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Abstract—The growing system size of high performance com-
puters results in a steady decrease of the mean time between
failures. Exchanging network components often requires whole
system downtime which increases the cost of failures. In this
work, we study a fail-in-place strategy where broken network
elements remain untouched. We show, that a fail-in-place strategy
is feasible for todays networks and the degradation is manageable,
and provide guidelines for the design. Our network failure
simulation toolchain allows system designers to extrapolate the
performance degradation based on expected failure rates, and
it can be used to evaluate the current state of a system. In
a case study of real-world HPC systems, we will analyze the
performance degradation throughout the systems lifetime under
the assumption that faulty network components are not repaired,
which results in a recommendation to change the used routing
algorithm to improve the network performance as well as the
fail-in-place characteristic.

Keywords—Network design, network simulations, network man-
agement, fail-in-place, routing protocols, fault tolerance, availability

I. INTRODUCTION

Data centers or data warehouses as well as HPC systems
grow to unprecedented scales. Tens of thousands of computers
are integrated in large-scale facilities to process floods of queries
or large compute jobs. The network connecting these machines
plays a crucial role for successful operation. First, it has to
guarantee a certain quality of service (bandwidth, latency) but
also a certain availability (connectivity in case of failures). As
network topologies grow, failures of switches and connectors
or cables become common.

As opposed to network endpoints, the wiring complexity
and infrastructural demands of cabling (e.g., arrangement of
cable trays) make maintaining complex networks challenging
and expensive. Thus, network structures are often kept in place
over years and multiple generations of machines while other
components such as CPU or main memory are upgraded. Today,
many networks are based on the concept of over-provisioning
the hardware, such as installing spare cables in the cable trays or
having a spare parts inventory. Alternatively, they are operated
in a deferred repair mode, in which a failed component will not
be replaced instantaneously but within a reasonable timeframe,
such as a business day.

Fail-in-place strategies are common in storage systems when
maintenance costs exceed maintenance benefits, such as in large

scale data centers with millions of hard drives. For example,
Microsoft owned approximately one million servers in 2013,
i.e., even an optimistic failure rate of 1% per year and two
hypothetically hard drives per server would result in a mean
time between failure of 26 minutes. Instead of replacing the
hard drives of a server, the storage system, such as IBM’s
Flipstone [1], uses RAID arrays for reliability and a software
approach to disable failed hard drives and to migrate the data,
until a critical component failure disables the entire server.

In this paper, we define network fail-in-place based on the
differentiation between “critical” and “non-critical” network
component failures. A critical component failure disconnects
all paths between two hosts, whereas a non-critical failure
only disconnects a subset of all paths between two hosts. The
network fail-in-place strategy is to repair critical failures only,
but continue operation by bypassing non-critical failures. We
explore in our practical study on artificial and real existing
networks whether or not a fail-in-place strategy is a feasible
approach for large-scale high performance and data center
networks. This fail-in-place strategy is going to alter the future
design process for HPC systems as well as the operation policies
for the network.

First, we establish an empirical failure analysis, based on
historic failures occurring in real systems, which will be used
for subsequent failure and performance modeling. We proceed
to show that it is not sufficient to consider fault properties (such
as connectivity) of the topology or to consider the resiliency
of the routing algorithm in isolation. Our analysis shows that,
for InfiniBand networks, the choice of the routing algorithm
influences the number of disconnected paths in case of a failure
and the quality of service after a reinitialization (routing) of the
topology with missing links or switches. Our main contributions
and findings are the following:

• We show that fail-in-place network design can be
accomplished with an appropriate combination of
topology and routing algorithm while assuming a
performance degradation up to a pre-defined threshold
can be tolerated.

• Our toolchain allows system designers to plan future
fail-in-place networks and operation policies while
taking failure rates into consideration and allows
administrators to evaluate the current state of the
network by comparing it to the fault-free state.
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TABLE I. COMPARISON OF NETWORK-RELATED HARDWARE AND
SOFTWARE FAILURES, MTBF/MTTR, AND ANNUAL FAILURE RATES

Fault Type Deimos∗ LANL Cluster 2 [2] TSUBAME2.0 [3]

Percentages of network-related failures
Software 13% 8% 1%
Hardware 87% 46% 99%
Unspecified 46%

Percentages for hardware only
NIC/HCA 59% 78% 1%
Link 27% 7% 93%
Switch 14% 15% 6%

Mean time between failure / mean time to repair
NIC/HCA X† / 10 min 10.2 d / 36 min X / 5–72 h
Link X / 24–48 h 97.2 d / 57.6 min X / 5–72 h
Switch X / 24–48 h 41.8 d / 77.2 min X / 5–72 h

Annual failure rate
NIC/HCA 1% X � 1%
Link 0.2% X 0.9%‡

Switch 1.5% X 1%

• We conducted an exhaustive study of multiple
InfiniBand (IB) routing algorithms (as implemented
in OpenSM 3.1.16) and several real-world topologies.
This allows us to draw conclusions about resilience
properties of topologies and routing mechanisms, and
to evaluate the applicability of their combinations for
fail-in-place networks.

• For deterministically routed InfiniBand fat-trees, we
show that two failing links may reduce the overall
bandwidth by up to 30% and we observe rare curious
cases where the performance of certain communication
patterns increases with failing links.

• We conducted detailed case studies with two real HPC
systems, TSUBAME2.0 and Deimos, and showed that
the currently used routing method on TSUBAME2.0
can be improved, increasing the throughput by up to
2.1x (and 3.1x for Deimos) for the fault-free network
while increasing their fail-in-place characteristics.

II. FAILURES IN REAL SYSTEMS

As other high performance computing hardware, networks
are not immune to failures. The probability of network failures
varies depending on the used interconnect hardware and
software, system size, usage of the system, and age. Network
failures constitute between 2%–10% for the HPC systems at
Los Alamos National Laboratory [4], over 20% for LANs
of Windows NT based computers [5] and up to 40% for
internet services [6] of the total number of failures. Wilson
et al. [7] showed a fairly constant failure rate of ≈7 unstable
links between switches per month and a total of ≈30 disabled
network interface controller (NIC) over the operation period
of 18 month for a Blue Gene/P system.

