] Sequential (CS-SEQ) CPU 14 -
Crouch et al. [1] Parallel (CS-PAR) CPU
Ghaffari [2] Sequential (G-SEQ) CPU o)
Substream-Centric (SC-OPT) Hybrid >
=127
O
Parameters: = i
#Substreams (L) = 128, 2 1
Blocking size (K) = 32, ©
#threads = 4, #edges = 8M S 08r LSC*OPTT'
(Kronecker) =
Eoer
- Each data point is the ratio
204r of the exact MWM size to the
approximated MWM size.
0.2 Exact matchings are derived
with Lemon Graph Library
0 | | | | | | | | | | | |

0.01 0.05 0.1 0.2 03 04 05 04 06 0.7 08 09
€

spcl.inf.ethz.ch P
v owien ETH ZUrich

PERFORMANCE ANALYSIS

APPROXIMATION (ACCURACY) 16 Approximation (lower is better) G-SES
Algorithm Platform
Crouch et al. [1] Sequential (CS-SEQ) CPU 14 -
Crouch et al. [1] Parallel (CS-PAR) CPU
Ghaffari [2] Sequential (G-SEQ) CPU
Substream-Centric (SC-OPT) Hybrid
1.2
Parameters:

@)
4
n
L
o

#Substreams (L) = 128,
Blocking size (K) = 32,
#threads = 4, #edges = 8M
(Kronecker)

o
oo
T

o
(o))
|

Each data point is the ratio
of the exact MWM size to the
approximated MWM size.
Exact matchings are derived
with Lemon Graph Library

0.01 0.05 0.1 0.2 03 04 05 04 06 0.7 08 09
€

f»:)
N
|

Approximation ratio (relative)

o
(\O)
T

o

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Parameters:
PERFORMANCE ANALYSIS L: #Substreams (pipelines), Algorithm Platform
. i i Crouch et al. Sequential (CS-S C
ENERGY CONSUMPTION, RESOURCE UTILIZATION 6 Blelding £ o L] P s Y &y
T: #CPU threads Ghaffari [2] Sequential (G-SEQ) CPU

Substream-Centric (SC-OPT) Hybrid

PERFORMANCE ANALYSIS trear
ENERGY CONSUMPTION, RESOURCE UTiLizaTion K¢ Blocking size,

Parameters:
L: #Substreams (pipelines),

T: #CPU threads

Algorithm Parameters Energy Consumption [W]
SC-OPT K=32,L =512 14.789

SC-OPT K=256,L =128 14.789

SC-OPT K=32,L =64 14.657

CS-PAR T'=64 120

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Algorithm

Platform

Crouch et al. [1] Sequential (CS-SEQ)
Crouch et al. [1] Parallel (CS-PAR)
Ghaffari [2] Sequential (G-SEQ)
Substream-Centric (SC-OPT)

CPU
CPU
CPU
Hybrid

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Parameters:
PERFORMANCE ANALYSIS L: #Substreams (pipelines), Algorithm Platform
ENERGY CONSUMPTION, RESOURCE UTILIZATION 6 Blelding £ o L] P s Y &y
T: #CPU threads Ghaffari [2] Sequential (G-SEQ) CPU
Substream-Centric (SC-OPT) Hybrid
Algorithm Parameters Energy Consumption [W]
SC-OPT K =32,L =512 14.789
SC-OPT K=256,L =128 14.789
SC-OPT K=32,L =64 14.657

CS-PAR ' =64 120

spcl.inf.ethz.ch P
v owien ETH ZUrich

Parameters:
PERFORMANCE ANALYSIS L: #Substreams (pipelines), Algorithm Platform
ENERGY CONSUMPTION, RESOURCE UTILIZATION 6 Blelding £ o L] P s Y &y
T: #CPU threads Ghaffari [2] Sequential (G-SEQ) CPU
Substream-Centric (SC-OPT) Hybrid

Algorithm Parameters Energy Consumption [W]

SC-OPT K =32,L =512 14.789

SC-OPT K=256,L =128 14.789

SC-OPT K=32,L =64 14.657

CS-PAR T =64 120

Parameters:
PERFORMANCE ANALYSIS L: #Substreams (pipelines),

ENERGY CONSUMPTION, RESOURCE UTiLizaTion K¢ Blocking size,
T: #CPU threads

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Algorithm Platform
Crouch et al. [1] Sequential (CS-SEQ) CPU
Crouch et al. [1] Parallel (CS-PAR) CPU
Ghaffari [2] Sequential (G-SEQ) CPU
Substream-Centric (SC-OPT) Hybrid

Algorithm Parameters Energy Consumption [W]
SC-OPT K=32,L =512 14.789
SC-OPT K=256,L =128 14.789
SC-OPT K=32,L =64 14.657
CS-PAR T =64 120
FPGA Algorithm Parameters Used BRAM Used ALMs
SC-OPT K=32L =512 11.5MBit (21%) 151,998 (32%)

SC-OPT K =256,L = 128 24.8 MBit (45%) 350,556 (82%)

SC-OPT (Hybrid) is ~8x
more power-efficient
than the CPU
implementation

Parameters:
PERFORMANCE ANALYSIS L: #Substreams (pipelines),

ENERGY CONSUMPTION, RESOURCE UTiLizaTion K¢ Blocking size,
T: #CPU threads

spcl.inf.ethz.ch oo o
v o ETHzUrich

Algorithm Platform
Crouch et al. [1] Sequential (CS-SEQ) CPU
Crouch et al. [1] Parallel (CS-PAR) CPU
Ghaffari [2] Sequential (G-SEQ) CPU
Substream-Centric (SC-OPT) Hybrid

Algorithm Parameters Energy Consumption [W]

SC-OPT K=32,L =512 14.789

SC-OPT K=256,L =128 14.789

SC-OPT K=32,L =64 14.657

CS-PAR T =64 120
FPGA Algorithm Parameters Used BRAM Used ALMs
SC-OPT K=32L =512 11.5MBit (21%) 151,998 (32%)
SC-OPT K =256,L =128 24.8 MBit (45%) 350,556 (82%)

SC-OPT (Hybrid) is ~8x
more power-efficient
than the CPU
implementation

Blocking needs
more resources
(but is tunable!)

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

PERFORMANCE ANALYSIS
DESIGN SPACE EXPLORATION

spcl.inf.ethz.ch P
v owien ETH ZUrich

PERFORMANCE ANALYSIS B — BRAM size allocated for matching data structures,
DESIGN SPACE EXPLORATION L — number of substreams (pipelines)
g8 > L 400 MHz 200 MHz

1 2 3 4 5 6 7 8 91011 1213141516 17 18

128 X
256 X
512

X - the highest possible value of B for a given L

ASIICL v eseen ETHzUrich

PERFORMANCE ANALYSIS B — BRAM size allocated for matching data structures,
DESIGN SPACE EXPLORATION L — number of substreams (pipelines)

0B > |]400 MHz 200 MHz
1 2 3 4 5 6 7 8 910111213141516 17 18

128 X
256 X
512

X - the highest possible value of B for a given L

v on o ETHzUrich
PERFORMANCE ANALYSIS
DESIGN SPACE EXPLORATION

B — BRAM size allocated for matching data structures,
L — number of substreams (pipelines)

0B > |]400 MHz 200 MHz
1 2 3 4 5 6 7 8 910111213141516 17 18

128 X
256 X
512

X - the highest possible value of B for a given L

spcl.inf.ethz.ch -
Y @spcl_eth E'HZUFICh

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

OTHER ALGORITHMS, PROBLEMS, ANALYSES

v enien ETHZzUrich
OTHER ALGORITHMS, PROBLEMS, ANALYSES
In addition to MWM,

we also analyzed
more graph problems

ST T R S N AL v anien ETHZzlrich
ness
OTHER ALGORITHMS, PROBLEMS, ANALYSES Bipart g enee W Connected

Model Prob. Input N\Ot\f Il Count‘ng l Com_pents

ION Rand. Unw. Gr:

In addition to MWM, 55T - count\W :
TN Rand. Unw. Grapimemg - \\/\\\’\\mum ' Random

S R4 S]
Co\Or‘ng 1 pannmg “ﬂ Wa\ks
DGS_Baad. S "
Model rob a-t\o Spam‘\er ConneCt\V\ V T ‘ang\e
sific
SPaAN ™ ! Densest K_edge | cotlf\t“"‘g

DG

we also analyzed
more graph problems

K—Vertex ra phs eord t\V \tv
Connect\\l \tv Adv. [37 Algorithm 1] CO Slylog(n)) - 1
Model Prob. Input Order Reference Approx. Space Time Passes Method
Adv. B71 1/2 o(n) om) ! Passes Method
Unw. — L - - _— S—
Graph |) del Prob. Input Order Reference Approx Space Time Passes Method to
[37, Theorem 2] 6 O(nlog(n)) om* 1 Greedy ‘o
Det. [75, Theorem 3] 2 4 ¢ (5.82) O(n polylog(n)) o) o(1) (1) Greedy
ION Unw. Bi [102] 5.58 O(n polylog(n)) o) 1 ~
Graph [34] 4.911 4 ¢ O(n polylog(n)) o))" 1 - —
(28] 4+¢ O(n polylog(n)) Q(log(n))" 1
W
Model Prob. Input Order Reference Approx. Space Time Passes Method Local Ratio bacses
= Local Ratio
[22, Theorem 4] (e, &) O(n(Tg + T3) /T3 log(2/6)) 1 Sampling Loan) -
Unw. e/
ALO Rand. G:]::h Adv. [79, Theorem 3] (e, 1/50) O(e 2m/VT) 1 Sampling flog n) LP
[79, Theorem 5] (e,1/100) O(e 2m3/2/T) - 2 Sampling log(«—1)) L.P.
[22] (e, 8) O((Ty + 2Ty + 3T3) /T3 log(2/8)) - 1 Sampling log(~1)) L.P.
[79, Theorem 10] (e, 1/50) O(e 2m/VT) 2 Sampling | 1
[79, Theorem 14] (e,1/100) O(e 2m3/2/T) 3 Sampling by 1
- . og(n
[17, Corollary 3.9] (e,1/3) O(m3/2/T) 4 Reserv. Sampling P N »
- 2
Ad [17, Theorem 3.1] (e, 1/3) O(m?/T) 2 Reserv. Sampling Liing
Unw. V. . 1
ION Rand. Gr";’;',h [86, Theorem 3.3] (e, &) O(6/e2mA /T log(2/5)) 1 | pling
- og(t .
[55, Theorem 1] (e, &) O(log(1/8)ymA2/T) 1 Sampling e(t) pling
[55, Theorem 2] (e, &) O(log(1/8)((m3 + mCy + Cg)/T2 + 1)) 1 Sampling Oflog(n)) Sampling
1
[55, Theorem 3] (e, &) O(n+ 1/ log(1/8)(T2 /T + 1) log(n)) 3 Sampling Sarmo
. ampling
[26, Theorem 5] (e, 1/2) O(m/ (2% /TY) polylog(n))* 2 Sampling . Method
Rand. [26, Corollary 6] (1/3 4+ ¢, —) O(ﬂl/(54‘5 VT)) 1 Sampling l
1

[90, Theorem 3.1] - O(na + /T/a) - O(+/1/a) Sampling

AP

OTHER ALGORITHMS, PROBLEMS, ANALYSES

spcl.inf.ethz.ch

L 4 @spcl_eth

ETH:zurich

Jriiteness *
i Triangle = Connected

Minimum
pann\ﬂg “ﬂ

Model Prob. Input t-\f nts
e, . ION Rand. Unw. Gr, N\O ‘ COUnt‘ng Com_pe
In addition to MWM, GRS COUN'INE_ ot -
TN Rand. Unw. Grapi™Rd om, ' Random

DG

we also analyzed
more graph problems

s R CO\Or‘ngS '_

Model Prob._lol DCSiinad- Spaﬂners
Spar \f\Cat\O

K-ve rtex

wa\ks

S
\(-edge

T jangle
Countmg

Denses’t
aphs cord

connec"“"w

Con nECt\V \ty Adv. [37 Algorithm 1] polylog(n)) 1
Model Prob. Input Order Reference Approx. Space Time Passes Method
Adv. B71 1/2 o(n) o) ! Passes Method
Unw. — = S—
Graph |) del Prob. Input Order Reference Approx Space Time Passes Method to
[37. Theorem 2] 6 O(n log(n)) o)* 1 Greedy o
Det [75, Theorem 3] 2 + € (5.82) O(n polylog(n)) o)’ o(1) (1) Greedy
ION Unw. Bi [102] 5.58 O(n polylog(n)) o) 1
Graph [34] 4.911 4 ¢ O(n polylog(n)) o))" 1
w (28] 4+¢ O(n polylog(n)) Q(log(n))" 1
Model Prob. Input Order Reference Approx. Space Time Passes Method Local Ratio bacses
= Local Rat
U [22, Theorem 4] (e, &) O(n(Tg + T3) /T3 log(2/6)) 1 Sampling L ocal Ratio
ALO _ Rand. G:‘:"}‘h Adv. [79, Theorem 3] (e,1/50) O(e 2m/VT) 1 Sampling ozn) L P
[79, Theorem 5] (e,1/100) O(e 2m3/2/T) - 2 Sampling log(«—1)) L.P.
[22] (e, 8) O((Ty + 2Ty + 3T3) /T3 log(2/8)) - 1 Sampling log(~1)) L.P.
[79, Theorem 10] (e, 1/50) O(e2m/VT) 2 Sampling Fl
[79, Theorem 14] (e,1/100) O(e 2m3/2/T) 3 Sampling -
- . 1
[17, Corollary 3.9] (e,1/3) O(m3/2/T) 4 Reserv. Sampling P eg(n)) »
- 2
Ad [17, Theorem 3.1] (e, 1/3) O(m?/T) 2 Reserv. Sampling Liing
Unw. V. . 1
Rand. Gr";’;',h 86, Theorem 3.3] (e, &) O(6/2mA /T log(2/6)) 1 - los(t) ™
- og(t ;
. 55, Th 1 , 6 O(l 1/8)ymA?/T 1 S li pling
Graph Processing on FPGAs: Taxonomy, Survey, Challenges (35, Theorem 1] (<, 9) . (oa(1/o)ma7/T) smping R
[55, Theorem 2] (e, &) O(log(1/8)((m? + mCy + Cg) /T2 + 1)) 1 Sampling g pling
. . . 1
Towards Understanding of Modern Graph Processing, Storage, and Analytics [55, Theorem 3] (e, §) O(n +1/2 1og(1/8)(Ta /T + 1) log(n)) 3 Sampling o
. ampling
[26, Theorem 5] (e, 1/2) O(m/ (2% /TY) polylog(n))* 2 Sampling . Method
MACIE) BESTA*, DIMITRI STANOJEVIC*, Department of Computer Science, ETH Zurich Rand. [26, Corollary 6] (1/3 4+ ¢, —) O(m/(e*%vT)) 1 Sampling l
JOHANNES DE FINE LICHT, TAL BEN-NUN, Department of Computer Science, ETH Zurich = 1_)
90, Th 3.1] - o} VI - OVl Sampli
TORSTEN HOEFLER, Department of Computer Science, ETH Zurich [corem 311 (na + Vi/e) (vi/@) Sampling

-) = B s e v escen ETHZzUrich
ess
OTHER ALGORITHMS, PROBLEMS, ANALYSES B Triangle W Connected

Model Prob. Input ‘V\O‘t\f Il Count‘ng l COm_p?entS

ION Rand. Unw. Gr:

In addition to MWM, GRS COUNUNE o=

TN Rand. Unw. GrapWe . em M\n\m\,\m ' Random
we also analyzed = CM spanning rees, 5 Wa\ks
more graph problems

I) ers "
Model Prob. g SpaM Connect\v\ V T -\ang\e

ification wmﬂ’"‘"“
Spafw Densest K-edge | countmg

|
K—Vertex b ra phS eord \tv
o 2 onneC’UV
Connect\\l\ V Adv. [37 Algorithm 1] polylog(n)) - 1
Model Prob. Input Order Reference Approx. Space Time Passes Method ————
Adv. B71 1/2 o(n) o) ! Passes Method
Une. o A . o e
Graph |) del Prob. Input Order Reference Approx Space Time Passes Method to
[37. Theorem 2] 6 O(nlog(n)) o)* 1 Greedy o
Det. [75, Theorem 3] 2 + € (5.82) O(n polylog(n)) o)’ o(1) (1) Greedy
ION Unw. Bi [102] 5.58 O(n polylog(n)) o()* 1
Graph [34] 4,911 + ¢ O(n polylog(n)) o)’ 1
28] dte O(n polylog(n)) Q(log(n))" 1
W
Model Prob. Input Order Reference Approx. Space Time Passes Method Local Ratio bacses
= Local R
[22, Theorem 4] (e, &) O(n(Tg + T3) /T3 log(2/6)) 1 Sampling o 7°Ca atio
ALO _Rand. g::::.h Adv. [79, Theorem 3] (e, 1/50) O(e 2m/VT) 1 Sampling oz n) L P
[79, Theorem 5] (e,1/100) O(e 2m3/2/T) - 2 Sampling log (< l) L P.
122] (e, 5) O((Ty + 2Ts + 3T3) /T3 log(2/8)) - 1 Sampling loz(e=1)) L P.
[79, Theorem 10] (e, 1/50) O(e 2m/VT) 2 Sampling Fl
[79, Theorem 14] (e,1/100) O(e 2m3/2/T) 3 Sampling T
[17, Corollary 3.9] (e,1/3) O(m3/2/T) 4 Reserv. Sampling = pe(n)) 5 .
. . . . [17, Theorem 3.1] (e, 1/3) O(m?/T) 2 Reserv. Sampling i
 Adv. 1 pling
(submitted to arXiv, will appear tonight) e sl (8 O(6/ctmA/Tlox(2/5) o .
- og(t ;
. 55, Th 1 , 6 O(l 1/8)ymA?/T 1 S li pling
Graph Processing on FPGAs: Taxonomy, Survey, Challenges [55, Theorem 1] - (e, &) N (log(1/8)mA™/T) mping S ECIREL
[55, Theorem 2] (e, &) O(log(1/8)((m? + mCy + Cg) /T2 + 1)) 1 Sampling g pling
Towards Understanding of Modern Graph Processing, Storage, and Analytics [55, Theorem 3] (e, §) O(n +1/2 1og(1/8)(Ta /T + 1) log(n)) 3 Sampling - o
N ampling
[26, Theorem 5] (e, 1/2) O(m/ (2% \/T)) polylog(n)) 2 Sampling . Method
MACIE) BESTA*, DIMITRI STANOJEVIC*, Department of Computer Science, ETH Zurich Rand. [26, Corollary 6] (1/3 4+ ¢, —) O(m/(e*%vT)) - 1 Sampling l
JOHANNES DE FINE LICHT, TAL BEN-NUN, Department of Computer Science, ETH Zurich = 1_ -
TORSTEN HOEFLER, Department of Computer Science, ETH Zurich (36, Theorem 3.1 - Ona £ vife) - 9(vl/a) Sameling

spcl.inf.ethz.ch

AT ETH:zrich

L 4 @spcl_eth

OTHER ALGORITHMS, PROBLEMS, ANALYSES

In addition to MWM,

Model Prob. Input

Motif

ION

Rand.

