
Exploiting Offload Enabled Network Interfaces

Salvatore Di Girolamo
ETH Zurich

digirols@inf.ethz.ch

Pierre Jolivet
ETH Zurich

pierre.jolivet@inf.ethz.ch

Keith D. Underwood
Intel Corporation

keith.d.underwood@intel.com

Torsten Hoefler
ETH Zurich

htor@inf.ethz.ch

Abstract—Network interface cards are one of the key com-
ponents to achieve efficient parallel performance. In the past,
they have gained new functionalities such as lossless transmission
and remote direct memory access that are now ubiquitous in
high-performance systems. Prototypes of next generation network
cards now offer new features that facilitate device programming.
In this work, various possible uses of network offload features are
explored. We use the Portals 4 interface specification as an exam-
ple to demonstrate various techniques such as fully asynchronous,
multi-schedule asynchronous, and solo collective communications.
MPI collectives are used as a proof of concept for how to
leverage our proposed semantics. In a solo collective, one or more
processes can participate in a collective communication without
being aware of it. This semantic enables fully asynchronous
algorithms. We discuss how the application of the solo collectives
can improve the performance of iterative methods, such as
multigrid solvers. The results obtained show how this work may
be used to accelerate existing MPI applications, but they also
display how these techniques could ease the programming of
algorithms outside of the Bulk Synchronous Parallel (BSP) model.

I. INTRODUCTION

The importance of interconnection networks is growing with
the scale of supercomputers and datacenter systems. Machines
with thousands to tens of thousands of endpoints are becoming
common in large-scale computing. Communications become the
major bottleneck in such machines be it to access shared storage,
data redistributions (e.g., MapReduce), or communications
in parallel computations. The most critical communication
operations at scale are collective communications because they
involve large numbers of processes, sometimes the whole
system. Thus, network optimizations commonly focus on
collective communications.

The steadily growing number of transistors per chip offers
an opportunity to offload new capabilities to the network
interfaces. For example, current high performance network
interfaces support features such as lossless transport, remote
direct memory access, and offloading for various network
protocols such as TCP/IP. Programmable offload engines like we
had in Quadrics Elan3/Elan4 are becoming progressively lower
cost for network interfaces to include. First limited versions of
such offload micro-architectures (MAs) are already available in
Cray’s Aries network [3] as well as Mellanox ConnectX2 [11].

Such offload features have been used to support the
implementation of collective communications [23, 27, 28].
MPI-3 defines an extensive set of blocking and nonblocking as
well as (user-defined) neighborhood collective communications.
Previous works have either only supported partial offload re-
quiring additional synchronization during setup or were limited
to small message sizes. Thus, previous techniques cannot be
used to implement fully asynchronous offloaded versions of all

MPI-3 collective operations. Furthermore, existing protocols
are specialized to particular NIC architectures.

In this work, we specify an abstract machine model for
offload-enabled network interfaces. Our offload model captures
common network operations such as send, receive, and atomics
that can be executed by network cards. The execution of
an offload program is advanced by events which can be
either received messages or accesses from the host CPU.
Using the offload model, we demonstrate how to design
fully asynchronous offloaded collective operations for MPI-
3. Furthermore, we demonstrate how Portals 4 can be used to
implement this abstract model efficiently.

Our insights go far beyond the existing MPI-3 collective
operations. Since each process in our offload model can start
the execution of send, receive, and local operations at arbitrary
processes, the model enables new semantics not offered
by the current MPI specification. We show solo collective
communications, an extended set of collective operations that
can proceed and complete independently of other processes.
Thus, solo collectives go one step further than MPI-3’s
nonblocking collectives which cannot complete (and often not
proceed) until all processes have started the operation. Solo
collectives, enabled by the offload model, will simply copy
the buffer irrespective of the state of the owning process. This
enables a powerful trade-off between data consistency (solo
collectives may communicate outdated information) and process
synchronization (solo collectives never wait). We show how this
trade-off can be used to improve the performance of iterative
algorithms, such as multigrid methods.

The specific contributions of our work are:

• The specification of an abstract machine interface for offload
MAs with a proof of concept implemented on top of the
Portals 4 reference library.
• Protocols for fully asynchronous offloaded MPI-3 collectives

using arbitrary (optimized) communication schedules.
• A new class of solo collectives that allows trading off global

synchronization cost for data consistency.
• A set of simulations showing the behavior of offloaded

collectives at large scale.
• Microbenchmark results comparing offloaded and non-

offloaded collectives.

II. OFFLOAD ENABLED ARCHITECTURE

Support for offloaded communications can vary dramatically
from the dedicated hardware MAs infrastructure of the Cray
Aries interface [10] to the programmable processors of the
Quadrics network [20] to a dedicated core that can be associated
with communications [1, 25]. The salient point is that all of
these system architectures make communication operations

independent of the CPU performing application computation.
We propose an abstract machine model and performance model
in the context of such independence.

A. Abstract Machine Model for Offload MAs
In this section we introduce an abstract machine model

describing the offload features offered by the next generation
network cards. Our model considers two computational units:
the CPU and the Offload Engine (OE). An offloaded operation
is fully executed by the OE: CPU intervention is required only
for its creation, offloading, and testing for completion.

In this model we define two main entities: communication
and local computation. In both cases, they are defined as non-
blocking operations. We adopt two-sided matching semantic in
order to support complex communication schedules: processes
are aware of the interactions among themselves. We use
send and receive operations as data movement operations. An
operation is created on the CPU and then offloaded to the OE.

A happens-before relation can be established between two
operations a and b: we use the notation a→ b to indicate that
b can be executed only when a is completed. The definition
of completion varies according to the type of operation. A
receive is considered complete when a matching message is
received. Differently, the completion of a send is a local event:
it completes as soon as the data transmission is finished and
the data buffer can be reused by the user. It is worth noting
that, in our model, once the dependencies of b are satisfied, b
can start without CPU intervention. Multiple dependencies can
be handled with AND or OR policies. In the second case, the
dependent operation can be executed when at least one of its
dependencies is satisfied. We use the notation (a1∧ . . .∧an)→
b or (a1 ∨ . . . ∨ an) → b for indicating an AND or an OR
dependency between the operations (a1, . . . , an) and b.

