
spcl.inf.ethz.ch

@spcl_eth

T. HOEFLER

WITH A. BARAK, Z. DREZNER, A. SHILOH, M. SNIR, B. GROPP, M. BESTA, S. DI GIROLAMO, K. TARANOV, G. KWASNIEWSKI, D. DE SENSI, T. SCHNEIDER, AND SPCL MEMBERS

High-performance distributed memory systems - from supercomputers to data centers
Keynote at International Symposium on DIStributed Computing (DISC), Oct. 2020

spcl.inf.ethz.ch

@spcl_eth

2

The Message Passing Interface – Communicating Processes

Process 0

Process 1

Process 2 Process 4

Process 3

spcl.inf.ethz.ch

@spcl_eth

3

The Message Passing Interface – Communicating cDAGs

Process 0

Process 1

Process 2 Process 4

Process 3

spcl.inf.ethz.ch

@spcl_eth

4

The Message Passing Interface – Distributed/Cut cDAGs

Process 0

Process 1

Process 2 Process 4

Process 3

spcl.inf.ethz.ch

@spcl_eth

One step back – how to conquer the complexity of cDAGs?
start

end

Depth: 𝑫 = 𝑻∞

Parallel efficiency: 𝑬𝒑 =
𝑻𝟏

𝒑𝑻𝒑

Work: 𝑾 = 𝑻𝟏

5

Treewidth: usually small (2 for series parallel graphs)

The generating program has an O(1) description

spcl.inf.ethz.ch

@spcl_eth

Side note: Analyzing cDAGs generated by programs – hard but doable!

6

for (j = 1; j <= n; j = j*2)

for (k = j; k <= n; k = k++)

operation(x,y)

Affine loop model

𝑘 ∈ [𝑗, 𝑛]𝑗 ∈ [1, 𝑛]

𝑵 = 𝒏 + 𝟏 𝐥𝐨𝐠𝟐 𝒏 − 𝒏 + 𝟐

Automatic work-depth analysis for
MPI (and other) programs!

TH, Grzegorz Kwasniewski: Automatic Complexity Analysis of Explicitly Parallel Programs, SPAA’14

spcl.inf.ethz.ch

@spcl_eth

7

Process 0 Process 1

Process 2

Process 3

Process 4

UIUC/NCSA Blue Waters in 2012
Total TCO ~$500M

49,000 AMD Bulldozer CPUs – 0.5 EB storage

Where do these processes go?

Understand supercomputer network architecture!

spcl.inf.ethz.ch

@spcl_eth

A BRIEF HISTORY OF NETWORK TOPOLOGIES

Mesh

Torus

Butterfly

Clos/Benes

Kautz

Dragonfly Slim Fly

Hypercube

Trees

Fat Trees
Flat Fly

Random

1980’s 2000’s ~2005

copper cables, small radix switches fiber, high-radix switches

2007

2008

2008

2014

????

8

spcl.inf.ethz.ch

@spcl_eth

A BRIEF HISTORY OF NETWORK TOPOLOGIES

Mesh

Torus

Butterfly

Clos/Benes

Kautz

Dragonfly Slim Fly

Hypercube

Trees

Fat Trees
Flat Fly

Random

1980’s 2000’s ~2005

copper cables, small radix switches fiber, high-radix switches

2007

2008

2008

2014

????

9

spcl.inf.ethz.ch

@spcl_eth

A BRIEF HISTORY OF NETWORK TOPOLOGIES

Mesh

Torus

Butterfly

Clos/Benes

Kautz

Dragonfly Slim Fly

Hypercube

Trees

Fat Trees
Flat Fly

Random

1980’s 2000’s ~2005

copper cables, small radix switches fiber, high-radix switches

2007

2008

2008

2014

????

10

spcl.inf.ethz.ch

@spcl_eth

Mesh

Torus

Butterfly

Clos/Benes

Kautz

Dragonfly Slim Fly

Hypercube

Trees

Fat Trees
Flat Fly

Random

1980’s 2000’s ~2005

copper cables, small radix switches fiber, high-radix switches

2007

2008

2008

2014

????