Unw. Gr

DGS Rand.

TN

Rand.

Unw. Grap

|
Unw. Grd Count\w

5 art'\teness *

components
oEpIng

[Minimum | Random

j ColonTe 4 ‘_' pann\ﬂg“ee ol wa\ks
pam Connect\\nv

DGS

we also analyzed
more graph problems

Model Prob. ol DGy

sparsificatiol_& sification T iangle

est
ex Dens . _ K_edge countmg
. -yer g =
To enable rigorous K subgraPie 2 | nectivity £
'\'_\V \'W Ad con
. Connec v. [37 Algorithm 1] olylog(n)) - 1
~J
re a SO n I n g’ We a n a IyZe d 1 5 Model Prob. Input Order Refere Approx. Space Time Passes Method ————
Adv. B71 1/2 o(n) o) ! Passes Method
L] Unw. L — . - - — —
models for streamin g grap h 5 [e v o e oo — — |
[37. Theorem 2] 6 O(nlog(n)) o(1) 1 Greedy o
Det. [75, Theorem 3] 2 + ¢ (5.82) O(n polylog(n)) o(1) o(1) (1) Greedy
H d I t d IoN Unw. Bi [102] 5.58 O(n polylog(n)) o(1) 1 i}
p rOCeSS I n g a n Se eC e Graph [34] 4.911 + ¢ O(n polylog(n)) (1) 1 e
28] dte O(n polylog(n)) Q(log(n))" 1
W
t h e b e St fo r F P G AS) Model Prob. Input Order Reference Approx. Space Time Passes Method Local Ratio basces
[22, Theorem 4] (e, &) O(n(Ty + T3) /T3 log(2/5)) 1 Sampling . !.ocal e
Unw. - g) besan)
ALO__Rand. Graph Adv. [79, Theorem 3] (e, 1/50) O(e 2m/VT) 1 Sampling oz n) LP
[79, Theorem 5] (e,1/100) O(e 2m3/2/T) - 2 Sampling log(«=")) L.P.
122] (¢, 6) O((Ty + 2Ts + 3T3) /T3 log(2/8)) - 1 Sampling loz(e=1)) L P.
[79, Theorem 10] (e, 1/50) O(e 2m/VT) 2 Sampling 1
[79, Theorem 14] (e,1/100) O(e 2m3/2/T) 3 Sampling -
[17, Corollary 3.9] (e,1/3) O(m3/2/T) 4 Reserv. Sampling eg(n)) ; m
. . . . [17, Theorem 3.1] (e, 1/3) O(m?/T) 2 Reserv. Sampling i
ow. Adv. pling
(submitted to arXiv, will appear tonight) e sl (8 O(6/ctmA/Tlox(2/5) 1 .
~ ogl(t
. . [55, Theorem 1] (e, &) O(log(1/8)ymA2/T) 1 Sampling £ Ipling
Graph Processing on FPGAs: Taxonomy, Survey, Challenges B Trowem 2] (o 8) BUog(L/5)((m s+ Car/T? 410 1 Saing DT s
Towards Understanding of Modern Graph Processing, Storage, and Analytics [55, Theorem 3] (e, §) O(n +1/¢2 log(1/8)(Ta /T + 1) log(n)) 3 Sampling - .
[26, Theorem 5] (e, 1/2) O(m/(e2® VTY)) polylog(n))* 2 Sampling . Method e
MACIE) BESTA*, DIMITRI STANOJEVIC*, Department of Computer Science, ETH Zurich Rand. [26, Corollary 6] (1/3 4+ ¢, —) O(m/(e*%vT)) 1 Sampling l
JOHANNES DE FINE LICHT, TAL BEN-NUN, Department of Computer Science, ETH Zurich = N T
TORSTEN HOEFLER, Department of Computer Science, ETH Zurich (20, Theorem 31] - Olna + vi/a) - O(VI/a) Sampling

ST e v anien ETHZzlrich
ess
OTHER ALGORITHMS, PROBLEMS, ANALYSES B Triangle W Connected

Model Prob. Input ‘V\O‘t‘f Il Count‘ng l COm_p?entS

ION Rand. Unw. Gr:

In addition to MWM, GRS COUNUNE o=
we also analyzed
more graph problems

TN Rand. Unw. Grapiemy k™ M\n\mum ' Random

Toes W CW pa aning trees_ 5 Wa\kS

DGS_Baad. S .
Model Prob. Lz Spanﬂer COﬂneCtN‘ ty i ng\e
rsification T °
Spa M Densest

wﬂﬂw—-“

_ _edge unting

Trverek | pgraphs 8 o &
iy & COMNIA ™ o oy

connectivity 3
Cash- reglster

To enable rigorous
reasoning, we analyzed ~15
models for streaming graph

processing (and selected
the best for FPGAS)

Annotated
streaming

Model Prob.

popeayessm MUD Adjacency-list
— oY N GIe][1-]) om—

ALO Rand.

O((T1 + 2T2 + 3T3) /T3 log(2/4)) -

[79, Theorem 10] (e, 1/50) O(e 2m/VT) 2 Sampling 1
[79, Theorem 14] (e,1/100) O(e 2m3/2/T) 3 Sampling -
[17, Corollary 3.9] (e,1/3) O(m3/2/T) 4 Reserv. Sampling ; K
. . . . [17, Theorem 3.1] (e, 1/3) O(m?/T) 2 Reserv. Sampling [ling
(SmelttEd to arXIv’ WIII appear tonlght) . grn::,.h Adv [86, Theorem 3.3] (e, &) O(6/e?mA /T log(2/5)) 1 ll) :inz
. . [55, Theorem 1] (e, &) O(log(1/8)ymA2/T) 1 Sampling oe pling
Graph Processing on FPGAs: Taxonomy, Survey, Challenges B Trowem 2] (o 8) Bon(1/) (e § mes . Cor/T? £ 1)) 1 S T i
Towards Understanding of Modern Graph Processing, Storage, and Analytics 55, Theorem 3] (e, &) O(n + 1/ log(1/8)(Ta /T + 1) log(n)) 3 Sampling 1 .
[26, Theorem 5] (e, 1/2) O(m/(e2® VTY)) polylog(n))* 2 Sampling . Method e
MACIE) BESTA*, DIMITRI STANOJEVIC*, Department of Computer Science, ETH Zurich Rand. [26, Corollary 6] (1/3 4+ ¢, —) O(m/(e*5vT)) 1 Sampling !
JOHANNES DE FINE LICHT, TAL BEN-NUN, Department of Computer Science, ETH Zurich = 1_)
TORSTEN HOEFLER, Department of Computer Science, ETH Zurich (36, Theorem 3.1 - Olna+ VIfe) - O(VI/a) Sameling

e — - = B | ey v escen ETHZzUrich

. i essS
OTHER ALGORITHMS, PROBLEMS, ANALYSES Bipa g Inee W Connected

Model Prob. Input ‘\/\Ot\f ‘l Couﬂtmg l Com‘pc.)ents

ION Rand. Unw. Gr:

In addition to MWM, GRS COUNUNE o= 3 ‘
TN Rand. Unw. GrapWon c e M\n\mum ' Random
we also analyzed Toes ® CW pannmgtree 5 Wa\ks

more graph problems gpEmEee] cpanners NP Connect\\/\ ty s
SparS\f\ca’t\O Fnseﬁ ; '\’ \aﬂtgn
: K-e ge countl
. X
To enable rigorous ~ Keverte ‘_ bsg,ra\O‘ﬂS - i @

reasoning, we analyzed ~15 T——

models for streaming graph Wate'=di W-Stream | SeT' Strfam'ng F streammg
processing (and Selected . NManRadiira \/nr'l'nv arrival ()nlm

the best for FPGAS)

Spac

Survey and Taxonomy of Models and Algorithms
for Streaming Graph Processing

(submitted to arXiv, will appear tonight)
Graph Processing on FPGAs: Taxonomy, Survey, Challenges

Towards Understanding of Modern Graph Processing and Storage

Towards Understanding of Modern Graph Processing, Storage, and Analytics MARC FISCHER, Department of Computer Science, ETH Zurich

MACIE] BESTA, Department of Computer Science, ETH Zurich
TAL BEN-NUN, Department of Computer Science, ETH Zurich
TORSTEN HOEFLER, Department of Computer Science, ETH Zurich

MACIE) BESTA*, DIMITRI STANOJEVIC*, Department of Computer Science, ETH Zurich
JOHANNES DE FINE LICHT, TAL BEN-NUN, Department of Computer Science, ETH Zurich
TORSTEN HOEFLER, Department of Computer Science, ETH Zurich

e — - = B | ey v escen ETHZzUrich

. i essS
OTHER ALGORITHMS, PROBLEMS, ANALYSES Bipa g Inee W Connected

Model Prob. Input ‘\/\Ot\f ‘l Couﬂtmg l Com‘pc.)ents

ION Rand. Unw. Gr:

In addition to MWM, GRS COUNUNE o= 3 ‘
TN Rand. Unw. GrapWon c e M\n\mum ' Random
we also analyzed Toes ® CW pannmgtree 5 Wa\ks

more graph problems gpEmEee] cpanners NP Connect\\/\ ty s
SparS\f\ca’t\O Fnseﬁ ; '\’ \aﬂtgn
: K-e ge countl
. X
To enable rigorous ~ Keverte ‘_ bsg,ra\O‘ﬂS - i @

reasoning, we analyzed ~15 T——

models for streaming graph Wate'=di W-Stream | SeT' Strfam'ng F streammg
processing (and Selected . NManRadiira \/nr'l'nv arrival ()nlm

the best for FPGAS)

Spac

Survey and Taxonomy of Models and Algorithms
for Streaming Graph Processing

(submitted to arXiv, will appear tonight)
Graph Processing on FPGAs: Taxonomy, Survey, Challenges

Towards Understanding of Modern Graph Processing and Storage

Towards Understanding of Modern Graph Processing, Storage, and Analytics MARC FISCHER, Department of Computer Science, ETH Zurich

MACIE] BESTA, Department of Computer Science, ETH Zurich
TAL BEN-NUN, Department of Computer Science, ETH Zurich
TORSTEN HOEFLER, Department of Computer Science, ETH Zurich

MACIE) BESTA*, DIMITRI STANOJEVIC*, Department of Computer Science, ETH Zurich
JOHANNES DE FINE LICHT, TAL BEN-NUN, Department of Computer Science, ETH Zurich
TORSTEN HOEFLER, Department of Computer Science, ETH Zurich

AL Ry v onien ETHZzUrich
ness

THER ALGORITHMS, PROBLE . Bipa e I W Connected

o) GO S, PRO Work in progress on the B votf | Z;‘j;‘tg‘fg —] ;‘;r\‘;‘?ems

In addition to MWM, = dlstrlbuted setting © counting _gpymmes=t== =S
W Minimum W' pandom

we also analyzed L E O olofne_.4 spanning nmngtfei.g walks
more graph problems | ~

T '\aT\g\e

To enable rigorous

reasoning, we analyzed ~15 T——

models for streaming graph Wate'=di W-Stream | SeT'_St[fam'ng i streaming
processing (and Selected NManRadiira \/nr'l'nv arrival Online -
the best for FPGAS)

Survey and Taxonomy of Models and Algorithms
for Streaming Graph Processing

(submitted to arXiv, will appear tonight)
Graph Processing on FPGAs: Taxonomy, Survey, Challenges

Towards Understanding of Modern Graph Processing and Storage

Towards Understanding of Modern Graph Processing, Storage, and Analytics MARC FISCHER, Department of Computer Science, ETH Zurich

MACIE] BESTA, Department of Computer Science, ETH Zurich
TAL BEN-NUN, Department of Computer Science, ETH Zurich
TORSTEN HOEFLER, Department of Computer Science, ETH Zurich

MACIE) BESTA*, DIMITRI STANOJEVIC*, Department of Computer Science, ETH Zurich
JOHANNES DE FINE LICHT, TAL BEN-NUN, Department of Computer Science, ETH Zurich
TORSTEN HOEFLER, Department of Computer Science, ETH Zurich

spcl.inf.ethz.ch -
Y @spcl_eth E'HZUI”IC/’)

spcl.inf.ethz.ch
L 4 @spcl_eth

ETH:zurich

sl = V{gla]

cess®
Substream-Centric Graph Processing

Itt ts edge-centri
A new paradigm for Al BECentC
5 streaming approaches
processing graphs
Process “substreams” Divide the input stream of
edges according to some
independently X & SN : 9
(@ % G) (algorithm-specific) pattern
Merge ¢ o) P =2
substreams 3 i I

SUBSTREAM-CENTRIC GRAPH PROCESSING
PARADIGM, EXPOSES PARALLELISM, ENABLES
EASY PIPELINING, SUPPORTS APPROXIMATION

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Divide the input stream of
edges according to some
(algorithm-specific) pattern

SUBSTREAM-CENTRIC GRAPH PROCESSING
PARADIGM, EXPOSES PARALLELISM, ENABLES
EASY PIPELINING, SUPPORTS APPROXIMATION

DETAILED DOMAIN ANALYSIS,
IDENTIFICATION OF SEMI-STREAMING
MODEL As FPGA BEST-FIT, 2 SURVEYS

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Substream-Centric Graph Processing

It targets edge-centric
streaming approaches

A new paradigm for
processing graphs

Process “substreams” Divide the input stream of
independently edges according to some
f - (algorithm-specific) pattern

substreams ',’ I 4 v
v >
. » b .

-
]
]

SUBSTREAM-CENTRIC GRAPH PROCESSING
PARADIGM, EXPOSES PARALLELISM, ENABLES
EASY PIPELINING, SUPPORTS APPROXIMATION

DETAILED DOMAIN ANALYSIS,
IDENTIFICATION OF SEMI-STREAMING
MODEL As FPGA BEST-FIT, 2 SURVEYS

Survey and Taxonomy of Models and Algorithms

for Streaming Graph Processing

Towards Understanding of Modern Graph Processing and Storage .
Graph Processing on FPGAs: Taxonomy, Survey, Challenges
MARC FISCHER, Department of Computer Science, ETH Zurich Towards Understanding of Modern Graph Processing, Storage, and Analytics

MACIE] BESTA, Department of Computer Science, ETH Zurich
TAL BEN-NUN, Department of Computer Science, ETH Zurich MACIEJ BESTA", DIMITRI STANOJEVIC®, Department of Computer Science, ETH Zurich

TORSTEN HOEFLER, Department of Computer Science, ETH Zurich JOHANNES DE FINE LICHT, TAL BEN-NUN, Department of Computer Science, ETH Zurich
’ ' TORSTEN HOEFLER, Department of Computer Science, ETH Zurich

Graph processing has become an important part of various areas of computer science, including m|
ing, social network analysis, computational sciences, and others. Two key challenges that hinder|
graph processing are (1) sizes of input datasets, reaching trillions of edges, and (2) the growing

updates, with millions of edges added or removed per second. Graph streaming algorithms arg

Arafted ta eliminate thece icertec: The innnt oranh ic naceed ac a4 ctream nf 1indatee allauring a a4 0

Graph processing has become an important part of various areas, such as machine learning, computational
sciences, medical applications, social network analysis, and many others. Various graphs such as web or
social networks may contain up to trillions of edges. The sheer size of such datasets, combined with the

irregular nature of graph processing, poses unique challenges for the runtime and the consumed power. Field

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Substream-Centric Graph Processing

It targets edge-centric
streaming approaches

A new paradigm for
processing graphs

Process “substreams” Divide the input stream of
independently edges according to some
-~ Q (algorithm-specific) pattern
Merge ’ \Q x R
substreams ,’ J J \
4 \
’

n ‘{-\----- P e--- f) =

N\ /

-
]
]

3
‘\

SUBSTREAM-CENTRIC GRAPH PROCESSING
PARADIGM, EXPOSES PARALLELISM, ENABLES
EASY PIPELINING, SUPPORTS APPROXIMATION

THEORY-INSPIRED MWM
DETAILED DOMAIN ANALYSIS, APPROXIMATE ALGORITHM

IDENTIFICATION OF SEMI-STREAMING ON A HYBRID CPU-FPGA SETTING
MODEL As FPGA BEST-FIT, 2 SURVEYS

FPGA
Use a hybrid ~ Time: O(m)

CPU-FPGA © Work: O(Lm)
setting! %

LR
Time: O(Ln) 4 4 \
Work i) L AN

el e f) |
.
/
/
& f) ¥

Substream L-1

Weighted
edges

Survey and Taxonomy of Models and Algorithms

for Streaming Graph Processing

Towards Understanding of Modern Graph Processing and Storage .
Graph Processing on FPGAs: Taxonomy, Survey, Challenges
MARC FISCHER, Department of Computer Science, ETH Zurich Towards Understanding of Modern Graph Processing, Storage, and Analytics

MACIEJ BESTA, Department of Computer Science, ETH Zurich
TAL BEN-NUN, Department of Computer Science, ETH Zurich MACIEJ BESTA*, DIMITRI STANOJEVIC®, Department of Computer Science, ETH Zurich

TORSTEN HOEFLER, Department of Computer Science, ETH Zurich JOHANNES DE FINE LICHT, TAL BEN-NUN, Department of Computer Science, ETH Zurich
’ ' TORSTEN HOEFLER, Department of Computer Science, ETH Zurich

Graph processing has become an important part of various areas of computer science, including m|
ing, social network analysis, computational sciences, and others. Two key challenges that hinder|
graph processing are (1) sizes of input datasets, reaching trillions of edges, and (2) the growing

updates, with millions of edges added or removed per second. Graph streaming algorithms arg

Arafted ta eliminate thece icertec: The innnt oranh ic naceed ac a4 ctream nf 1indatee allauring a a4 0

Graph processing has become an important part of various areas, such as machine learning, computational
sciences, medical applications, social network analysis, and many others. Various graphs such as web or
social networks may contain up to trillions of edges. The sheer size of such datasets, combined with the
irregular nature of graph proce: ses unique challenges for the runtime and the consumed power. Field

(1] M. Crouch and D. M. Stubbs. improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz informatics. 2014.