The distribution of network component failures for three
production systems shows that network-related software errors
are less common compared to other hardware errors, but the
actual distribution of switch failures, NIC/HCA failures and
link failures varies heavily, see Tab. I. The first investigated
HPC system, Deimos, in operation Mar.’07 – Apr.’12 at TU-
Dresden, is a 728-node cluster with 108 IB switches and 1,653
∗Deimos’ failure data is not publicly available
†Not enough data for accurate calculation
‡Excludes first month, i.e., failures sorted out during acceptance testing

links. The 49-node LANL Cluster 2 at Los Alamos National
Laboratory was in operation Apr.’97 to Aug.’05. Installed in
Sept.’10, TSUBAME2.0 at Tokyo Institute of Technology uses
a dual-rail QDR IB network with 501 switches and 7,005
links to connect the 1,408 compute nodes via a full-bisection
bandwidth fat-tree. Our simulations in Section V-D1 will be
conducted based on the first rail, including all 1,555 nodes
connected with 258 switches, and 3,621 links.

Fig. 1a shows the distribution of hardware faults over the
life span of all three systems. Fitting the Weibull distribution
to the data results in the following shape parameters for the
different systems. For Deimos the shape parameter k is 0.76
and therefore the failure rate decreased over time [8]. The shape
parameters for TSUBAME2.0, which is k = 1.07, and for the
LANL Cluster 2, k = 0.95, indicate a constant failure rate.
While the constant failure rate applies to the LANL cluster,
it does not hold for TSUBAME2.0. The hardware faults of
TSUBAME2.0, see Fig. 1b, show the expected bathtub curve
for hardware reliability [9].

Common practice in high performance computing is to
deactivate faulty hardware components and replace them during
the next maintenance, unless the fault would threaten the
integrity of the whole system. A failing switch can degrade the
regular topology into an irregular topology which cannot be
routed by a routing algorithm specifically designed for regular
networks, even so the network is still physically connected.
As shown in Tab. I the percentage of switch failures, among
hardware-related failures of the network, ranges from 6% to
15% for the three systems. This covers issues of a faulty switch
as well as faulty ports. One deactivated port of a switch will
degrade a regular network topology, but replacing a whole
switch for one broken port can be cost and time intensive.

For all network-related failures of the LANL Cluster 2 we
calculate a mean time between failure (MTBF) of 100.3 h and
a mean time to repair (MTTR) of 56.2 min. If we break this
down into MTBF and MTTR for each network component,
i.e., switch, link and network interface controller (NIC), we
see that the MTTR is the smallest for NICs (36 min), followed
by links (57.6 min) and switches (77.2 min). The MTBF for
these components varies significantly. While every ten days
one NIC experienced a failure, switches were four times as
stable (MTBF=41.8 d). The most reliable network components
of LANL Cluster 2 were the links. Only 23 link failures within
eight years of operation were recorded, which results in a
MTBF of more than three months. The system administrators
of Deimos and TSUBAME2.0 followed a different approach of
repairing faulty network components. While broken NICs (aka.
HCAs in InfiniBand) of Deimos were replaced within 10 min
by spare nodes, repairing links or switches took between 24 h
and 48 h. Faulty components of TSUBAME2.0 were disabled
within minutes, but for a switch port failure only the port and
not the entire switch was disabled. Those disabled parts were
replaced within the range of 5 h to one business day, i.e., up to
72 h time to repair. An exception were links and ports between
root switches. Those were replaced in the next maintenance
period, which was scheduled twice a year.

Table I summarizes failure percentages, MTBF/MTTR,
and annual failure rates of all systems. The failure data of
TSUBAME2.0 indicates an annual failure rate of ≈1% for
InfiniBand links as well as 1% for the used switches. In the
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Fig. 1. Network-related hardware failures

later sections, we will extrapolate the fail-in-place behavior of
the network up to a system’s lifetime of eight years based on
this annual failure rate.

III. BUILDING BLOCKS FOR FAIL-IN-PLACE NETWORKS

Fail-in-place networks are only viable if the number of
critical failures and resulting unavailability of the HPC system
can be minimized. Therefore the following section will identify
the needed hardware/software characteristics for the network.

A. Resilient Topologies

A high path-redundancy in the topology enhances the fail-in-
place characteristic of an interconnection network. Theoretically,
from the topology point of view, failures can be tolerated up
to the point where a set of critical failures disconnects the
network physically. Whether or not non-critical failures can
disconnect the network through incomplete routing and their
influence on the overall network throughput will be subject of
the following sections.

The most commonly used topologies in high performance
computing are torus networks as well as k-ary n-trees. Therefore,
we evaluate the usability of 2D/3D meshes and tori [10], k-ary
n-trees [11], and its more generalized version XGFTs [12],
to build fail-in-place networks. Additionally, the emerging
Dragonfly network topology [13], undirected Kautz graphs [14]
and randomized topologies are investigated. Switches and links
are used to build the base topology and the hosts are equally
distributed over the switches for all investigated topologies but
fat-trees. The hosts in a fat-tree are connected to the lowest
level of the tree. For scalability and variability reasons both
the intra-group network topology and the inter-group network
topology of the Dragonfly topology were not predefined by Kim
et al. [13]. In the following we are using 1D flattened butterfly
topologies for the intra-group and inter-group topology.

1) Connectivity of the topologies: One resilience measure-
ment of topologies is the connectivity of the graph G(V,E)
representing the network I [15]. The connectivity determines
the minimum number of network components that have to
be removed to disconnect the network, i.e., the worst case.
However, neither does this estimate the average case nor
can we derive throughput degradation from it. Let a path
p = (e1, . . . , en) from u to v be a sequence of edges ei ∈ E

TABLE II. VERTEX- AND EDGE-CONNECTIVITY FOR THE
INVESTIGATED NETWORK TOPOLOGIES

Topology Vertex-/Edge-Connectivity Ref.

