EHzürich

T. HOEFLER

Extreme-Scale Graphs

Invited talk at Supercomputing Frontiers and Innovation 2019, Warsaw, Poland

Special thanks to my student Maciej Besta

With contributions from Heng Lin, Xiaowei Zhu, Bowen Yu, Xiongchao Tang, Wei Xue, Wenguang Chen, Lufei Zhang, Xiaosong Ma, Xin Liu, Weimin Zheng, and Jingfang Xu and others at SPCL and Tsinghua University

A DALLO LANDER THE

Extreme-Scale Graphs

Why do we care?

ETHzürich

Extreme-Scale Graphs Useful model

Why do we care?

Networking

Engineering networks

Physics, chemistry

Carbohydrates and Organic Acids

spcl.inf.ethz.ch

🍯 @spcl_eth

2

ETH zürich

spcl.inf.ethz.ch

Heng Lin et al.: ShenTu: Processing Multi-Trillion Edge Graphs on Millions of Cores in Seconds, SC18, Gordon Bell Finalist

Heng Lin et al.: ShenTu: Processing Multi-Trillion Edge Graphs on Millions of Cores in Seconds, SC18, Gordon Bell Finalist

Heng Lin et al.: ShenTu: Processing Multi-Trillion Edge Graphs on Millions of Cores in Seconds, SC18, Gordon Bell Finalist

 $1 = 10^{\circ}$

How large are extreme-scale graphs today? $1 = 10^{\circ}$ $10 = 10^{1}$

 $1 = 10^{\circ}$ $10 = 10^{1}$ $100 = 10^{2}$

 $1 = 10^{\circ}$ $10 = 10^{1}$ $100 = 10^{2}$ $1000 = 10^{3}$

 $1 = 10^{\circ}$ $10 = 10^{1}$ $100 = 10^{2}$ $1\ 000 = 10^{3}$ $10\ 000 = 10^{4}$

4

and the second second second

Sunway TaihuLight

Sunway TaihuLight

TaihuLight Top500 ranking: #3 (2018 Nov), #1 (2016, 2017)

64 cores

Sunway TaihuLight

- 1/8 EFLOPS peak performance
- 1.3 PB main memory, with 5,591 TB/s bandwidth
- 70 TB/s network bisection bandwidth
- Reliable external data access, 288 GB/s IO bandwidth

TaihuLight Top500 ranking: #3 (2018 Nov), #1 (2016, 2017)

64 cores

Sunway TaihuLight

- 1/8 EFLOPS peak performance
- 1.3 PB main memory, with 5,591 TB/s bandwidth
- 70 TB/s network bisection bandwidth
- Reliable external data access, 288 GB/s IO bandwidth

TaihuLight Top500 ranking: #3 (2018 Nov), #1 (2016, 2017)

- Handling of huge number of messages among 40,960 nodes
- Complex workload to map to its heterogeneous processing units
- Irregular data flow to be scheduled in regular accelerator cores

64 cores

Sunway TaihuLight

- 1/8 EFLOPS peak performance
- 1.3 PB main memory, with 5,591 TB/s bandwidth
- 70 TB/s network bisection bandwidth
- Reliable external data access, 288 GB/s IO bandwidth

TaihuLight Top500 ranking: #3 (2018 Nov), #1 (2016, 2017)

- Handling of huge number of messages among 40,960 nodes
- Complex workload to map to its heterogeneous processing units
- Irregular data flow to be scheduled in regular accelerator cores

Problems!

ALC: NOT THE

States and States States

the start of the start

and the second

A STREET

A CONTRACTOR OF A CONTRACTOR

The second second second

Problems!

THE PARTY

Log(Graph): A Near-Optimal High-Performance Graph Representation

Maciej Besta[†], Dimitri Stanojevic, Tijana Zivic, Jagpreet Singh, Maurice Hoerold, Torsten Hoefler[†] Department of Computer Science, ETH Zurich [†]Corresponding authors (maciej.besta@inf.ethz.ch, htor@inf.ethz.ch)

ABSTRACT

Today's graphs used in domains such as machine learning or social network analysis may contain hundreds of billions of edges. Yet, they are not necessarily stored efficiently, and standard graph representations such as adjacency lists waste a significant number of bits while graph compression schemes discovering relationships in graph data. The sheer size of such graphs, up to hundreds of billions of edges, exacerbates the number of needed memory banks, increases the amount of data transferred between CPUs and memory, and may lead to I/O accesses while processing graphs. Thus, reducing the size of such graphs is becoming increasingly important.

CONTRACTOR OF THE OWNER OF THE OWNER

and and and

What is **the lowest storage** we can (hope to) use to store a graph?

The second second

What is **the lowest storage** we can (hope to) use to store a graph?

The second second se

What is **the lowest storage** we can (hope to) use to store a graph?

What is **the lowest storage** we can (hope to) use to store a graph?

Shannon's approach **logarithmic** (one needs at least log|S| bits to store an object from an arbitrary set S)

What is **the lowest storage** we can (hope to) use to store a graph?

 $S = \{x_1, x_2, x_3, \dots\} \begin{array}{c} x_1 \to 0 \dots 01 \\ x_2 \to 0 \dots 10 \\ x_3 \to 0 \dots 11 \end{array}$

The storage **lower bound**

Which one? 🙂

Shannon's approach **logarithmic** (one needs at least log | S | bits to store an object from an arbitrary set S)

 $x_1 \rightarrow 0 \dots 01$ What is **the lowest storage** we can $S = \{x_1, x_2, x_3, \dots\}$ $x_2 \to 0 \dots 10$ (hope to) use to store a graph? $x_3 \rightarrow 0 \dots 11$ Key idea The storage lower bound **J**Z Which one? 🙂 Shannon's approach logarithmic (one needs at least log|S| bits to store an object from an arbitrary set S)

 $x_1 \rightarrow 0 \dots 01$ What is **the lowest storage** we can $S = \{x_1, x_2, x_3, \dots\}$ $x_2 \to 0 \dots 10$ (hope to) use to store a graph? $x_3 \rightarrow 0 \dots 11$ Key idea The storage Encode different parts of a graph lower bound **JZ** representation using (logarithmic) storage lower bounds Which one? 🙂 Shannon's approach logarithmic (one needs at least log|S| bits to store an object from an arbitrary set S)

spcl.inf.ethz.ch

The second second second

ADJACENCY ARRAY GRAPH REPRESENTATION

Contraction and

ADJACENCY ARRAY GRAPH REPRESENTATION

Representation

All the second second

ADJACENCY ARRAY GRAPH REPRESENTATION

Representation 0 1 2 3 4

5

Providence in the second

ADJACENCY ARRAY GRAPH REPRESENTATION

The second

ADJACENCY ARRAY GRAPH REPRESENTATION

ADJACENCY ARRAY GRAPH REPRESENTATION

Physical realization

The sectors

ys_

ADJACENCY ARRAY GRAPH REPRESENTATION

CTA STATISTICS

ADJACENCY ARRAY GRAPH REPRESENTATION

The section

Phase and and a

A REAL PROPERTY AND A REAL

M. Besta et al.: "Log(Graph): A Near-Optimal High-Performance Graph Representation", PACT'18

11

AND PARTY AND AND AND AND

n : #vertices,

to the second second

- *m* : #edges,
- d_v : degree of vertex v ,
- N_v : neighbors (adj. array) of vertex v,
- $\widehat{N_{v}}$: maximum among N_{v}

Lower bounds (global)

Symbols

n : #vertices,

MA LAND THE PART

- *m* : #edges,
- d_v : degree of vertex v ,
- N_v : neighbors (adj. array) of vertex v,
- $\widehat{N_{v}}$: maximum among N_{v}

Lower bounds (global)

Symbols

n : #vertices,

- m : #edges,
- d_v : degree of vertex v ,
- N_v : neighbors (adj. array) of vertex v,
- $\widehat{N_{v}}$: maximum among N_{v}

n : #vertices,

- *m* : #edges,
- d_{v} : degree of vertex v ,
- N_v : neighbors (adj. array) of vertex v,
- $\widehat{N_{v}}$: maximum among N_{v}

Lower bounds (local)

Symbols

n : #vertices,

- m : #edges,
- d_{v} : degree of vertex v ,
- N_v : neighbors (adj. array) of vertex v,
- $\widehat{N_{v}}$: maximum among N_{v}

Lower bounds (local)

Assume:

spcl.inf.ethz.ch

Symbols

n : #vertices,

- m : #edges,
- d_{v} : degree of vertex v ,
- N_v : neighbors (adj. array) of vertex v,
- $\widehat{N_{v}}$: maximum among N_{v}

spcl.inf.ethz.ch

Symbols

n : #vertices,

MA CONTRACTOR PORT

- m : #edges,
- d_{v} : degree of vertex v ,
- N_v : neighbors (adj. array) of vertex v,
- $\widehat{N_{v}}$: maximum among N_{v}