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Substream-Centric Graph Processing

It targets edge-centric
streaming approaches

A new paradigm for
processing graphs

Divide the input stream of
edges according to some
(algorithm-specific) pattern

Process “substreams”
independently .
Merge) Q K Q
- : \ X
s g g \
4

L 5w >

» . \

-
]
]

(1atted 2i verigi) fuqriguowd T stiad 2i 1swol) smilnufl | 0000S
| AA9-2D a o o)

SUBSTREAM-CENTRIC GRAPH PROCESSING e - J [——

032-20
0008
-j 0008
ol .

Lwe [we]

(1stted 2i veripir) fuqripuowiT,

PARADIGM, EXPOSES PARALLELISM, ENABLES T e LL Lji

o
H
Wilou sqdezz

ost AR3-2D
932_0 Loore N\ 0000F 08
EASY PIPELINING, SUPPORTS APPROXIMATION | v foow 3) :
’ 198 3 o [void Inst2\he8 Inst2 sllswod WO Tlsmuolevid Woild Ins2\ihe8 insfe sllswod
2 0008 % rigs1d qs1d
108 2

0008

e = vor | THEORY-INSPIRED MWM

/
DETAILED DOMAIN ANALYSIS, i) APPROXIMATE ALGORITHM

SC-SIMPLE logB =18, L =6 14714
SC-SIMPLE logB =12, L =8 14.598
SC-OPT K=32L=512 14.789

IDENTIFICATION OF SEMI-STREAMING ON A HYBRID CPU-FPGA SETTING

C-OPT K =256 1 — 198 14 789
MODEL AS FPGA BEST-FIT, 2 SURVEYS e T '- S22 emaric
(1atted 2i vorigir) fugrpuowT| o - -
oo || T .. Bm-Centric Graph Processing + Crouch and Stubbs MWM [1]
—_—— . /] N o FPGA
Y loszh 1 e a hybrid . ‘ Time: O(m)
"A/‘“a 032-20 R
s st w0 s o 8 b - - Weighted
Survey and Taxonomy of Models and Algorithms i o o s edges
hadd 1) osi2 #oold

for Streaming Graph Processing
Towards Understanding of Modern Graph Processing and Storage

4 sy \
- - H - Q .
mdtioglh A9 R4

Jl9mle-De
3Jamiz-02

Graph Processing on FPGAs: Taxonomy, Survey, Challenges

MARC FISCHER, Department of Computer Science, ETH Zurich Towards Understanding of Modern Graph Processing, Storage, and Analytics

MACIE) BESTA, Department of Computer Science, ETH Zurich
TAL BEN-NUN, Department of Computer Science, ETH Zurich
TORSTEN HOEFLER, Department of Computer Science, ETH Zurich

MACIE] BESTA®, DIMITRI STANOJEVIC®, Department of Computer Science, ETH Zurich
JOHANNES DE FINE LICHT, TAL BEN-NUN, Department of Computer Science, ETH Zurich
TORSTEN HOEFLER, Department of Computer Science, ETH Zurich

srz aes est s St ar 8 b 8 f
(1) egiriotehd mumixeM

Graph processing has become an important part of various areas of computer science, including m|
ing, social network analysis, computational sciences, and others. Two key challenges that hinder|
graph processing are (1) sizes of input datasets, reaching trillions of edges, and (2) the growing

updates, with millions of edges added or removed per second. Graph streaming algorithms ard

Arafted ta eliminate thece icertec: The innnt oranh ic naceed ac a4 ctream nf 1indatee allauring a a4 0

Graph processing has become an important part of various areas, such as machine learning, computational
sciences, medical applications, social network analysis, and many others. Various graphs such as web or
social networks may contain up to trillions of edges. The sheer size of such datasets, combined with the
irregular nature of graph processing, poses unique challenges for the runtime and the consumed power. Field

T90-22
T90-D2

Matching, via unweighted Matching. LIPIcs-Leibniz informatics. 2014.

Ny : spcl.inf.ethz.ch ZU,’/C
@spcl_eth m h
Substream-Centric MWM: FPGA design , Pe
S Vectorizatio
Substream-Centric Graph Processing sa“"."'g i 4

Centaur framework (described in more detail in Evaluation, § 5)

! | any
{ | l
Pointer Requester 9 Merger Stream of edges __Matching Bits
Request the pointers Merge the network Requester: Acknowledgement
S e o o Yok by e 1n lex;z%;apn.co mat g bits W S:d-mmdn
& i S — atching ois that
Anew paradigm for It targets ccge centilc sHM00S[] sHMO0Or] <ggor =N . @O P
s streaming approaches e Part 1 Matching |
processing graphs BIYL QL EIMEISIIIOI @ 8 Y d & b € S [Quede | Bda2): Teceive
il @ | L eiogapnc | @) from T“"" S Recever” B
Receive order Recelve motching Request matching
Process “substreams” SRR A G < Bt them ino one " g;lww.._ lmm —9"‘&3"&‘:"&‘ o-wgfw
2 edges according to some : » of the queues / odots S
independently Prefetching Part 2 Pending-Queue — gy UPJate BR S
-~ (algorithm-specific) pattern 8 (54.4.3) © mm
,) q X or Binerae the i i FPGA modules that computs — (6]
o e Valid- modules that compute
. L\: f:f:ms i X <e E‘Z‘r"g{:\g’!}s‘ it Do sy may the L maximum matchings in paralel
s % \ x x 1]
’ R
’I M $ x 8sI
- T o ; GENERIC FPGA DESIGN
] % sz)
1 \\ ’, 1 navip 5 10t 8 to sulsv sldizzoq teorpid o} - x
]
' CODE AVAILABLE
]
]
L

{ratiad 2 origir) hugriguord T (reffad 2l vowol} smiBnufl - 0000%
! AAS-2D our

SUBSTREAM-CENTRIC GRAPH PROCESSING M- I
PARADIGM, EXPOSES PARALLELISM, ENABLES T = LL R
EASY PIPELINING, SUPPORTS APPROXIMATION [<Lk L. aaa._

; . w> .= | THEORY-INSPIRED MWM
DETAILED DOMAIN ANALYSIS, Y B

et APPROXIMATE ALGORITHM
ON A HYBRID CPU-FPGA SETTING

Algorithm Parameters Energy Consumption [W]
SC-SIMPLE logB =18, L =6 14714
SC-SIMPLE logB =12, L =8 14.598
SC-OPT K=32L=512 14.789

IDENTIFICATION OF SEMI-STREAMING

C-OPT K =256 1 — 198 14 789
(vatted i varigin) fugrguondT . - wpct.inf ethr.ch oe e
MODEL As FPGA BEST-FIT, 2 SURVEYS e - e
S rottod i vodgi) RoariguandT |
e 4 T40-32
—— N FPGA
|) | 8 AR Time: O(m)
—— . - . s
“?'23 D?E—D
ses Bst 9 So Bt 8 b "o Weighted
i (vattad & oripir) ugriguondT 008 3 032-22
Survey and Taxonomy of Models and Algorithms L e / edges
. . w o 8 s o5
for Streaming Graph Processing

) 8312 %o

Towards Understanding of Modern Graph Processing and Storage

Graph Processing on FPGAs: Taxonomy, Survey, Challenges

Substream O

MARC FISCHER, Department of Computer Science, ETH Zurich Towards Understanding of Modern Graph Processing, Storage, and Analytics el e f) B e T
MACIEJ BESTA, Department of Computer Science, ETH Zurich

TAL BEN-NUN, Department of Computer Science, ETH Zurich MACIEJ BESTA*, DIMITRI STANOJEVIC®, Department of Computer Science, ETH Zurich ’

TORSTEN HOEFLER, Department of Computer Science, ETH Zurich JOHANNES DE FINE LICHT, TAL BEN-NUN, Department of Computer Science, ETH Zurich

TORSTEN HOEFLER, Department of Computer Science, ETH Zurich

219toms1sd mrdtitoglA ADIA

srz azs est k2 SE ar 8 b8
!) eacnetd el ! RN =180 =1dgol 319MIe-02

Graph processing has become an important part of various areas of computer science, including m| N 5 B 5 5 N 8 & 8t = 18I =fdgol JJamlez-o2 N
. Graph processing has become an important part of various areas, such as machine learning, computational M
ing, social network analysis, computational sciences, and others. Two key challenges that hinder| . A T90-22 ’

b) ires of taput d hing tellions of ed: 4o th sciences, medical applications, social network analysis, and many others. Various graphs such as web or O e e e e e —————
graph processing are (1) sizes of input datasets, reaching trillions of edges, and (2) the growing social networks may contain up to trillions of edges. The sheer size of such datasets, combined with the
updates, with millions of edges added or removed per second. Graph streaming algorithms ard

irregular nature of graph processing, poses unique challenges for the runtime and the consumed power. Field
Arafted ta eliminate thece icertec: The innnt oranh ic naceed ac a4 ctream nf 1indatee allauring a a4 0 - P L N N . . .

Matching, via unweighted Matching. LIPIcs-Leibniz informatics. 2014.

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Substream-Centric MWM: FPGA design

Centaur framework (described in more detail in Evaluation, § 5)
ctorizatiol 5 ' |
Substream-Centric Graph Processin 5 ayze s : ! = l
’ ¢ e S | | || e |
3 oo order (@) for Dite Snowedgamus
Aot o0 T ool <o L o O e OB | TSRS
processing graphs BIYL QL EIMEISIIIOI @ 8 Y d & b € S [| saal: receive - — S
£ | Ol | e |G | = =
Brocess “subicranteic® Divide the inp})(stream of i ¢ p\:’ﬁn%' gglm,._ lmm _ew&-m o&":{w
nasnandam edggs accordlqg to some fusies Part 2/ Pending-Queue — mﬂﬁ'
il b ~ (algorithm-specific) pattern N Ly Bevar © [) — EE&%
' § - Erpmr R | pelim B9 - RRNREIR. °
substreams
T : s
x aas
- G C FPGA DESIG
: t‘ll‘r/:e”'tg(:a‘r::::gh 3 = 2 3 r_m“nnu!“J " Y 1 navip 5 10t 8 to sulsv sldizzoq teorpid o} - x e E N E RI D E I N’
E m;:daiﬂzna;oawMz?dM’ "%ﬁ"_ o CO D E AVAI LAB I-E
1 more graph problems =
- gz, tted sl eroid) orpuoniT N (1stiad ai vewol) smilnufl | 0000S
S c : 7 : qu-:\(fe-a Qe 1% T 0320 o
UBSTREAM-CENTRIC GRAPH PROCESSING i
(1stted 2i 1eripir) fugripuoi T (vsttsd 2i vswol) smitnuA | 000x 1 :ZZ é 03e-2> 0008 g‘
PARADIGM, EXPOSES PARALLELISM, ENABLES — L N
: y 3 1™ NAqVEJ\ 0000t { | ook
03e-d Jo0r & - L o
EASY PIPELINING, SUPPORTS APPROXIMATION GENERALIZABILITY TO OTHER ’ lw 8| 52 e o ——y
08 % 002 = m,wa - : -
G OBLEMS AND SETTINGS ST MWM
RAFHPRODEMSAND SETTIN Fe L = .- | THEORY-INSPIRED
° ¢ - . ; — |, 0
» s ar 8 » s ot % s ot 8 » s ot
DETAILED DOMAIN ANALYSIS, uEel e APPROXIMATE ALGORITHM

Algorithm Parameters Energy Consumption [W]

SC-SIMPLE logB =18, L =6 14714
SC-SIMPLE logB =12, L =8 14.598
SC-OPT K=32L=512 14.789
C-OPT K =256 1 — 198 14 789

(ratied ei varigi) hugriguonT | .

IDENTIFICATION OF SEMI-STREAMING
MODEL As FPGA BEST-FIT, 2 SURVEYS

ON A HYBRID CPU-FPGA SETTING

o tinf ethech e

F—_ TI032 . - :sw « ETHzirich

~ rottod i vodgi) RoariguandT |

¢ & TH0-02
—_—— . R FPGA
Al - . N
0320 P o Time: O(m)
—— L L

Axg-2> RECES]

L L
ses Bst 9 So Bt 8 b Weighted

(attod 2 i) RuqriguonT edges

Survey and Taxonomy of Models and Algorithms
for Streaming Graph Processing

Towards Understanding of Modern Graph Processing and Storage

Substream O

Graph Processing on FPGAs: Taxonomy, Survey, Challenges

MARC FISCHER, Department of Computer Science, ETH Zurich Towards Understanding of Modern Graph Processing, Storage, and Analytics e = f) B T S N
MACIEJ BESTA, Department of Computer Science, ETH Zurich
TAL BEN-NUN, Department of Computer Science, ETH Zurich MACIE] BESTA®, DIMITRI STANOJEVIC®, Department of Computer Science, ETH Zurich 7
TORSTEN HOEFLER, Department of Computer Science, ETH Zurich JOHANNES DE FINE LICHT, TAL BEN-NUN, Department of Computer Science, ETH Zurich -
P P TORSTEN HOEFLER, Department of Computer Science, ETH Zurich z19toms1s9_miltitoglA ADI
T R = 1.8 =dgol Jidmie-o2
Graph processing has become an important part of various areas of computer science, including m| 5 5 B 5 5 N At Jlamie-oe
. Graph processing has become an important part of various areas, such as machine learning, computational
ing, social network analysis, computational sciences, and others. Two key challenges that hinder| . T90-22
. ; ! - sciences, medical applications, social network analysis, and many others. Various graphs such as web or e e e TS S e - - -
graph processing are (1) sizes of input datasets, reaching trillions of edges, and (2) the growing

. " 2 T90-02

social networks may contain up to trillions of edges. The sheer size of such datasets, combined with the
irregular nature of graph processing, poses unique challenges for the runtime and the consumed power. Field

updates, with millions of edges added or removed per second. Graph streaming algorithms ard

Arafted ta eliminate thece icertec: The innnt oranh ic naceed ac a4 ctream nf 1indatee allauring a a4 0

Matching, via unweighted Matching. LIPIcs-Leibniz informatics. 2014.

Website & code: http://spcl.inf.ethz.ch/Research/Parallel_Programming/Substream_Centric o ETHzirich

L 4 @spcl_eth

Centaur framework (described in more detail in Evaluation, § 5)

- - ! | P—
Substream-Centric Graph Processing = o -
'-"*-F ml-w-lh. et "u'-'ew Stream of edges Mmu okt .
Sicak to the rows of the using a binary tree in Iex::rz%rrapmc ommmmm& ""ﬁ""w e m x.mwm.nml
< i of matching bits that
A new paradigm for b ecee il sHM00s[] sHMoo[l] < ggor D .. — S RS C I
processing ETEDhS steaming epproaches BITIAI2rbrErSrroOr e 8 v @ @2 b € € T‘“" 4 | (§4.42). m"?@' — g
from

lexicographic
order

I
3| Qs row B
" B < a new edge, | ___ bits for the next for the next:
Process “substreams” Dlslde e mg,m S B wmoqm:’ / BRQUeS— Process edges. @crochfor (7] L
independently edges according to some n Fant 2/ mumu—e“"’"ﬂm - Edgewriter

(algorithm-specific) pattern

FPGA 3): &,
= ar modules that Derive L et
nerate the oo BRAM Valid: FPGA modules that compute
e i \ \ X ce [V Jedcogaphc SIS | Doublebuffemdanay ey the L maxmum matchings in paralel
substreams \
I’ \ = . b2
’ ETHzurich = L
- f) R f) OTHER ALGORITHMS, PROBLEMS, ANALYSES * aas G ENERI C F P ES I
] ‘\ Well, not enough > Y 4
: b ¢ e] Mo ¥ Random 1 nsvip & 101 8 10 sulsv sldizzoq 1zarpid sri - x
ColoNEE A _anningtrees B~ aiks
: st =Y Lo CODE AVAILABLE
! {n acction to MY, wm%«nws‘ r’Te?gr counting
] we also analyzed 3 :‘:“fm soberaehs B T iy
! more graph problems S el

{ratiad 2 origir) hugriguord T (reffad 2l vowol} smiBnufl - 0000%
OkF

SUBSTREAM-CENTRIC GRAPH PROCESSING — = i =i N
PARADIGM, EXPOSES PARALLELISM, ENABLES | -~ ‘ T e i LL J N
EASY PIPELINING, SUPPORTS APPROXIMATION GENERALIZABILITY TO OTHER [Lk L- WJL-J

GRAPH PROBLEMS AND SETTINGS |~ ... ~ T THEORV-INSPIRED MWM
DETAILED DOMAIN ANALYSIS, i | APPROXIMATE ALGORITHM

Algorithm Parameters Energy Consumption [W]
SC-SIMPLE logB =18, L =6 14714

SCSIMPLE logB—12,L —§ 1459 ON A HYBRID CPU-FPGA SETTING

SC-OPT K=32,L=512 14.789

IDENTIFICATION OF SEMI-STREAMING

C-OPT K 254 1 128 14 789
MODEL AS FPGA BEST-FIT, 2 SURVEYS S
022 T ' |pm-Centric Graph Processing + Crouch and Stubbs MWM [1]
— | FPGA
0322 o AR, Time: O(m)
—— . > ¢ ¢ Work: O(Lm)
Loas 03223 3 .
a. I o Weighted
Survey and Taxonomy of Models and Algorithms Y L 7e - = edges
for Streaming Graph Processing Fonseioon

Towards Understanding of Modern Graph Processing and Storage

Graph Processing on FPGAs: Taxonomy, Survey, Challenges

MARC FISCHER, Department of Computer Science, ETH Zurich Towards Understanding of Modern Graph Processing, Storage, and Analytics wor k| e e e
MACIEJ BESTA, Department of Computer Science, ETH Zurich s g
TAL BEN-NUN, Department of Computer Science, ETH Zurich MACIEJ BESTA*, DIMITRI STANOJEVIC®, Department of Computer Science, ETH Zurich lo
TORSTEN HOEFLER, Department of Computer Science, ETH Zurich JOHANNES DE FINE LICHT, TAL BEN-NUN, Department of Computer Science, ETH Zurich o0 -

P i TORSTEN HOEFLER, Department of Computer Science, ETH Zurich —t lus aiotomeisd_midtitoglA ADT

ot e ™ L, B=1cr=dgol 319MI2-D2

Graph processing has become an important part of various areas of computer science, including m| p—y ine has b - Fvart h hine 1 - romal e ar 8 » S o=18=49 gD[Jlamie-oe P 4
ing, social network analysis, computational sciences, and others. Two key challenges that hinder| raph processing has become an important part of various areas, such as machine learning, computationa L () conirioteM mumixeM flg=18€=24A T90-22 ’

sciences, medical applications, social network analysis, and many others. Various graphs such as web or
social networks may contain up to trillions of edges. The sheer size of such datasets, combined with the
irregular nature of graph processing, poses unique challenges for the runtime and the consumed power. Field

graph processing are (1) sizes of input datasets, reaching trillions of edges, and (2) the growing
updates, with millions of edges added or removed per second. Graph streaming algorithms arg

Arafted ta eliminate thece icertec: The innnt oranh ic naceed ac a4 ctream nf 1indatee allauring a a4 0

TReB) oec 0k (eh) NAM BT 8S[= 1,008 = 4

Matching, via unweighted Matching. LIPIcs-Leibniz informatics. 2014.