The life cycle of an operation is composed by the following
states: created, if it has been created but not yet posted (i.e.,
offloaded); posted, the operation has been created and offloaded
to the OE and active, if it is posted and it has no dependencies
or all of them are satisfied. A created operation cannot be
executed even if it has no dependencies or all of them are
already satisfied; Moreover, an operation can be marked as:

• independent: if it can be activated as soon as it is posted;
• dependent: if it can be activated only when all its dependen-

cies are satisfied;
• CPU-dependent: if it must be activated from the CPU.

A CPU-dependency can be installed even after the posting
of an operation. It will have effect only if the operation is not
yet executed. This allows to disable an operation, which can
be re-enabled satisfying the installed dependency.

B. Performance Model for Offload MAs
Let x and y be two operations where x→ y, assume that x

is a receive operation and it is the only dependency of y: once
a message matching x is received, y must be executed. In order
to make this step, the following sequence of events/actions
must be handled: receive; matching; execution of y. In order
to start the execution of y independently from the CPU, this
entire sequence must be performed in an offloaded manner.
This introduces the requirement that the message matching
phase must be performed directly by the OE.

In order to catch this behavior, we introduce an additional
parameter to the well-known LogGP [2] model. The standard
parameters described by this model are: L: the latency parame-
ter. It is defined as the maximum latency between two nodes in
the network; o: the processor overhead. It is the time spent by
a processor to send or receive a message; g: the gap between
messages. It is defined as the minimum time interval between
two consecutive message transmission or reception; G: the gap
per byte. It models the time required by the NIC to send one
byte; P: the number of processors.

The above parameters are not sufficient to model the
matching phase that is now performed by the OE. A new
corresponding parameter, called m, is introduced. It models
the time needed to: 1) perform the matching phase; 2) satisfy
the outgoing dependencies of the matched receive.

In our model the setup of an operation and its execution are
decoupled: for example, a send can be installed at time t, paying
the CPU overhead o at that time, but it could be effectively
executed at a later time t̄ > t when all its dependencies are
satisfied. In general, the CPU overhead is accounted when the
operation is installed by the host process.

P0

P1

CPU

NIC

CPU

NIC

recv o send o

recv o send o

sG

sG sG

sGm

m

L
time

Fig. 1: Example showing a time-space diagram for the proposed performance
model. P1 performs a send to P0. On P0, a send is scheduled to be executed
as soon as the message from P0 is received.

Fig. 1 illustrates how the model can be applied to a ping-
pong communication between the processes P0 and P1. As
soon as P0 receives the message from P1 it responds with
another message: this means that on P0 the sending of the
“pong” message depends on the receive of the “ping”. In our
model, this dependency is handled and solved directly by the
OE, without CPU intervention. The same behavior cannot be
modeled in the LogGP model, since in that case we should
count an additional o after receiving the “ping” message and
before the sending the “pong” one. The overall cost Tpp of the
ping-pong communication pattern in our model is:

Tpp = 2(o+ L+ sG+m)

The same pattern, in the LogGP model, has a cost of:
T ′pp = 2(2o + L + sG). The cost difference is explained by:
a) differently from the LogGP model, the CPU overhead is
decoupled from the actual execution of an operation, hence the
overhead paid for the send at P0 can be overlapped with the
one induced by the send at P1; b) in our model we have to
take in account the matching phase cost, that is m.

C. A Case Study: Portals 4
Now we discuss how the proposed model can be applied

on a concrete architecture, such as the one described by the
Portals 4 specification [7]. This network programming interface
is based on the one-sided communication model with the main
difference that it does not use addresses to identify memory
buffers on a remote node. A portal table is assigned to each
network interface. Each entry of the portal table identifies
three data structures: the priority list, the overflow list and the
unexpected list. The first two lists provide entries describing

remotely accessible address regions, while the third is used for
keeping track of unexpected messages.

Portals 4 supports two types of semantic: matching and
non-matching. The first one has been introduced in order to
better support tagged messaging interfaces, such as MPI. It
allows the target node to add constraints to the list entries, that
in this case are called match list entries (ME), such as the
process ID that is allowed to access the described memory and
a set of matching/ignore bits, acting like the MPI tag field. In
order to map the computation model described in Sec. II-A,
only the matching semantic is considered in this paper.

1) Communications: A target node exposes memory regions
appending match list entries to the priority or overflow list.
When a message arrives, the priority list is traversed searching
for a matching list entry. In case no match is found, the overflow
list is searched: if a matching ME is found there, the message
header is inserted into the unexpected list. If no match is found
neither in the overflow list then the message is dropped. The
overflow and the unexpected list provide building blocks for
handling unexpected messages: the user can provide “shadow”
buffers appending list entries to the overflow list. When an ME
is appended to the priority list, the unexpected list is searched
for already delivered matching messages.

If a node (i.e., the initiator) wants to start an operation
towards a target node, it has to specify a memory region using
a memory descriptor (MD). If the operation is a put then the
data will be copied from the buffer specified by the MD at
the initiator to the one specified by the matching ME at the
target. The get operation works in the opposite way: the data
specified by the matching ME at the target will be copied into
the buffer specified by the MD at the initiator.

2) Local computations: The Portals 4 specifications support
atomic operations: one-way operations that take as operands the
data specified by the MD at the initiator and the one described
by the ME at the target. A local computation is a sequence
of atomic operations with coinciding initiator and target node.
This approach allows to offload simple local computations,
enabling their asynchronous execution w.r.t. the CPU process.