Mesh(d1, . . . , dn) n [16]
Torus(d1, . . . , dn) 2 · n [12]
k-ary n-tree k [12]
XGFT(h,m1, . . . , ω1, . . .) ω1 [12]
Dragonfly(a, p, h, g)
w/ 1D flattened butterfly a + h− 1 [13]

Kautz(d, k) as undirected graph 2 · d [17]

connecting a sequence of vertices (u, v∗1 , . . . , v
∗
j+n−1, v). The

(u, v)-vertex cut κ(G;u, v) for each pair (u, v) of nodes in
V is equal to the number of internally vertex-disjoint paths
from u to v (for (u, v) 6∈ E). Similarly, the (u, v)-edge cut
λ(G;u, v) is equal to the number of edge-disjoint paths from
u to v. The (vertex-)connectivity κ(G) of a graph G(V,E) is
defined by the smallest number of (u, v)-vertex cuts

κ(G) = min{κ(G;u, v) : ∀u, v ∈ V ∧ (u, v) 6∈ E} (1)

and its edge-connectivity λ(G) is defined by

λ(G) = min{λ(G;u, v) : ∀u, v ∈ V }. (2)

A summary of the vertex-/edge-connectivity for the topolo-
gies listed above is presented in Tab. II. Unless mentioned
otherwise, we consider terminal graphs G(V,E, T ) only, where
V \ T =: W represents the set of switches in I and T
represents the set of terminal nodes (hosts) in I , and perform the
connectivity analyses on the subgraph G(W,E). Without edge-
redundancy in the network the vertex- and edge-connectivity
of I will be equivalent.

2) Redundancy to increase edge-connectivity: For a fair
comparability of the different topologies in the following
sections, we are using redundant links in the network to utilize
all available switch ports. Hence, the topology is represented
by an undirected multigraph. As a result, the number of
hosts, switches and links can be balanced across the different
investigated topologies. The link redundancy r, which increases
the edge-connectivity but not the vertex-connectivity, is defined
as the smallest number of parallel links between two adjacent
switches

r := min |{(u, v) ∈ E : u, v ∈W}|. (3)

To simplify matters, we set r to one while analyzing the
connectivity. For r > 1, the presented edge-connectivity in
Tab. II needs to be multiplied by r.

B. Resilient Routing Algorithms

Two classes of deterministic routing algorithms are suitable
to build fail-in-place interconnects: (1) fault-tolerant topology-
aware routings that are able to compensate for minor faults
within a regular topology and (2) topology-agnostic routing
algorithms.

In terms of resiliency, topology-agnostic algorithms are
superior to topology-aware routing algorithms when the network
suffers from a high percentage of failures, as we will show
in Section V-B. However, techniques to avoid deadlocks in
topology-agnostic algorithms can limit their usage on large
networks, such as the 3D torus(7,7,7) in Section V-C.



The InfiniBand subnet manger, called OpenSM, currently
implements nine deterministic routing algorithms. Five of
them, more precisely DOR routing [16], Up*/Down* and
Down*/Up* routing [18], fat-tree routing [19] and Torus-2QoS
routing [18], are representatives of the topology-aware algo-
rithms. The remainder, namely MinHop [18] routing, DF-/SSSP
routing [20], [21], and LASH routing [22], are topology-
agnostic. While DOR falls into the category of topology-aware
routing algorithms, its implementation in OpenSM can be
considered topology-agnostic but it may not be deadlock-free
for arbitrary topologies [16].

Deadlock-freedom of the routing algorithm is, besides
latency, throughput and fault-tolerance, an essential property
to design fail-in-place networks. Our simulations, described
in Section V, reveal that even simple communication patterns
such as all-to-all can cause deadlocks in the network. Once
a deadlock is triggered the network either stalls globally or
delays the execution if the interconnect possesses mechanisms
for deadlock resolution.

Two other critical aspects of routing algorithms for fail-in-
place networks are the runtime of the routing algorithm after
a failure was discovered and the number of paths temporarily
disconnected until the rerouting completed. Both problems
depend on the routing algorithms and will be investigated
hereafter.

C. Resiliency Metrics

To evaluate a fail-in-place network with its combination
of topology and routing, common metrics such as bisection
bandwidth cannot be applied directly. Important factors are
availability and throughput despite the non-critical failures.

1) Disconnected paths before rerouting: Domke et al. [20]
showed that the runtime of a routing step ranges from 10 ms
for small networks to minutes for larger systems (> 4, 096
HCAs). Until new LFTs are calculated a subset of the network
might be disconnected. We are interested in the number paths
that are disconnected by a link or switch failure.

First, we analyze the problem analytically using the edge-
forwarding indices πe [23] of the links in I , i.e., the number of
routes passing through link e. Lets assume we have a routing
algorithm R : E × T 7→ E for a network I := G(V,E, T ),
which maps the current edge ei of a path towards w ∈ T to
the next edge ei+1 for all switches v ∈ V . Let R be perfectly
balanced, i.e., the edge-forwarding index of I using this routing
is minimal:

π(I) := min
R

π(I,R) = min
R

max
e∈E

π(I,R, e) (4)

see [23], [24] for further reference. Further, let πe be defined
as πe := π(I,R, e) for a fixed but arbitrary network I and
perfectly balanced routing R. Removing an edge ef from I
will disconnect a path p, predetermined by R, iff ef ∈ p. A
disconnected path will not contribute to any edge- or vertex-
forwarding index in I . We calculate the expected number of
disconnected routes E(L) after n link failures, given by the
set L := {ei ∈ E : 1 ≤ i ≤ n ∧ ei 6= ej if i 6= j}, for n = 1
with:

E({e1}) =
1

|E|
·
∑
e∈E

πe (5)
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Unfortunately, for n > 1 we have to calculate E(L) as a
conditional expected value, since some routes through ef might
have already been disconnected by removing another edge.
Hence, E(L) cannot be calculated exactly without knowing the
exact graph, routing algorithm and set L. Thus, we perform
an empirical analysis for a 10-ary 3-tree topology. For each
number of link and switch faults we created 100 topologies with
randomly injected faults (seed ∈ {1, . . . , 100}), and collected
statistics of the number of lost connections. The result, see
Fig. 2, shows that measured extremes depend on the used
routing, but for a small number of faults and in a large network,
the expected number of disconnected routes E(L) for n > 1
can be modeled by

E(L = {e1, . . . , en}) ≈
n

|E|
·
∑
e∈E

πe (6)

Knowing the runtime of the routing algorithm and the estimated
temporary disconnected paths due to a network failure can be
used to optimize the availability prediction of a system.