A BRIEF HISTORY OF NETWORK TOPOLOGIES

11

spcl.inf.ethz.ch

@spcl_eth

A BRIEF HISTORY OF NETWORK TOPOLOGIES

Mesh

Torus

Butterfly

Clos/Benes

Kautz

Dragonfly Slim Fly

Hypercube

Trees

Fat Trees
Flat Fly

Random

1980’s 2000’s ~2005

copper cables, small radix switches fiber, high-radix switches

2007

2008

2008

2014

????

Key insight:

“It’s the diameter, stupid”

Lower diameter:
→ Fewer cables traversed
→ Fewer cables needed
→ Fewer routers needed

Cost and energy savings:
→ Up to 50% over Fat Tree
→ Up to 33% over Dragonfly

12Maciej Besta, TH: Slim Fly: A Cost Effective Low-Diameter Network Topology, ACM/IEEE SC14 Best Student Paper

spcl.inf.ethz.ch

@spcl_eth

A BRIEF HISTORY OF NETWORK TOPOLOGIES

Mesh

Torus

Butterfly

Clos/Benes

Kautz

Dragonfly Slim Fly

Hypercube

Trees

Fat Trees
Flat Fly

Random

1980’s 2000’s ~2005

copper cables, small radix switches fiber, high-radix switches

2007

2008

2008

2014

????

Maciej Besta, TH: Slim Fly: A Cost Effective Low-Diameter Network Topology, ACM/IEEE SC14 Best Student Paper

spcl.inf.ethz.ch

@spcl_eth

14

Back to MPI processes – mapping them to nodes!
MPI programs cannot learn about the topology! They specify their communication topology instead and let the library map.

map to

Number of edges
traversed from 𝑢 to 𝑣

Measure of
communication work!

Γ1

Γ2
Load of edge in Γ divided

by capacity of edge

Lower bound to the time
of communication!

Topology mapping is NP hard

TH and Marc Snir: Generic Topology Mapping Strategies for Large-scale Parallel Architectures , ACM ICS’11

spcl.inf.ethz.ch

@spcl_eth

15

A new topology mapping heuristic – minimize bandwidth of both graphs

Application Graph (SpMV) Network Graph (8x8x8 torus)

TH and Marc Snir: Generic Topology Mapping Strategies for Large-scale Parallel Architectures , ACM ICS’11

𝜋1 𝜋2

spcl.inf.ethz.ch

@spcl_eth

16

A new topology mapping heuristic – minimize bandwidth of both graphs
3D Torus Real execution on a BlueGene/P

(512 nodes, 3D Torus)

TH and Marc Snir: Generic Topology Mapping Strategies for Large-scale Parallel Architectures , ACM ICS’11

Still a lot to be explored – e.g., parametric graphs!

spcl.inf.ethz.ch

@spcl_eth

17

Assume processes are mapped nicely – structured communication

Process 0 Process 1

Process 2

Process 3

Process 4

The generating program has an O(1) description → it has a lot of structure!

Bulk synchronous (single global state) thinking model works great for humans like me.
Communications there can often be described algorithmically as collective operations – MPI does so!

MPI_Allgather MPI_Allgatherv MPI_Allreduce MPI_Alltoall MPI_Alltoallv
MPI_Alltoallw MPI_Barrier MPI_Bcast MPI_Gather MPI_Gatherv
MPI_Reduce MPI_Scatter MPI_Scatterv MPI_Exscan MPI_Reduce_local
MPI_Reduce_scatter MPI_Scan MPI_Neighbor_allgather MPI_Neighbor_alltoall

MPI_Bcast

TH, D. Moor: Energy, Memory, and Runtime Tradeoffs for Implementing Collective Communication Operations

spcl.inf.ethz.ch

@spcl_eth

18

LogP – an accurate network model!