3) Dependencies: Counters can be associated with memory
descriptors and matching list entries. They are incremented
each time a certain event is registered. Such events are related
to operations performed on the associated data structures.
We leverage this counting mechanism in order to detect the
termination of outstanding operations. Portals 4 introduces the
concept of triggered operations: we can associate an operation
with a specific counter in a way such that it must be executed
only when this counter reaches a certain threshold.

These two concepts (i.e., counters and triggered operations)
can be used to map our dependency model. A counter is
associated to each operation in order to detect its termination.
If two operations x and y are defined in a way such that x→ y,
then y is implemented as a triggered operation on the counter
associated with x with a threshold equal to one: as soon as x
will be completed and its counter will be incremented, then y
will be triggered. Multiple dependencies can be implemented
using an intermediate counter: if xi → y with i ∈ [1, . . . , n],
then a new counter ctxy is created. When a xi is completed,
ctxy is incremented by one. In this case y will become active
only when ctxy will reach a certain threshold, that will be n

Local schedule S4

0

1 4

2 3 5 6

recv

recv

op

send

op

CPU

Fig. 2: Tree based reduce (left) and the local schedule executed by node 4 (right).

or 1 depending on whether the AND or the OR relation type is
specified, respectively.

4) Operation Disabling: Portals does not allow to directly
disable the execution of an operation. Suppose that a triggered
operation b is targeting a buffer that a host process wants
to modify. If the operation is already in execution, the buffer
should not be modified by the host process. In the other case, we
can disable the operation avoiding its triggering: if a→ b and
b is not yet executed, we can disable b decreasing the counter
associated with a by one and setting b as to be triggered when
such counter reaches at least the threshold of two. Even if a is
executed, and hence its counter is incremented, b will not be
triggered since its dependency counter (the one associated with
a) has not reached the specified threshold. To re-enable b it is
enough to increment its dependency counter: if a is already
executed, then b will be immediately triggered; otherwise it
will be executed as soon as a is completed.

5) Performance Model: The performance model discussed
in Sec. II-B can be applied to a Portals 4 based architecture.
In particular, we focus on the mapping of the parameter o and
m, since the definition of L, g, and G is not altered. The o
parameter accounts for the creation and the offloading of an
operation: this corresponds to the creation of an ME or an MD
and the interaction with the Portals 4 hardware, through which
the operations can be offloaded to the OE. The time to perform
the matching phase for an incoming message is captured by
m. In Portals the matching phase consists in the searching of
the priority list and, eventually, the overflow list.

III. OFFLOADING COLLECTIVES

This section introduces offloaded collective communications
such that the two following conditions are satisfied:

1) No synchronization is required in order to start the collective
operation. Every process can start the operation without
synchronizing or communicating with the others.

2) Once it has started, no further CPU intervention is required.
The collective can complete without any CPU intervention.

A collective operation can be described as a directed graph,
where a vertex is a participating node and an edge is a point-
to-point communication. The ingoing edges represent receive
operations, while sends are described by outgoing edges. The
graph representing a binary-tree based reduce operation is
shown on the left of Fig. 2. The set of operations executed by
the internal node 4 and the dependencies among them (i.e., the
schedule) are reported on the right.

Definition (Schedule). A schedule is a local dependency graph
where a vertex is an operation, while an edge represents a
dependency. It describes a partially ordered set of operations
(i.e., point-to-point communications and local computations).

Using the model proposed in Sec. II-A, an operation
is defined dependent or independent according to its in-
degree: zero ingoing edges means that the operation has no

dependencies and it can be immediately executed; an operation
with an in-degree greater than zero can be executed as soon
as all its incoming dependencies are satisfied. The completion
of an operation leads to the satisfaction of all its outgoing
dependencies. We define a schedule as complete when all the
operations with out-degree equals to zero are completed.

Definition (Collective Communication). A collective commu-
nication involving n nodes is modeled as a set of schedules
S = S1, . . . , Sn where each node i participates in the collective
executing its own schedule Si.

Offloading a collective operation means that every schedule
Si is fully executed by the OE of node i. This is possible
only if the OE is able to handle all the components of
a schedule (i.e., communications, local computations and
dependency among them). The proposed abstract machine
model catches them all, defining operations and dependencies
as fully executed/handled by the abstract OE, hence allowing
collective operation offloading.

A. Offloaded Point-To-Point Protocols
Collective operations are built on top of point-to-point

communications, which we consider building blocks of our
model. Two well-known protocols can be used, according to
the message size, to address them in a correct and efficient way:
the eager and the rendezvous protocol. The first one is used
for small message sizes: it assumes that a receive buffer has
already been posted at the destination node when the message
from the sender arrives. When this assumption is not satisfied,
the message is defined as unexpected. In order to handle such
unexpected messages, shadow buffers can be provided requiring
an additional copy at the time in which the receive buffer will
be posted. However, since these buffers must have finite size,
this protocol in not suitable for arbitrarily large message sizes.
The rendezvous protocol is able to deal with arbitrary message
sizes but it requires synchronization of the two involved nodes,
introducing additional overheads.

1) Eager Protocol: We have to make a distinction between
expected and unexpected messages. In the fist case, the message
can be copied directly into the user-specified buffer. In the
second, the message will be copied from the shadow to the
user-specified buffer as soon as a matching receive will be
posted. When the copy is completed, the shadow buffer can
be re-used to catch other unexpected messages.

This protocol can be implemented with Portals leveraging
the matching mechanisms provided by the priority and overflow
lists (see Sec. II-C). The data copy from the shadow buffer to
the user-specified one, not directly supported by Portals, can
be implemented leveraging Portals full events. If an unexpected
message is matched by an ME during the append phase, a proper
full event will be raised allowing to handle the previously
mentioned data copy. We assume that this process is race-
free, meaning that the event will be generated at time t ≥
max(tOW , tME), where tOW is the time at which the copy of
the unexpected message on the shadow buffer is complete and
tME is the time at which the matching ME is posted by the
CPU. Please note that even if, in the unexpected message case,
the data-copy must be performed by the CPU, the conditions
(1) and (2) are still fulfilled: no synchronization is required
and no CPU intervention is required after the creation of the

Receive
1: Append ME

Send
1: Bind MD

2: Put RTS

Triggered GET

Process 0
CPU OE

Process 1
OE CPU

Fig. 3: Portals 4 implementation of the rendezvous protocol. After the RTS mes-
sage is received by the target, a GET is triggered to perform the data movement.

operations. In fact, the potential overhead of the data copy due
to unexpected messages is paid at the operation creation time.