Lower bounds (local)

Assume:

- a graph, e.g.,
$$V = \{1, ..., 2^{22}\}$$

spcl.inf.ethz.ch

Symbols

n : #vertices,

12 And and a first

- m : #edges,
- d_{v} : degree of vertex v ,
- N_v : neighbors (adj. array) of vertex v,
- $\widehat{N_{v}}$: maximum among N_{v}

Lower bounds (local)

Assume:

- a graph, e.g.,
$$V = \{1, ..., 2^{22}\}$$

- A vertex v with few neighbors: $d_v \ll n$

***SPEL

spcl.inf.ethz.ch

Symbols

n : #vertices,

- m : #edges,
- d_{v} : degree of vertex v ,
- N_v : neighbors (adj. array) of vertex v,
- $\widehat{N_{v}}$: maximum among N_{v}

Lower bounds (local)

Assume:

- a graph, e.g., $V = \{1, ..., 2^{22}\}$
- A vertex v with few neighbors: $d_v \ll n$
- ...all these neighbors have small labels: $\widehat{N_{
 u}} \ll n$

spcl.inf.ethz.ch

Symbols

n : #vertices,

12 200 201

- m : #edges,
- d_{v} : degree of vertex v ,
- N_v : neighbors (adj. array) of vertex v,
- $\widehat{N_{v}}$: maximum among N_{v}

Lower bounds (local)

Assume:

- a graph, e.g., $V = \{1, ..., 2^{22}\}$
- A vertex v with few neighbors: $d_v \ll n$
- ...all these neighbors have small labels: $\widehat{N_{
 u}} \ll n$

v → 2 3 4 5

spcl.inf.ethz.ch

Symbols

n : #vertices,

The second second

- m : #edges,
- d_{v} : degree of vertex v ,
- N_v : neighbors (adj. array) of vertex v,

 $[\log 2^{22}] = 22$

 $\widehat{N_{v}}$: maximum among N_{v}

Lower bounds (local)

Assume:

- a graph, e.g., $V = \{1, ..., 2^{22}\}$
- A vertex v with few neighbors: $d_v \ll n$
- ...all these neighbors have small labels: $\widehat{N_{
 u}} \ll n$

v → 2 3 4 5

spcl.inf.ethz.ch

Symbols

n : #vertices,

P. Land and A. P. M.

- m : #edges,
- d_{v} : degree of vertex v ,
- N_v : neighbors (adj. array) of vertex v,
- $\widehat{N_{v}}$: maximum among N_{v}

Lower bounds (local)

Assume:

- a graph, e.g.,
$$V = \{1, ..., 2^{22}\}$$

- A vertex v with few neighbors: $d_v \ll n$

- ...all these neighbors have small labels: $\widehat{N_{v}} \ll n$

$$\log 2^{22}$$
] = 22

spcl.inf.ethz.ch

Symbols

n : #vertices,

The second second

- m : #edges,
- d_v : degree of vertex v ,
- N_v : neighbors (adj. array) of vertex v,
- $\widehat{N_{v}}$: maximum among N_{v}

Lower bounds (local)

Assume:

- a graph, e.g., $V = \{1, ..., 2^{22}\}$
- A vertex v with few neighbors: $d_{v} \ll n$
- ...all these neighbors have small labels: $\widehat{N_{
 u}} \ll n$

$$[\log 2^{22}] = 22$$

spcl.inf.ethz.ch EHzürich 🅤 @spcl_eth

Symbols

n: #vertices,

2 Carlor Carlos Carlos

- m : #edges,
- d_v : degree of vertex v ,
- N_{η_2} : neighbors (adj. array) of vertex v,
- $\widehat{N_{v}}$: maximum among N_{v}

Lower bounds (local)

Assume:

- a graph, e.g., $V = \{1, ..., 2^{22}\}$

- A vertex v with few neighbors: $d_v \ll n$
- ...all these neighbors have small labels: $\widehat{N_n} \ll n$

$$[\log 2^{22}] = 22$$

$$V \longrightarrow 0...10 \quad 0...11$$

$$0...100 \quad 0...101$$

$$19 \text{ zeros!}$$
Thus, use the local bound $\log \widehat{N_n}$

- n : #vertices,
- m : #edges,
- d_{v} : degree of vertex v ,
- N_v : neighbors (adj. array) of vertex v,
- $\widehat{N_{v}}$: maximum among N_{v}

Lower bounds (local): problem

- a graph, e.g., $V = \{1, ..., 2^{22}\}$
- A vertex v with few neighbors: $d_v \ll n$
- ...all these neighbors have small labels: $\widehat{N_{
 u}} \ll n$

Not really ©

- n : #vertices,
- m : #edges,
- d_{v} : degree of vertex v ,
- N_v : neighbors (adj. array) of vertex v,
- $\widehat{N_{v}}$: maximum among N_{v}

Lower bounds (local): problem

What if:

- a graph, e.g., $V = \{1, ..., 2^{22}\}$
- A vertex v with few neighbors: $d_v \ll n$
- ...all these neighbors have small labels: $\widehat{N_{
 u}} \ll n$

This is it?

Not really ©

- n : #vertices,
- m : #edges,
- d_{v} : degree of vertex v ,
- N_v : neighbors (adj. array) of vertex v,
- $\widehat{N_{v}}$: maximum among N_{v}

Lower bounds (local): problem

What if:

- a graph, e.g., $V = \{1, ..., 2^{22}\}$
- A vertex v with few neighbors: $d_v \ll n$
- ...all these neighbors have small labels: $\widehat{N_{
 u}} \ll n$

This is it?

Not really ©

spcl.inf.ethz.ch

Symbols

- n : #vertices,
- m : #edges,
- d_{v} : degree of vertex v ,
- N_v : neighbors (adj. array) of vertex v,
- $\widehat{N_{v}}$: maximum among N_{v}

Lower bounds (local): problem

What if:

- a graph, e.g., $V = \{1, ..., 2^{22}\}$
- A vertex v with few neighbors: $d_v \ll n$
- ...all these neighbors have small labels: $\widehat{N_{
 u}} \ll n$

Not really ©

spcl.inf.ethz.ch

Symbols

n : #vertices,

The second

- m : #edges,
- d_v : degree of vertex v ,
- N_v : neighbors (adj. array) of vertex v,
- $\widehat{N_{v}}$: maximum among N_{v}

Lower bounds (local): problem

What if:

- a graph, e.g., $V = \{1, ..., 2^{22}\}$
- A vertex v with few neighbors: $d_v \ll n$
- ...all these neighbors have small labels: $\widehat{N_{
 u}} \ll n$

Not really ©

$$[\log 2^{20}] = 20$$

spcl.inf.ethz.ch

n : #vertices,

The second second

- m : #edges,
- d_{v} : degree of vertex v ,
- N_v : neighbors (adj. array) of vertex v,
- $\widehat{N_{v}}$: maximum among N_{v}

Lower bounds (local): problem

What if:

- a graph, e.g., $V = \{1, ..., 2^{22}\}$
- A vertex v with few neighbors: $d_{v} \ll n$
- ...all these neighbors have small labels: $\widehat{N_{
 u}} \ll n$

This is it?

Not really ©

$$[\log 2^{20}] = 20$$

Den Martin Contractor

2 Log (Offset structure)

A The sea of the Page 100

2 Log (Offset structure)

Use a **bit vector** instead of an array of offsets...

The second state

Use a **bit vector** instead of an array of offsets...

The second of the

Bit vectors instead of offset arrays

Use a **bit vector** instead of an array of offsets...

A THE REAL PROPERTY OF

Bit vectors instead of offset arrays

120303124354 0 2 4 6 9 11

Use a **bit vector** instead of an array of offsets...

A REAL PROPERTY AND A REAL

Bit vectors instead of offset arrays

120303124354 6 9

Use a **bit vector** instead of an array of offsets...

All the second second second

Bit vectors instead of offset arrays

120303124354 101010100101

Use a **bit vector** instead of an array of offsets...

Bit vectors instead of offset arrays

2 Log (Offset structure) Use a **bit vector** instead of an array of offsets... Bit vectors instead of offset arrays 1 2 0 3 0 3 1 2 4 3 5 4 How many 1s are set before a given i-th bit? 101010100101 *i*-th set bit has a position $x \rightarrow$ the adjacency array of a vertex *i* starts at a word x

State State

The sector of the

Succinct bit vectors

Succinct bit vectors

They use **[Q]** + *o*(**Q**) bits ([Q] - lower bound), they answer various queries in *o*(**Q**) time.

Succinct bit vectors

They use **[Q]** + o(Q) bits ([Q] - lower bound), = small + fast they answer various queries in o(Q) time. (hopefully)

101010100101000101010111110000001100001...