[1]: TH, T. Schneider and A. Lumsdaine: LogGOPSim - Simulating Large-Scale Applications in the LogGOPS Model, LSAP 2010, https://spcl.inf.ethz.ch/Research/Performance/LogGOPSim/
[2]: TH, T. Mehlan, A. Lumsdaine and W. Rehm: Netgauge: A Network Performance Measurement Framework, HPCC 2007, https://spcl.inf.ethz.ch/Research/Performance/Netgauge/

The LogP model family and the LogGOPS model [1]

Finding LogGOPS parameters

Netgauge [2], model from first principles, fit to data using
special
kernels

Large scale LogGOPS Simulation

LogGOPSim [1], simulates LogGOPS with 10
million MPI ranks

<5% error

Source

Dest.

o

o o

o
L L

Ping-pong in simplified LogP (g<o, P=2)

https://spcl.inf.ethz.ch/Research/Performance/LogGOPSim/
https://spcl.inf.ethz.ch/Research/Performance/Netgauge/

spcl.inf.ethz.ch

@spcl_eth

19

Designing an optimal small-message broadcast algorithm in LogP

0 4

L=2, o=1, P=7

8 12

0

4 5

8

16 20

9

24

9 10

4

8

6

9 9

5 6 7

8

8

0

5

Binary Tree Binomial Tree

0

4

Fibonacci Tree

o

o o

oL L

40%

TH, D. Moor: Energy, Memory, and Runtime Tradeoffs for Implementing Collective Communication Operations, JSFI 2015

spcl.inf.ethz.ch

@spcl_eth

▪ Things will fail!

▪ Wang et al., 2010: “Peta-scale systems: MTBF 1.25 hours”

▪ Brightwell et al., 2011: “Next generation systems must be
designed to handle failures without interrupting the
workloads on the system or crippling the efficiency of the
resource.”

Checkpoint/restart will take longer than MTBF!

▪ We need to enable applications to survive faults

▪ … to reach Petascale Exascale!

▪ Like people did for decades in distributed systems!
20

What happens if processes/nodes fail?

Process 0 Process 1

Process 2

Process 3

Process 4

Ferreira et al.: Evaluating the Viability of Process Replication Reliability for Exascale Systems, SC11

spcl.inf.ethz.ch

@spcl_eth

▪ Gossip?

▪ If root or message received: send to random other node until some global time expires

▪ Proven to be very effective

▪ Not strongly consistent

▪ Nice theory

needs 1.64 log2 n rounds to reach all w.h.p.

▪ But for N=1000

17 rounds only color all nodes 95% of the time

▪ Very problematic for BSP-style applications

21

A fast, low-work, fault-tolerant broadcast

0 1 2 3 n-2 n-1…

0 1 2 3 n-2 n-1…

0 1 2 3 n-2 n-1

21 3 n-2 n-1

Where’s my
bcast?

21 3 n-2 n-1

…

…

…
What’s up

with rank 0?

MPI_Bcast

MPI_Bcast

Compute

MPI_Reduce

Hoefler et al.: “Corrected Gossip Algorithms for Fast Reliable Broadcast on Unreliable Systems”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

▪ Uses a dynamic tree, each message contains information about children at next levels

▪ Children propagate back to root, relying on local failure-detectors

▪ Complex tree rebuild protocol

▪ Root failure results in bcast never delivered

▪ At least 2 log2 n depth!

22

But how does MPI (FT-MPICH) work then? Buntinas’ FT broadcast!

0

1 2

3 4 5 6

Hoefler et al.: “Corrected Gossip Algorithms for Fast Reliable Broadcast on Unreliable Systems”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

▪ Use fixed graph, send along redundant edges

▪ Binomial graphs: each node sends to and receives from log2 n neighbors

▪ Can survive up to log2 n worst-case node failures

▪ In practice much more (not worst-case)

23

But how does MPI (FT-OpenMPI) work then? Binomial graph broadcast!

6

57

4

3

2

1

0

TH, Amnon Barak, A. Shiloh and Z. Drezner: “Corrected Gossip Algorithms for Fast Reliable Broadcast on Unreliable Systems”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

Both are far from optimal - from trees to gossip and back!

▪ The power of randomness: gossip but not just gossip!

▪ Combine the probabilistic gossip protocol with a deterministic correction protocol

▪ But what is a fault-tolerant broadcast? Root failures, arbitrary failures?

▪ Assuming fail-stop, four criteria need to be fulfilled:

1. Integrity (all received messages have been sent)

2. No duplicates (each sent message is received only once)

3. Nonfaulty liveness (messages from a live node are received by all live nodes)

4. Faulty liveness (messages sent from a failed node are either received by all or none live nodes)

▪ We relax 3+4 a bit: three levels of consistency

1. Not consistent (we provide an improvement over normal gossiping)

2. Nearly consistent (assuming no nodes fail during the correction phase, practical assumption)

3. Fully consistent (any failures allowed)

24

Corrected gossip turns Monte Carlo style gossiping algorithms into Las Vegas style deterministic algorithms!