2) Rendezvous Protocol: The rendezvous protocol is used
for handling the transmission of arbitrarily large messages.
It requires synchronization between the two communicating
nodes. There are two variants of this protocol, differentiated
by the node that initiate the protocol. In the sender-initiated
version, a control message is sent to the receiver that will
reply when the matching receive will be posted (and thus the
receiver buffer will be ready). In the receiver-initiated version
[22], the receiver has to signal to the sender when it is able to
receive the message. Without loss of generality, in this work
we consider only the sender-initiated variant of this protocol,
since the receiver-initiated one can be implemented similarly.

In order to respect condition (1), we have to guarantee that
no synchronization is required in order to start a collective
operation. This implies that no processes synchronization can
be required by the underlying point-to-point communications.
The processes synchronization is considered as a side effect
of the rendezvous protocol. However, this is no longer true
if the entire protocol is fully offloaded since, in this case, its
progression is totally independent from the host processes.

Fig. 3 sketches the Portals implementation of the rendezvous
protocol. When a send operation is posted at the initiator node,
a ready-to-send (RTS) control message is sent towards the
target and an ME, let us call it MEdata, is appended to the
priority list, in order to allow the target to get the data. The
posting of a receive leads to the appending of an ME to the
priority list (to catch the RTS) and the set up of a triggered GET
in a way such that the data can be read from the send-buffer
as soon as the RTS is received. The GET is a Portals operation,
meaning that no addresses are required: the data will be read
at the sender from the memory region specified by MEdata. If
the RTS message is received as unexpected, the receiver-side
protocol will start as soon as the receive will be posted.

IV. SOLO COLLECTIVES

Traditionally, collective communications lead to the pseudo-
synchronization of the participating nodes: at the end of the
communication all the nodes have reached a point in which
the collective call has been started. We refer this semantic
as synchronized. In this section we propose a new non-
synchronized semantic for collective operations, called solo
collectives, in which the synchronization is completely avoided.

The idea of solo collectives is to globally start the operation
as soon as one of the participating nodes (i.e., the initiator) joins
the collective, independently from the state of the others. The
main consequence of this approach is the relaxation of the usual
synchronized semantic. A similar approach was proposed for
UPC collectives by Ryne et al. [21]. However, they require that
only one node is in charge to handle all the data movements,

leading always to a flat-tree virtual topology. In what follows,
we how the previously discussed offloading principles can be
used to enable solo collectives with arbitrary virtual topologies.

In order to execute a synchronized collective, each process
i must create and execute, offloading the execution or not, its
schedule Si. Let us define t = maxi(ti) where ti is the time
at which process i starts the execution of Si. A synchronized
collective can be considered as concluded (i.e., all the Si’s
have been executed) at a time t̄s ≥ t. In a solo collective, each
node creates and offloads its schedule Si at time k. At that time
the schedule is not executed, but only offloaded to the OE: a
schedule in this state is defined as inactive. A node that wants
to start the collective at time tinit activates its own schedule.
The activation of a schedule leads to the broadcasting of a
control message, necessary to activate the schedule of all the
others nodes. A solo collective operation can be considered
as concluded at time t̄a ≥ tinit + ε, where ε is the activation
overhead that can be bounded with ε ≤ maxi(εi), with εi
representing the time required to activate the schedule of node
i. Please note that, differently from the synchronized case, t̄a
does not depend on any ti 6= tinit.

Collective operations can be divided in two groups, accord-
ing to the number of nodes contributing data to the computation
of the final result. Let us define the nodes that participate to the
collective providing data as active nodes, otherwise they are
passive. The first group, defined as single-source collectives,
contains the ones where only one node provides data (e.g.,
broadcast, scatter). Instead, in a multi-source collective all the
nodes contribute data (e.g., reduce, gather, scan).

a) Single-Source Collectives: In this class of collectives
there is only one active node. Other nodes have only to receive
and eventually forward messages. There are two operations
belonging to this class, that are broadcast and scatter. In both
cases there is only one node, the root, that holds the data and
wants to distribute it. In the broadcast case, the same message
is sent to all the other nodes while, in the scatter, each node
receives a personalized message. Let us consider a broadcast
implemented with a binomial tree virtual topology. A similar
discussion applies to the scatter. When an internal node receives
a message from its parent, all the sends towards its children
are activated, since their dependency is satisfied. This schedule
can be expressed as:

Sk : recv → sendi ∀i ∈ C
where C is the set of the children of node k. The activation of
the non-root nodes coincides with the reception of the message
from the parent, leading to an activation overhead ε of zero.

Using the performance model proposed in Sec. II-B and
starting from the LogGP cost of this collective [14], we define
the cost of a solo broadcast as:

T s−ibroadcast = (L+m+ s̄G)× log2(P)

where P is the number of nodes and s̄ the message size. At
each round we have one or more parallel communications with
a cost of L+m+ s̄G and there are log2(P) rounds in total
since the number of activated nodes doubles at each round.

b) Multi-Source Collectives: In multi-source collectives
all the nodes are active: they receive, forward, and produce data
necessary to the operation. In addition to rooted collectives

P0 P1 P2 P3

a
ct

iv
a

ti
o

n

co
m

m
u

n
ic

at
io

n

(a) Root: P0; Initiator: P0

P0 P1 P2 P3

a
ct

iv
a

ti
o

n

co
m

m
u

n
ic

at
io

n

(b) Root: P0; Initiator: P2

Fig. 4: Root and non-root activation for the reduce operation. Activation messages
are represented by dashed arrows. Gray dashed arrows are unused messages.

like reduce and gather, all the unrooted collectives belong to
this class. Let us consider the rooted operations first where we
have two possible types of activation: root and nonroot. In the
first case, the only node that can activate the collective is the
root while, in the second, any node can be the initiator. In both
cases the final target is to broadcast the activation message,
what changes is the node that can start this broadcast.