[1] G. J. Jacobson. Succinct Static Data Structures. 1988

M. Besta et al.: "Log(Graph): A Near-Optimal High-Performance Graph Representation", PACT'18

spcl.inf.ethz.ch

spcl.inf.ethz.ch

All the state of the

CONTRACTOR PROPERTY

Degree-Minimizing: Targeting general graphs (no assumptions on graph structure)

Degree-Minimizing: Targeting general graphs (no assumptions on graph structure)

More schemes that assume specific classes of graphs

...

Degree-Minimizing: Targeting general graphs (no assumptions on graph structure)

(simultaneously for all other neighborhoods)

More schemes that assume specific classes of graphs

...

Degree-Minimizing: Targeting general graphs (no assumptions on graph structure)

(simultaneously for all other neighborhoods)

(1) The more often a label occurs (i.e., the higher vertex degree), the smaller permuted value it receives More schemes that assume specific classes of graphs

. . .

Degree-Minimizing: Targeting general graphs (no assumptions on graph structure)

(simultaneously for all other neighborhoods)

(1) The more often a label occurs (i.e., the higher vertex degree), the smaller permuted value it receives

Ζ

More schemes that assume specific classes of graphs

. . .

Gap-encode(v w x y z)= v w-v x-w y-x z-y

Permu

Use different relabelings

Degree-Minimizing: Targeting general graphs (no assumptions on graph structure)

(simultaneously for all other neighborhoods)

(1) The more often a label occurs (i.e., the higher vertex degree), the smaller permuted value it receives

More schemes that assume specific classes of graphs

. . .

Gap-encode(v w x y z) = W-V X-W V Z-V

> (2) Encode new labels with gap encoding (differences between consecutive labels instead of full labels)

The second

A CONTRACTOR

The second second second

The second second

The second second

The second second

OVERVIEW OF FULL LOG(GRAPH) DESIGN

***SPCL

OVERVIEW OF FULL LOG(GRAPH) DESIGN

***SPCL

OVERVIEW OF FULL LOG(GRAPH) DESIGN

The second second second

1 Log (^{Vertex}), Log (^{Edge}) Storage, Performance

Kronecker graphs Number of vertices: 4M

1

all the second and the

Storage, Performance

SSSP

Kronecker graphs Number of vertices: 4M

Log (^{Vertex}), Log (^{Edge}) labels

M. Besta et al.: "Log(Graph): A Near-Optimal High-Performance Graph Representation", PACT'18

Carlos and the same

Storage, Performance

SSSP

Kronecker graphs Number of vertices: 4M

1 Log (^{Vertex}), Log (^{Edge}) weights

M. Besta et al.: "Log(Graph): A Near-Optimal High-Performance Graph Representation", PACT'18

Log(Graph) consistently reduces storage overhead (by 20-35%)

Storage, Performance

Contra and and the

Kronecker graphs Number of vertices: 4M

M. Besta et al.: "Log(Graph): A Near-Optimal High-Performance Graph Representation", PACT'18

Log(Graph) accelerates GAPBS

> Log(Graph) consistently reduces storage overhead (by 20-35%)

1 Log (Vertex), Log (Edge labels), Log (Weights) Store

Storage, Performance

MA LANGER MAN

Kronecker graphs Number of vertices: 4M

Both storage and performance are improved **simultaneously**

Log(Graph)

accelerates GAPBS

Log(Graph) consistently reduces storage overhead (by 20-35%)

And the second second

OTHER RESULTS

spcl.inf.ethz.ch

Problems!

HUBE HUBE

Log(Graph): A Near-Optimal High-Performance Graph Representation

Maciej Besta[†], Dimitri Stanojevic, Tijana Zivic, Jagpreet Singh, Maurice Hoerold, Torsten Hoefler[†] Department of Computer Science, ETH Zurich [†]Corresponding authors (maciej.besta@inf.ethz.ch, htor@inf.ethz.ch)

ABSTRACT

Today's graphs used in domains such as machine learning or social network analysis may contain hundreds of billions of edges. Yet, they are not necessarily stored efficiently, and standard graph representations such as adjacency lists waste a significant number of bits while graph compression schemes discovering relationships in graph data. The sheer size of such graphs, up to hundreds of billions of edges, exacerbates the number of needed memory banks, increases the amount of data transferred between CPUs and memory, and may lead to I/O accesses while processing graphs. Thus, reducing the size of such graphs is becoming increasingly important.

Problems!

CASE PROPERTY

Problems!

Synchronization-heavy

To Push or To Pull: On Reducing Communication and Synchronization in Graph Computations

Maciej Besta¹, Michał Podstawski² ³, Linus Groner¹, Edgar Solomonik⁴, Torsten Hoefler¹ ¹ Department of Computer Science, ETH Zurich; ² Perform Group Katowice,; ³ Katowice Institute of Information Technologies; ⁴ Department of Computer Science, University of Illinois at Urbana-Champaign maciej.besta@inf.ethz.ch, michal.podstawski@performgroup.com, gronerl@student.ethz.ch, solomon2@illinois.edu, htor@inf.ethz.ch

ABSTRACT

We reduce the cost of communication and synchronization in graph processing by analyzing the fastest way to process graphs: pushing the updates to a shared state or pulling the updates to a private can either push v's rank to update v's neighbors, or it can pull the ranks of v's neighbors to update v [52]. Despite many differences between PR and BFS (e.g., PR is not a traversal), PR can similarly be viewed in the push-pull dichotomy.

This notion sparks various questions. Can pushing and pulling

The second second

PAGERANK

A LANCE

Contraction and

State States

P threads are used

State State

P threads are used

Standard and

P threads are used

all all and and and

Pushing

P threads are used

The second a

Pushing

P threads are used

MA STREETS

The sections

P threads are used

all all and and and

Pulling

P threads are used

The sections

P threads are used

MA STREETS

Pulling

The start and the second

State of the second

and the second

spcl.inf.ethz.ch ∳@spcl_eth ETHZÜriCh

Pushing or pulling when expanding a frontier

spcl.inf.ethz.ch

BFS TOP-DOWN VS. BOTTOM-UP [1]

Pushing or pulling when expanding a frontier

spcl.inf.ethz.ch

BFS TOP-DOWN VS. BOTTOM-UP [1]

Pushing or pulling when expanding a frontier

spcl.inf.ethz.ch

BFS TOP-DOWN VS. BOTTOM-UP [1]

Pushing or pulling when expanding a frontier

spcl.inf.ethz.ch

BFS TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier

Pushing or pulling when expanding a frontier

[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. SC12.

Root r

spcl.inf.ethz.ch

Pushing or pulling when expanding a frontier

[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. SC12.

Root r

spcl.inf.ethz.ch

Pushing or pulling when expanding a frontier

Pulling

spcl.inf.ethz.ch

BFS TOP-DOWN VS. BOTTOM-UP [1]

Pushing or pulling when expanding a frontier

spcl.inf.ethz.ch

Pushing or pulling when expanding a frontier

spcl.inf.ethz.ch

Pushing or pulling when expanding a frontier

spcl.inf.ethz.ch

Pushing or pulling when expanding a frontier

spcl.inf.ethz.ch

Pushing or pulling when expanding a frontier

Pulling

spcl.inf.ethz.ch

BFS TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier

Pushing or pulling when expanding a frontier

[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. SC12.

Root r

Pulling

spcl.inf.ethz.ch

BFS TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier

Pushing or pulling when expanding a frontier

[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. SC12.

Root r

spcl.inf.ethz.ch

Pushing or pulling when expanding a frontier

Pulling

spcl.inf.ethz.ch

BFS TOP-DOWN VS. BOTTOM-UP [1]

Pushing or pulling when expanding a frontier

Pulling

spcl.inf.ethz.ch

BFS TOP-DOWN VS. BOTTOM-UP [1]

Pushing or pulling when expanding a frontier

spcl.inf.ethz.ch

Pushing or pulling when expanding a frontier

spcl.inf.ethz.ch

Pushing or pulling when expanding a frontier

spcl.inf.ethz.ch

Pushing or pulling when expanding a frontier

spcl.inf.ethz.ch

Pushing or pulling when expanding a frontier

spcl.inf.ethz.ch

Pushing or pulling when expanding a frontier

spcl.inf.ethz.ch

Pushing or pulling when expanding a frontier

Pulling

spcl.inf.ethz.ch

BFS TOP-DOWN VS. BOTTOM-UP [1]

Pushing or pulling when expanding a frontier

Pulling

spcl.inf.ethz.ch

BFS TOP-DOWN VS. BOTTOM-UP [1]