TH, Amnon Barak, A. Shiloh and Z. Drezner: “Corrected Gossip Algorithms for Fast Reliable Broadcast on Unreliable Systems”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

▪ Not consistent, works w.h.p. --- let’s first consider just gossiping

25

First algorithm: OCG (Opportunistic Corrected Gossip)

6

57

4

3

2

1

0

Are all these redundant
messages efficient?

TH, Amnon Barak, A. Shiloh and Z. Drezner: “Corrected Gossip Algorithms for Fast Reliable Broadcast on Unreliable Systems”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

26

First algorithm: OCG (Opportunistic Corrected Gossip)

Number of reached nodes

Optimal deterministic
Fibonacci tree

TH, Amnon Barak, A. Shiloh and Z. Drezner: “Corrected Gossip Algorithms for Fast Reliable Broadcast on Unreliable Systems”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

▪ OCG main idea: run gossip for a while and then switch to a deterministic ring-correction protocol

▪ Every node that received a message sends it to (rank + 1) % nranks

▪ Each message may be received twice

▪ But this depends on when we switch! But what is the longest uncolored chain?
27

First algorithm: OCG (Opportunistic Corrected Gossip)

6

57

4

3

2

1

0

TH, Amnon Barak, A. Shiloh and Z. Drezner: “Corrected Gossip Algorithms for Fast Reliable Broadcast on Unreliable Systems”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

28

The longest uncolored chain K!

99% probable
longest uncolored

chain

TH, Amnon Barak, A. Shiloh and Z. Drezner: “Corrected Gossip Algorithms for Fast Reliable Broadcast on Unreliable Systems”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

▪ When to switch from gossip to correction?

▪ Well, when the expected number of correction steps is small and gossip is inefficient

▪ We can bound the probability of a longest chain of length k

▪ In terms of the LogP parameters, T (gossip time), and N (nranks)

29

First algorithm: OCG (Opportunistic Corrected Gossip)

The optimal time
to switch

depends on L, O,
and N

TH, Amnon Barak, A. Shiloh and Z. Drezner: “Corrected Gossip Algorithms for Fast Reliable Broadcast on Unreliable Systems”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

▪ OCG is more efficient than gossip but does not guarantee that all nodes are reached (even w/o failures)

▪ So we need to check that they were actually reached!

30

OCG Consistency

6

57

4

3

2

1

0

Where’s my
bcast?

TH, Amnon Barak, A. Shiloh and Z. Drezner: “Corrected Gossip Algorithms for Fast Reliable Broadcast on Unreliable Systems”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

▪ CCG sends to the next node until it sent to a node it received from (i.e., knows that node was alive!)

▪ Since the node it received from also sent, it “knows” that all other nodes have been covered!

▪ CCG guarantees that all nodes are reached unless a node dies in the middle of the correction phase!

▪ And another node assumes it finished its job!

31

Second algorithm: CCG (Checked Corrected Gossip)

6

57

4

3

2

1

0

TH, Amnon Barak, A. Shiloh and Z. Drezner: “Corrected Gossip Algorithms for Fast Reliable Broadcast on Unreliable Systems”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

▪ When to switch from gossip to correction?

▪ A bit later than OCG

32

Second algorithm: CCG (Checked Corrected Gossip)

TH, Amnon Barak, A. Shiloh and Z. Drezner: “Corrected Gossip Algorithms for Fast Reliable Broadcast on Unreliable Systems”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

▪ FCG can protect from f failures – similar to CCG but instead of aborting to send when heard from one, it
waits to hear from f+1 other nodes!

▪ So any f nodes can fail and it will still succeed (keep sending)

▪ Wait, what if there are less than f+1 nodes reached during gossip and they somehow die in the middle of
the protocol?

▪ So we need to involve the non-gossip-colored nodes

▪ They will wait to hear from a gossip-colored nodes to exit

▪ If no such exit signal comes within a timeout period, panic!