The root-activation can be implemented with any broadcast
algorithm suitable for small message sizes. In Fig. 4 we propose
to use a binomial tree virtual topology both for the activation
and for the execution of the actual reduce operation. When a
node is activated, it can immediately send its message to its
parent or wait for children’s data first, depending if it is a leaf
or an internal node, respectively. In the examples reported in
Fig. 4, P1 and P3 can send the message as soon as they are
activated, since they are leaves. Node P1, instead, has to wait
for P2 before sending to P0. The activation overhead ε is:

ε = (L+m)× log2(P)

if we assume a negligible activation message size (it does not
carry any data in this case). The total cost of a solo reduce is:

T rootreduce = (2L+ 2m+ s̄G+ ω)× log2(P)

where s̄ is the message size, P is the number of involved nodes
and ω is the cost of applying the reduce operator. Please note
that even if this cost is higher than the respective synchronized
reduce cost, here we are relaxing the assumption that all the
involved nodes join the collective at the same time.

The nonroot activation allows any node to start the collective,
meaning that we have P possible broadcast activation trees.
A naive approach to implement such type of activation could
consist in the set up of P different schedules for each node: one
for each possible activation tree in which it could be involved.
However, this approach is not scalable, since it would require
O(P) space for each node. The solution is to use a slightly
modified version of the recursive doubling algorithm, exploiting
the fact that the virtual topology described by this algorithm
can be reduced to a binomial tree if we consider only the
communications generated by one single node. In the original
algorithm each node x sends to and receives from a node y,
where y is a node with a distance that doubles at each step: the
next step (i.e., the next send and receive pair) can be executed
when the receive of the previous one is concluded:

recvl → sendl+1

Since we want to activate only the communications belonging
to the binomial tree rooted in the initiator, we require that:

(recv0 ∨ . . . ∨ recvl)→ sendl+1

meaning that as soon as one receive is concluded, all the
subsequent sends must be executed. An example of non-root

activation is reported in Fig. 4b, where a reduce operation
towards the node P0 can be started by any node. Since the
activation can be done in log2(P) steps, the activation overhead
ε is the same of the root-activation case, leading to the same
collective communication cost of the root activation case.

In the non-root activation there is the possibility that more
than one node try to activate the same collective. However,
multiple activations of the same collective must not lead to
multiple executions of the schedule or part of it by some nodes.

Claim. In the nonroot activation, if k > 1 nodes try to activate
the same collective, then it will be executed exactly once.

The proof of the previous claim is trivial. Consider the worst-
case in which all the nodes activate the same collective at the
same time: all the communications described by the recursive-
doubling algorithm will take place, leading to the log2(P)
receptions of the activation message by each node. However,
the schedule of the collective will start as soon as the first
activation message is received: subsequent activation requests
will not affect the execution of already activated operations.

A. Multi-Version Scheduling
In the previous section we introduced solo collectives. They

allow a node to start and complete a collective operation without
requiring the explicit join of all the other involved nodes. The
only requirement is that each node has its own schedule posted
at a time before its actual activation. The pre-posting is not
required for correctness, which would violate condition (1)
of Sec. III. It is a requirement to guarantee the asynchronous
activation of the schedules: if a node x starts an operation and
another node y has not posted yet its own schedule, then the
collective will progress at y when that schedule will be posted.

Let us consider the case in which the same collective can be
executed multiple times and, each time, it can be initiated by a
different node. We need a mechanism to support the execution
of multiple solo collectives: the multi-version schedule. It
allows the pre-posting of k versions of a collective, where
a version is a schedule of the same collective, potentially
targeting different data buffers. We define three possible states
of a posted schedule: disabled, meaning that all the contained
operations cannot be executed; enabled, if it is ready to be
executed; in use if at least one operation has been completed
(e.g., a message is received or sent). A multi-version schedule
can be described as a FIFO queue of schedules: at each time
there is only one schedule that is enabled. When the enabled
schedule becomes in use, then the next in the queue is enabled.
The enabling of the next schedule in the queue can be offloaded
to the OE. If the schedule Si−1 precedes Si in the multi-version
queue, we can describe their relation as:∨

opk∈Ii−1

opk → opj ∀opj ∈ Ii

where Ii−1 and Ii are the sets of the locally independent
operations of the schedules Si−1 and Si, respectively. An
operation is locally independent, w.r.t. its own schedule,
if it does not depend on any operation belonging to the
same schedule. Initially Si is disabled, since all its locally
independent operations cannot be executed: they depend on the
ones contained in Ii−1. They will be enabled as soon as one of
the independent operations of Si−1 will have been completed
(it is an OR dependency), leading to the activation of Si.

B. Data Consistency
The introduction of solo collectives leads to two questions:

1) How to prevent race conditions between the CPU and the OE?
2) How to manage data buffers in case of multiple outstanding
versions of the same solo collective? The MPI specification
establishes that the ownership of a buffer is passed to the library
until the operation targeting it is complete. This approach, that
solves the problem raised in question one, cannot be adopted
in our case. A solo collective is posted at process Pi at a time
that precedes the one at which the operation will be effectively
activated by Pi itself. Moreover, it could be executed before
the reaching of that point. In order to let the CPU and the OE
to synchronize, we adopt an on-demand ownership scheme: it
is passed to the OE at the time in which the solo collective
is instantiated and the host process can ask for temporary
ownership. If the currently enabled schedule is not in use, then
it will be disabled and the ownership will be granted. Otherwise
the process will have to wait until its completion.