2) Throughput Degradation Measurement for Reliability
Analysis: Evaluating a network can be accomplished with
multiple techniques and metrics. System designers often use
analytical metrics, such as bisection bandwidth, which is simple
to analyze for some regular topologies, but NP-complete in the
general case, e.g., when failures deform the network. During
system operation, metrics based on actual benchmarks are
accurate in terms of reflection of the real world, but require
exclusive system access to remove the background traffic in
the network. Therefore, a modeling technique is preferred,
because it can be performed during the design phase of an
HPC system and in parallel to the normal operation of the
system, and parameters such as topology, failure, routing and
communication pattern can be exchanged easily.

For the fail-in-place network design we rely on degradation
modeling and the definition of a throughput threshold as a
critical value. Modeling degradation over time in conjunction
with a critical value, which defines the point of an unacceptable
system state, are common in reliability analysis [25]. The
degradation measurement with a simulator will show the
communication throughput in the network during the increase
of failed network components.



IV. SIMULATION FRAMEWORK

A. Toolchain Overview

The first step in our toolchain for network reliability model-
ing is the generation of the network, including network faults,
see Fig. 3. Either a regular topology, cf. Section III-A, is created
or an existing topology file is loaded. The generator injects
non-bisecting network component failures into the topology
(users can also specify a fixed failure pattern reflecting an
actual system state). Besides the actual network, the generator
exports configuration files for the routing algorithms, such as
the list of root switches for Up*/Down* routing.

The InfiniBand network simulator, called ibsim, in conjunc-
tion with OpenSM is used to configure the linear forwarding
tables (LFTs) of all switches with the selected routing algorithm.
In an intermediate step, the LFTs can be replaced to simulate
a routing algorithm not included in OpenSM. The converter
engine transforms the network and routing information into an
OMNeT++ readable format.

A connectivity check is performed based on the LFTs.
Incomplete LFTs are considered a failed routing, even if the
routing within OpenSM did not report any problems while
generating the LFTs. The last step is the network simulation
with OMNeT++ [26] and the InfiniBand model [27].

OMNeT++ is one of the widely used discrete event
simulation environments in the academic field. The InfiniBand
model provides flit-level simulations of high detail and accuracy.
In the following section, we briefly explain the model, and the
extensions we made to the model, which we use to measure
the throughput degradation for fail-in-place networks.

B. InfiniBand Model in OMNeT++

The simulated network itself consists of HCAs and switches
and operates on the physical layer with a 8 bit/10 bit symbol
encoding. The network components are configured for 4X QDR
(32 Gbit/s data transfer rate), while the HCAs are plugged into
8X PCIe 2.0 5 GT/s slots. The PCI bus has a simulated hiccup
every 0.1µs which lasts for 0.01µs to mirror the observed real
world behavior. Our simulation environment further assumes
that all links in the network are 7 m copper cables (longest
passive copper cable for 40 Gbit/s QDR offered by Mellanox)
and therefore produce a propagation delay of 43 ns for each flit,
which is derived from the 6.1 ns/m delay mentioned in [28].
Switches are defined as a group of 36 ports connected via
a crossbar which applies cut-through switching. Each switch
input buffer can hold 128 flits per virtual lane, i.e., a total of
1,024 flits or 65,536 Bytes. Switch output buffers can only store
78 flits. Messages are divided into chunks of message transfer
units – we chose to configure the MTU size to 2,048 byte – and
the local route header (8 byte), base transport header (12 byte)
and in/-variant CRC (4 byte / 2 byte) are added, which adds up
to 2,074 byte for packets. The virtual lane arbitration unit is
configured for fair-share among all virtual lanes. We verified
all parameters with small networks, where we were able to
calculate the expected network throughput and consumption
rate at the sinks. Furthermore, we used a real testbed with 18
HCAs and one switch to benchmark the InfiniBand fabric and
tune the simulation parameters accordingly.

C. Traffic Injection

We use unreliable connection (UC) for the transport
mechanism to allow arbitrary message sizes and to omit the
setup of queue pairs in the simulation. While using UC, the
destination will not send an acknowledge message back to the
source.

1) Uniform random injection: Uniform random injection
should show the maximum throughput of the network which is
measured at the sinks, i.e., we extract the consumption band-
width at each sink after the simulation reached the steady state
or the wall-time limit. A seeded Mersenne twister algorithm
provides the randomness of destinations and repeatability across
similar network simulations where the only difference is the
used routing algorithm. The message size is 1 MTU.

2) Exchange pattern of varying shift distances: An algo-
rithm determines the distances between all HCAs for the
simulated network. Based on this distance matrix each HCA
sends first to the closest neighbors with a shift of s = 1 and
s = −1 and then in-/decrements the shift distance s up to
± |W |2 for the even case. For an odd number of HCAs, each
HCA increments s up to ± |W |−12 and subsequently performs
the last shift of s = |W |+1

2 . This exchange pattern is similar
to the commonly used linear exchange pattern [29], except for
the fact that it tries to optimize the traffic for full-duplex links.
For the smaller simulation with ≈256 HCAs the message size
is set to 10 MTU and for larger networks reduced to 1 MTU.
The network throughput for the exchange pattern is calculated
based on the number of HCAs, message size and runtime:

throughput :=
#HCA× (#HCA− 1)× message size

runtime of exchange pattern
(7)

D. Simulator Improvements

Simulations with the IB model run either for a configured
time or until the user terminates it, even so only flow control
messages are send between ports. Therefore, neither does the
simulator detect the completion of the simulated traffic pattern
nor does it detect deadlocks if the routing algorithm is not able
to create deadlock-free routing tables for the topology.