Pushing or pulling when expanding a frontier

spcl.inf.ethz.ch

Pushing or pulling when expanding a frontier

spcl.inf.ethz.ch

Pushing or pulling when expanding a frontier

Ma and and the

OTHER ALGORITHMS & FORMULATIONS

Betweenness Centrality (BC) **OTHER ALGORITHMS & FORMULATIONS** /* Input: a graph G. Output: centrality scores bc[1..n]. */ BFS function BC(G) { bc[1..n] = [0..0]for $s \in V$ do [in par] { for $t \in V$ do in par i pred[t]=succ[t]= \emptyset ; $\sigma[t]=0$; dist[t]= ∞ ; PART 1: INITIALIZATION BC (algebraic notation) Δ-Stepping /* Input: a graph $\sigma[s]=$ enqueued=1; dist[s]=itr=0; $\delta[1..n]=[0..0]$ R0 for each Q[0]={s}; Q_1[1..p]=pred_1[1..p]=succ_1[1..p]=[0..0]; while enqueued > 0 do PART 2: COUNTING SHORTEST PATHS count_shortest_paths() Triangle Counting /* Input: a graph G. Output: centrality scores bc[1..n]. --itr /* Input: a graph G, a vertex r, the Δ parameter while itr > 0 do Output: An array of distances d */ accumulate_dependencies(); PART 3: DEPENDENCY ACCUMULATION function $BC(G) \{ bc[1..n] = [0..0] \}$ Define Π so that any $\Pi \ni u = (index_u, pred_u, mult_u, part_u);$ function Δ -Stepping(G, r, Δ){ /* Input: a graph G. Output: An array Define $u \leftarrow_{\text{pred}} v$ with $u, v \in \Pi$ so that u becomes bckt=[\omega..om]; d=[\omega..om]; active=[false..false]; function count_shortest_paths() { enqueued = 0; * tc[1..n] that each vertex belongs to $u = (index_u, pred_u \cup index_v, mult_u + mult_v, part_u);$ bckt_set={0}; bckt[r]=0; d[r]=0; active[r]=true; itr=0; #if defined PUSHING_IN_PART_2 PUSHING (IN PART 2) Define $u \leftarrow_{\text{part}} v$ with $u, v \in \Pi$ so that u becomes for $v \in O[itr]$ do in par { for $b \in bckt_set$ do { //For every bucket do... for $w \in N(v)$ do [in par] { function $TC(G) \{tc[1..n] = [0..0]\}$ $u = (index_u, pred_u, mult_u, part_u + (mult_u/mult_v)(1 + part_v))$ if dist[w] == ∞ 🚯 { do {bckt_empty = false; //Process b until it is empty. for $v \in V$ do in par Q_1[itr + 1] = Q_1[itr + 1] U {w} process_buckets(); } while(!bckt_empty); } } for $s \in V$ do [in par] { for $w_1 \in N(v)$ do [in par] dist[w] = dist[v] + 1 () []; ++enqueued;) if dist[w] == dist[v] + 1 () { ready = [1, ..., 1]; ready[s] = 0; for $w_2 \in N(v)$ do [in par] function process_buckets() { R = BFS(G, ready, $[(1, 0, 0, 0)..(s, 0, 1, 0)..(n, 0, 0, 0)] \in$ [v] () []; pred_1[w] = pred_1[w] U {v}; for v ∈ bckt_set[b] do in par if $adj(w_1, w_2)$ **R** update_tc(); Define graph G' = (V, E') where $(u, v) \in E'$ PUSHING if(bckt[v]==b && (itr == 0 or active[v])) { IN_PART_2 tc[1..n] = [tc[1]/2 .. tc[n]/2];Graph Coloring Let ready[u] be the in-degree of $u \in V$ PULLING (IN PART 2) active[v] = false; //Now, expand v's neighbors. ar { [in par] { $R = BFS(G', ready, R, \Leftarrow_{part});$ function update_tc() { for $w \in N(v)$ {weight = d[v] + $W_{(v,w)}$; for (index₁₁, pred₁₁, mult₁₁, part₁₁) $\in \mathbb{R}$ do [in $\{++tc[w_1]; /* \text{ or } ++tc[w_2], */\}$ if(weight < d[w]) { (//Proceed to relax w $bc[u] += part_u; \}$ new_b = weight/ Δ ; bckt[v] = new_b; 1 // Input: a graph G. Output: An array of vertex colors c[1..n] bckt_set[new_b] = bckt_set[new_b] U {w};} {++tc[v];} par] { 2 // In the code, the details of functions seq_color_partition and d[w] = weight; W i; // init are omitted due to space constrains. if(bckt[w]==b) {active[w]=true; bckt_empty=true;}} (for $v \in V$ do in par if(d[v] > b) {for $w \in N(v)$ do { Boruvka MST function Boman-GC(G) { if(bckt[w] == b && (active[w] o $my_F[p_{ID}] = my_F[p_{ID}] \cup \{v\}; \}$ done = false; $c[1..n] = [\emptyset..\emptyset]$; //No vertex is colored yet weight = d[w] + $W_{(w,v)}$ (B; PageRank //avail[i][j]=1 means that color j can be used for vertex i. if(weight < d[v]) {d[v]=weight avail[1..n][1..C] = [1..1][1..1]; init(\mathcal{B}, \mathcal{P}): if(bckt[v] > new_b) { function MST_Boruvka(G) { while (!done) { sv_flag=[1..v]; sv=[{1}..{v}]; MST=[0..0]; for $\mathcal{P} \in \mathcal{P}$ do in par {seq_color_partition(\mathcal{P});} /* Input: a graph G, a number of steps L, the damp parameter favail_svs={1..n}; max_e_wgt=max_ $v, w \in V(W_{(v, w)} + 1);$ fix_conflicts(); } } Output: An array of ranks pr[1..*n*] */ while avail_svs.size() > 0 do {avail_svs_new = 0; for flag ∈ avail_svs do in par {min_e_wgt[flag] = max_e_wgt;} function fix_conflicts() { function PR(G,L,f) { for flag ∈ avail_svs do in par { for $v \in \mathcal{B}$ in par do {for $u \in N(v)$ do pr[1..v] = [f..f]; //Initialize PR values.for $v \in sv[flag]$ do { if (c[u] == c[v]) { for (l = 1; l < L; ++l) { for $w \in N(v)$ do [in par] { $\{avail[u][c[v]] = \emptyset$ (W) i; $\}$ if $(sv_flag[w] \neq flag) \land$ $new_pr[1..n] = [0..0];$ PUSHING PUSHING $(W_{(v,w)} < \min_{e_wgt[sv_flag[w]]})$ { for $v \in V$ do in par { PULLING $\min_{v,w} W$ [sv_flag[w]] = $W_{(v,w)}$ () []; $\{avail[v][c[v]] = \emptyset \mathbb{R} \mathbb{i};\}$ update_pr(); new_pr[v] += (1 - f)/n; pr[v] = new_pr[v]; min_e_v[sv_flag[w]] = w; min_e_w[sv_flag[w]] = v () [33 0 } } } new_flag[sv_flag[w]] = flag () 1; } if $(sv_flag[w] \neq flag) \land (W_{(v,w)} < min_e_wgt[flag])$ function update_pr() { $\min_{v \in wgt[flag]} = W_{(v,w)}; \min_{v \in v}[flag] = v;$ PULLING for $u \in N(v)$ do [in par] { min_e_w[flag] = w; new_flag[flag] = sv_flag[w]; }R {new_pr[u] += $(f \cdot pr[v])/d(v)$ (f; } PUSHING while flag = merge_order.pop() do { neigh_flag = sv_flag[min_e_w[flag]]; PULLING {new_pr[v] += $(f \cdot pr[u])/d(u) \mathbb{R}$;} for v ∈ sv[flag] do sv_flag[flag] = sv_flag[neigh_flag]; sv[neigh_flag] = sv[flag] U sv[neigh_flag]; MST[neigh_flag] = MST[flag] U MST[neigh_flag] \cup { (min_e_v[flag], min_e_w[flag]) }; }]