Now let us discuss the problem raised by question two.
Having a multi-version schedule of the same single-initiator
collective means that a process is able to support up to k
asynchronous executions of the same collective. There are two
different policies that can be applied for handling data-buffers.

• Single buffer. The same buffer is associated with all the
versions of the schedule: it will be always updated with the
last known value.
• Pipelined buffers. A different buffer is associated with each

version of the schedule.

These two policies can be applied either to the send or the
receiver buffer, and they lead to different semantics of the same
collective. Considering the receive buffer, the only difference
is if to overwrite its content or not with new data. In the first
case, the data that the process was unable to receive will be
discarded. Applying the pipelined buffers policy to the send
buffer, instead, limits the asynchronicity of the solo collectives,
since it makes CPU-dependent all the operations targeting it.

C. Use Case: Multigrid
Multilevel preconditioners are one of the dominant

paradigms in contemporary large-scale partial differential
equations simulations [6, 24]. While they are in theory optimal
methods requiring O(N) work if N is the size of the
discrete system to solve, in practice, they can incur significant
communication and synchronization overheads.

We consider a two-grid hierarchy solver where the coars-
ening is carried out by only one process. Hence, we have
a communication scheme involving a gather and a scatter:
for each iteration, the root has to gather the data, perform
the coarsening, and scatter the results. The workers have
to perform their computation and participate in collective
operations. Similar coarsening schemes are typical in the
domain decomposition community, cf. [17]. To fully exploit
the potential of communication offloading, an asynchronous
iteration scheme may be used [4, 9]. In a typical multigrid
method, using asynchronous iterations inside the smoother is
likely to worsen the convergence rate, but because of higher
concurrency, it can still be beneficial in terms of time to solution,
for example when using accelerators [5].

We now demonstrate a simple benchmark where the
above described computation/communication pattern is carried

10

20

30

40

50

8 16 32 64 128 256

La
te

nc
y

(u
s)

10

20

30

40

8 16 32 64 128 256

Number of processes

O
ve

rh
ea

d
(u

s)

FFLIB OMPI OMPI/P4

(a) Broadcast

0

200

400

8 16 32 64 128 256

La
te

nc
y

(u
s)

0

200

400

8 16 32 64 128 256

Number of processes

O
ve

rh
ea

d
(u

s)

FFLIB OMPI OMPI/P4

(b) Scatter

25

50

75

100

8 16 32 64 128 256

La
te

nc
y

(u
s)

50

100

150

8 16 32 64 128 256

Number of processes

O
ve

rh
ea

d
(u

s)

FFLIB OMPI OMPI/P4

(c) Allreduce

0

500

1000

1500

8 16 32 64 128 256

La
te

nc
y

(u
s)

0

250

500

750

1000

8 16 32 64 128 256

Number of processes

O
ve

rh
ea

d
(u

s)

FFLIB OMPI OMPI/P4

(d) Allgather

Fig. 5: Non-blocking collectives latency/overhead. We report median over 100 iterations. The 95% CI is within the 5% of reported medians. The message size is 50 B.

out for 100 iterations. We simulate solo and synchronized
collectives in a highly imbalanced scenario: Each process injects
random noise with a duration in the interval [0, I] in each
iteration; I ≈ 100ms is the iteration time. Solo collectives
improve the completion time by a factor of ≈ 1.5 on our test
system (described in Sec. V). We attribute this to the missing
synchronization overheads and the fact that the data is gathered
and scattered from the root in a “one-sided” fashion, enabling to
fully overlap computation and communication by the workers
and the coarsening process. We remark that only the described
simple communication pattern is taken into account and not how
the convergence rate is affected from the adoption of a fully
asynchronized approach, which deserve further investigation
outside the scope of this work. We expect that significant
improvements are possible, especially at extreme scales.

V. EXPERIMENTAL RESULT

Results were obtained on Curie, a Tier-0 system for the
Partnership for Advanced Computing in Europe composed
of 5,040 nodes made of 2 eight-core Intel Sandy Bridge
processors. The interconnect is an InfiniBand QDR full fat-tree
[19]. In our experiments, we used OpenMPI version 1.8.4 as
MPI implementation, compiled with two different backends:
InfiniBand (OMPI) and Portals 4 (OMPI/P4). The obtained
results are compared against FFLIB1, a proof of concept library
that we built on top of the Portals 4 reference library (P4RL) [7],
implementing the concepts described by the proposed abstract
machine model. The P4RL was compiled with InfiniBand
support. In all experiments, two threads are assigned to each
MPI process in order to minimize the overhead induced by the
auxiliary thread used by Portals for the NIC emulation.

A. Offloaded Collectives
In this experiment we compare offloaded and non-offloaded

collectives showing two measurements: latency and overhead.
The latency is defined as the maximum finishing time of a collec-
tive among all the nodes. We report this value due to its impact
on the parallel running time of load-balanced applications
[12]. The overhead, instead, is the fraction of communication
time that cannot be overlapped with computation. For each
communicator size, we report the median among 100 samples.