1) Steady state simulation: Our flit-level simulator detects
the steady state of a simulation via a bandwidth controller
module, which is used for traffic patterns with an infinite
number of flits, such as explained in Section IV-C1. If the
average bandwidth (of all messages up to the “current” point
in time) is within the a 99% confidence interval (CI), then
the sink will send an event to the global bandwidth controller
and report that the attached HCA is in a steady state. The
global controller waits until at least 99% of all HCAs reported
their steady state and then stops the simulation, assuming the
network is in a steady state.

2) Send/receive controller: For simulations with finite traffic,
such as the exchange pattern, the bandwidth controller is
not applicable. Therefore, direct messages between the HCA
generator/sink modules and a global send/receive controller
are used. Each time the HCA creates a new message, it will
determine the destination node, and send an event to the global
controller. Sinks act similar and send an event each time the
last flit of an IB message is received. The generators send a



Topology Generator Routing Engine Converter

Simulator

Generate
regular
topology

Inject faults w/o
destroying
connectivity

Load
existing
topology

Load topology
into IBsim

Run OpenSM to
generate LFTs

Extract network &
routing information

Generate traffic
pattern

Check connectivity
based on LFTs

Replace LFTs with
external routing

Simulate traffic
pattern w/
OMNet++

Convert network/LFTs
into OMNet++ format

Fig. 3. Toolchain to evaluate the network throughput of a fail-in-place network

TABLE III. TOPOLOGY CONFIGURATIONS FOR A BALANCED (AND
UNBALANCED) NUMBER OF HCAS W/ REDUNDANCY r

Topology Switches HCAs Links r

2D mesh(5,5) 25 275 (256) 240 6
3D mesh(3,3,3) 27 270 (256) 216 4
2D torus(5,5) 25 275 (256) 300 6
3D torus(3,3,3) 27 270 (256) 324 4
Kautz(2,4) 24 264 (256) 288 6
16-ary 2-tree 32 256 (270) 256 1
XGFT(1,22,11) 33 264 (256) 242 1
Dragonfly(10,5,5,4) 40 280 (256) 276 1
Random 32 256 (270) 256 1

second type of event when they have created the last message.
The global send/receive controller keeps track of all scheduled
messages and stops the simulation when the last flit of a traffic
pattern arrives at its destination.

3) Deadlock controller: Deadlock detection is a complicated
field and an accurate algorithm would require the tracking of
actual flits and the available buffer spaces. Hence, our simulator
uses a low-overhead distributed deadlock detection which is
similar to the hierarchical deadlock detection protocol proposed
by Ho and Ramamoorthy [30]. A local deadlock controller will
observe the state of each port within a switch and reports
periodically the state to a global deadlock controller. The three
states of the switch are: idle, sending, and blocked (flits are
waiting in the input buffers, but there is no free buffer space
in the designated output port). The global deadlock controller
will stop the simulation if and only if the state for each switch
in the network is either blocked or idle.

V. SIMULATION RESULTS

A. Initial usability study

Not all routing algorithms work for all topologies. In the
first part of our study, we characterize each routing algorithm for
each topology regarding (1) if the algorithm is able to generate
valid routes for the topology and (2) if these routes are deadlock-
free. We list all used topologies (failure-free configuration) in
Tab. III. We first investigate if the routing algorithm creates
a valid set of routes. If it succeeds, then we use OMNeT++
to generate a random uniform injection load and check for
deadlock situations. The result can be seen in Tab. IV. In
the following we will omit all results for Down*/Up* routing
since our tests have not shown any difference in performance
compared to Up*/Down* routing.

As expected, all topology-aware routing algorithms are able
to route their specific topologies. We note that dimension order
routing (DOR) did not produce a deadlock on the 3x3x3 3D

TABLE IV. USABILITY OF TOPOLOGY/ROUTING COMBINATIONS;
O : DEADLOCK-FREE; R : ROUTING FAILED; D : DEADLOCK DETECTED

Fa
t-

tr
ee

U
p*

/D
ow

n*

D
O

R

To
ru

s-
2Q

oS

M
in

H
op

SS
SP

D
FS

SS
P

L
A

SH

artificial topologies
2D mesh r r o o d d o o
3D mesh r r o o d d o o
2D torus r r d o d d o o
3D torus r r o o d d o o

Kautz r r d r d d o o
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real-world HPC systems
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topology-aware topology-agnostic

torus while the 5x5 2D torus configuration deadlocked. This is
due to the one-hop paths on the 3x3x3 torus and we expect
that larger configurations would produce deadlocks because
DOR is only deadlock-free on meshes.

All topology-agnostic algorithms were able to route all
topologies. However, MinHop and SSSP do not prevent dead-
locks and thus create deadlocking routes in some configurations.
We will proceed with the topology/routing pairs which are
marked deadlock-free in Tab. IV in the following sections.

B. Influence of link faults on small topologies

We simulate uniform random injection and exchange
communication patterns for all correct and deadlock-free routing
algorithms. In the simulations, we determine the consumption
bandwidth at the HCAs for the random uniform injection. The
maximum injection and consumption bandwidth is 4 GByte/s,
because 4X QDR is simulated. For the exchange pattern, we
determine the time to complete the full communication by
measuring the elapsed time until the last flit arrives at its
destination, and we calculate the overall network throughput
for this pattern according to Eq. 7.

To simulate failure scenarios, we inject 1%, 3% and 5%
random link failures (with three different seeds for uniform
random injection and ten seeds for the exchange pattern; similar
to the study conducted by Flich et al. [31]). In addition, we
simulate more severe failure scenarios with 10%, 20% and
40% random link failures.