Participation Production

Betweenness Centrality (BC) **OTHER ALGORITHMS & FORMULATIONS** /* Input: a graph G. Output: centrality scores bc[1..n]. */ BFS function BC(G) { bc[1..n] = [0..0]for $s \in V$ do [in par] { for $t \in V$ do in par i pred[t]=succ[t]= \emptyset ; $\sigma[t]=0$; dist[t]= ∞ ; PART 1: INITIALIZATION BC (algebraic notation) Δ-Stepping /* Input: a graph $\sigma[s]=$ enqueued=1; dist[s]=itr=0; $\delta[1..n]=[0..0]$ R0 for each Q[0]={s}; Q_1[1..p]=pred_1[1..p]=succ_1[1..p]=[0..0]; while enqueued > 0 do PART 2: COUNTING SHORTEST PATHS count_shortest_paths() Triangle Counting /* Input: a graph G. Output: centrality scores bc[1..n]. --itr /* Input: a graph G, a vertex r, the Δ parameter while itr > 0 do Output: An array of distances d */ PART 3: DEPENDENCY ACCUMULATION accumulate_dependencies(); function $BC(G) \{ bc[1..n] = [0..0] \}$ Define Π so that any $\Pi \ni u = (index_u, pred_u, mult_u, part_u);$ function Δ -Stepping(G, r, Δ){ /* Input: a graph G. Output: An array Define $u \leftarrow_{\text{pred}} v$ with $u, v \in \Pi$ so that u becomes bckt=[\omega..om]; d=[\omega..om]; active=[false..false]; function count_shortest_paths() { enqueued = 0; * tc[1..n] that each vertex belongs t $u = (index_u, pred_u \cup index_v, mult_u + mult_v, part_u);$ bckt_set={0}; bckt[r]=0; d[r]=0; active[r]=true; itr=0; #if defined PUSHING_IN_PART_2 PUSHING (IN PART 2) Define $u \leftarrow_{\text{part}} v$ with $u, v \in \Pi$ so that u becomes for $v \in O[itr]$ do in par { for $w \in N(v)$ do [in par] { for $b \in bckt_set$ do { //For every bucket do... function $TC(G) \{tc[1..n] = [0..0]\}$ $u = (index_u, pred_u, mult_u, part_u + (mult_u/mult_v)(1 + part_v))$ if dist[w] == ∞ 🚯 { do {bckt_empty = false; //Process b until it is empty. for $v \in V$ do in par Q_1[itr + 1] = Q_1[itr + 1] U {w} process_buckets(); } while(!bckt_empty); } } for $s \in V$ do [in par] { for $w_1 \in N(v)$ do [in par] dist[w] = dist[v] + 1 () []; ++enqueued;) if dist[w] == dist[v] + 1 () { ready = [1, ..., 1]; ready[s] = 0; for $w_2 \in N(v)$ do [in par] function process_buckets() { R = BFS(G, ready, [(1, 0, 0, 0)..(s, 0, 1, 0)..(n, 0, 0.0)][v] @ []; pred_1[w] = pred_1[w] U {v}; for v ∈ bckt_set[b] do in par if $adj(w_1, w_2)$ **R** update_tc(); Define graph G' = (V, E') where $(u, v) \in E'$ PUSHING if(bckt[v]==b && (itr == 0 or active[v])) { IN_PART_2 tc[1..n] = [tc[1]/2 .. tc[n]/2];Graph Coloring Let ready[u] be the in-degree of $u \in V$ PULLING (IN PART 2) active[v] = false; //Now, expand v's neighbors. ar { [in par] { $R = BFS(G', ready, R, \Leftarrow_{part});$ function update_tc() { for $w \in N(v)$ {weight = d[v] + $W_{(v,w)}$; for $(index_{11}, pred_{11}, mult_{11}, part_{11}) \in R$ do [in $\{++tc[w_1]; /* \text{ or } ++tc[w_2]. */\}$ (W) i if(weight < d[w]) { (//Proceed to relax w $bc[u] += part_u; \}$ new_b = weight/ Δ ; bckt[v] = new_b; // Input: a graph G. Output: An array of vertex colors c[1..n]bckt_set[new_b] = bckt_set[new_b] U {w};} {++tc[v];} par] { // In the code, the details of functions seq_color_partition and d[w] = weight; W i; // init are omitted due to space constrains. for $v \in V$ do in par if(d[v] > b) {for $w \in N(v)$ do { Boruvka MST function Boman-GC(G) { $my_F[p_{ID}] = my_F[p_{ID}] \cup \{v\}; \}$ if(bckt[w] == b && (active[w] o done = false; $c[1..n] = [\emptyset..\emptyset]$; //No vertex is colored yet weight = d[w] + $W_{(w,v)}$ (B; PageRank //avail[i][j]=1 means that color j can be used for vertex i. if(weight < d[v]) {d[v]=weight avail[1..n][1..C] = [1..1][1..1]; init(\mathcal{B}, \mathcal{P}): if(bckt[v] > new_b) { function MST_Boruvka(G) { while (!done) { sv_flag=[1..v]; sv=[{1}..{v}]; MST=[0..0]; for $\mathcal{P} \in \mathcal{P}$ do in par {seq_color_partition(\mathcal{P});} /* Input: a graph G, a number of steps L, the damp parameter favail_svs={1..n}; max_e_wgt=max_ $v, w \in V(W_{(v, w)} + 1);$ fix_conflicts(); } } Output: An array of ranks pr[1..*n*] */ while avail_svs.size() > 0 do {avail_svs_new = 0; for flag ∈ avail_svs do in par {min_e_wgt[flag] = max_e_wgt;} function fix_conflicts() { function PR(G,L,f)do in par { for $v \in \mathcal{B}$ in par do {for $u \in N(v)$ do pr[1..v] = [f..f]if (c[u] == c[v]) { for (l = 1; l < L;par] $\{avail[u][c[v]] = \emptyset \bigotimes i;\}$ $new_pr[1..n] =$ lag) ∧ PUSHING PUSHING _wgt[sv_flag[w]]) 🚯 { for $v \in V$ do in Check out the paper \bigcirc PULLING $w]] = W_{(v,w)}$ []; $\{avail[v][c[v]] = \emptyset \mathbb{R} \mathbb{i};\}$ update_pr();]] = w; min_e_w[sv_flag[w]] = v 🛞 🚺 33 v]] = flag 🛞 🚺; } $\begin{array}{l} \log) \land (\mathcal{W}_{(\upsilon, w)} < \min_e_wgt[flag]) \\ \mathcal{W}_{(\upsilon, w)}; \min_e_v[flag] = \upsilon; \end{array} \begin{array}{l} \text{PULLING} \end{array}$ function update_pr for $u \in N(v)$ do [new_flag[flag] = sv_flag[w]; }R {new_pr[u] += $(f \cdot pr[\sigma])/a(\sigma)$ while flag = merge_order.pop() do { PULLING neigh_flag = sv_flag[min_e_w[flag]]; {new_pr[v] += $(f \cdot pr[u])/d(u) \mathbb{R}$;} for v ∈ sv[flag] do sv_flag[flag] = sv_flag[neigh_flag]; sv[neigh_flag] = sv[flag] U sv[neigh_flag]; MST[neigh_flag] = MST[flag] ∪ MST[neigh_flag]

 \cup { (min_e_v[flag], min_e_w[flag]) }; }

A CONTRACTOR OF THE ASS

PAGERANK

PERFORMANCE ANALYSIS

Kronecker graphs

Distributed-Memory

and the second second

PAGERANK

PERFORMANCE ANALYSIS

Kronecker graphs

Distributed-Memory

Kronecker graphs

PERFORMANCE ANALYSIS PAGERANK

A CONTRACTOR OF THE OWNER OF THE

Kronecker graphs

PERFORMANCE ANALYSIS PAGERANK

Pulling incurs more communication while pushing expensive underlying locking

A BARRIS PROVIDENCES AND

Kronecker graphs

PERFORMANCE ANALYSIS PAGERANK

A PARTY AND A REAL PROPERTY AND

a light a second second

If the complexities match: pull

If the complexities match: pull

Otherwise: push

If the complexities match: pull

+ check your hardware 🙂

Otherwise: push

Irregular

SlimSell: A Vectorizable Graph Representation for Breadth-First Search

Maciej Besta* and Florian Marending* Department of Computer Science ETH Zurich {maciej.besta@inf, floriama@student}.ethz.ch Edgar Solomonik Department of Computer Science University of Illinois Urbana-Champaign solomon2@illinois.edu Torsten Hoefler Department of Computer Science ETH Zurich htor@inf.ethz.ch

Abstract—Vectorization and GPUs will profoundly change graph processing. Traditional graph algorithms tuned for 32- or 64-bit based memory accesses will be inefficient on architectures with 512-bit wide (or larger) instruction units that are already present in the Intel Knights Landing (KNL) a dense vector (SpMV) or a sparse matrix and a sparse vector (SpMSpV). BFS based on SpMV (BFS-SpMV) uses no explicit locking or atomics and has a succinct description as well as good locality [13]. Yet, it needs more work than traditional BFS and BFS based on SpMSpV [29]

A REAL PROPERTY AND A REAL

VECTORIZATION

Charles and

VECTORIZATION

Deployed in various hardware

Charles and

VECTORIZATION

- Deployed in various hardware
- Becoming more popular

- Deployed in various hardware
- Becoming more popular

Constant and

C = 8 (SIMD width)

- Deployed in various hardware
- Becoming more popular

P. La Participa

C = 8 (SIMD width)

- Deployed in various hardware
- Becoming more popular

C: "Chunk" size: SIMD width (CPUs, KNLs), warp size (GPUs)

a start

C = 8 (SIMD width)

- Deployed in various hardware
- Becoming more popular
- Offers a lot of "regular" compute power

C: "Chunk" size: SIMD width (CPUs, KNLs), warp size (GPUs)

C = 8 (SIMD width)

- Deployed in various hardware
- Becoming more popular
- Offers a lot of "regular" compute power

C: "Chunk" size: SIMD width (CPUs, KNLs), warp size (GPUs)

64KB Register File										
16-wide Vector SIMD										
ALU	ALU	ALU	ALU	ALU	ALU	ALU	ALU			
ALU	ALU	ALU	ALU	ALU	ALU	ALU	ALU			