Website & code: http://spcl.inf.ethz.ch/Research/Parallel_Programming/Substream_Centric o ETHzirich

L 4 @spcl_eth

Centaur framework (described in more detail in Evaluation, § 5)

. . ! | ——
Substream-Centric Graph Processing - P | L -
Pointer Requester ream of edges _ Matchi
ki ISR e SR | e | A
i == adacency oy ", arder () foredges o acknowledgements
" It targets edge-centric P E— | Gy T of matching bits that
A new paradigm for faty g sHM 00S[] sHM oor] T ool S ..., — have been written (@)
processing graphs streaming approaches BIYLALAIDPI EISIITOL @ 8 Y @ & b £ S [‘I’“‘“’ 4 | (§4.4.2) mnﬁ&« - -
I fexicographic from - e W
J¢ om Receiver order | 2 v
ivi i < 3 new edge, | —___ bits for the next’ 58 Tor the next
Process “substreams” SRR R o » Pt o / Bit-Queue — Edge Processor —gyepoch for BRAM (g)epoch for BRAM
independently Eogesdcoing toisoine — part2/ mum“—emﬂﬁm ——————————————————— Edge Writer
algorithm-specific) pattern 8 (54.4.3) X
Q ,) - i B X o Mﬁ%“bﬂz‘ s BRAM PGA modules th R (¢]
nerat ~ Fi it e
lr:A[en;e S X e foee BN S poseliean 0 the L minm satzimgs 1 pataiie
substreams
’ \ x x 1%
’ \
’ ETHzurich B 8sL
re-- I) e s et f) OTHER ALGORITHMS, PROBLEMS, ANALYSES x pas GENERIC FPGA DESIGN
s12
] ‘\ Well, not enough > n n /4
1 (N , g MinImUm Random 1 nsvip 6 10t 8 Yo sulsv sldizzoq tearpid orl - x
Coloti oanningtees ks
' s
5 - iy -
! In addition to MWM, cation_ i connect 2 3 Triangle |
’ SparsL Densest edEe counting
: we also analyzed mﬁwavm m\m
i oonec o comar
H more graph problems

{ratiad 2 origir) hugriguord T (reffad 2l vowol} smiBnufl - 0000%
OkF

SUBSTREAM-CENTRIC GRAPH PROCESSING — = i =i N
PARADIGM, EXPOSES PARALLELISM, ENABLES | -~ ‘ T e i LL J N
EASY PIPELINING, SUPPORTS APPROXIMATION GENERALIZABILITY TO OTHER [Lk L- WJL-J

GRAPH PROBLEMS AND SETTINGS |~ ... ~ T THEORV-INSPIRED MWM
DETAILED DOMAIN ANALYSIS, i | APPROXIMATE ALGORITHM

Algorithm Parameters Energy Consumption [W]
SC-SIMPLE logB =18, L =6 14714

SCSIMPLE logB—12,L —§ 1459 ON A HYBRID CPU-FPGA SETTING

SC-OPT K=32,L=512 14.789

IDENTIFICATION OF SEMI-STREAMING Thank you

C-OPT K 254 1 128 14 789
L] (ratfed =i 1erigin) fugripuondT | .
MODEL AS FPGA BEST-FIT, 2 SURVEYS for your attention < I . .
T0oe .. Bm-Centric Graph Processing + Crouch and Stubbs MWM [1]
— | FPGA
0322 o AR, Time: O(m)
—— . > ¢ ¢ Work: O(Lm)
Loas 03223 3 .
ol o ": Weighted
Survey and Taxonomy of Models and Algorithms L + : edges
for Streaming Graph Processing Fonseioon

Towards Understanding of Modern Graph Processing and Storage

Graph Processing on FPGAs: Taxonomy, Survey, Challenges

MARC FISCHER, Department of Computer Science, ETH Zurich Towards Understanding of Modern Graph Processing, Storage, and Analytics wor k| e e e
MACIE) BESTA, Department of Computer Science, ETH Zurich 08 %
TAL BEN-NUN, Department of Computer Science, ETH Zurich MACIE) BESTA*, DIMITRI STANOJEVIC*, Department of Computer Science, ETH Zurich los
TORSTEN HOEFLER, Department of Computer Seience, ETH Zurich JOHANNES DE FINE LICHT, TAL BEN-NUN, Department of Computer Science, ETH Zurich - -
P P TORSTEN HOEFLER, Department of Computer Science, ETH Zurich : . | z19toms1s9_miltitoglA ADI

- - - S ekt el » lo PB=1&I=4gol J19mie-oe
Graph processing has become an important part of various areas of computer science, including m| Graph processing has become an Important part of various areas. such as machine learning. computational se ot 8 b S 1 0 = 18I =dgol Jlqamiez-oe N
ing, social network analysis, computational sciences, and others. Two key challenges that hinder| eiencea, medical applications, social petwork analysts, and many others. Various graphe such s web or L e LU Slg =188 =3 Ilegery g
graph processing are (1) sizes of input datasets, reaching trillions of edges, and (2) the growing N PP . - Y : grap [WC8) occUct (weh) HAM art BEI — 1,988 = A

social networks may contain up to trillions of edges. The sheer size of such datasets, combined with the Matching, via unweighted Matching. LIPcs-Leibniz Informatics. 2014.

updates, with millions of edges added or removed per second. Graph streaming algorithms arg irregular nature of graph processing, poses unique challenges for the runtime and the consumed power. Field
Arafted ta eliminate thece icertec: The innnt oranh ic naceed ac a4 ctream nf 1indatee allauring a a4 0 . PR L L N N . . .

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

BACKUP &
EXTENDED SLIDES

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Large graphes...

v owien ETHZzirich
Large graphes...

e Problems?

v owien ETHZzirich
Large graphes...

e Problems?

v owien ETHZzirich
Large graphes...

e Problems?

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

o
Large graphs... o Lol B

e Problems?

v owien ETHZzirich
Large graphes...

e Problems?

v owien ETHZzirich
Large graphes...

e Problems?

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Large graphes...

e Problems?

=== 2008 (45 nm)

g 2018(11nm)

=

(=]

=1

o
T

10

v eseen ETHzUrich
. ,
Large graphs... oo &

e Problems?

Low power

efficiency!

=== 2008 (45 nm)
=g 2018(11nm)
1,000 |-

=
§.©

®

o

& O

o

B 100

3

b7

o

& 90+

1 ! L 1 | 1 1 | 1 | I I
A
QQOQ i ¥ F S & Q&(} &
Q & & & & Q S o
R 4, i)
@6‘ @6 6‘6\ oS & «©
F

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Low power
efficiency!

=== 2008 (45 nm)

g 2018(11nm)

1,000 -

=
§.©

e

T
=3

o

|5 100
3

e

T

o

a

10

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Low power
efficiency!

[1] A. Roy et al. X-stream: Edge-Centric Graph

Processing using Streaming Partitions. ACM MST
Symposium on Operating Syst. 2013.

[2] S. Zhou et al. High-throughput and Energy-
efficient Graph Processing on FPGA. FCCM. 2016.

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Low power
efficiency!

[1] A. Roy et al. X-stream: Edge-Centric Graph
Processing using Streaming Partitions. ACM
Symposium on Operating Syst. 2013.

[2] S. Zhou et al. High-throughput and Energy-
efficient Graph Processing on FPGA. FCCM. 2016.

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Let’s use FPGAs for

Maximum Matchings...

Graph
Problem CPU (MTEPS/Watt) [1] FPGA (MTEPS/Watt) [2]

1.9 30.2
0.5 48.1

0.6 44.3

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Large graphes...

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Large graphes...

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Large graphes...

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Large graphes...

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Large graphes...

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Large graphes...

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Large graphes...

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Large graphes...

spcl.inf.ethz.ch L
v e ETHZUrich

Large graphes...

Why do we care?

spcl.inf.ethz.ch e x
v e en ETHzUrich

Large graphs... QEAEN el

spcl.inf.ethz.ch s
v e en ETHzUrich

Large graphs... BSEECNglelo[

Why do we care?

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Large graphes...

Why do we care?

Social networks

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

o Og;h—g ,”O o pul e o A‘... o ;3
G%_%FY- —Q;-o——o o -0 ¢ ¢

o==0 é N

—p o 3 3 3 g%
&JL &p i K
¥ 4 \ #@ — | —])
== |
Q@
®e

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Large graphs... BSEECNglelo[

Engineering networks

(. e
Biological networks 1““‘"‘ L

® P

. P (I - ":.‘,: # .,‘_:.‘ . .: sends Eﬁv@@
Social networks (s Fodge = o os

Sty
widne

[%
yoeric
24 was
® oyrecnca e g dhetasouaek sod @
2 P e I
PR, <~ _.m-xu.un’
." . {00 Ko s6d
e A

|7 X e 38
o Tibaommanncee IR

ot aod
progane-12.3 r.amm.\m

mosne s

4
PR S5 = s M TN e S ~
Why do we care?) WL ‘ o : o 5 em
‘ § Physics, chemistry SS8& Gt

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Large graphs... BSEECNglelo[
~

:
Biological networks 1“

&
My

H

Social networks

“Tae es

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Large graphs... QEAEN el

N0
A %‘ v,,,*M\\

0 \\\ DD "/ X0
‘\“‘ "0' ‘\“\"'5
!

0"‘ ‘
/4,/
/

A
A(‘“ (\\:
\ A

AP

Large graphes...

Why do we care?

spcl.inf.ethz.ch

Y @spcl_eth E'quriCh

Useful model P Engineering networks

...even phllosophy © sdsr swrmrse

hvsics. chemistrv

FOSDEM 2016 / Schedule / Events / Developer rooms / Graph Processing / Modeling a Philosophical Inquiry: from MySQL to a graph database

Modeling a Philosophical Inquiry: from MySQL to a graph
database

The short story of a long refactoring process

A Track: Graph Processing devroom
A Room: AW1.126
Day: Saturday
» Start: 12:45
. mEnd: 13:35

Bruno Latour wrote a book about philosophy (an inquiry into modes of existence). He decided that the paper book was no
place for the humerous footnotes, documentation or glossary, instead giving access to all this information surrounding the
book through a web application which would present itself as a reading companion. He also offered to the community of
readers to submlt thelr contrlbutlons to hisi |an|ry by writing new documents to be added to the platform The first version

sk,

spcl.inf.ethz.ch -
Y @spcl_eth E'HZUI”IC/’)

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

())

Most reliable grid = e
network?

Shortest
network path?

Least expensive
computer network?

e Disease spread
channels?

Best phone
connection?

? . vMost relevant @

. ! | :
Collaborator experience? protein: * Brain
structure?

e Terrorism @

e Most efficient
road network?

Shortest

prevention?

path?

spcl.inf.ethz.ch -
Y @spcl_eth E'HZUI”IC/’)

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

= What programming

paradigm and why?

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

* What programming
paradigm and why?

. 'What are the most
promising techniques?

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

q‘What programming
paradigm and why?

| "What are the most
promising techniques?

Part 1: To understand the domain well,
we conducted a detailed analysis of
graph processing on FPGAs

v owien ETHZzirich
Part 1: To understand the domain well, we conducted
a detailed analysis of graph processing on FPGAs

& \What programming
paradigm and why?

" . "What are the most
promising techniques?

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

)

& What programming
paradigm and why?

Part 1: To understand the domain well, we conducted
a detailed analysis of graph processing on FPGAs

=/ /A

f More details
More details .
/|n§25,§6 |n§24§5

More details
in§ 4

\ PR g

P | . What are the most

AN
==
e, e promising techniques?
T

More
Specific details
toe_;raphs General Yes No - - in g %.4.
s
Specific . i .
topFPGAs What is the used cc?nos%ist&tte Natwr? -
programmin | a generic l";p
paradigm, model, g2 TEUE o problems -

or technique?

What are

Graph

Does it scale to scheme the considered
No multiple FPGAs? on FPGA graph problems? - -
7 paradigms
What is the used Where is the whole Graph-related
programming language? input dataset located? applications

theFroa (SRAM)
VHDL DRAM

On the
FPGA

e

S G /

Mo?e details
in§ 2.6

More details
in§2.6

Fig. 2. The categorization of the considered domains of graph processing on FPGAs.

spcl.inf.ethz.ch

ETH:zurich

L 4 @spcl_eth

»

& What programming
paradigm and why?

Part 1: To understand the domain well, we conducted
a detailed analysis of graph processing on FPGAs

Ny

Reference Venue Generic Considered Programming Model Used Multi Input ¥
Moriﬁ‘gef (scheme name) Design' Problems? (§ 2.4) or Technique® (§ 2.5) Language FPGAs* Location’ " .
Kapre [71] , spreading
(Cranhstep) FCCM06 O R nation® [s2] BSP unsp. b6, BRAM 220k What are the most
Weisz [92] , TRW-S*,) ,
(GraphGen) FCCM'14 O CNN* [112] Vertex-Centric unsp. J DRAM 110k p r‘o MiI Sl ng tech] |q u ES?
Kapre [70] , ;
(GraphSoC) ASAP'TS &, SpMV Vertex-Centric, BSP C++ (HLS) &) BRAM 17k
Dai [40] ,
& (FPGP) FPGA'16 (6] BFS None unsp. (@] DRAM 41.6M
to ¢ F
Oguntebi [93] , BFS, SpMYV, PR, .
soecit| (GraphOps) FPGA’16 (6] Vertex Cover None Max) (HLS) BRAM 16M
0 FPGAS | Zhou [134] FCCM’16 '@, SSSP, WCC, MST Edge-Centric unsp. P DRAM 4.7M
Engelhardt [49] , . Migen .
- (GraVF) FPL’16 '@, BFS, PR, SSSP, CC Vertex-Centric (HLS) L BRAM 128k
Dai [41] ,
< 8 (ForeGraph) FPGA'17 (6] PR, BFS, WCC None unsp. &) DRAM 41.6M ., T
, Hybrid (Vertex- . aradiems
wid Zhou [136] SBAC-PAD’17 O BFS, SSSP and Edge-Centric) unsp.] DRAM 10M p g
program , BFS, SSSP, CC, Transactional System-
Ma [85] FPGATT O TC, BC Memory [16, 59] Verilog O DRAM 24M
H ~
e (Léit[r?\]/) FPGA17 oY E\S’[Egj CC Graph Virtualization Ci+ (HLS) DRAM 124M 15 FPGA graph
Zhou [135] CF’18 6] SpMV, PR Edge-Centric, GAS unsp. L DRAM 41.6M processing frameworks
Yang [125] report (2018) BFS, PR, WCC None OpenCL " 4.85M
: Yao [127] report (2018) o BFS, PR, WCC None unsp. i BRAM 4.85M
- ~_\ Mo?e detaIils
More details in§2.6
in§2.6
Fig. 2. The categorization of the considered domains of graph processing on FPGAs.

spcl.inf.ethz.ch

ETH:zurich

L 4 @spcl_eth

»

& What programming
paradigm and why?

Part 1: To understand the domain well, we conducted
a detailed analysis of graph processing on FPGAs

Ny

Reference Venue Generic Considered Programming Model Used Multi Input ot
Moriﬁ‘gef (scheme name) Design' Problems? (§ 2.4) or Technique® (§ 2.5) Language FPGAs* Location’ .
Kapre [71] , spreading h h
(Cranhstep) FCCM06 O R nation® [s2] BSP unsp. b6, BRAM 220k 550k What are the most
Weisz [92] , TRW-S*, . o o .
(GraphGen) FCemd § CNIN* [112] Vertex-Centric unsp. . DRAM 110k 221k} p romisi ng tECh N Iq u ES?
Kapre| Babb [4] report (1996) "@ SSSP None Verilog &) Hardwired 512 2051 ||26k
(Grag Dandalis [43] report (1999) "@ SSSP None unsp. &) Hardwired 2048 32k
Dai [4 Tommiska [116] report (2001) " SSSP None VHDL g BRAM 64 4096
s (FPG) Reachabilit PAM- Hardwired 4
to{ Ogun{ Mencer [87] FPL’02 g Y None L] (3-state 88 7744
G SSSP -Bloks Il buffers) 28 M
. ra
tgpﬁfg;\cs Zhoup Bondhugula [27] IPDPS’06 P APSP Dynamic Program. unsp. i DRAM unsp. &M
Engell Sridharan[110] TENCON’09 @ SSSP None VHDL i BRAM 64 88
Gg \ Wang [121] ICFTP’10 L] BFS None SystemC DRAM 65.5k ™M B12k |
Yes ('_'a Betkaoui [21] FTP’11 g GC Vertex-Centric Verilog &) DRAM 300k 3M
h Dai [4 Jagadeesh [65] report (2011) @ SSSP None VHDL i Hardwired 128 466 |1 4B
No | (Fore| Betkaoui [22] FPL12 g APSP Vertex-Centric Verilog &) ~ DRAM 38k 72M .
Zhou iet’kaozui[B] ASAP'12 BFS Vertex-Centric Verilog 3 DRAM 168M 1.1B [eo\ 7 pa rad I8MS
L ttia [2] IPDPS'14 @ BFS Vertex-Centric VHDL &) DRAM 84M 536M
prog (CyGraph)
Ma [8 DRAM 58M
|H Lee [Ni [91] report (2014) @ BFS None Verilog g SRAM 16M 512M ~15 FPGA gra ph
® (Extr{ Zhou [132] IPDPS'15 @ SSSP None unsp. L] DRAM ™ unsp. [1-8B
Zhou [133] ReConFig'15 @ PR Edge-Centric unsp. i DRAM 2.4M 5M 5
Zh 1.4B
Y ou Umuroglu [117] FPL’15 g BFS None Chisel ~DRAM 21M 65M oM proceSSI ng fra meworks
ang | Lei [80] report (2016) "@ SSSP None unsp. L] DRAM 23.9M 58.2M |
Yao [1 zhang [129] FPGA'17 P BFS MapReduce unsp. L) HMC 33.6M 536.9M [69M
Zhang [130] FPGA’'18 iy BFS None unsp. HMC
Kohram [76] ~ FPGA'18 @ BFS None unsp. ") HMC ~25 FPGA accelerators
Besta [13] FPGA’19] MM Substream-Centric Verilog L] DRAM 48M 117M o .
Fig. 2. The categorization of the considered domains of graph processing on FPGAs. fo rs peCIfI Ccad |go rlt h ms

spcl.inf.ethz.ch

ETH:zurich

L 4 @spcl_eth

)

= What programming
paradigm and why?