Two configurations, a balanced and an unbalanced, in terms
of the number of HCAs per switch are simulated to see whether
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(a) Balanced 16-ary 2-tree with 256 HCAs
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(b) Unbalanced 16-ary 2-tree with 270 HCAs
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Fig. 4. Whisker plots of consumption bandwidth for uniform random injection (box represents the three quartiles of the data, end of the whisker shows the
minimum and maximum of the data; x-axis is not equidistant); Shown are the avg. values for three seeds (seed=1|2|3); Discussion in Section V-B
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(a) Bal. 3D mesh(3, 3, 3) with 270 HCAs, r = 4
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(b) Bal. Dragonfly(10, 5, 5, 4) with 280 HCAs
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Fig. 5. Histograms for exchange patterns with error bars (showing mean value and the 95% CI for all ten seeds (seed=1, . . . , 10)); Missing bars: Deadlocks
observed using DOR routing for at least one out of ten seeds, Torus-2QoS routing failed (multiple link failure in one 1D ring); Discussion in Section V-B

this has an influence on the maximal network throughput
and resiliency or not, see Tab. III. The number of HCAs for
the unbalanced configuration is listed in brackets in the third
column of Tab. III. The balanced vs. unbalanced comparison
is shown in Fig. 4a and Fig. 4b where we omit the plot of
DOR and LASH routing because the resulting consumption
bandwidth is less than 10% of DFSSSP’s.

We analyzed the edge forwarding index for each simulation
and we saw that LASH heavily oversubscribed certain links in
the network while others are not used at all. Therefore, heavy
congestion leads to the aforementioned consumption bandwidth
decrease regardless of the link failure rate. To the best of our
knowledge, the implementation of LASH in OpenSM optimizes
for switch-to-switch traffic rather than terminal-to-terminal
traffic which leads to poor load balancing on many of the
investigated topologies.

We observe three general trends while comparing Fig. 4a
and Fig. 4b: First, only 1% link failures—two faulty links
for the 16-ary 2-tree topology—may result in a throughput
degradation of 30% for uniform random injection on a fat-
tree with full bisection bandwidth if the specialized fat-tree
routing is used. With DFSSSP, for example, the degradation is
only 8% for the median. Thus, we conclude that the choice of
the routing method is important to maintain high bandwidths
in the presence of network failures. Second, an imbalance in
the number of HCAs per switch can have a similar influence
on the throughput, even without faults in the network (≈40%
degradation compared to the balanced fault-free case). While
the resiliency of all routing algorithms is not affected by an
unequal number of HCAs, which can be caused by compute
node failures or caused by initial network design decisions, the

network throughput will be affected. Third, we observe curious
cases where the bandwidth increases with link failures. This
indicates a suboptimal routing algorithm and we will explain
this effect later.

Fig. 4c and Fig. 5c show the two communication patterns
uniform random injection (Fig. 4c) and exchange (Fig. 5c) for
the same random topology. We observe that random topologies
are barely affected by link failures of less than 10%. We omit
the results for the uniform random injection in the following
analyses because low consumption bandwidth at the sinks
perfectly correlates with a runtime increase of the exchange
pattern, and therefore decrease in overall network throughput.

Torus performance is shown in Fig. 5a. The exchange pattern
finishes 29% faster, i.e., 29% higher throughput, for Torus-2QoS
compared to DFSSSP, but DFSSSP is more resilient, because
Torus-2QoS was unable to create LFTs for some of the ten
cases of 20% and 40% link failures, and the traffic pattern
caused a deadlock using DOR routing for the mesh with 20%
and 40% link failures.

Dragonfly topologies are usually routed with the Universal
Globally-Adaptive Load-balanced routing schemes [13], which
chooses between minimal path routing and Valiant’s randomized
non-minimal routing depending on the network load. The cur-
rent architecture specification of InfiniBand uses deterministic
routing, but for completeness we include simulations for the
emerging Dragonfly topology in our study as well. Fig. 5b
shows that both DFSSSP and LASH only degrade slowly with
random network failures.

Statistical analysis of the data points for the exchange
pattern for all investigated topologies shows a high correlation



TABLE V. INTERCEPT [IN GBYTE/S], SLOPE, AND R2 FOR BALANCED
TOPOLOGIES OF TAB. III FOR BEST PERFORMING ROUTING ALGORITHM

Topology Routing Intercept Slope R2

2D mesh Torus-2QoS 263.63 -1.83 0.94
3D mesh Torus-2QoS 276.18 -2.37 0.87
2D torus Torus-2QoS 341.11 -1.68 0.95
3D torus DFSSSP 508.97 -2.12 0.90
Kautz DFSSSP 299.48 -1.45 0.88
16-ary 2-tree DFSSSP 629.76 -3.59 0.69
XGFT DFSSSP 527.31 -3.03 0.88
Dragonfly DFSSSP 479.03 -2.39 0.94
Random DFSSSP 417.53 -2.17 0.76

between the number of failed links in the topology and the
network throughput of the exchange pattern. We analyze the
coefficient of determination (R2), assuming a linear model, for
every combination of topology and routing algorithm.

We propose the following method as part of the design
process for a new fail-in-place network: The best routing
algorithm, among the investigated algorithms, for a fail-in-
place network will be chosen based on the intercept and slope
of the linear regression. The intercept approximates the overall
network throughput of the exchange pattern for the fault-free
network configuration whereas the slope predicts the throughput
decrease (in Gbyte/s) for each non-critical hardware failure
which is kept in-place. Therefore, even hybrid approaches
are possible where the system administrator switches between
routing algorithms after a certain number of failures is reached,
if the regression line of the routing algorithms intercept at this
point.

Intercept and slope are the main indicators for the quality
of the routing whereas the coefficient of determination is an
important metric how well the throughput can be explained
by the number of failures. The results for the coefficient of
determination calculation for our investigated topology/routing
combinations are summarized in Tab. V. This shows that the
performance of the exchange pattern on small topologies can be
explained almost entirely by one variable, namely link failures.
We list the best performing routing algorithm based on intercept
and slope for each topology in Tab. V.

C. Influence of link faults on large topologies

For the larger network sizes we reduce the percentage of
link failures. Assuming a constant annual failure rate of 1%,
derived from the analyzed failure rates of TSUBAME2.0 in
Section II, we simulate 1%, . . . , 8% links failures which will
give an estimate of the performance degradation of the network
for the system’s lifetime.

We identified three key points while investigating the
larger topologies: First, the investigated fault-tolerant topology-
aware routing algorithms are resilient for realistic link failure
percentages, but their fail-in-place characteristic in terms of
network throughput is worse than topology-agnostic algorithms.
The comparison of DFSSSP routing and fat-tree routing in
Fig. 6b illustrates the issue.