In Fig. 5c the latency/overhead comparison for the allreduce
collective operation is showed. The adopted algorithm is the
binomial-tree based one, consisting of two phases: 1) reduce
towards a designated root; 2) the root broadcast the computed
result. The OMPI latency is roughly a factor of two lower
respect to FFLIB. This is due to the presence of an additional
software layer introduced by the P4RL. This is confirmed by

1http://spcl.inf.ethz.ch/∼digirols/fflib.tar

the results of OMPI/P4: the same algorithm/implementation
is a factor of 2 slower when the P4RL is used as backend.
The overhead introduced by FFLIB is the time necessary to
create and offload the schedule to the OE, which grows with
the number of scheduled operations (that is logarithmic in the
number of processes for the allreduce algorithm). As expected,
the overhead introduced in the non-offloaded case has a larger
multiplicative constant. This is explained by the fact that parts
of the schedule (i.e., communication rounds) require CPU
intervention in order to be executed. Fig. 5a shows the results
for the broadcast operation. Since this is a one-round collective,
the broadcast is a low-overhead operation. In this case, FFLIB
gets an higher overhead w.r.t. OMPI, due to the relatively high
cost of interfacing the P4RL. On the other side, the offloaded
execution allows to reach latencies comparable to the ones
reported for OMPI. The algorithms employed by OMPI for
non-blocking scatter and allgather are linear in the number
of processes, while FFLIB implements these two collectives
with binomial and recursive doubling algorithm, respectively.
In both cases they have a logarithmic cost in the number of
processes. This explain the results of Fig. 5b and Fig. 5d.

B. Simulations
In this experiment we study and compare offloaded and

non-offloaded collectives at large scale. We extended the
LogGOPSim [15] simulator with the Portals 4 semantic and the
proposed performance model (see Sec. II-B) in order to simulate
offloaded operations. Table I reports the LogGP parameters
measured on the target machine with the Netgauge [13] tool.
The m parameter measures the average time taken by the P4RL
to complete the matching phase for each received message.

L o g G m

OMPI 2.7µs 1.2µs 0.5µs 0.4ns -
OMPI/P4 5µs 6µs 6µs 0.4ns 0.9µs

TABLE I: LogGP parameters for OMPI and OMPI/P4
As expected, the values of OMPI/P4 are larger than OMPI.

This is due to the additional software layer needed to emulate
NIC offload functionalities. The idea is to simulate a non-
software emulated NIC using the OMPI LogGP parameters
(which has only one software layer directly interfaced to the
NIC), and setting m = 0.3µs, which is the simulation parameter
used by Underwood et al. [26] to model the incoming message
processing time of a Portals 4 based NIC. The simulations
for allreduce and broadcast are reported in Fig. 6. In both
cases we report the non-offloaded version (MPI) using the
OMPI LogGP parameters and the offloaded version using the
OMPI/P4 LogGP parameters (FFLIB-SW). In addition, we
show offloaded collectives simulation with the above discussed
LogGP parameters combination (FFLIB-HW). The simulation
show that the current software-based offloaded collectives

● ● ● ● ● ● ● ● ● ●

50

100

150

200

32 128 512 2048 8192

Number of processes

La
te

nc
y

(u
s)

● MPI

FFLIB−SW

FFLIB−HW

(a) Allreduce

●
●

●
●

●
●

●
●

●
●

20

40

60

80

32 128 512 2048 8192

Number of processes

La
te

nc
y

(u
s)

● MPI

FFLIB−SW

FFLIB−HW

(b) Broadcast

Fig. 6: Collective operations simulation. The message size is 50 B.

have the worst latency. On the other side, fixing the LogGP
parameters, offloaded collectives get an improvement of ≈ 3
and ≈ 1.4 for the allreduce and the broadcast, respectively.

VI. RELATED WORK

There exist a number of past works concerning the dele-
gation of communication, either point-to-point or collective,
to an external processing unit. Graham et al. [11] investigate
the offloading of collective operation exploiting InfiniBand
management queues provided by ConnectX-2 HCA (Host
Channel Adapter). Different versions of HCA-based broadcast
are proposed in [27, 18], as well for the allgather [16, 28].
However, this solution allows only round-based design of
collective communication algorithms. Subramoni et al. [23]
propose a set of offloaded collective communication primitives,
showing how different algorithms for collective operations can
be derived from a different composition of such building blocks.
In this case, the algorithmic design is limited to the prosed
building blocks, while our approach has a finer grain since it
allows to model single basic operations. There is also a number
of works related to the exploiting of the concepts introduced
by the Portals 4 network interface, however they do not fully
satisfy the conditions discussed in Sec. III. Schneider et al. [22]
discuss about protocols for fully offloaded collectives, however,
their protocol requires synchronization among the involved
nodes. Barrett et al. [8] propose an offloaded version of the
rendezvous protocol based on Portals 4 triggered operations,
requiring CPU intervention in the unexpected message case.
Even in that case synchronization is required in order to set up
the data structures that are needed to the correct progression of
the communication. Underwood et al. [26] propose an approach
for the collective communication offloading. However, it does
not fully implement commonly used protocols able to guarantee
correctness and efficiency of point-to-point communications, on
top of which collective operations are built. As a consequence,
none of these works allow to implement offloaded collective
operations respecting, at the same time, the MPI specifications.

VII. CONCLUSION

The aim of this work is to propose an abstract machine
model for offload MAs, and a relative performance model, that
is able to catch the offload functionalities of next generation
network cards. We exploited the proposed MA proposing solo
collective operations that allow to avoid implicit collectives
synchronization. We implemented a library, FFLIB, that is proof-
of-concept of the proposed MA, comparing offloaded collectives
performance to the ones provided by the best-performing MPI
implementation w.r.t. the target machine. In the end, we showed
large-scale simulations, discussing the potential implication of
a hardware implementation of the Portals 4 specifications.

ACKNOWLEDGMENTS
This work was granted access to the HPC resources of TGCC@CEA made available

within the Distributed European Computing Initiative by the PRACE-2IP. The authors
want to thank Ryan Grant, Roberto Belli and the SPCL group for the useful discussions.
P. Jolivet has been supported by an ETH Zürich Postdoctoral Fellowship.

REFERENCES
[1] N. Adiga and et. al. An Overview of the BlueGene/L Supercomputer. In Proc.

of the 2002 ACM/IEEE Conf. on Supercomputing, 2002.
[2] A. Alexandrov, M. F. Ionescu, K. Schauser, and C. Scheiman. LogGP:

incorporating long messages into the LogP model—one step closer towards
a realistic model for parallel computation. In Proc. of the 7th annual ACM
Symp. on Parallel Algorithms and Architectures, 1995.