Part 1: To understand the domain well, we conducted
a detailed analysis of graph processing on FPGAs

Ny

Reference Venue Generic Considered Programming Model Used Multi Input ot mt
Morﬁ‘ge‘;‘e (scheme name) Design' Problems? (§ 2.4) or Technique® (§ 2.5) Language FPGAs* Location’ \
Kapre [71] , spreading h h
(Graphstep) TCCM'06 (&) activation® [82] BSP unsp. (6] BRAM 220k 550k W at are the most
Weisz [92] , TRW-S*, . o o .
NS e <A B NPt PR (115 221 RN i . B VRIS promising techniques?
Kapre| Babb [4] report (1996) "@ SSSP None Verilog &) Hardwired 512 2051 ||26k
(Grag Dandalis [43] report (1999) "@ SSSP None unsp. &) Hardwired 2048 32k
Dai [4 Tommiska [116] report (2001) " SSSP None VHDL g BRAM 64 4096 | o h
sd (FPGI - i Hardwired : Kev techniques
to{ Ogun{ Mencer [87] FPL’02 g ?;g;hablhty’ None Fg‘lrks I L] (3-state 88 7744 -~ y q 4
= (Gra buffers)
s Zhoup Bondhugula [27] IPDPS'06 @ APSP Dynamic Program. unsp.) DRAM unsp. oM chal Ienges,
i '09 [
Engell Sridharan[110] TENC(:)N 09 " SSSP None VHDL L BRAM 64 38] featu res. ...
Gra\ Wang [121] ICFTP’10] BFS None SystemC DRAM 65.5k ™M B12k | ’
Yes ('_'a Betkaoui [21] FTP’11 g GC Vertex-Centric Verilog &) DRAM 300k 3M
h DFa] [4 Jagadeesh [65] report (2011) @ SSSP None VHDL i Hardwired 128 466 |1 4B
No = (Fore| petiaoui [22] FPL12 g APSP Vertex-Centric Verilog &) ~ DRAM 38k 72M .
Zhou iet’kaoui[B] ASAP'12 BFS Vertex-Centric Verilog 3 DRAM 168M 1.1B [eo\ 7 pa rad I8MS
L ttia [2] IPDPS'14 @ BFS Vertex-Centric VHDL &) DRAM 84M 536M
PSRN Ma [g| (CYGraph) 58M
DRAM
Ni [91] report (2014) @ BFS None Verilog g ’ 16M 512M
Hl Lee [7 SRAM ~
le (Extr: ?gou {132} IRPDCPS’;.S’ :: [SiSI;SP Ejnec _ unsp. :: gﬁim 1m unsl&. 1.88 15 FPGA graph
Zh ou (133 eConFig 15 ge-Centric unsp. 24 5 1.4B 1
Y ou Umuroglu [117] FPL’15 g BFS None Chisel ~DRAM 21M 65M oM proceSSI ng fra meworks
ang | Lei [80] report (2016) "@ SSSP None unsp. L] DRAM 23.9M 58.2M |
Yao [1 zhang [129] FPGA'17 P BFS MapReduce unsp. L) HMC 33.6M 536.9M [69M
Zhang [130] FPGA’'18 iy BFS None unsp. HMC
Kohram [76] ~ FPGA'18 @ BFS None unsp. ") HMC ~25 FPGA accelerators
Besta [13] FPGA’19] MM Substream-Centric Verilog L] DRAM 48M 117M o .
Fig. 2. The categorization of the considered domains of graph processing on FPGAs. fo rs peCIfI Ccad |go rlt h ms

spcl.inf.ethz.ch

ETH:zurich

L 4 @spcl_eth

)

= What programming
paradigm and why?

Part 1: To understand the domain well, we conducted
a detailed analysis of graph processing on FPGAs

Ny

o] T | e Coner
in el
e Selected MWM-related parts are What th i
(Cranhstep) FCCM06 O at are the mos
Weis2 2] , in the FPGA paper, the rest is in... o :
(GraphGamy.__FCCM14__ & ’ promising techniques:
Kapre| Babb [4] report (1996) "@ P None ardwired
(Grag Dandalis [43] report (1999) "@ SSSP None Hardwired 2048 32k
Dai [4 Tommiska [116] report (2001) " SSSP None VHDL g BRAM 64 4096
s (FPGI Reachabil PAM: Harduired - Key techniques
to{ Ogun{ Mencer [87] FPL’02 g SSSP Y None “Bloks II L] (3—:ftatc; 88 7744 -~ 4
= (Gra buffers
s Zhoup Bondhugula [27] IPDPS'06 @ APSP Dynamic Program. unsp.) DRAM unsp. &M Cha”enges'
Engell Sridharan[110] TENCON’09 @ SSSP None VHDL i BRAM 64 88| featu res
Wang [121] ICFTP’10 g BFS None SystemC DRAM 65.5k M B12k |) cct
Yes (G'_'a\’ Betkaoui [21] FTP’11 g GC Vertex-Centric Verilog &) DRAM 300k 3M
h Dai [4 Jagadeesh [65] report (2011) @ SSSP None VHDL i Hardwired 128 466 |1 4B
No | (Fore| Betkaoui [22] FPL12 g APSP Vertex-Centric Verilog &) ~ DRAM 38k 72M .
7 d
Zhou | Betkaoui[23] ASAP’12 @ BFS Vertex-Centric Verilog 3 DRAM 168M 1.1B [eo\ paraaigms
orogean Attia [2] IPDPS'14 i@ BFS Vertex-Centric VHDL) DRAM 84M 536M
Ma [g| (CYCraph) 58M
DRAM
Ni [91] report (2014) @ BFS None Verilog g ’ 16M 512M
Hl Lee [7 , SRAM - ~15 FPGA graph
(Extra Zhou [132] IPDPS’15 iy SSSP None unsp. i DRAM 1M unsp. |-
Zhou [133] ReConFig'15 @ PR Edge-Centric unsp. i DRAM 2.4M 5M 5
3::” Umuroglu [117] FPL’15 g BFS None Chisel ~DRAM 21M 65M ;;3\ proceSSIng fra meworks
&1 Lei [80] report (2016) "@ SSSP None unsp. L] DRAM 23.9M 58.2M |
Yao [1 zhang [129] FPGA'17 P BFS MapReduce unsp. L) HMC 33.6M 536.9M [69M
Zhang [1[30]:| FPGA’'18 ': BFS None unsp. . HMC ~25 FPGA acce|erator5
Kohram [76 FPGA'18 ' BFS None unsp. u HMC
Besta [13] FPGA’19] MM Substream-Centric Verilog L] DRAM 48M 117M o .
Fig. 2. The categorization of the considered domains of graph processing on FPGAs. fo r SpeCIfIC d |go rlth ms

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

)

= What programming
paradigm and why?

Part 1: To understand the domain well, we conducted
a detailed analysis of graph processing on FPGAs

Ny

Reference Venue Generic
More detg (scheme name) Design’
in§ 4 Y & W
P i Selected MWM-related parts are ? What th i
FCCM06 Y 0K\ dat dare e MOS
(GraphStep) : . h h o« .
We (2] pcoma o in the FPGA paper, therestisin... W oromising techniques?
Kapre| Babb [4] report (1996) "@ P None Verilog g Hardwired 0
(Grap Dan H o~ QQQ NAomao o e || dyaiao 0AR
Dai [4 Tom
5 (FPGI Key techniques,
0 d Oguni Meng
specific | (Grap challenges,
to FPGAs | 7hou | Bond
Srid
Engell Wany featu res, ...
Yes (G'_'a\’ Betkd
0 IDFa] [4 Jaga
No = nj (Fore get Graph Processing on FPGAs: Taxonomy, Survey, Challenges 7 paradigms
etk;
Wha Zhou Attia Towards Understanding of Modern Graph Processing, Storage, and Analytics
progran
Mals (C'y ! MACIE] BESTA", DIMITRI STANOJEVIC* i i
il Lee [7 Ni [9] ,] , Department of Computer Science, ETH Zurich ~15 FPGA h
9 (Extrd Zho JOHANNES DE FINE LICHT, TAL BEN-NUN, Department of Computer Science, ETH Zurich B grap
Xirg
Zho TORSTEN HOEFLER, Department of Computer Science, ETH Zurich .
Zhou| G processing frameworks
ang | Lei [4
Yao [1 7ha Graph processing has become an important part of various areas, such as machine learning, computational
Zha sciences, medical applications, social network analysis, and many others. Various graphs such as web or
Kohr §0cial networks may contain up to trillions Qf edges. The sheer size of .such datasets, combined with .the ~2 5 F PG A acce | e rato rs
Best4 irregular nature of graph processing, poses unique challenges for the runtime and the consumed power. Field
Programmable Gate Arrays (FPGAs) can be an energy-efficient solution to deliver specialized hardware for i1fi i
Fig. 2. The categorization ¢ graph processing. This is reflected by the recent interest in developing various graph algorithms and graph fo rs peCIfI Ca |go rlt h ms
processing frameworks on FPGAs. To facilitate understanding of this emerging domain, we present the first

survey and taxonomy on graph processing on FPGAs. Our survey describes and categorizes existing schemes

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

* What programming
paradigm and why?

Part 1: To understand the domain well, we conducted
a detailed analysis of graph processing on FPGAs

Ny

Reference Venue Generic _
More detg (scheme name) Design’
in§4 =
P i Selected MWM-related parts are What th i
FCCM06 Y 0K dal dare e MOS
(GraphStep) : . h h o« .
We (2] pcoma o in the FPGA paper, therestisin... W oromising techniques?
Kapre| Babb [4] report (1996) "@ P None Verilog L Hardwired 0
(Grap Dan H o~ QQQ NAomao o e || dyaiao 0AR
Dai [4 Tom
sd (FPGI Key techniques,
0 d Oguni Meng
specific | (Grap challenges,
to FPGAs | 7hou | Bond
Srid
Engell features, ...
Yes (G'_'a\’ Betkd
0 IDFa] [4 Jaga
No = nj (Fore ge:t Graph Processing on FPGAs: Taxonomy, Survey, Challenges 7 paradigms
etk;
Wha Zhou Attia Towards Understanding of Modern Graph Processing, Storage, and Analytics
progran
Mals (C'y ! MACIE] BESTA", DIMITRI STANOJEVIC* i i
il Lee [7 Ni [9] ,] , Department of Computer Science, ETH Zurich ~15 FPGA h
9 (Extrd Zho JOHANNES DE FINE LICHT, TAL BEN-NUN, Department of Computer Science, ETH Zurich B grap
Xirg
Zho TORSTEN HOEFLER, Department of Computer Science, ETH Zurich .
Zhou| G processing frameworks
ang | Lei [4
Yao [1 7ha Graph processing has become an important part of various areas, such as machine learning, computational
Zha sciences, medical applications, social network analysis, and many others. Various graphs such as web or
Kohr §0cia1 networks may contain up to trillions 9f edges. The sheer size of .such datasets, combined with .the ~2 5 F PG A acce | era to rs
Best4 irregular nature of graph processing, poses unique challenges for the runtime and the consumed power. Field
Programmable Gate Arrays (FPGAs) can be an energy-efficient solution to deliver specialized hardware for i1fi i
Fig. 2. The categorization ¢ graph processing. This is reflected by the recent interest in developing various graph algorithms and graph fo rs peCIfI Ca |go rlt h ms
processing frameworks on FPGAs. To facilitate understanding of this emerging domain, we present the first

survey and taxonomy on graph processing on FPGAs. Our survey describes and categorizes existing schemes

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

= What programming
paradigm and why?

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

* What programming
paradigm and why?

Vertex-centric,
Gather-Apply-

Scatter, ... ?0

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

N -'What programming
paradigm and why?

Vertex-centric,
Gather-Apply-

Scatter, ... ?0

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

*" What programming
paradigm and why?

Vertex-centric,
Gather-Apply-

Scatter, ... ?@

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

=" What programming
paradigm and why?

Vertex-centric,
Gather-Apply-

Scatter, ... ?@

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

*" What programming
paradigm and why?

Vertex-centric,
Gather-Apply-

Scatter, ... ?@

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

=" What programming
paradigm and why?

Vertex-centric,
Gather-Apply-

Scatter, ... ?@

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

*" What programming
paradigm and why?

Vertex-centric,
Gather-Apply-

Scatter, ... ?@

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

=" What programming
paradigm and why?

Vertex-centric,
Gather-Apply-

Scatter, ... ?@

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

=" What programming
paradigm and why?

Vertex-centric,
Gather-Apply-

Scatter, ... ?@

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

=" What programming
paradigm and why?

Vertex-centric,
Gather-Apply-

Scatter, ... ?@

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

=" What programming
paradigm and why?

Vertex-centric,
Gather-Apply-

Scatter, ... ?@

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

It was designed with the =" What .programming
“batch” analytics in mind. paradigm and why?

Vertex-centric,
Gather-Apply-

Scatter, ... ??

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

It was designed with the =" What .programming
“batch” analytics in mind. paradigm and why?

Assumes the whole input
graph is accessible...

Vertex-centric,
Gather-Apply-

Scatter, ... ??

It was designed with the
“batch” analytics in mind.

Assumes the whole input
graph is accessible...

...when in BRAM, size
is severely limited @

Vertex-centric,
Gather-Apply-

Scatter, ... ?@

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

& What programming

paradigm and why?

e v o ETHzUrich
...when in DRAM, 5
It was designed with the accessing & " What programming

“batch” analytics in mind. pipelining become paradigm and why?
complex

Assumes the whole input
graph is accessible...

...when in BRAM, size
is severely limited ®

Vertex-centric,
Gather-Apply-

SYor=] u (=] A ?@

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

It was designed with the accessing & =" What programming

“batch” analytics in mind. pipelining become paradigm and why?
complex

Assumes the whole input
graph is accessible...
“(...) implementing graph algorithms

: : efficiently on Pregel-like systems {(...) can
...when in BRAM, size Y s Y ()
_ e be surprisingly difficult and require careful
is severely limited @ optimizations.” [1]

Vertex-centric,
Gather-Apply-

Scatter, ... ?

[1] S. Salihoglu and J. Widom,
“Optimizing graph algorithms on
Pregel-like systems”. VLDB. 2014.

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

...when in DRAM,

It was designed with the accessing & =" What programming

“batch” analytics in mind. pipelining become paradigm and why?
complex

Assumes the whole input

graph is accessible...
“(...) implementing graph algorithms

: : efficiently on Pregel-like systems {(...) can
...when in BRAM, size Y s Y ()
) e be surprisingly difficult and require careful
is severely limited ® optimizations.” [1]

Vertex-Centric (aka Pregel-
Vertex-ce ntriC, like) approach is complex for

problems such as matchings,
Gather-Apply- spanning trees, etc.
Scatter, ... ? @

[1] S. Salihoglu and J. Widom,
“Optimizing graph algorithms on
Pregel-like systems”. VLDB. 2014.

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

= What programming
paradigm and why?

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

* What programming
paradigm and why?

Vertex-centric,
Gather-Apply-

Scatter, ... ?0

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

N -'What programming
paradigm and why?

Vertex-centric,
Gather-Apply-

Scatter, ... ?0

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

*" What programming
paradigm and why?

Vertex-centric,
Gather-Apply-

Scatter, ... ?@

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

=" What programming
paradigm and why?

Vertex-centric,
Gather-Apply-

Scatter, ... ?@

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

*" What programming
paradigm and why?

Vertex-centric,
Gather-Apply-

Scatter, ... ?@

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

=" What programming
paradigm and why?

Vertex-centric,
Gather-Apply-

Scatter, ... ?@

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

*" What programming
paradigm and why?

Vertex-centric,
Gather-Apply-

Scatter, ... ?@

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

=" What programming
paradigm and why?

Vertex-centric,
Gather-Apply-

Scatter, ... ?@

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

=" What programming
paradigm and why?

Vertex-centric,
Gather-Apply-

Scatter, ... ?@

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

=" What programming
paradigm and why?

Vertex-centric,
Gather-Apply-

Scatter, ... ?@

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

It was designed = What programming
with the “batch” paradigm and why?

analytics in mind.
It assumes the
whole input is
accesible. When in
DRAM, accessing &
pipelining becomes
complex.

Vertex-centric,
Gather-Apply-

Scatter, ... ?@

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

It was designed " What programming
with the “batch” paradigm and why?

analytics in mind.
It assumes the
whole input is

accesible. When in “(...) implementing graph algorithms
DRAM, accessing & efficiently on Pregel-like systems (...) can
pipelining becomes be surprisingly difficult and require careful

complex optimizations.” [1]

Vertex-centric,
Gather-Apply-

Scatte r s ? - - [1] S. Salihoglu and J. Widom,
® “Optimizing graph algorithms on

Pregel-like systems”. VLDB. 2014.

It was designed
with the “batch”
analytics in mind.
It assumes the
whole input is
accesible. When in
DRAM, accessing &
pipelining becomes
complex.

Vertex-centric,
Gather-Apply-

Scatter, ... ?

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

* What programming
paradigm and why?

“(...) implementing graph algorithms
efficiently on Pregel-like systems (...) can
be surprisingly difficult and require careful
optimizations.” [1]

Vertex-Centric (aka Pregel-
like) approach is complex for
problems such as matchings,

spanning trees, etc.

[1] S. Salihoglu and J. Widom,
“Optimizing graph algorithms on
Pregel-like systems”. VLDB. 2014.

SPCL D TG sniene EERy iirich

_ It was designed To be able to utilize pipelining * What programming
with the “batch” well, we really want to use paradigm and why?
analytics in mind. streaming (aka the edge-centric
It assumes the paradigm)
whole input is

accesible. When in “(...) implementing graph algorithms
DRAM, accessing & efficiently on Pregel-like systems (...) can

pipelining becomes be surprisingly difficult and require careful
optimizations.” [1]

complex.

Vertex-Centric (aka Pregel-
Vertex-ce ntriC, like) approach is complex for

problems such as matchings,
Gather Apply spanning trees, etc.

Scatter, ... ?) X 415 sthogsnds o

“Optimizing graph algorithms on
Pregel-like systems”. VLDB. 2014.