C = 8 (SIMD width)

- Deployed in various hardware
- Becoming more popular
- Offers a lot of "regular" compute power

64KB Register File											
16-wide Vector SIMD											
ALU	ALU	ALU	ALU	ALU	ALU	ALU	ALU				
ALU	ALU	ALU	ALU	ALU	ALU	ALU	ALU				

C: "Chunk" size: SIMD width (CPUs, KNLs), warp size (GPUs)

- Deployed in various hardware
- Becoming more popular
- Offers a lot of "regular" compute power

16-wide Vector SIMD										
AL		ALU								
AL		ALU								

C: "Chunk" size: SIMD width (CPUs, KNLs), warp size (GPUs)

- Deployed in various hardware
- Becoming more popular
- Offers a lot of "regular" compute power

	64KB Register File 16-wide Vector SIMD											
16-wide Vector SIMD												
	ALU	ALU	ALU	ALU	ALU	ALU	ALU	ALU				
	ALU	ALU	ALU	ALU	ALU	ALU	ALU	ALU				

A CALL CONTRACTOR OF THE OWNER

A TALANT A CONTRACTOR

BREADTH-FIRST SEARCH TRADITIONAL FORMULATION

The second second

BREADTH-FIRST SEARCH ALGEBRAIC FORMULATION

BFS is a series of matrix-vector products

- BFS is a series of matrix-vector products
- Graph is modeled by an adjacency matrix

- BFS is a series of matrix-vector products
- Graph is modeled by an adjacency matrix

- BFS is a series of matrix-vector products
- Graph is modeled by an adjacency matrix
- Multiplication is done over a semiring

- BFS is a series of matrix-vector products
- Graph is modeled by an adjacency matrix
- Multiplication is done over a semiring

Semiring: $(\mathbb{R}, op_1, op_2, el_1, el_2)$

- BFS is a series of matrix-vector products
- Graph is modeled by an adjacency matrix
- Multiplication is done over a semiring

- BFS is a series of matrix-vector products
- Graph is modeled by an adjacency matrix
- Multiplication is done over a semiring

Tropical Semiring $(\mathbb{R} \cup \{\infty\}, min, +, \infty, 0)$

The second

Tropical Semiring $(\mathbb{R} \cup \{\infty\}, min, +, \infty, 0)$

The second

Tropical Semiring $(\mathbb{R} \cup \{\infty\}, min, +, \infty, 0)$

The second of the

Tropical Semiring $(\mathbb{R} \cup \{\infty\}, min, +, \infty, 0)$

The seatting

Tropical Semiring $(\mathbb{R} \cup \{\infty\}, min, +, \infty, 0)$

The seatting

Tropical Semiring $(\mathbb{R} \cup \{\infty\}, min, +, \infty, 0)$

The seal of the se

Tropical Semiring $(\mathbb{R} \cup \{\infty\}, min, +, \infty, 0)$

The seattless of

Tropical Semiring $(\mathbb{R} \cup \{\infty\}, min, +, \infty, 0)$

The seat of the Part

Tropical Semiring $(\mathbb{R} \cup \{\infty\}, min, +, \infty, 0)$

The seat of the Part

Tropical Semiring $(\mathbb{R} \cup \{\infty\}, min, +, \infty, 0)$

The seat of the seat

Tropical Semiring $(\mathbb{R} \cup \{\infty\}, min, +, \infty, 0)$

The second second second

Tropical Semiring $(\mathbb{R} \cup \{\infty\}, min, +, \infty, 0)$

The second second second

Tropical Semiring $(\mathbb{R} \cup \{\infty\}, min, +, \infty, 0)$

The section of the se

Tropical Semiring $(\mathbb{R} \cup \{\infty\}, min, +, \infty, 0)$

The second of the the

A Manual Street Street

GRAPH REPRESENTATIONS COMPRESSED SPARSE ROW (CSR)

all the second

a the second

Non-zeros are stored in the val array size: 2m cells ...

٩dja	ace	nc	y m	nati	rix				
Non-zeros									

Column indices stored					
in the <i>col</i> array	size: 2m cells	size: 2m cells			

The second

spcl.inf.ethz.ch

Non-zeros are stored in									
the <i>val</i> array						size: 2m cells			

Column indices stored							
in the <i>col</i> array	size: 2m cells						
Row indices are stored							
in the <i>row</i> array	size: <i>n</i> cells						

...

and the second second

GRAPH REPRESENTATIONS Sell-C-Sigma

A REAL PROPERTY OF THE PARTY OF

GRAPH REPRESENTATIONS Sell-C-Sigma

A REAL PROPERTY AND A REAL

A A REAL AND AND AND

A CALLAND COMPANY

A State of Street and Street

The second s

GRAPH REPRESENTATIONS Sell-C-Sigma

The second s

and the second s

SELL-C-SIGMA + SEMIRINGS + (...) = SLIMSELL FORMULATIONS

The second second

 $(X, op_1, op_2, el_1, el_2)$ $(\mathbb{R} \cup \{\infty\}, min, +, \infty, 0)$ $(\mathbb{R}, +, \cdot, 0, 1)$ $(\{0, 1\}, |, \&, 0, 1)$ $(\mathbb{R}, max, \cdot, -\infty, 1)$

```
12
      // Compute \mathbf{x}_k (versions differ based on the used semiring):
13 #ifdef USE_TROPICAL_SEMIRING
                                                        TROPICAL SEMIRING
      x = MIN(ADD(rhs, vals), x);
14
15 #elif defined USE_BOOLEAN_SEMIRING
                                                        BOOLEAN SEMIRING
      x = OR(AND(rhs, vals), x);
16
17 #elif defined USE_SELMAX_SEMIRING
                                                         SEL-MAX SEMIRING
    x = MAX(MUL(rhs, vals), x);
18
19 #endif
20
       index += C;
21 }
22 // Now, derive \mathbf{f}_k (versions differ based on the used semiring):
23 #ifdef USE_TROPICAL_SEMIRING
                                                        TROPICAL SEMIRING
24 STORE(&f_k[i*C], x); // Just a store.
25 #elif defined USE_BOOLEAN_SEMIRING
                                                        BOOLEAN SEMIRING
   // First, derive \mathbf{f}_k using filtering.
26
    V g = LOAD(\&g_{k-1}[i*C]); // Load the filter g_{k-1}.
27
    x = CMP(AND(x, g), [0, 0, ..., 0], NEQ); STORE(&x_k[i*C], x);
28
29
30
    // Second, update distances \mathbf{d}; depth is the iteration number.
    V x_mask = x; x = MUL(x, [depth,...,depth]);
31
32
    x = BLEND(LOAD(\&d[i*C]), x, x_mask); STORE(\&d[i*C], x);
33
34
    // Third, update the filtering term.
    g = AND(NOT(x_mask), g); STORE(\&g_k[i*C], g);
35
36 #elif defined USE_SELMAX_SEMIRING:
                                                         SEL-MAX SEMIRING
371
    // Update parents.
    V pars = LOAD(p_{k-1}[i*C]); // Load the required part of p_{k-1}
38
    V pnz = CMP(pars, [0,0,...,0], NEQ);
39
40
    pars = BLEND([0, 0, ..., 0], pars, pnz); STORE(\&p_k[i * C], pars);
41
42
    // Set new \mathbf{x}_k vector.
43
    V \text{ tmpnz} = CMP(x, [0,0,...,0], NEQ);
    x = BLEND(x, &v[i*C], tmpnz); STORE(&x_k[i*C], x);
44
45 #endif
```


Participation Property

 $(X, op_1, op_2, el_1, el_2)$ $(\mathbb{R} \cup \{\infty\}, min, +, \infty, 0)$ $(\mathbb{R}, +, \cdot, 0, 1)$ $(\{0,1\}, |, \&, 0, 1)$ $(\mathbb{R}, max, \cdot, -\infty, 1)$

```
// Compute \mathbf{x}_k (versions differ based on the used semiring):
12
13 #ifdef USE_TROPICAL_SEMIRING
                                                         TROPICAL SEMIRING
      x = MIN(ADD(rhs, vals), x);
15 #elif defined USE_BOOLEAN_SEMIRING
                                                         BOOLEAN SEMIRING
      x = OR(AND(rhs, vals), x);
16
17 #elif defined USE_SELMAX_SEMIRING
                                                         SEL-MAX SEMIRING
      x = MAX(MUL(rhs, vals), x);
18
19 #endif
20
       index += C;
21 }
22 // Now, derive \mathbf{f}_k (versions differ based on the used semiring):
23 #ifdef USE_TROPICAL_SEMIRING
                                                         TROPICAL SEMIRING
24 STORE(&f_k[i*C], x); // Just a store.
25 #elif defined USE_BOOLEAN_SEMIRING
                                                        BOOLEAN SEMIRING
    // First, derive \mathbf{f}_k using filtering.
26
    V g = LOAD(\&g_{k-1}[i*C]); // Load the filter g_{k-1}.
27
    x = CMP(AND(x, g), [0, 0, ..., 0], NEQ); STORE(&x_k[i*C], x);
28
29
30
    // Second, update distances \mathbf{d}; depth is the iteration number.
31
    V x_mask = x; x = MUL(x, [depth,...,depth]);
32
    x = BLEND(LOAD(\&d[i*C]), x, x_mask); STORE(\&d[i*C], x);
33
34
    // Third, update the filtering term.
    g = AND(NOT(x_mask), g); STORE(\&g_k[i*C], g);
35
36 #elif defined USE_SELMAX_SEMIRING:
                                                         SEL-MAX SEMIRING
37
    // Update parents.
    V pars = LOAD(p_{k-1}[i*C]); // Load the required part of p_{k-1}
38
    V pnz = CMP(pars, [0,0,...,0], NEQ);
39
40
    pars = BLEND([0, 0, ..., 0], pars, pnz); STORE(\&p_k[i * C], pars);
41
42
    // Set new \mathbf{x}_k vector.
43
    V \text{ tmpnz} = CMP(x, [0,0,...,0], NEQ);
    x = BLEND(x, \&v[i*C], tmpnz); STORE(\&x_k[i*C], x);
44
45 #endif
```