▪ In panic mode, send to every other node

▪ Every node that receives panic messages also panics

▪ This guarantees consistency (at a high cost)

▪ Panic mode is extremely unlikely in practice (much less likely than the failing of binomial graphs)

▪ Likelihood can be reduced arbitrarily with gossiping time!

▪ So panic is just a theoretical concern (to proof correctness)

33

Third algorithm: FCG (Failure-proof Corrected Gossip)

TH, Amnon Barak, A. Shiloh and Z. Drezner: “Corrected Gossip Algorithms for Fast Reliable Broadcast on Unreliable Systems”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

▪ TiTech machine, published failure logs

▪ Node MTBF = 18,304 hours

▪ Assume 12 hour run on 4,096 nodes = 2.69 failures

▪ We compare all algorithms and report

1. Expected latency

2. Expected work

3. Expected inconsistency

For CCG/OCG/FCG, we simulate until the

nonparameric CI was within 2% of the median

34

Case study: TSUBAME 2.0

Buntinas’ Tree

Binomial Graphs

Gossip

TH, Amnon Barak, A. Shiloh and Z. Drezner: “Corrected Gossip Algorithms for Fast Reliable Broadcast on Unreliable Systems”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

35

Scaling – Without failures

TH, Amnon Barak, A. Shiloh and Z. Drezner: “Corrected Gossip Algorithms for Fast Reliable Broadcast on Unreliable Systems”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

36

Scaling – With failures (expected for 12 hours on TSUBAME 2.0)

TH, Amnon Barak, A. Shiloh and Z. Drezner: “Corrected Gossip Algorithms for Fast Reliable Broadcast on Unreliable Systems”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

37

How to get to optimal? Corrected (optimal) trees!

2

1

3

0

10

9

5

4

6

7

11 12

13

14

158

1095

4

6

7 11

12

13 14

15

8

0

3

1 2

A single ring correction step reaches all nodes now! Generalizes to k steps with k failures. Tree numbering is key!

Martin Kuettler, Maksym Planeta, Jan Bierbaum, Carsten Weinhold, Hermann Haertig, Amnon Barak, TH: Corrected Trees for Reliable Group Communication, PPoPP’19

Piz Daint at CSCS

spcl.inf.ethz.ch

@spcl_eth

38

The future (present) of computing – mega datacenters – economy of scale

The village of Ballangen, 2,600 people
north of the polar circle, Norway

Kolos datacenter
(mostly in a mine – 0.6 million 𝒎𝟐)

1 GW renewable energy by 2027
access to fjord water and cold climate

spcl.inf.ethz.ch

@spcl_eth

39

“The network is the Computer” John Gage, Sun Microsystems, 1984

“Datacenters are not supercomputers yet, but eventually they will be.” (me, now)

- Fast and cheap
- Performance first, productivity second
- Accelerated, specialized
- Large-scale distributed memory
- Fault tolerance – mostly checkpoint/restart

- Cheap with reasonable performance
- Productivity first, performance second
- Specialized for cost reasons
- Sea of nodes, connectivity growing stronger
- No data may ever be lost!

RDMA will unify the two:
- Affordable fast networking and distributed memory
- Fast accelerated networking (GPU, network acceleration)

New research opportunities – RDMA networking offering RMA programming
(actually, we are moving post-RDMA with Smart NICs/sPIN – but no time to discuss that now)
(cf. Next Platform: “Vertical integration is eating the datacenter, part two”, Feb. 2020)

spcl.inf.ethz.ch

@spcl_eth

40

Basics on R(D)MA memory models

Non-sequentially consistent behavior!

Axiomatic
Semantics

Dan et al.: “Modeling and Analysis of Remote Memory Access Programming ”, OOPSLA’16 outstanding paper

spcl.inf.ethz.ch

@spcl_eth

41

Direct Access REplication (DARE) – and RDMA consensus protocol

Leader-based replicated state machine – standard leader election (using RDMA as transport)

Poke, Hoefler: “ DARE: High-Performance State Machine Replication on RDMA Networks”, HPDC’15

spcl.inf.ethz.ch

@spcl_eth

42

Direct Access REplication (DARE) – RDMA consensus protocol

Log access via RDMA to remote servers, control and reconfiguration via direct RDMA accesses!