The second fact is that not all topology-agnostic routing
algorithms are applicable to every topology above a certain
size. Fig. 6c shows the comparison of throughput degradation
between four balanced large-scale topologies with ≈2,200

TABLE VI. INTERCEPT [IN GBYTE/S], SLOPE, AND R2 FOR THE LARGE
TOPOLOGY/ROUTING COMBINATION SHOWN IN FIG. 6C

Topology #HCAs Routing Intercept Slope R2

3D torus(7,7,7) 2,058 Torus-2QoS 2,794.89 -2.06 0.66
Dragonfly(14,7,7,23) 2,254 DFSSSP 2,166.54 -1.50 0.34
Kautz(7,3) 2,352 LASH 1,541.58 0.09 0.02
14-ary 3-tree 2,156 DFSSSP 5,015.53 -1.85 0.76

HCAs. DFSSSP routing is the best performing algorithm for the
Dragonfly topology and the 14-ary 3-tree, but failed to create
LFTs for the torus and the Kautz graph due to limitations of
available virtual lanes. The same issue causes LASH routing
to be unusable on the 7x7x7 torus.

And third, the low coefficient of determination R2, see
Tab. VI, indicates that the number of link failures is not the
dominating influence on the runtime of the exchange pattern
on larger topologies. Hence, a low R2 for the best of the
investigated routing algorithms means that the throughput does
not decline heavily during the system’s lifetime which is a
desired characteristic for a fail-in-place network. We presume
the match or mismatch between the configured routes and the
communication pattern to be a second explanatory variable,
which will be explained further based on Fig. 6a.

In Fig. 6a, we also identified an anomaly: A major increase
in network throughput using Up*/Down* routing is possible
while the number of failed links in the network increases. This
effect has two reasons, first: A comparison with DFSSSP and
fat-tree routing, which enable higher throughput, indicates a
serious mismatch between communication pattern and static
routing algorithm in the fault-free case, which has been
shown by Hoefler et al. [32]. The second reason is that each
failure in the fabric will change the deterministic routing,
which can lead to an improvement in runtime for the same
communication pattern. This change in the routing can remove
congestion, because simultaneously executed point-to-point
communications share less links/switches in the fabric.

D. Case studies of TSUBAME2.0 and Deimos

For these case studies we will combine randomized link
failures with switch failures, i.e., a form of localized simul-
taneous failures of many links, to mirror the behavior of a
real-world HPC system.

1) Tsubame2.0: Based on the fault data presented in
Section II, we calculated an annual link failure rate of 0.9%
and an annual switch failure rate of 1% for TSUBAME2.0. The
same data indicates a failure ratio of 1 : 13, i.e., thirteen switch-
to-switch links will fail for each failing switch. In the following,
we assume a constant annual failure rate of 1% for the links
and switches and we analyze the performance degradation if
only links will fail, see Fig. 7a, and if only switches will
fail, shown in Fig. 7b. This results in the simulation of eight
years of TSUBAME2.0’s lifetime (the anticipated lifetime of
the network used in TSUBAME2.0 and TSUBAME2.5 is six
years). In addition, we use the failure ratio of 1 : 13, to mirror
the real-world behavior, to investigate the network performance
and resiliency of the routing algorithms for TSUBAME2.0,
as shown in Fig. 7c. In all figures we omit the results for
Down*/Up*, since they are equal to Up*/Down* routing, and
we omit the results for LASH, because of a two orders of
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(a) 10-ary 3-tree with 1,100 HCAs
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(b) 14-ary 3-tree with 2,156 HCAs
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TABLE VII. INTERCEPT, SLOPE, AND R2 FOR TSUBAME2.0 AND
DEIMOS SHOWN IN FIG. 7C AND FIG. 8C (DEFAULT: ITALIC; BEST: BOLD)

HPC system Routing Intercept [in Gbyte/s] Slope R2

TSUBAME2.0 DFSSSP 1,393.40 -1.33 0.62
Fat-Tree 1,187.19 -1.48 0.66
Up*/Down* 717.76 -0.08 0.01

Deimos MinHop 29.94 - -
DFSSSP 93.40 -0.15 0.09
Up*/Down* 30.10 0.06 0.11

magnitude lower throughput, see Tab VII. The default routing
algorithm on TSUBAME2.0 is Up*/Down*, but fat-tree routing
performs better for this exchange pattern, as we see in Fig. 7a.
DFSSSP routing outperforms both.

Statistical analysis of the data presented in Fig. 7c shows
that the intercept for fat-tree routing is 15% lower compared
to DFSSSP routing while the slope of the linear regression
line is 10% steeper compared to DFSSSP, see Tab VII. In
conclusion, the change of the routing algorithm to DFSSSP on
TSUBAME2.0 would not only lead to a higher performance of
the exchange pattern on the fault-free network, but also will
increase the fail-in-place characteristic of the network.

2) Deimos: The annual failure rate is 0.2% for links and
1.5% for switches, as listed in Tab. I. The switch-to-link fault
ratio can be approximated with 1 : 2. We performed the case
study of Deimos similarly to the study of TSUBAME2.0. For
each number of link and/or switch failures, we simulated
ten different faulty network configuration, while injecting
randomized failures with seeds ∈ {1, . . . , 10}.

The conclusion derived from the results shown in Fig. 8
and Tab. VII is that a change from the default routing
algorithm (MinHop) to DFSSSP routing would have increased
the throughput for exchange patterns by a factor of three.
Remarkable is the fact that a fail-in-place approach for Deimos
would have had almost no effect on the performance of the
communication layer, meaning that maintenance costs for the
network—except for critical failures—could have been saved
completely.

VI. RELATED WORK

Resiliency of network topologies has been studied ex-
tensively in the past. Xu et al. [15] analyzed numerous
interconnection topologies, such as De Bruijn and Kautz graphs,

and mesh and butterfly networks. However, an analysis of
routing algorithms has been done based on edge forwarding
index, but not based on actual performance delivered for
a traffic pattern. Another comprehensive survey of network
fault tolerance was performed by Adams et al. [33]. The
authors describe methods to increase fault tolerance through
hardware modification of existing topologies, such as adding
additional links, ports or switches. Other attempts to enhance the
fault tolerance properties of the network have been performed
analytically. One example is the multi-switch fault-tolerant
modified four tree network which aims to improve the single-
switch fault-tolerant four tree network [34]. Another example
is the attempt to solve the problem heuristically with genetic
algorithms [35].