 $(X, op_1, op_2, el_1, el_2)$ $(\mathbb{R} \cup \{\infty\}, min, +, \infty, 0)$ $(\mathbb{R}, +, \cdot, 0, 1)$ $(\{0,1\}, |, \&, 0, 1)$ $(\mathbb{R}, max, \cdot, -\infty, 1)$


```
// Compute \mathbf{x}_k (versions differ based on the used semiring):
12
13 #ifdef USE_TROPICAL_SEMIRING
                                                        TROPICAL SEMIRING
      x = MIN(ADD(rhs, vals), x);
15 #elif defined USE_BOOLEAN_SEMIRING
                                                        BOOLEAN SEMIRING
      x = OR(AND(rhs, vals), x);
16
17 #elif defined USE_SELMAX_SEMIRING
                                                         SEL-MAX SEMIRING
      x = MAX(MUL(rhs, vals), x);
18
19 #endif
       index += C;
20
21
   }
22 // Now, derive \mathbf{f}_k (versions differ based on the used semiring):
23 #ifdef USE_TROPICAL_SEMIRING
                                                        TROPICAL SEMIRING
24 STORE(&f_k[i*C], x); // Just a store.
25 #elif defined USE_BOOLEAN_SEMIRING
                                                        BOOLEAN SEMIRING
    // First, derive \mathbf{f}_k using filtering.
26
    V g = LOAD(\&g_{k-1}[i*C]); // Load the filter g_{k-1}.
27
    x = CMP(AND(x, g), [0, 0, ..., 0], NEQ); STORE(\&x_k[i*C], x);
28
29
30
    // Second, update distances \mathbf{d}; depth is the iteration number.
31
    V x_mask = x; x = MUL(x, [depth,...,depth]);
32
    x = BLEND(LOAD(\&d[i*C]), x, x_mask); STORE(\&d[i*C], x);
33
34
    // Third, update the filtering term.
    g = AND(NOT(x_mask), g); STORE(\&g_k[i*C], g);
35
36 #elif defined USE_SELMAX_SEMIRING:
                                                         SEL-MAX SEMIRING
    // Update parents.
37
    V pars = LOAD(p_{k-1}[i*C]); // Load the required part of p_{k-1}
38
    V pnz = CMP(pars, [0,0,...,0], NEQ);
39
40
    pars = BLEND([0, 0, ..., 0], pars, pnz); STORE(\&p_k[i * C], pars);
41
42
    // Set new \mathbf{x}_k vector.
43
    V tmpnz = CMP(x, [0,0,...,0], NEQ);
    x = BLEND(x, \&v[i*C], tmpnz); STORE(\&x_k[i*C], x);
44
45 #endif
```


A LAND AND AND A

 $(X, op_1, op_2, el_1, el_2)$ $(\mathbb{R} \cup \{\infty\}, min, +, \infty, 0)$ $(\mathbb{R}, +, \cdot, 0, 1)$ $(\{0,1\}, |, \&, 0, 1)$ $(\mathbb{R}, max, \cdot, -\infty, 1)$

What vector operations are required for each semiring when using Sell-C-sigma


```
// Compute \mathbf{x}_k (versions differ based on the used semiring):
12
13 #ifdef USE_TROPICAL_SEMIRING
                                                         TROPICAL SEMIRING
      x = MIN(ADD(rhs, vals), x);
15 #elif defined USE_BOOLEAN_SEMIRING
                                                         BOOLEAN SEMIRING
      x = OR(AND(rhs, vals), x);
16
17 #elif defined USE_SELMAX_SEMIRING
                                                         SEL-MAX SEMIRING
      x = MAX(MUL(rhs, vals), x);
18
19 #endif
       index += C;
20
21
   }
22 // Now, derive \mathbf{f}_k (versions differ based on the used semiring):
23 #ifdef USE_TROPICAL_SEMIRING
                                                         TROPICAL SEMIRING
24 STORE(&f_k[i*C], x); // Just a store.
25 #elif defined USE_BOOLEAN_SEMIRING
                                                        BOOLEAN SEMIRING
    // First, derive \mathbf{f}_k using filtering.
26
    V g = LOAD(\&g_{k-1}[i*C]); // Load the filter g_{k-1}.
27
    x = CMP(AND(x, g), [0, 0, ..., 0], NEQ); STORE(\&x_k[i*C], x);
28
29
30
    // Second, update <u>distances</u> \mathbf{d}; depth is the iteration number.
    V x_{mask} = x; x = MUL(x, [depth, ..., depth]);
31
32
    x = BLEND(LOAD(\&d[i*C]), x, x_mask); STORE(\&d[i*C], x);
33
34
    // Third, update the filtering term.
    g = AND(NOT(x_mask), g); STORE(\&g_k[i*C], g);
35
36 #elif defined USE_SELMAX_SEMIRING:
                                                         SEL-MAX SEMIRING
37
    // Update parents.
    V pars = LOAD(p_{k-1}[i*C]); // Load the required part of p_{k-1}
38
    V pnz = CMP(pars, [0,0,...,0], NEQ);
39
40
    pars = BLEND([0,0,...,0], pars, pnz); STORE(&p_k[i*C], pars);
41
42
    // Set new \mathbf{x}_k vector.
    V \text{ tmpnz} = CMP(x, [0,0,...,0], NEQ);
43
    x = BLEND(x, &v[i*C], tmpnz); STORE(&x_k[i*C], x);
44
45 #endif
```


12 A DECEMBER OF THE OWNER

 $(X, op_1, op_2, el_1, el_2)$ $(\mathbb{R} \cup \{\infty\}, min, +, \infty, 0)$ $(\mathbb{R}, +, \cdot, 0, 1)$ $(\{0,1\}, |, \&, 0, 1)$ $(\mathbb{R}, max, \cdot, -\infty, 1)$

What vector operations are required for each semiring when using Sell-C-sigma

PERFORMANCE ANALYSIS COMPARISON TO GRAPH500

Kronecker power-law graphs

all the sectors the

Intel KNL, C = 16log $\sigma \in \{20, 21, 22\}$

Dynamic scheduling

A State

Summary and outlook

Log(Graph)

- "Log(Graph): A Near-Optimal High-Performance Graph Representation" – ACM PACT'18
- Minimal storage bounds for graphs during processing

lt's Complicated....

Summary and outlook

Log(Graph)

- "Log(Graph): A Near-Optimal High-Performance Graph Representation" – ACM PACT'18
- Minimal storage bounds for graphs during processing

lt's Complicated....

Push vs. Pull

- "To Push or To Pull: On Reducing Communication and Synchronization in Graph Computations" – ACM HPDC'17
- Fundamental principles of parallel graph
 processing

Summary and outlook

Log(Graph)

- "Log(Graph): A Near-Optimal High-Performance Graph Representation" – ACM PACT'18
- Minimal storage bounds for graphs during processing

lt's Complicated....

