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What is Deep Learning good for?

2012 20171989

Digit Recognition Image CaptioningObject Classification

Segmentation

2013 2014 2016

Gameplay AI
Translation

Neural Computers

number of papers per year

…

A very active area of research!

23 papers per day!
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How does Deep Learning work?
Canziani et al. 2017
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0.54

0.28

0.02

0.07

0.33

0.04

0.02

Cat

Dog

Airplane

Truck

Horse

Bicycle

f(x)

layer-wise weight update

▪ ImageNet (1k): 180 GB 

▪ ImageNet (22k): A few TB

▪ Industry: Much larger

▪ 100-200 layers deep

▪ ~100M-2B  parameters

▪ 0.1-8 GiB parameter storage

▪ 10-22k labels

▪ growing (e.g., face recognition)

▪ weeks to train
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Deep Learning is Supercomputing!
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A brief theory of supervised deep learning
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labeled samples 𝑥 ∈ 𝑋 ⊂ 𝒟

𝑓 𝑥 : 𝑋 → 𝑌

label domain 𝑌

network structure
(fixed)

weights 𝑤
(learned)

𝑤∗ = argmin𝑤∈ℝ𝑑 𝔼𝑥~𝒟 ℓ 𝑤, 𝑥

true label 𝑙(𝑥)

ℓ0−1 𝑤, 𝑥 = ቊ
0 𝑓 𝑥 = 𝑙(𝑥)

1 𝑓 𝑥 ≠ 𝑙(𝑥)
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𝑓(𝑥)

layer-wise weight update

𝑓 𝑥 = 𝑓𝑛 𝑓𝑛−1 𝑓𝑛−2 …𝑓1 𝑥 …
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𝑓1 𝑥 𝑓2 𝑓1 𝑥 𝑓(𝑥)…

ℓ𝑐𝑒 𝑤, 𝑥 = −෍

𝑖

𝑙 𝑥 𝑖 ⋅ log
𝑒𝑓 𝑥 𝑖

σ𝑘 𝑒
𝑓 𝑥 𝑘

ℓ𝑠𝑞 𝑤, 𝑥 = 𝑓 𝑥 − 𝑙 𝑥
2
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Stochastic Gradient Descent

convolution 1

convolution 2

𝑓1(𝑥)

𝑓2 𝑓1 𝑥

▪ Layer storage = 𝑤𝑙 + 𝑓𝑙 𝑜𝑙−1 + 𝛻𝑤𝑙 + 𝛻𝑜𝑙

𝑤∗ = argmin𝑤∈ℝ𝑑 𝔼𝑥~𝒟 ℓ 𝑤, 𝑥

convolution 3

pooling

fully connected𝑓(𝑥)

…

T. Ben-Nun, T. Hoefler: Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis, arXiv Feb 2018
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Trends in deep learning: hardware and multi-node

The field is moving fast – trying everything imaginable – survey results from 227 papers in the area of parallel deep learning

Hardware used Shared vs. distributed memory

Deep Learning is largely on distributed memory today!

T. Ben-Nun, T. Hoefler: Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis, arXiv Feb 2018
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Trends in distributed deep learning: node count and communication

Deep Learning research is converging to MPI!

The field is moving fast – trying everything imaginable – survey results from 227 papers in the area of parallel deep learning

T. Ben-Nun, T. Hoefler: Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis, arXiv Feb 2018

Communication mode
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E. Chan et al.: Collective communication: theory, practice, and experience. CCPE’07
TH, D. Moor: Energy, Memory, and Runtime Tradeoffs for Implementing Collective Communication Operations, JSFI’14

8

A primer of relevant parallelism     and communication theory

…
Work W = 39 Depth D = 7

Average parallelism = 
𝑊

𝐷

Parallel Reductions for Parameter Updates

Tree

𝑇 = 2𝐿 log2 𝑃 +
2𝛾𝑚𝐺 log2 𝑃

𝑇 = 𝐿 log2 𝑃 +
𝛾𝑚𝐺 log2 𝑃

Butterfly Pipeline

𝑇 = 2𝐿(𝑃 − 1) +
2𝛾𝑚𝐺(𝑃 − 1)/𝑃

𝑇 = 2𝐿 log2𝑃 +
2𝛾𝑚𝐺(𝑃 − 1)/𝑃

RedScat+Gat

Small vectors Large vectors

Lower bound: 𝑇 ≥ 𝐿 log2 𝑃 + 2𝛾𝑚𝐺 𝑃 − 1 /𝑃
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▪ Individual operators