Co-design strategies have been proposed, such as the F10
network [36], where the interconnection topology is optimized
for the routing algorithm and vice versa. This includes an
increase in alternative paths using an AB Fat-Tree instead
of a ordinary fat-tree and includes enhanced fault recovery
properties through local rerouting. The routing algorithm for
F10, besides optimizing for global load balancing, manages the
failure detection and propagates this information to a subset of
the nearest neighbors of the failure. This subset is smaller for
F10 than in a fat-tree allowing for fast recovery and therefore
decreases the packet loss.

Okorafor et al. [37] proposed an fault-tolerant routing
algorithm for an optical interconnect, which assumes a fail-
in-place 3D mesh topology and enhances the throughput. The
IBM Intelligent Bricks project [38] investigates the feasibility
of building fail-in-place storage systems and includes consider-
ations about the performance loss in the network due to failed
bricks. The bandwidth degradation in the 6x6x6 3D torus is
simulated up to 60% failed bricks. However, no other routing
algorithm besides the IceCube mesh routing has been tested.

Fault-tolerant topology-aware routing algorithms have been
developed and studied in the past, especially for meshes and tori
topologies and in the field of Network-on-Chip, e.g., [39]–[43],
but their usability for other topologies has not been tested. Flich
et al. [31] performed a survey of topology-agnostic routing
algorithms and compared them not only analytically, but also
evaluated their performance with a flit-level simulator. The
simulation has been conducted on small 2D mesh and tori
networks, up to a size of 16x8. Additionally to these regular
topologies, faulty meshes and tori with an injected number of
link failures of 1%, 3%, and 5% were investigated.
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(a) Link failures only (1% annual failure rate)
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(b) Switch failures only (1% annual failure rate)
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(c) Switch and link failures (1 : 13 ratio)

Fig. 7. Histograms for exchange patterns for different failure types using DFSSSP, fat-tree and Up*/Down* routing on TSUBAME2.0 (LASH excluded because
throughput is only 2% of DFSSSP’s); Shown: mean value and 95% CI for ten runs per failure percentage (seeds ∈ {1, . . . , 10}); Discussion in Section V-D1
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(a) Link failures only (0.2% annual failure rate)
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(b) Switch failures only (1.5% annual failure rate)
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(c) Switch and link failures (1 : 2 ratio)

Fig. 8. Histograms for exchange patterns for different failure types using MinHop, DFSSSP and Up*/Down* routing on Deimos (LASH excluded because
throughput is only 9% of DFSSSP’s); Shown: mean value and 95% CI for ten runs per failure percentage (seeds ∈ {1, . . . , 10}); Deadlocks observed using
MinHop routing for at least one out of ten seeds; Discussion in Section V-D2

VII. IMPLICATIONS FOR HPC SYSTEM DESIGN AND
OPERATION POLICIES

We have shown that HPC networks, and not only hard drives,
can be operated in fail-in-place mode to reduce maintenance
costs and to utilize the remaining resources. Even so the
resulting irregular topologies pose a challenge to the used
routing algorithms, a low failure rate of the network components
supports a fail-in-place network design strategy, which bypasses
non-critical failures during the system’s lifetime.

System designer can readily use our toolchain to make
decisions about the correct combination of topology and
available routing algorithm. Estimated failure rates will help
to extrapolate the performance degradation of the fail-in-
place network and will help to derive operation policies
from those results. During operation, our toolchain allows
system administrators to quantify the “current” state (degra-
dation) of the system due to failures. Depending on the
predefined degradation threshold the administrator then can
decide whether or not a maintenance has to be scheduled.
The complete toolchain can be downloaded from our webpage
http://spcl.inf.ethz.ch/Research/Scalable Networking/FIP and
allows researchers, system designer, and administrators to
reproduce our work and conduct studies with other systems.

VIII. CONCLUSION

As we have seen in Section V, to guarantee high overall
network throughput over the system’s lifetime the resilient topol-
ogy has to be combined with an appropriate fault-tolerant or
topology-agnostic routing algorithm. Both types of deterministic
routing algorithms, fault-tolerant topology-aware and topology-
agnostic, show limitations. The performance degradation using
a topology-aware routing algorithm increases more with an

increase of failures compared to topology-agnostic routings,
and a large number of switch and link failures can deform
a regular topology to a state which cannot be compensated
by the topology-aware routing, because it cannot recognize
the underlying topology. Even so topology-agnostic routing
algorithms are supposed to be ideal for fail-in-place networks,
the investigated algorithms either show weaknesses in terms of
deadlocks, such as MinHop, or cannot be used beyond a certain
network size, because the deadlock-avoidance via virtual lanes
would require more than the available number of virtual lanes,
e.g., in the case of LASH and DFSSSP for the 3D torus(7,7,7)
with > 2, 000 HCAs.

Our analysis of lost connections after a failure, and time
before a rerouting step is finished, is valuable for other fault
tolerance areas as well. E.g., the knowledge about the runtime
of a rerouting step can be used to calculate appropriate retry
counters and timeout values in the communication layer. The
information about routing paths, the average network failure rate
and resulting path disconnects can improve existing scheduling
strategies to reduce the number of applications which share the
same link/switch. Hence, the number of potential application
crashes caused by a single fault will be reduced.

This paper provides a comprehensive empirical study of
combinations of topologies, routing algorithms and network
failures. Besides the usage for fail-in-place network design,
our developed simulation environment can be used in multiple
fields of research and development of new networks and routing
algorithms. Not only can we derive from that the resilience
of the topologies or the resilience of the routing, but we also
can make recommendation about the hardware and software
configuration of existing InfiniBand networks, such as the
suggested change of the routing algorithm for TSUBAME2.0
(and the already decommissioned Deimos).

http://spcl.inf.ethz.ch/Research/Scalable_Networking/FIP
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