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Can be used but it was accessing & < What programming

designed with the “batch” parallelization paradigm and why?
analytics in mind become complex

Assumes the whole input

[=1)] L"JIKIUHUII:I SIS TETT) E W B = = JULTOT 39L STE T LT E

graph is accessible... T Twitter (WWW) (VERL Bl v R 41,652,230(1,468,365,182

TF Twitter (MP1) @D=r 52,579,682 1,963,263 821

FR Friendster @D=k 68,349,466 2,586, 147,869

..when in BRAM, size u UK domain (2007) BLOUW=Ew®= 1057153952 3,301,876,564
[B rely IImItEd ® KONECT graph datasets Graph ¢ Crawl date ¢ Nodes ¢ | Arcs]
uk-2014 2014 787801471 47614527250
eu-2015 2015 1070557254 91792261600
gsh-2015 2015 988490691 33877399152
Ve rtex_ce nt ri C uk-2014-host 2014 4769354 50829923
» ,, eu-2015-host 2015 11264052 386915963
t - gsh-2015-host 2015 68660142 1802747600
Gather-Applyt uk-2014-tpd 2014 1766010 18244650
Et eu-2015-tpd 2015 6650532 170145510

Scatter P, .’?t = gsh-2015-tpd 2015 30809122 602119716
CC t - Webgraph | coch12 2012 978408098 | 42574107469
-

datasets uk-2002 2002 18520486 298113762

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

= What programming
paradigm and why?

spcl.inf.ethz.ch LR
Y @spcl_eth E ’

spcl.inf.ethz.ch [TR
Y @spcl_eth E ’

spcl.inf.ethz.ch o
Y @spcl_eth E ’

PSP Sa B

Some processing unit
(CPU, GPU, FPGA, ...)

spcl.inf.ethz.ch »
L 4 @spcl_eth E

Some processing unit
(CPU, GPU, FPGA, ...)

spcl.inf.ethz.ch »
L 4 @spcl_eth E

Some processing unit
(CPU, GPU, FPGA, ...)

spcl.inf.ethz.ch »
L 4 @spcl_eth E

Some processing unit
(CPU, GPU, FPGA, ...)

spcl.inf.ethz.ch »
L 4 @spcl_eth E

Some processing unit
(CPU, GPU, FPGA, ...)

spcl.inf.ethz.ch »
L 4 @spcl_eth E

Some processing unit
(CPU, GPU, FPGA, ...)

spcl.inf.ethz.ch o
Y @spcl_eth E ’

How to implement = ¢
efficiently on an FPGA?

Some processing unit
(CPU, GPU, FPGA, ...)

How to implement = ¢
efficiently on an FPGA?

Processing edges is
sequential — how to
incorporate parallelism?

Some processing unit
(CPU, GPU, FPGA, ...)

spcl.inf.ethz.ch
L 4 @spcl_eth

ET

spcl.inf.ethz.ch » e
Y @spcl_eth E ’

How to implement Q How to minimize the number of “passes”
efficiently on an FPGA? over edges? (This can get really bad in
the “traditional” edge-centric approach,
e.g., BFS normally needs O(m+n) work,
while in the edge-centric approach it m: #edges in a graph

sequential —how to takes O(D m) work (D passes [1]), @ n: #vertices in a graph
incorporate parallelism?

Processing edgesis = ¢

D: graph’s diameter
(usually ~5-15)

Some processing unit
(CPU, GPU, FPGA, ...)

[1] A. Roy et al. X-stream: Edge-Centric Graph Processing using Streaming Partitions. SOSP. 2013.

spcl.inf.ethz.ch -
Y @spcl_eth E'HZUI”IC/’)

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Hundreds of papers and schemes, how to
I” or an

select a “streaming mode
algorithm to use? ®

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Hundreds of papers and schemes, how to
select a “streaming model” or an

We analyzed...

algorithm to use? ®

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Hundreds of papers and schemes, how to
select a “streaming model” or an
algorithm to use? ®

We analyzed...

~15 models for streaming
graph processing

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Hundreds of papers and schemes, how to
select a “streaming model” or an
algorithm to use? ®

We analyzed...

~15 models for streaming
graph processing

~30 algorithms for streaming
(approximate) MWM

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Hundreds of papers and schemes, how to
select a “streaming model” or an
algorithm to use? ®

bt analyzed,,, 0 Which one to select?

~15 models for streaming
graph processing

~30 algorithms for streaming
(approximate) MWM

Hundreds of papers and schemes, how to
select a “streaming model” or an

bt analyzed,,, 0 Which one to select?

algorithm to use? ®

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

~15 models for streaming
graph processing

~30 algorithms for streaming
(approximate) MWM

Any interesting idea to use |
in the context of FPGAs and
substream-centric processing?

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Hundreds of papers and schemes, how to We investigated the vast majority
select a “streaming model” or an of cases, and... guess what

algorithm to use? ® happened ©

We analyzed... o Which one to select?

~15 models for streaming
graph processing

~30 algorithms for streaming
(approximate) MWM

Any interesting idea to use |

in the context of FPGAs and
substream-centric processing?

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Hundreds of papers and schemes, how to We investigated the vast majority
select a “streaming mode

I”

or an of cases, and... guess what
algorithm to use? ® happened ©

bt analyzed,,, 0 Which one to select?

~15 models for streaming
graph processing

Survey and Taxonomy of Models and Algorithms
for Streaming Graph Processing

Towards Understanding of Modern Graph Processing and Storage ~30 d Igo rlth mSs fo r Strea mi ng
MARC FISCHER, Department of Computer Science, ETH Zurich (a p p rOXI m a te) M W M

MACIE) BESTA, Department of Computer Science, ETH Zurich
TAL BEN-NUN, Department of Computer Science, ETH Zurich
TORSTEN HOEFLER, Department of Computer Science, ETH Zurich

Any interesting idea to use . |
ing, social network analysis, computational sciences, and others. Two key challenges that hinder accelerating i n t h e CO nteXt Of F P G AS a n d

graph processing are (1) sizes of input datasets, reaching trillions of edges, and (2) the growing rate of graph
updates, with millions of edges added or removed per second. Graph streaming algorithms are specifically _ 1 1 ?
crafted to eliminate these issues: The input graph is passed as a stream of updates, allowing to add and remove Su bSt ream-ce nt ric p rocessin g *
edges in a simple way. Recent years have seen the development of many such algorithms. However, they differ

133 tha Hirna naadad a4 add Aar ramarrae an adas tha ramiirad randarm asrcsase marmnarr enanas tha nnmmhbhar af nassae

Graph processing has become an important part of various areas of computer science, including machine learn-

AP

Hundreds of papers and schemes, how to
select a “streaming model” or an
algorithm to use? ®

for Streaming Graph Processing
Towards Understanding of Modern Graph Processia

MARC FISCHER, Dep;
MACIEJ BESTA,
TAL BEN-NUN,
TORSTEN HOEF

Graph processing has I
ing, social network ana
graph processing are (1
updates, with millions o
crafted to ehrmnate these

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

We investigated the vast majority
of cases, and... guess what
happened ©

Which one to select?

~15 models for streaming
graph processing

~30 algorithms for streaming
(approximate) MWM

Any interesting idea to use
in the context of FPGAs and
substream-centric processing?

spcl.inf.ethz.ch -
Y @spcl_eth E'HZUI”IC/’)

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Part 3: Analysis of models and algorithms
for streaming graph processing

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Part 3: Analysis of models and algorithms
for streaming graph processing

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Part 3: Analysis of models and algorithms
for streaming graph processing

~15 models for streaming
graph processing

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Part 3: Analysis of models and algorithms
for streaming graph processing

o Which one to select?

~15 models for streaming
graph processing

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Part 3: Analysis of models and algorithms
for streaming graph processing

o Which one to select?

@

& Why even ~15 models for strgammg
should we care? graph processing

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Part 3: Analysis of models and algorithms
for streaming graph processing

O Which one to select?

« Why even
should we care?

~15 models for streaming

graph processing

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Part 3: Analysis of models and algorithms
for streaming graph processing

? Which one to select?

? Why even ~15 models for streaming

should we care? graph processing

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Part 3: Analysis of models and algorithms
for streaming graph processing

? Which one to select?

? Why even ~15 models for streaming

should we care? graph processing

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

0 Which one to select?

~15 models for streaming
graph processing

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Insert-only "~ e

Semi-streaming

° Adjacency-list
e Simple
streaming

Graph
Sketching 0 Which one to select?

~15 models for streaming

Dynamic .
graph processing

Online

StreamSort

* W-Stream Sliding window

@

e Cash- @
register ® Annotated @ .
streaming e Turnstile

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

PN) N

Any graph streaming algorithm
_belongs to the semi-streaming model
if it uses at most O(n polylog(n)) space

StGrapl_1
reaming Sliding
Model Vﬂ"ﬂ"}"
No color change 0C€
indicates the informal Graph
"instanceé" Irc-:tlél';\tionship: Sk h
a model "below" MapReduce etchin
is a particular Dynamic Graph I?ﬂodel ' #
instance of Stream Model
a streaming (Adversarial
model Ordering)
Dynamic Graph

Insert-Only tream Model
Model (Adversarial
Ordering)

(Random QOrdering)

Insert-Only
; Model (Random
Adjacency W-Stream Ordering)
List Order Model
Model

T A change of color indicates
the formal "reduction" relationship:
a model "above" can be used
StreamSort to execute an algorithm that was

Model developed in a model "below"

Fig. 1. The hierarchy of the graph streaming models.

register

N * Annotated
streaming

Insert-only "~ e

Adjacency-list

Which one to select?

~15 models for streaming
graph processing

Sliding window

e Turnstile

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Insert-only "~ e

— @

Any graph streaming algorithm
belongs to the semi-streaming model))
if it uses at most O(n polylog(n)) spaca emi-streaming @

° Adjacency-list

Graph
Sketching 0 Which one to select?

~15 models for streaming

graph processing

A change of color indicates ~
the formal "reduction" relationship:
a model "above" can be used
StreamSort to execute an algorithm that was

Model developed in a model "below"

Sliding window

Fig. 1. The hierarchy of the graph streaming models. ‘ , ‘
register ' ¢ Annotated @ .
streaming e Turnstile

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

[1] J. Feigenbaum et al. On graph problems in a semi-streaming model. Theoretical CS, 2005

Semi-streaming [1]

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

[1] J. Feigenbaum et al. On graph problems in a semi-streaming model. Theoretical CS, 2005

Why semi-streaming, and Semi-streaming [1]

@ what does it mean?

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

[1] J. Feigenbaum et al. On graph problems in a semi-streaming model. Theoretical CS, 2005

Covers a general streaming
setting (= works for

0) substream-centric)

Why semi-streaming, and Semi-streaming [1]

@ what does it mean?

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

[1] J. Feigenbaum et al. On graph problems in a semi-streaming model. Theoretical CS, 2005

Why semi-streaming, and
? what does it mean?

Semi-streaming [1]

Some processing unit
(CPU, GPU, FPGA, ...)

Use some form
of streaming
(aka edge-
centric)

Covers a general streaming
setting (= works for
0] substream-centric)

spcl.inf.ethz.ch i
v ewien ETHZzUrich

= What programming
paradigm and why?

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

[1] J. Feigenbaum et al. On graph problems in a semi-streaming model. Theoretical CS, 2005

* Semi-streaming [1]

Covers a general streaming
setting (= works for
0] substream-centric)

Why semi-streaming, and
? what does it mean?

spcl.inf.ethz.ch i
v ewien ETHZzUrich

0] ?What programming

Y —Assumes O(n log® n) local space that paradigm and why?
can be used for processing an edge =2 —
fits well FPGA BRAM constraints! S(f:gbe, Zfﬁ,eiigi?il)t

Use some form
of streaming
(aka edge-
centric)

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

[1] J. Feigenbaum et al. On graph problems in a semi-streaming model. Theoretical CS, 2005

Covers a general streaming
setting (= works for

0) substream-centric)

Why semi-streaming, and Semi-streaming [1]

=% what does it mean?

spcl.inf.ethz.ch e »
v emien ETHZzUrich

0) ?'What programming

Y Assumes O(n log® n) local space that paradigm and why?
can be used for processing an edge =2 —
fits well FPGA BRAM constraints! e .

Use some form
of streaming
(aka edge-
centric)

Offers (potentially
powerful) MWM

Y algorithms

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Research Questions

Which programming

paradigm to use for
(approximate) MWM?

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Research Questions

(approximate) MWM?

spcl.inf.ethz.ch P
v owien ETH ZUrich

Research Questions

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Research Questions

How to design a high-

performance MWM
algorithm (as dictated
by the used paradigm)?

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Part 3 continued: Analysis of models and
algorithms for streaming graph processing

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Part 3 continued: Analysis of models and
algorithms for streaming graph processing

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Part 3 continued :

Analysis of models and
algorithms for streaming
graph processing

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Part 3 continued :
Analysis of models and
algorithms for streaming
graph processing

~30 algorithms for streaming
(approximate) MWM (in the
semi-streaming model)

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Part 3 continued :
Analysis of models and
algorithms for streaming
graph processing

~30 algorithms for streaming
(approximate) MWM (in the
semi-streaming model)

Any interesting ideato use © ¢
in the context of FPGAs and
substream-centric processing?

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Part 3 continued :
Analysis of models and
algorithms for streaming
graph processing

~30 algorithms for streaming
(approximate) MWM (in the
semi-streaming model)

Any interesting ideato use © ¢
in the context of FPGAs and
substream-centric processing?

More specifically...

spcl.inf.ethz.ch

ETH:zurich

L 4 @spcl_eth

Reference Approx. Space #Passes Wghl Gen? Par® Pa rt 3 continued .
[26] 1/2 O(n) 1 . O i
[41, Theorem 6] 1/2+0.0071 O(m polylog(n)) 2 . O Ana|y5|5 of models and
(41, Tteorem 2]] é)/(z—il—?[lﬂ(?:%)) 8%” Flaollylc(rg()r)l}) 1 : g 3 . :
36, Theorem 1.1 olylog(n olylog(n
{ze, Theorem 1] 2/5 —¢ - O(nlog 1)) O((log (1/¢) /¢)) . 9 4 alorlthms for streaming
[6, Theorem 19] 1 —¢ O (n polylog(n)/e2) O loglog (1/¢) /€2) " T .
[41, Theorem 5] 1/2+0.019, O((n polylog(n)) 2 L T gra p h p rocessli ng
[41, Theorem 1] 1/240.005 O(nlogn) 1 i . %
[41, Theorem 4] 1/2+0.0071" O(n polylog (1)) 2 L T b
[39] 1-1/e O(n polylog(n)) 1 L T b
(28, Theorem 20] 1 — l/ii’c : O(n) 1 . T NBO | . h f .
[35, Theorem 2] 1—% O(n) k L L B] d gOrlt MS T0r Streamlng
(4 ! 0 (k) 1 . 00 (approximate) MWM (in the
[14] 1/¢ O (n?/e 1 e O O : :
(7, Theorem 1] 1 0 (3 4+ m=¢) 1 . % 0 semi-streaming model)
[26, Theorem 2] 6 O(nlogn) 1 '@ (@]
[44, Theorem 3] 2+¢ O(n polylog(n)) 0(1) (&) O
[44, Theorem 3] 5.82 O(n polylog(n)) 1 (&) @)
[63] 5.58 O(n polylog(n)) 1 (4 (@] A . t d i O M
531 g.gl—i—l—s 8En po:y:og%n% ! g g ny interesting idea to use = ¢

S5+¢ n polylog(n .
(53] 24 e e nﬁong : O O in the context of FPGAs and
[27] 2+ O(nlogn) ‘ o g substream-centric processing?
[26, Section 3.2] 2 +¢ O(nlogn) O (logy /3 n) O 04
[6, Theorem 28] ﬁ O nlog(n)/£4) O(e* logn) (@ O b

elogn—loge _92 -1 .

[6, Theorem 22] %(11_21 @) n(%)) O (e “log (E)) 4] O b |V|Or'e SpECIflca”y...
(6, Theorem 22] L 0 (n (“"g:%)) o) <£_2 log (s—l)) L
[17] 4+¢ O(n polylog(mn)) 1 (&) O 4

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Reference Approx. Space #Passes Wgh! Gen? Par’ | Part 3 continued .
Analysis of models and
algorithms for streaming
graph processing

~30 algorithms for streaming
(approximate) MWM (in the
semi-streaming model)

Any interesting idea to use . |
in the context of FPGAs and
substream-centric processing?

More specifically...

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Reference

Approx.

Space

#Passes

Wgh! Gen? Par® |

Our

goals:

Part 3 continued :
Analysis of models and
algorithms for streaming
graph processing

~30 algorithms for streaming
(approximate) MWM (in the
semi-streaming model)

Any interesting idea to use . |
in the context of FPGAs and
substream-centric processing?

More specifically...

Reference Approx.

Space

#Passes

Wgh! Gen? Par® |

Our
goals:

Maximize
accuracy

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Part 3 continued :
Analysis of models and
algorithms for streaming
graph processing

~30 algorithms for streaming
(approximate) MWM (in the
semi-streaming model)

Any interesting idea to use . ‘
in the context of FPGAs and
substream-centric processing?

More specifically...

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Reference Approx. Space #Passes Wgh! Gen? Par® |

Our
goals:

Maximize
accuracy

Minimize
local space

Part 3 continued :
Analysis of models and
algorithms for streaming
graph processing

~30 algorithms for streaming
(approximate) MWM (in the
semi-streaming model)

Any interesting idea to use . ‘
in the context of FPGAs and
substream-centric processing?

More specifically...

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Reference Approx. Space #Passes Wgh! Gen? Par’ vv Part 3 continued :
Our Analysis of models and
goals: algorithms for streaming

graph processing

Minimize
Hpasses

Maximize
accuracy

~30 algorithms for streaming
(approximate) MWM (in the
semi-streaming model)

Minimize
local space

Any interesting idea to use . ‘
in the context of FPGAs and
substream-centric processing?

More specifically...

Reference Approx. Space #Passes

Wgh! Gen? Par’

Minimize
Hpasses

Our
goals:

Accept
weighted
graphs

Maximize
accuracy

Minimize
local space

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Part 3 continued :
Analysis of models and
algorithms for streaming
graph processing

~30 algorithms for streaming
(approximate) MWM (in the
semi-streaming model)

Any interesting idea to use . |
in the context of FPGAs and
substream-centric processing?

More specifically...

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Reference Approx. Space #Passes Wgh! Gen? Par’ | Part 3 continued :
Our Analysis of models and
goals: algorithms for streaming

graph processing

Minimize
Hpasses

Accept

general (not
just bipartite)
graphs

Accept
weighted
graphs

Maximize
accuracy

~30 algorithms for streaming
(approximate) MWM (in the
semi-streaming model)

Minimize
local space

Any interesting idea to use . ‘
in the context of FPGAs and
substream-centric processing?

More specifically...

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Reference Approx. Space #Passes Wgh! (‘]en2 Par’ Expose Pa rt 3 continued .

arallelism .
Our i Analysis of models and

(match
goals: Accept substream- algorithms for streaming

P— general (not centric) graph processing
] just bipartite)
weighted

- graphs

Minimize
Hpasses

Maximize
accuracy

~30 algorithms for streaming
(approximate) MWM (in the
semi-streaming model)

Minimize
local space

Any interesting idea to use ?
in the context of FPGAs and

substream-centric processing?