Push vs. Pull

- "To Push or To Pull: On Reducing Communication and Synchronization in Graph Computations" – ACM HPDC'17
- Fundamental principles of parallel graph processing

Vectorization of Graph Computations

- "SlimSell: A Vectorized Graph Representation for Breadth-First Search" – IEEE IPDPS'17
- Vectorization schemes for parallel graph processing

Summary and outlook

Log(Graph)

- "Log(Graph): A Near-Optimal High-Performance Graph Representation" – ACM PACT'18
- Minimal storage bounds for graphs during processing

Graph Compression Survey

- "Survey and Taxonomy of Lossless Graph Compression and Space-Efficient Graph Representations" – arXiv
- Comprehensive overview
 - 54 pages, 465 references

Push vs. Pull

- "To Push or To Pull: On Reducing Communication and Synchronization in Graph Computations" – ACM HPDC'17
- Fundamental principles of parallel graph processing

Vectorization of Graph Computations

- "SlimSell: A Vectorized Graph Representation for Breadth-First Search" – IEEE IPDPS'17
- Vectorization schemes for parallel graph processing

***SPEL

Summary and outlook

Log(Graph)

- "Log(Graph): A Near-Optimal High-Performance Graph Representation" – ACM PACT'18
- Minimal storage bounds for graphs during processing

Graph Compression Survey

- "Survey and Taxonomy of Lossless Graph Compression and Space-Efficient Graph Representations" – arXiv
- Comprehensive overview
 - 54 pages, 465 references

Push vs. Pull

- "To Push or To Pull: On Reducing Communication and Synchronization in Graph Computations" – ACM HPDC'17
- Fundamental principles of parallel graph processing

Comm-avoiding Graph Processing

 "Communication-Avoiding Parallel Minimum Cuts and Connected Components" – ACM PPoPP'18

• Uses randomization to achieve O(1) global alltoall steps

Vectorization of Graph Computations

- "SlimSell: A Vectorized Graph Representation for Breadth-First Search" – IEEE IPDPS'17
- Vectorization schemes for parallel graph processing

*** SPEL

Summary and outlook

Log(Graph)

- "Log(Graph): A Near-Optimal High-Performance Graph Representation" – ACM PACT'18
- Minimal storage bounds for graphs during processing

Graph Compression Survey

- "Survey and Taxonomy of Lossless Graph Compression and Space-Efficient Graph Representations" – arXiv
- Comprehensive overview
 - 54 pages, 465 references

Push vs. Pull

- "To Push or To Pull: On Reducing Communication and Synchronization in Graph Computations" – ACM HPDC'17
- Fundamental principles of parallel graph processing

Comm-avoiding Graph Processing

 "Communication-Avoiding Parallel Minimum Cuts and Connected Components" – ACM PPoPP'18

AUGUAR - 200

Uses randomization to achieve O(1) global alltoall steps

Vectorization of Graph Computations

- "SlimSell: A Vectorized Graph Representation for Breadth-First Search" – IEEE IPDPS'17
- Vectorization schemes for parallel graph processing

Algebraic Betweenness Centrality

- "Scaling Betweenness Centrality using Communication-Efficient Sparse Matrix Multiplication" – ACM SC'17
- More on the algebraic view complex example, large-scale sparse matrices

***SPEL

Summary and outlook

Log(Graph)

- "Log(Graph): A Near-Optimal High-Performance Graph Representation" – ACM PACT'18
- Minimal storage bounds for graphs during processing

Graph Compression Survey

- "Survey and Taxonomy of Lossless Graph Compression and Space-Efficient Graph Representations" – arXiv
- Comprehensive overview
 - 54 pages, 465 references

Streaming Graphs on FPGA

- "Substream-Centric Maximum Matchings on FPGA" – FPGA'19
- New paradigm for parallelizing across substreams
 - Integrates with pipelining in HW/FPGA
 - Blueprint for efficient processing in HW

Push vs. Pull

- "To Push or To Pull: On Reducing Communication and Synchronization in Graph Computations" – ACM HPDC'17
- Fundamental principles of parallel graph processing

Comm-avoiding Graph Processing

 "Communication-Avoiding Parallel Minimum Cuts and Connected Components" – ACM PPoPP'18

AUGUAR - 200

Uses randomization to achieve O(1) global alltoall steps

Vectorization of Graph Computations

- "SlimSell: A Vectorized Graph Representation for Breadth-First Search" – IEEE IPDPS'17
- Vectorization schemes for parallel graph processing

Algebraic Betweenness Centrality

- "Scaling Betweenness Centrality using Communication-Efficient Sparse Matrix Multiplication" – ACM SC'17
- More on the algebraic view complex example, large-scale sparse matrices

***SPEL

Summary and outlook

Log(Graph)

- "Log(Graph): A Near-Optimal High-Performance Graph Representation" – ACM PACT'18
- Minimal storage bounds for graphs during processing

Graph Compression Survey

- "Survey and Taxonomy of Lossless Graph Compression and Space-Efficient Graph Representations" – arXiv
- Comprehensive overview
 - 54 pages, 465 references

Streaming Graphs on FPGA

- "Substream-Centric Maximum Matchings on FPGA" – FPGA'19
- New paradigm for parallelizing across substreams
 - Integrates with pipelining in HW/FPGA
 - Blueprint for efficient processing in HW

Push vs. Pull

- "To Push or To Pull: On Reducing Communication and Synchronization in Graph Computations" – ACM HPDC'17
- Fundamental principles of parallel graph processing

Comm-avoiding Graph Processing

 "Communication-Avoiding Parallel Minimum Cuts and Connected Components" – ACM PPoPP'18

AUGUAR - 200

Uses randomization to achieve O(1) global alltoall steps

Streaming Graphs Survey

- "Survey and Taxonomy of Models and Algorithms for Streaming Graph Processing" – arXiv
- Overview of streaming algorithms, approximations, research gaps
 - Way forward for FPGA?

Vectorization of Graph Computations

- "SlimSell: A Vectorized Graph Representation for Breadth-First Search" – IEEE IPDPS'17
- Vectorization schemes for parallel graph processing

Algebraic Betweenness Centrality

- "Scaling Betweenness Centrality using Communication-Efficient Sparse Matrix Multiplication" – ACM SC'17
- More on the algebraic view complex example, large-scale sparse matrices

Summary and outlook

Log(Graph)

- "Log(Graph): A Near-Optimal High-Performance Graph Representation" – ACM PACT'18
- Minimal storage bounds for graphs during processing

Graph Compression Survey

- "Survey and Taxonomy of Lossless Graph Compression and Space-Efficient Graph Representations" – arXiv
- Comprehensive overview
 - 54 pages, 465 references

Streaming Graphs on FPGA

- "Substream-Centric Maximum Matchings on FPGA" – FPGA'19
- New paradigm for parallelizing across substreams
 - Integrates with pipelining in HW/FPGA
 - Blueprint for efficient processing in HW

Push vs. Pull

- "To Push or To Pull: On Reducing Communication and Synchronization in Graph Computations" – ACM HPDC'17
- Fundamental principles of parallel graph processing

Comm-avoiding Graph Processing

 "Communication-Avoiding Parallel Minimum Cuts and Connected Components" – ACM PPoPP'18

AUGUAR - 200

Uses randomization to achieve O(1) global alltoall steps

Streaming Graphs Survey

- "Survey and Taxonomy of Models and Algorithms for Streaming Graph Processing" – arXiv
- Overview of streaming algorithms, approximations, research gaps
 - Way forward for FPGA?

Vectorization of Graph Computations

- "SlimSell: A Vectorized Graph Representation for Breadth-First Search" – IEEE IPDPS'17
- Vectorization schemes for parallel graph processing

Algebraic Betweenness Centrality

- "Scaling Betweenness Centrality using Communication-Efficient Sparse Matrix Multiplication" – ACM SC'17
- More on the algebraic view complex example, large-scale sparse matrices

Graphs on FPGA Survey

- "Graph Processing on FPGAs: Taxonomy, Survey, Challenges" – arXiv
- Relatively young field of graph processing on FPGAs / in hardware
 - Identify research opportunities

Summary and outlook

Log(Graph)

- "Log(Graph): A Near-Optimal High-Performance Graph Representation" -ACM PACT'18
- Minimal storage bounds for graphs during processing

Graph Compression Surve

- "Survey and Taxonomy of Lossles" **Compression and Space-Efficient** Representations" - arXiv
- Comprehensive overview
 - 54 pages, 465 references

Streaming Graphs on FPG

- "Substream-Centric Maximum Matchings on FPGA" - FPGA'19
- New paradigm for parallelizing across substreams
 - Integrates with pipelining in HW/FPGA
 - Blueprint for efficient processing in HW

A big challenges ahead: develop a framework to integrate all techniques!

Push vs. Pull

Graph Computations" – ACM HPDC'17

Fundamental principles of parallel graph

SPCL's approach: stateful dataflow graphs

We're always hiring excellent PhD students and postdocs at SPCL/ETH at spcl.inf.ethz.ch/Jobs

- Overview of streaming algorithms, approximations, research gaps
 - Way forward for FPGA?

Vectorization of Graph Computations

- "SlimSell: A Vectorized Graph Representation for Breadth-First Search" - IEEE IPDPS'17
- Vectorization schemes for parallel graph processing

ebraic Betweenness Centrality

ing Betweenness Centrality using munication-Efficient Sparse Matrix plication" – ACM SC'17 on the algebraic view – complex ple, large-scale sparse matrices

Graphs on FPGA Survey

NO .

- Graph Processing on FPGAs: Taxonomy, Survey, Challenges" – arXiv
- Relatively young field of graph processing on FPGAs / in hardware
 - Identify research opportunities

processing