[3] B. Alverson, E. Froese, L. Kaplan, and D. Roweth. Cray XC series network,
2012.

[4] H. Anzt, E. Chow, and J. Dongarra. Iterative sparse triangular solves for
preconditioning. 21st International European Conference on Parallel and
Distributed Computing, 2015.

[5] H. Anzt, S. Tomov, M. Gates, J. Dongarra, and V. Heuveline. Block-
asynchronous multigrid smoothers for GPU-accelerated systems. Procedia
Computer Science, 9, 2012.

[6] A. Baker, R. Falgout, T. Kolev, and U. M. Yang. Scaling hypre’s multigrid
solvers to 100,000 cores. In High-Performance Scientific Computing. 2012.

[7] B. Barrett, R. Brightwell, R. Grant, S. Hemmert, K. Pedretti, K. Wheeler,
K. Underwood, R. Riesen, A. Maccabe, and T. Hudson. The Portals 4.0.2
Network Programming Interface, 2014.

[8] B. Barrett, R. Brightwell, S. Hemmert, K. Wheeler, and K. Underwood. Using
triggered operations to offload rendezvous messages. In Recent Advances
in the Message Passing Interface. 2011.

[9] D. Chazan and W. Miranker. Chaotic relaxation. Linear algebra and its
applications, 2(2), 1969.

[10] G. Faanes, A. Bataineh, D. Roweth, T. Court, E. Froese, B. Alverson, T. John-
son, J. Kopnick, M. Higgins, and J. Reinhard. Cray Cascade: A Scalable HPC
System Based on a Dragonfly Network. In Proc. of the 2012 ACM/IEEE Conf.
on Supercomputing, 2012.

[11] R. Graham, S. Poole, P. Shamis, G. Bloch, N. Bloch, H. Chapman, M. Kagan,
A. Shahar, I. Rabinovitz, and G. Shainer. ConnectX-2 InfiniBand management
queues: First investigation of the new support for network offloaded collective
operations. In Proc. of the 10th IEEE/ACM Int. Conf. on Cluster, Cloud and
Grid Computing, 2010.

[12] T. Hoefler, A. Lumsdaine, and W. Rehm. Implementation and performance
analysis of non-blocking collective operations for MPI. In Proc. of the 2007
ACM/IEEE Conf. on Supercomputing, 2007.

[13] T. Hoefler, T. Mehlan, A. Lumsdaine, and W. Rehm. Netgauge: A network
performance measurement framework. In High-Performance Computing
and Communications, volume 4782 of Lecture Notes in Computer Science.
Springer, 2007.

[14] T. Hoefler and D. Moor. Energy, memory, and runtime tradeoffs for imple-
menting collective communication operations. Journal of Supercomputing
Frontiers and Innovations, 1(2), 2014.

[15] T. Hoefler, T. Schneider, and A. Lumsdaine. LogGOPSim: Simulating Large-
scale Applications in the LogGOPS Model. In Proc. of the 19th ACM Int.
Symp. on High Performance Distributed Computing, 2010.

[16] G. Inozemtsev and A. Afsahi. Designing an Offloaded Nonblocking
MPI Allgather Collective Using CORE-Direct. In 2012 IEEE International
Conference on Cluster Computing, 2012.

[17] P. Jolivet, F. Hecht, F. Nataf, and C. Prud’homme. Scalable domain decom-
position preconditioners for heterogeneous elliptic problems. In Proc. of the
2013 ACM/IEEE Conf. on Supercomputing, 2013.

[18] K. Kandalla, H. Subramoni, J. Vienne, S. Raikar, K. Tomko, S. Sur, and
D. Panda. Designing Non-blocking Broadcast with Collective Offload on
InfiniBand Clusters: A Case Study with HPL. In 19th IEEE Symp. on High-
Performance Interconnects, 2011.

[19] C. Leiserson. Fat-trees: universal networks for hardware-efficient supercom-
puting. IEEE Transactions on Computers, 100(10), 1985.

[20] D. Roweth and A. Pittman. Optimised Global Reduction on QsNet-II. In 13th
IEEE Symp. on High-Performance Interconnects, 2005.

[21] Z. Ryne and S. Seidel. Ideas and specifications for the new one-sided
collective operations in UPC, 2005.

[22] T. Schneider, T. Hoefler, R. Grant, B. Barrett, and R. Brightwell. Protocols
for fully offloaded collective operations on accelerated network adapters. In
42nd Int. Conf. on Parallel Processing, 2013.

[23] H. Subramoni, K. Kandalla, S. Sur, and D. Panda. Design and evaluation of
generalized collective communication primitives with overlap using connectx-
2 offload engine. In 18th IEEE Symp. on High-Performance Interconnects,
2010.

[24] H. Sundar, G. Biros, C. Burstedde, J. Rudi, O. Ghattas, and G. Stadler.
Parallel geometric-algebraic multigrid on unstructured forests of octrees. In
Proc. of the 2012 ACM/IEEE Conf. on Supercomputing, 2012.

[25] S. R. W. Timothy G. Mattson, David Scott. A TeraFLOPS Supercomputer in
1996: The ASCI TFLOP System. In Proc. of the 1996 Int. Parallel Processing
Symp., 1996.

[26] K. Underwood, J. Coffman, R. Larsen, S. Hemmert, B. Barrett, R. Brightwell,
and M. Levenhagen. Enabling flexible collective communication offload with
triggered operations. In 19th IEEE Symp. on High-Performance Intercon-
nects, 2011.

[27] W. Yu, D. Buntinas, and D. K. Panda. High-Performance and Reliable NIC-
Based Multicast over Myrinet/GM-2. In 32nd Int. Conf. on Parallel Proc., 2003.

[28] W. Yu, D. Buntinas, and D. K. Panda. Scalable and High-Performance NIC-
Based Allgather over Myrinet/GM. IEEE Cluster Computing, 2004.