More specifically...

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Reference Approx. Space #Passes Wgh! (‘]en2 Par’ Expose Pa rt 3 continued .

arallelism .
Our i Analysis of models and

(match
goals: Accept substream- algorithms for streaming

P— general (not centric) graph processing
] just bipartite)
weighted

- graphs

Minimize
Hpasses

Maximize
accuracy

~30 algorithms for streaming
(approximate) MWM (in the
semi-streaming model)

Minimize
local space

Any interesting idea to use ’
in the context of FPGAs and

substream-centric processing?

More specifically...

[17] 4+¢ O(n polylog (1)) 1 O 4 0

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Research Questions

How to design a high-

performance MWM
algorithm (as dictated
by the used paradigm)?

spcl.inf.ethz.ch P
v owien ETH ZUrich

Research Questions

spcl.inf.ethz.ch o o
v owien ETH ZUrich

Research Questions

What is the HW FPGA
design that ensures
high performance?

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Substream-Centric MWM: FPGA optimizations

Centaur framework (described in more detail in Evaluation, § 5)

3
‘I Accelerator Functional Unit (AFU)
Starting Me
_— rger Pointer Requester Stream of edges Matching Bits

—aCTe, dueue (mergin Request the pointers ?erg(:ni:ﬁ;g:;twom %% Requester: request Matching Bits Acknowledgement

network to the rows of the using a binary tree in lexicographic v-matching bits Writ 9 it Receiver: receive
— T details adjacency matrix order o for edges matcﬁ?r.l wlralit?s acknowledgements

(1) (pointer_data) | | 0O Lo of mat%hmg bits that
ave been written
— T \ .- Queue \part 1 Matching Bits @
9 Pointer Receiver SEenc DL Recel\;erl; ; ref,‘?ti"e |
v-matching bits
—Ez. ecRRchTiEE | o | lexicographic | @) Tom DRAM Queue OBits Receiver. Dits Requester
P he four Gueee Edge Receiver order | | Receive matching Request matching
q Receive a new edge, ___ bits for the next bits for the next
—ID Y v put them into one Bit-Q — Edge Processor epoch for BRAM epoch for BRAM
5 5 of the queues / HEUe Process edges,
ueue -+« Queue . _____ update
— + + Part 2 / Pending-Queue e values Edge Writer
FPGA (§4.4.3):) Writes edges
& Edge Requester modules that Derive L 1‘ back to DRAM @
Ask Tor t"%“’ e{’,?fﬁ' us§ pointers enerate tﬂle m:gc'm#n; BRAM Valid- FPGA modules that compute
associated wi € edge queue exicographic : Double buffered arra _ the L maximum matchings in parallel

— that have space left order of edges in parall%:l storing u-matching bi¥s Array g p

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Substream-Centric MWM: FPGA optimizations

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Substream-Centric MWM: FPGA optimizations

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Substream-Centric MWM: FPGA optimizations

Blocking / Tiling

Prefetching Pipelining

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Substream-Centric MWM: FPGA optimizations

Blocking / Tiling

They are often used in graph e i
Prefetching processing schemes on FPGAs; P g

we apply them as well.

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Blocking / Tiling

Substream-Centric MWM: FPGA optimizations

They are often used in graph
processing schemes on FPGAs;
we apply them as well.

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

THE SPACE OF SUBSTREAM-CENTRIC

Performance

Accuracy

spcl.inf.ethz.ch o o
v owien ETH ZUrich

Research Questions

What is the HW FPGA
design that ensures
high performance?

spcl.inf.ethz.ch P
v owien ETH ZUrich

Research Questions

spcl.inf.ethz.ch P
v owien ETH ZUrich

Research Questions

What is the ultimate

performance, power

consumption, and the
related tradeoffs?

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

PERFORMANCE ANALYSIS Parameters:
VARIOUS GRAPHS Blocking size = 32, #Substreams = 64

H#Threads=4,e=0.1

Algorithm Platform
Crouch et al. [1] Sequential (CS-SEQ) CPU
Crouch et al. [1] Parallel (CS-PAR) CPU
Ghaffari [2] Sequential (G-SEQ) CPU
Substream-Centric (SC-OPT) Hybrid

Hybrid Hybrid

. yd

CPU

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

PERFORMANCE ANALYSIS Parameters: Graph _ Type m n
i ize = = Kronecker Synthetic power-law ~48n 2% k=16,...,21
VARIOUS GRAPHS Blocking size = 32, #Substreams = 64 Gowalla Social network 950,327 196,591
H#Threads=4,e=0.1 Flickr Social network 33,140,017 2,302,925
Algorithm Platform LiveJournal1 Social network 68,993,773 4,847,571
- Orkut Social network 117,184,899 3,072,441
Crouch et al. [1] Sequential (CS-SEQ) CPU Stanford Hyperlink graph 2,312,497 281,903
Crouch 'et al. [1] Par?:llle[(CS-PAR) CPU Berkeley Hyperlink graph 7,600,595 685,230
Ghaffari [2] Sequential (G-SEQ) CPU arXiv hep-th Citation graph 352,807 27,770
Substream-Centric (SC-OPT) Hybrid
20000 - Runtime (lower is better) Throughput (higher is better)
Hybrid 140 | — CS-PAR Hybrid
SC-OPT OSEQY Gseq
16000 f CPU - 120 - -SEQ
G-SEQ — SC-OPT
\ =4 100 CPU S——
212000 r CS-PAR — S
E S
) o 80
c
E CS-SEQ §
8000 S 60
40
4000
20
0 0
Gowalla Stanf. Berk./Stanf. Flickr LiveJournall Orkut Gowalla Stanf. Berk./Stanf. Flickr LivedJournall Orkut

Graph Graph

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

PERFORMANCE ANALYSIS Parameters: Graph Type m n
i i7e = = Kronecker Synthetic power-law ~48n 2%k =16,...,21
VARIOUS GRAPHS Blocking size = 32, #Substreams = 64 Gowalla Social network 950,327 196,591
H#Threads=4,e=0.1 Flickr Social network 33,140,017 2,302,925
Algorithm Platform LiveJournal1 Social network 68,993,773 4,847,571
- Orkut Social network 117,184,899 3,072,441
Crouch et al. [1] Sequential (CS-SEQ) CPU SC-OPT secures Stanford Hyperlink graph 2,312,497 281,903
Crouch et al. [1] Parallel (CS-PAR) CPU Berkeley Hyperlink graph 7,600,595 685,230
Ghaffari [2] Sequential (G-SEQ) CPU . arXiv hep-th Citation graph 352,807 27,770
Substream-Centric (5C-OPT) Hybrid highest performance
20000 - Runtime (lower is better) Throughput (higher is better)
Hybrid 140 | — CS-PAR Hybrid
CS-SEQ
: —Gseq [/
16000 CPU Ji: OPT 120 G-SEQ

e

@ 100
% 12000 o3
(4b])
(]
E S
= 8000 = 60

40
4000
20
0 0
Gowalla Stanf. Berk./Stanf. Flickr LivedJournali Orkut Gowalla Stanf. Berk./Stanf. Flickr LivedJournal1l Orkut

Graph Graph

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

PERFORMANCE ANALYSIS
VARIOUS THREAD (CPU) COUNTS

Algorithm

Crouch et al. [1] Sequential (CS-SEQ)
Crouch et al. [1] Parallel (CS-PAR)

Ghaffari [2] Sequential (G-SEQ)
Substream-Centric, no blocking (SC-SIMPLE)
Substream-Centric, with blocking (SC-OPT)

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

PERFORMANCE ANALYSIS Blocking size = 32, #Substreams = 64
VARIOUS THREAD (CPU) COUNTS #edges = 16M (Kronecker), € = 0.1
Algorithm

Crouch et al. [1] Sequential (CS-SEQ)
Crouch et al. [1] Parallel (CS-PAR)

Ghaffari [2] Sequential (G-SEQ)
Substream-Centric, no blocking (SC-SIMPLE)
Substream-Centric, with blocking (SC-OPT)

14000 |- Runtime (lower is better) Throughput (higher is better)
140 ¢ 4 4 © © © © ©
12000 ¢ SC-OPT
CS-PAR 120 |
10000
2100+ G-SEQ

0 ()
£ 8000 fe2
° © 80
£ 5
= =

6000 = g0l

4000 40 -

2000 20

0 0 e

1 2 4 8 16 32 64
Threads (T) Threads (T)

spcl.inf.ethz.ch P
v owien ETH ZUrich

PERFORMANCE ANALYSIS Blocking size = 32, #Substreams = 64
VARIOUS THREAD (CPU) COUNTS #edges = 16M (Kronecker), € = 0.1
Algorithm

Crouch et al. [1] Sequential (CS-SEQ)
Crouch et al. [1] Parallel (CS-PAR)

Ghaffari [2] Sequential (G-SEQ)
Substream-Centric, no blocking (SC-SIMPLE)
Substream-Centric, with blocking (SC-OPT)

14000 |- Runtime (lower is better) Throughput (higher is better)
A A D A A
140 + ¢ A4 A4 v v A4 O
12000
CS-PAR 120 -
10000
2 100 | G-5EQ
) o
£ 8000 =)
o e} © 807
£ o
= - =
6000 = g0l
4000 40 -
2000- G-SEQ 20

o

1 2 4 8 16 32 64
Threads (T) Threads (T)

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

PERFORMANCE ANALYSIS
VARIOUS BLOCKING SIZE (K) AND #SUBSTREAMS (L)

Algorithm

Crouch et al. [1] Sequential (CS-SEQ)
Crouch et al. [1] Parallel (CS-PAR)

Ghaffari [2] Sequential (G-SEQ)
Substream-Centric, no blocking (SC-SIMPLE)
Substream-Centric, with blocking (SC-OPT)

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

PERFORMANCE ANALYSIS
VARIOUS BLOCKING SIZE (K) AND #SUBSTREAMS (L)

Algorithm

Crouch et al. [1] Sequential (CS-SEQ)
Crouch et al. [1] Parallel (CS-PAR)

Ghaffari [2] Sequential (G-SEQ)
Substream-Centric, no blocking (SC-SIMPLE)

Substream-Centric, with blocking (SC-OPT) Blocking size (K) = 32, #threads =4, #Substreams (L) = 128, #threads = 4,
#edges = 16M (Kronecker), € = 0.1 #edges = 16M (Kronecker), € = 0.1
200 Throughput (higher is better) 180 ' Throughput (higher is better)
180 |]
160 - SC OP\T
160
140 f
_40f .
o 2 420
® 120 f o
g g 100 G-SEQ
® 100+ o L \ . e
2 2 80t F—F "+ !
60
o7 1 CS-PAR
ool 20| cs-SE\Q |
0 1 | | | " = = i 0 é e e e . é 6 é 6 é é
— N
1 2 4 8 16 32 64 128 256 512 order 1 2 4 8 16 32 64 128 256

Maximum Matchings (L) Block Size (K)

v ewien ETHzUrich
PERFORMANCE ANALYSIS
VARIOUS BLOCKING SIZE (K) AND #SUBSTREAMS (L)

Algorithm

Crouch et al. [1] Sequential (CS-SEQ)
Crouch et al. [1] Parallel (CS-PAR)

Ghaffari [2] Sequential (G-SEQ)
Substream-Centric, no blocking (SC-SIMPLE)

Substream-Centric, with blocking (SC-OPT) Blocking size (K) = 32, #threads =4, #Substreams (L) = 128, #threads = 4,
#edges = 16M (Kronecker), € = 0.1 #edges = 16M (Kronecker), € = 0.1
200 r Throughput (higher is better) 180 ' Throughput (higher is better)
180
160 |
1007 W 140
40} ¢ ——)
) . 120
S 120 A —A S
g ‘ g 100 G-SEQ
® 100 - —— 2 L \ L
2 \—_—‘ 2 80 F——F +
S 80y « CS-PAR = ol
60 f /
o1 1 CS-PAR
ool 20| CS-SE\Q |
. — . g b—b—————0—b—06—%

1 1 1 o a No
1 2 4 8 16 32 64 128 256 512 order ' 2 4 8 16 32 64 128 256
Maximum Matchings (L) Block Size (K)

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

PERFORMANCE ANALYSIS Ateerithm

Crouch et al. [1] Sequential (CS-SEQ)
Crouch et al. [1] Parallel (CS-PAR)
APPROXIMATION Ghaffari [2] Sequential (G-SEQ)
Substream-Centric, no blocking (SC-SIMPLE)
Substream-Centric, with blocking (SC-OPT)

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

PERFORMANCE ANALYSIS Ateerithm

Crouch et al. [1] Sequential (CS-SEQ)
Crouch et al. [1] Parallel (CS-PAR)
APPROXIMATION Ghaffari [2] Sequential (G-SEQ)
Substream-Centric, no blocking (SC-SIMPLE)
Substream-Centric, with blocking (SC-OPT)

#Substreams (L) = 128, Blocking size (K) = 32, Blocking size (K) = 32, #threads =4,
#threads = 4, #edges = 8M (Kronecker) #Substreams (L) =128, =0.1
| & | Approximation (lower is better) G-SEQ 6 Approximation (lower is better)
. \ .

1.4} = 40 — ——4% —% N =
[=
Z12f 812f \ G-SEQ
o = CS-SEQ,
o 1p CS-SEQ g 1 CS-PAR
g | CSPAR, - SC-OPT
c 08 SC-SIMPLE, S08Ff
= SC-OPT s
Eosr X067
= Each data point is the ratio | & - .
S04y of the exact MWM size to the | < 0.4 I?ach data point is the ratio

imated MWM size. of the exact MWM size to the
approxima: - approximated MWM size
0.21 Exact-matenings are derived 0.27 Exact matchings are derived
with Lemon Graph Library with Lemon Graph Library
0 | | | | 1 1 1 1 1 1 1 1 0 | | | | | |

0.010.05 0.1 0.2 03 0.4 05 04 0.6 0.7 0.8 0.9 K16 K17 K18. K19 K20 K21
€ Graph

spcl.inf.ethz.ch o o
v owien ETH ZUrich

PERFORMANCE ANALYSIS Ateerithm

Crouch et al. [1] Sequential (CS-SEQ)
Crouch et al. [1] Parallel (CS-PAR)
APPROXIMATION Ghaffari [2] Sequential (G-SEQ)
Substream-Centric, no blocking (SC-SIMPLE)
Substream-Centric, with blocking (SC-OPT)

#Substreams (L) = 128, Blocking size (K) = 32, Blocking size (K) = 32, #threads =4,
#threads = 4, #edges = 8M (Kronecker) #Substreams (L) =128, =0.1
16 ' Approximation (lower is better) G-SEQ 6 Approximation (lower is better)
. \ .
1.4+ 14 A A = A

—h

A}
T

—h

N
T

—
[

—h
T

o
o
T

o
»
T
o
»
T

Each data point is the ratio

Ofgggrgi?r%gthg\évm&\;fdestigghe of the exact MWM size to the

Approximation ratio (relative)

Each data point is the ratio

o
~
|

Approximation ratio (relative)
o
o
o
N

approximated MWM size.
Exact matchings are derived
| with Lemon Grqph Libra{ry

Exact matchings are derived
with Lemon Graph Library

| 1 | 1 1 1 1 1 1 1 1 1

©

no
1

o

no
T

0.010.05 0.1 0.2 03 04 05 04 06 0.7 08 0.9 K16 K17 K18. K19 K20 K21
€ Graph

o

o

spcl.inf.ethz.ch -
Y @spcl_eth E'HZUFICh

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

OTHER ALGORITHMS, PROBLEMS, ANALYSES

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

OTHER ALGORITHMS, PROBLEMS, ANALYSES

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

OTHER ALGORITHMS, PROBLEMS, ANALYSES

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Model Prob. Input Order Refegg
10N Rand. Unw. Graph Adv. [17
DGS Rand. Unw. Graph Adv. [,
TN Rand. Unw. Graph Adv. [57,

L Sampling
DGS Rand. W. Graph Adv.

[61, Theorem 1, Section 6] 1 O(1/€%n polylog(n)) - Sampling

Model Prob

ION De \\/\Ot\f
S ounting 3

Model Prob. Inpu
ION Det. Unw. Graph

Method

Certificate

Certificate

Model Prob. Input Order Reference Appro

Passes Method

Unw,

— 4
ers L ference ace e 0
Spann f, Theorem 2] 6 . fo
Det [75, Theorem 3] 2 4+ e (58

ION
Unw. Bi

Graph K_edge

bolylog(

ensest = ", — _
Model Prob. Input Order D Connect\\l‘tw K Vertex Local Ratio by cces
- ocal Ratio
] Subgraphs o S10g(2/)) i . -
ALO Rand. croet Adv. e, 1/50) O(e 2m/vT Onnec'\'.\V\tV L
[79, Theorem 5] (e, 1/100) . S C ogte 1)) L P.
[22] (€, 8) B'\paft\teﬂes 1 Sampling log(~1)) L.P.
[79, Theorem 10] (e, 1/50) Ol - Sampling i L
[79, Theorem 14] (e, 1/100) o1\ -
[17, Corollary 3.9] (e, 1/3) O(m3/2/T) g Fog(n)) ; K
Urnw. Adv. [17, Theorem 3.1] = : Ioing
ION Rand. Graph [86, Theorem 3.3] (4 pling
log(t)]
[55, Theorem 1] Ipling
[55, Theorem 2] Sampling Oflog(n)) Sampling
[55, Theorem 3] or)log(n)) 3 Sampling = Sampling
[26, Theorem 5] O(m/(e2® VTY)) polylog(n))* - 2 Sampling . Method
Rand. [26, Corollary 6] (1/3 4+ ¢, —) O(ﬂl/(54‘5 VT)) - 1 Sampling l
1

| [90, Theorem 3.1] - O(na + /T/a) - O(+/1/a) Sampling

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Model Prob. Input Order Refegg
ION Rand. Unw. Graph Adv.
DGS Rand. Unw. Graph Adv.
TN Rand. Unw. Graph Adv.

1 L (@] - Sampling
DGS Rand. W. Graph Adv.
[61, Theorem 1, Section 6] 1 O(1/€%n polylog(n)) -

Sampling

Method
Certificate
Certificate

ode roh » : o Ad 1 i Um
T Motif @ winimu™ - |
DGS Ra COUnt‘ng ﬂ Spann\ng re l

[53, Theorem 4.2] 1™

O(knlog3 (T
O(nt—ete? ‘o

Model Prob. Inpm
ION Det.