Poke, Hoefler: “ DARE: High-Performance State Machine Replication on RDMA Networks”, HPDC’15

spcl.inf.ethz.ch

@spcl_eth

43

Direct Access REplication (DARE) – performance

Poke, Hoefler: “ DARE: High-Performance State Machine Replication on RDMA Networks”, HPDC’15

spcl.inf.ethz.ch

@spcl_eth

44

RDMA join for distributed databases - algorithms

Distributed Direct-Access Radix Join Distributed Direct-Access Sort-Merge Join

Barthels et al.: “Distributed Join Algorithms on Thousands of Cores”, VLDB’17

spcl.inf.ethz.ch

@spcl_eth

45

RDMA join for distributed databases - performance

Scaling joins to thousands of cores with
billions of tuples/s throughput

Detailed performance breakdown
network eventually limits performance

Barthels et al.: “Distributed Join Algorithms on Thousands of Cores”, VLDB’17

spcl.inf.ethz.ch

@spcl_eth

Each lock has its own
distributed MCS queue

(DQ) of writers

MCS queues
form a

distributed
tree (DT)

Readers and writers
synchronize with a

distributed counter (DC)

W3 W5 W8

Modular
design

W8W7W3 W5 W6W2W1 W4

W1

2 2 3 2

...

W8W3

R9R2

R1

R4
R3 R7 R9R2

R1
R6

R5
R8

Large-scale RDMA Reader-Writer locking

Schmid et al.: “High-Performance Distributed RMA Locks”, HPDC’16, Karsten Schwan Best Paper Award

spcl.inf.ethz.ch

@spcl_eth

DC: every kth compute node
hosts a partial counter, all of

which constitute the DC.

𝑘 = 𝑇𝐷𝐶

R4
R3 R7 R9R2

R1

R6

R5
R8

0|9|7 0|8|5 0|5|30|3|1

b|x|yA writer holds
the lock

Readers that
arrived at the CS

Readers that left
the CS𝑇𝐷𝐶 = 1

𝑇𝐷𝐶 = 2

0|12|8 0|13|8

Large-scale RDMA Reader-Writer locking

Schmid et al.: “High-Performance Distributed RMA Locks”, HPDC’16, Karsten Schwan Best Paper Award

spcl.inf.ethz.ch

@spcl_eth

𝑇𝐷𝐶

𝑇𝑅

Higher throughput of writers vs readers

𝑇𝐿,𝑖

Lo
ca

lit
y

vs
 f

ai
rn

e
ss

(f
o

r
w

ri
te

rs
)

Design ADesign B

RDMA lock design space

How many nodes
share a counter?

Maximum number of lock
passings within a group in level i

before passing to next group

Maximum number of
consecutive lock

passings between
readers

Schmid et al.: “High-Performance Distributed RMA Locks”, HPDC’16, Karsten Schwan Best Paper Award

spcl.inf.ethz.ch

@spcl_eth

49

Fast RDMA two-phase (database) locking - algorithms

Barthels et al.: “Strong consistency is not hard to get: TwoPhase Locking and TwoPhase Commit on Thousands of Cores”, VLDB’19

spcl.inf.ethz.ch

@spcl_eth

50

Fast RDMA two-phase (database) locking - performance

Lock requests per second on 2048 warehouses TPC-C

38 M transactions
per second

Latency sensitivity

Barthels et al.: “Strong consistency is not hard to get: TwoPhase Locking and TwoPhase Commit on Thousands of Cores”, VLDB’19

spcl.inf.ethz.ch

@spcl_eth

51

What if we could work with the cDAG abstraction directly?

spcl.inf.ethz.ch

@spcl_eth

52

The path ahead – use cDAGs directly!

aCe

𝜕𝑢

𝜕𝑡
− 𝛼𝛻2𝑢 = 0

Domain-Specific Language Stateful (parametric) Dataflow
Graphs

compile execute

Multi-core CPUs GPUs FPGA/RTL

spcl.inf.ethz.ch

@spcl_eth

53

SPCL is hiring PhD students and highly-qualified postdocs to reach new heights!

https://spcl.inf.ethz.ch/Jobs/