Unw. Graph

! Connect‘V‘tV

Triangle |
rount-‘ng _) _ Passes Method

Model Prob. Input Order Reference Appro

Survey and Taxonomy of Models and Algorithms
for Streaming Graph Processing

Towards Understanding of Modern Graph Processing and Storage

MARC FISCHER, Department of Computer Science, ETH Zurich z
MACIE] BESTA, Department of Computer Science, ETH Zurich g
TAL BEN-NUN, Department of Computer Science, ETH Zurich 8
TORSTEN HOEFLER, Department of Computer Science, ETH Zurich e

Graph processing has become an important part of various areas of computer science, including machine learn-
ing, social network analysis, computational sciences, and others. Two key challenges that hinder accelerating

[P R S T WY (- SRRT S (N AR N, NS TS | (SR Al (. [S AN T (. SR SR Al

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

OTHER ALGORITHMS, PROBLEMS, ANALYSES

10N Rand. Unw. Graph Adv. [17
DGS Rand. Unw. Graph Adv. [,
TN Rand. Unw. Graph Adv. [57,

DGS Rand. W. Graph Adv. L

[61, Theorem 1, Section 6] 1 O(1/€%n polylog(n)) -

m
RandO
walks

Model Prob
ION De
DGS Ra

Motif
counting g

Model Prob. Inpu
ION Det. Unw. Graph

Triangle

Model Prob. Input Order Reference Appro
1/2

Survey and Taxonomy of Models and Algorithms
for Streaming Graph Processing
Towards Understanding of Modern Graph Processing and Stg

MARC FISCHER, Department of Computey
MACIE] BESTA, Department of Computer
TAL BEN-NUN, Department of Computer 7\
TORSTEN HOEFLER, Department of Comp p

fne

Graph processing has become an important part of v
ing, social network analysis, computational sciences,

[P R S T WY -SRI SR [N SRR RO

ea pincluding machine learn-
\“ nallenges that hinder accelerating

o AP [B T /R AR SR ol

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

OTHER ALGORITHMS, PROBLEMS, ANALYSES S ————

b

ION Rand. Unw. Graph Adv.
d
d

DGS Rand. Unw. Graph Adv.
TN Rand. Unw. Graph Adv.

| DGS Rand. W. Graph Adv. L
[61, Theorem 1, Section 6] 1

Minimum Random
B panning tree

[53, Theorem 4.2] 17"

1/€n polylog(n)) -

Model Prob
ION De
DGS Ra

Motif

Model Prob. Inpu
ION Det. Unw. Graph

pol:
polyld Certificate

Triangle

Model Prob. Input Order Reference Appro
1/2

Survey and Taxonomy of Models and Algorithms
for Streaming Graph Processing

MARC FISCHER, Department of Computey
MACIE] BESTA, Department of Computer
TAL BEN-NUN, Department of Computer a“
TORSTEN HOEFLER, Department of Comp p

Graph processing has become an important part of v
ing, social network analysis, computational sciences,

[P R S T WY -SRI SR [N SRR RO

pincluding machine learn-

nallenges that hinder accelerating
R I 2 N A S N

SPCL iR e Eyyy s iirich

Order Refegg ce

Triangle Connected

7210g

. s =
& Unw. Graph Adv. [57, Count\ng Componen laml;li:g
[

+ € - 2 Sampling
[61, Theorem 1, Section 6] 1

eﬁj}?ﬁ;

| DGS Rand. W. Graph Adv.

1 Sampling

Method

0 o
tif
E Mo = : . ;
ﬁ % polyld Certificate
S n og3 T 0
O and. ~ 5 ~
p—— —€ o
Model Prob. Inpm
ION Det. Unw. Graph

ele}

Model Prob. Input Order Reference Appro Tr\ang\e
W ounting

Survey and Taxonomy of Models and Algorithms
for Streaming Graph Processing

Towards Understanding of Modern Graph Processing and Stg

'\, U
MARC FISCHER, Department of Computey P\%a\‘\ ! .
MACIE] BESTA, Department of Computer a“e |\
TAL BEN-NUN, Department of Computer a“"s
TORSTEN HOEFLER, Department of Comp p

Graph processing has become an important part of v pincluding machine learn-

ing, social network analysis, computational sciences, nallenges that hinder accelerating
IR A TR T2 U T T S

[P IR S T WY -SRI S (N SO T

AP

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Order Refegg ce

ted
Adv. 117 iangle connec
©M U

. nts
[57, Count\ng Compone laml;li:g
[

k
+e O - 2 Sampling
[61, Theorem 1, Section 6] 1

nw. Graph Adv.

| DGS Rand. W. Graph Adv.

O(1/€%n polylog(n)) -

S - @ RandoM ===
Mot\. _ . ol | Wa\ks Certificate

1 Sampling

Model Prob. Inpm

Graph Processing on FPGAs: Taxonomy, Survey, Challenges

Towards Understanding of Modern Graph Processing, Storage, and Analytics

MACIE]) BESTA*, DIMITRI STANOJEVIC®, Department of Computer Science, ETH Zurich
JOHANNES DE FINE LICHT, TAL BEN-NUN, Department of Computer Science, ETH Zurich
TORSTEN HOEFLER, Department of Computer Science, ETH Zurich

ION Det. Unw. Graph

Triangle

Model Prob. Input Order Reference Appro
1/2

Survey and Taxonomy of Models and Algorithms
for Streaming Graph Processing
Towards Understanding of Modern Graph Processing and Stg
-, 10e
MARC FISCHER, Department of Computeg p\%a\ i
MACIE] BESTA, Department of Computer
arts

TAL BEN-NUN, Department of Computer
TORSTEN HOEFLER, Department of Comp p

Graph processing has become an important part of v
ing, social network analysis, computational sciences,

[P R S T WY -SRI SR [N SRR RO

ea pincluding machine learn-
\(nallenges that hinder accelerating

o AP [B T /R AR SR ol

M”EL S T By B S‘.;lg;:zzzei: Er,-lzurlch

Order Refegg

_role
©M Triang

raph Adv. [57, Count‘ng
[=
[61, Theorem 1, Section 6] 1 O(1/€%n polylog(n)) -

D - Ad = . e dOm
Motif B : S R?:,\a\ks
Count‘ng Rand. e)

Model Prob. Inpu
ION Det. Unw. Graph

| DGS Rand. W. Graph Adv.

[53, Theorem 4.2] 17"

Triangle

Model Prob. Input Order Reference Appro
1/2

Survey and Taxonomy of Models and Algorithms
for Streaming Graph Processing
Towards Understanding of Modern Graph Processing and Stg

MARC FISCHER, Department of Computey
Graph Processing on FPGAs: Taxonomy, Survey, Challenges MACIE) BESTA, Department of Computer

Towards Understanding of Modern Graph Processing, Storage, and Analytics TAL BEN-NUN, Department of Computer a
TORSTEN HOEFLER, Department of Comp p ¢
MACIEJ BESTA*, DIMITRI STAN 0_] EVIC*, Department of Computer Science, ETH Zurich ‘Y\e
JOHANNES DE FINE LICHT, TAL BEN-NUN, Department of Computer Science, ETH Zurich
TORSTEN HOEFLER, Department of Computer Science, ETH Zurich Graph processing has become an important part of v a Pincluding machine learn-
ing, social network analysis, computational sciences, \(e nallenges that hinder accelerating

[P R S T WY -SRI SR [N SRR RO o AP [B T /R AR SR ol

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

MATCHING BITS: KEY DATA STRUCTURES FOR MAINTAINING INFORMATION ON MATCHINGS

An incoming edge...

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

MATCHING BITS: KEY DATA STRUCTURES FOR MAINTAINING INFORMATION ON MATCHINGS

An incoming edge... BRI (TIRVRTV=TTo1s18

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

MATCHING BITS: KEY DATA STRUCTURES FOR MAINTAINING INFORMATION ON MATCHINGS

An incoming edge... BN (VR 61415,

Vertices + matchings (correctness)

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

MATCHING BITS: KEY DATA STRUCTURES FOR MAINTAINING INFORMATION ON MATCHINGS

An incoming edge... BN (VR 61415,

Vertices + matchings (correctness)

OO |O]|F
OO0 |0| O

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

MATCHING BITS: KEY DATA STRUCTURES FOR MAINTAINING INFORMATION ON MATCHINGS

An incoming edge... BN (VR 61415,

Vertices + matchings (correctness)

OO |O]|F
OO0 |0| O

N\ J
Y
n ,column” bit vectors
(one per vertex)

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

MATCHING BITS: KEY DATA STRUCTURES FOR MAINTAINING INFORMATION ON MATCHINGS

An incoming edge... BN (VR 61415,

Vertices + matchings (correctness)

(D)

§ (1] [o
¢5| [o] [o
O -
AN
52| [o] [0
2z 8

s~ \LLOf [O

N\ J
Y
n ,column” bit vectors
(one per vertex)

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

MATCHING BITS: KEY DATA STRUCTURES FOR MAINTAINING INFORMATION ON MATCHINGS

An incoming edge... BN (VR 61415,

Vertices + matchings (correctness)

(L=5)
(d)]

§ (1] [o
:2| [o] [o
O -

%< [1] |0
521 10] [0
z 38 0 0
o \

B . Y <

n ,column” bit vectors
(one per vertex)

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

MATCHING BITS: KEY DATA STRUCTURES FOR MAINTAINING INFORMATION ON MATCHINGS

An incoming edge... BN (VR 61415,

Vertices + matchings (correctness)

(L=15)

(d)]

§ (1] [o
-2 | o] [0

QO =

¢ 2< (1] [O

2 S

a0 0 0

2 8 0 0

o \

Y
Ul n ,,column” bit vectors
vector

(one per vertex)

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

MATCHING BITS: KEY DATA STRUCTURES FOR MAINTAINING INFORMATION ON MATCHINGS

An incoming edge... BN (VR 61415,

Vertices + matchings (correctness)

(L=5)

s (1] [o

-2 [o] [z

< | 1] |0

a7 0] [0

5 = L0 [0~ vtn
- /\ - Y vector
vg;’fc?)r n ,,column” bit vectors

(one per vertex)

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

MATCHING BITS: KEY DATA STRUCTURES FOR MAINTAINING INFORMATION ON MATCHINGS

An incoming edge... BN (VR 61415,

Vertices + matchings (correctness)

(L=5)

s (1] [o

-2 [o] [z

< | 1] |0

a7 0] [0

5 = L0 [0~ vtn
- /\ - Y vector
vg;’fc?)r n ,,column” bit vectors

(one per vertex)

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

MATCHING BITS: KEY DATA STRUCTURES FOR MAINTAINING INFORMATION ON MATCHINGS

An incoming edge... BN (VR 61415,

Vertices + matchings (correctness)

Vertex u is a part of a
matching in substreams 0, 2

(L=5) /

s _([2]][o

-2 | [o]| [z

o -

¢ 2< (1] [0

=~ 35

22110 0

2= L10] [0~ vth
- /\ ~) vector
Ul n ,,column” bit vectors
vector

(one per vertex)

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

MATCHING BITS: KEY DATA STRUCTURES FOR MAINTAINING INFORMATION ON MATCHINGS

An incoming edge... BN (VR 61415,

Vertices + matchings (correctness)

Vertex u is a part of a
matching in substreams 0, 2

(L=5) /

e (7 / 0
£ Vertex v is
g % 0 0 /notapartof
S 5) any matchin
e #< [1]°[0 Y ;
= 35
22110 0

2= L10] [0~ vth

- /\ ~) vector

Ul n ,,column” bit vectors

vector

(one per vertex)

spcl.inf.ethz.ch oo o
v o ETHzUrich

MATCHING BITS: KEY DATA STRUCTURES FOR MAINTAINING INFORMATION ON MATCHINGS

An incoming edge... BN (VR 61415,

Vertices + matchings (correctness) Edges + matchings (more performance)

Vertex u is a part of a
matching in substreams 0, 2

(L=5) /

e 1 d 0
S Vertex v is
g % 0 0 /notapartof
S 5) any matchin
¢ 72< | 1 0 Y &
=~ 35
22110 0

2= L10] [0~ vth

- /\ ~) vector

U n ,,column” bit vectors

vector

(one per vertex)

spcl.inf.ethz.ch oo o
v o ETHzUrich

MATCHING BITS: KEY DATA STRUCTURES FOR MAINTAINING INFORMATION ON MATCHINGS

An incoming edge... BN (VR 61415,

Vertices + matchings (correctness) Edges + matchings (more performance)

Vertex u is a part of a
matching in substreams 0, 2

(L=5) /

S (7 / 0

Lo Vertex v is

g % 0 0 /notapartof 1
S 5) any matchin

¢ z< [1]]0 ! ; 0
= 35

2 0 0 1
5 = _ 0) 0 [~ v-th 0
- /\ ~) vector 0
U n ,,column” bit vectors

vector

(one per vertex)

spcl.inf.ethz.ch oo o
v o ETHzUrich

MATCHING BITS: KEY DATA STRUCTURES FOR MAINTAINING INFORMATION ON MATCHINGS

An incoming edge... BN (VR 61415,

Vertices + matchings (correctness) Edges + matchings (more performance)

Vertex u is a part of a
matching in substreams 0, 2

(L=5) /

S (7 / 0

Lo Vertex v is

g % 0 0 /notapartof L a 1
S 5) any matchin e

¢34 [1) [0 FmeEe o £ | [0
= 5 Y

a2 10| [0 S5< |1

= 8 0 0 e = 0
o _ ™~ v-th Qo

- /\ ~) vector L 0
U n ,,column” bit vectors

vector

(one per vertex)

spcl.inf.ethz.ch oo o
v o ETHzUrich

MATCHING BITS: KEY DATA STRUCTURES FOR MAINTAINING INFORMATION ON MATCHINGS

An incoming edge... BN (VR 61415,

Vertices + matchings (correctness) Edges + matchings (more performance)

Vertex u is a part of a
matching in substreams 0, 2

(L=5) /

S (7 / 0

Lo Vertex v is (L=5)

g % 0 0 /notapartof _ a 1
S 5) any matchin e

24 [1]]0 v matehing >t | [0
= c

=210 |0 ss< |1

2 3 0 0 £ 2

o _ ™~ v-th 2 7 0

- /\ ~) vector L 0
U n ,,column” bit vectors

vector

(one per vertex)

spcl.inf.ethz.ch oo o
v o ETHzUrich

MATCHING BITS: KEY DATA STRUCTURES FOR MAINTAINING INFORMATION ON MATCHINGS

An incoming edge... BN (VR 61415,

Vertices + matchings (correctness) Edges + matchings (more performance)

Vertex u is a part of a
matching in substreams 0, 2

(L =5) / For the current

@ - / edge, is...

S 1 0 :

Ll Vertex v is (L=5)

g % 0 0 /not a part of _ a 1

S 5) any matchin e

24 [1]]0 v matehing >t | [0

= 5 Y

a2 10| [0 S5< |1

2 3 0 0 £ S

o _ ™~ v-th 2 7 0

- /\ ~) vector L 0
U n ,,column” bit vectors

vector

(one per vertex)

spcl.inf.ethz.ch oo o
v o ETHZUrich

MATCHING BITS: KEY DATA STRUCTURES FOR MAINTAINING INFORMATION ON MATCHINGS

An incoming edge... BN (VR 61415,

Vertices + matchings (correctness)

Vertex u is a part of a
matching in substreams 0, 2

(L=5) /

e 1 d 0
e _ Vertex v is
g % 0 0 /notapartof
S 5) any matchin
¢ 72< | 1 0 Y &
=~ 35
22110 0

2= L10] [0~ vth

- /\ ~) vector

U n ,,column” bit vectors

vector

(one per vertex)

Edges + matchings (more performance)

.=
I

L bits (one pe

<z

substream)

For the current
edge, is...

N

r

1

0
1
0
0

weight > (1 +€)° ?
weight > (1 + €)1 ?
weight > (1 + €)% ?
weight > (1 + €)3 ?
weight > (1 + €)* ?

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

PERFORMANCE ANALYSIS
VARIOUS #SUBSTREAMS (L)

Algorithm Platform

Crouch et al. [1] Sequential (CS-SEQ) CPU

Crouch et al. [1] Parallel (CS-PAR) CPU

Ghaffari [2] Sequential (G-SEQ) CPU

Substream-Centric (SC-OPT) Hybrid
Parameters:

Blocking size (K) = 32,
#threads =4,

#edges = 16M
(Kronecker), e = 0.1

#Substreams (pipelines)

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

PERFORMANCE ANALYSIS

VARIOUS #SUBSTREAMS (L) 200 - Throughput (higher is better)
Algorithm Platform 180 B
Crouch et al. [1] Sequential (CS-SEQ) CPU
Crouch et al. [1] Parallel (CS-PAR) CPU 1 60 L
Ghaffari [2] Sequential (G-SEQ) CPU SC-OPT
Substream-Centric (SC-OPT) Hybrid \
140 —s o
Parameters: -3
Blocking size (K) = 32, 3 120 r
#threads = 4, D 100 -
H#edges = 16M S
(Kronecker), e =0.1 E 80 -
60 [
40 r
20 r
i:‘-l-__: — A
0 |

1 2 4 8 16 32 64 128 256 51

#Substreams (pipelines)

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

PERFORMANCE ANALYSIS

VARIOUS #SUBSTREAMS (L) 200 - Throughput (higher is better)
Algorithm Platform 180 B .
Crouch et al. [1] Sequential (CS-SEQ) CPU Hybrld
Crouch et al. [1] Parallel (CS-PAR) CPU 1 60 L W
Ghaffari [2] Sequential (G-SEQ) CPU -
Substream-Centric (SC-OPT) Hybrid
140 Y —$6 &
Parameters: -3
Blocking size (K) = 32, 3 120 r
#threads = 4, 3 100 -
H#edges = 16M S
(Kronecker), e =0.1 E 80 -
60
40 CPU
20 r
0 |

1 2 4 8 16 32 64 128 256 51

#Substreams (pipelines)

spcl.inf.ethz.ch P
v owien ETH ZUrich

PERFORMANCE ANALYSIS

VARIOUS #SUBSTREAMS (L) 2007 Throughput (higher is better)
Algorithm Platform 180 B
Crouch et al. [1] Sequential (CS-SEQ) CPU
Crouch et al. [1] Parallel (CS-PAR) CPU 1 60 L
Ghaffari [2] Sequential (G-SEQ) CPU
Substream-Centric (SC-OPT) Hybrid
140
Parameters: -ﬁ-
Blocking size (K) = 32, 3 120 |
#threads =4, 8 100 F
#edges = 16M 5
(Kronecker), e = 0.1 E 80 F
60 [
40 r
20 r
é"-l-...__* p— A
0 |

1 2 4 8 16 32 64 128 256 51

#Substreams (pipelines)

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Large graphes...

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Large graphes...

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Large graphes...

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Large graphes...