▪ Network parallelism

▪ Optimization algorithm

▪ Distributed training

9

Parallelism in Deep Learning

Operators Training

Agent

AgentAgent

Agent

Param. Server

Networks
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𝑓𝑙 𝑥
𝛻𝑤
𝛻𝑜𝑙

𝑓𝑙 𝑥
𝛻𝑤
𝛻𝑜𝑙

𝑓𝑙 𝑥
𝛻𝑤
𝛻𝑜𝑙

𝑓𝑙 𝑥
𝛻𝑤
𝛻𝑜𝑙

𝑓𝑙 𝑥
𝛻𝑤
𝛻𝑜𝑙
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Parallelism in the different layer types

4 1 9 8
5 9 9 8
0 7 3 4
2 6 3 1

1 -1 0

0.1 -2 0

3 4 1.1*

21.9 59.3 53.9 43.9

-6.3 16.8 12.3 12

9.6 15.3 25.8 14

0.4 7.1 52.1 53.1

=

21.9 59.3 53.9 43.9

-6.3 16.8 12.3 12

9.6 15.3 25.8 14

0.4 7.1 52.1 53.1

59.3 53.9

15.3 53.1

W is linear and D logarithmic – large average parallelism

T. Ben-Nun, T. Hoefler: Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis, arXiv Feb 2018
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Indirect
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Example: Options for computing convolutional layers

Direct

𝑤 ℱ

ℱ

ℱ−1

=

×
ෝ𝑤

FFT
4 1 9 8

5 9 9 8

0 7 3 4

2 6 3 1

1 -1 0

0.1 -2 0

3 4 1.1
*

21.9 59.3 53.9 43.9

-6.3 16.8 12.3 12

9.6 15.3 25.8 14

0.4 7.1 52.1 53.1

=
Winograd

X. Liu et al.: Efficient Sparse-Winograd
Convolutional Neural Networks, ICLR’17 Workshop

S. Chetlur et al.: cuDNN: Efficient Primitives for Deep Learning, arXiv 2014

Direct

im2col

K. Chellapilla et al.: High Performance Convolutional Neural Networks for Document Processing, Int’l Workshop on Frontiers in Handwriting Recognition 2016
M. Mathieu et al.: Fast Training of Convolutional Networks through FFTs, ICLR’14
A. Lavin and S. Gray: Fast Algorithms for Convolutional Neural Networks, CVPR’16
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Minibatch Stochastic Gradient Descent (SGD)
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T. Ben-Nun, T. Hoefler: Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis, arXiv Feb 2018
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▪ In cuDNN there are ~16 convolution implementations

▪ Performance depends on temporary memory (workspace) size

▪ Key idea: segment minibatch into microbatches, reuse 
workspace, use different algorithms

▪ How to choose microbatch sizes and algorithms?

13Yosuke Oyama, Tal Ben-Nun, TH and Satoshi Matsuoka: µ-cuDNN: Accelerating Deep Learning Frameworks with Micro-Batching, Cluster 2018

Dynamic Programming (Space Reuse)

Integer Linear Programming (Space Sharing)

Microbatching (µ-cuDNN) – how to implement layers best in practice?

Fast (up to 4.54x faster on DeepBench)
Microbatching Strategy

none (undivided)

powers-of-two only

any (unrestricted)
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▪ Parameters can be distributed across processors

▪ Mini-batch has to be copied to all processors

▪ Backpropagation requires all-to-all communication every layer

14

Model parallelism – limited by network size

… 1

3

U.A. Muller and A. Gunzinger: Neural Net Simulation on Parallel Computers, IEEE Int’l Conf. on Neural Networks 1994
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Pipeline parallelism – limited by network size

▪ Layers/parameters can be distributed across processors

▪ Sparse communication pattern (only pipeline stages)

▪ Mini-batch has to be copied through all processors

G. Blelloch and C.R. Rosenberg: Network Learning on the Connection Machine, IJCAI’87

…
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Data parallelism – limited by batch-size

▪ Simple and efficient solution, easy to implement

▪ Duplicate parameters at all processors

…
…

…

X. Zhang et al.: An Efficient Implementation of the Back-propagation Algorithm on the Connection Machine CM-2, NIPS’89



spcl.inf.ethz.ch

@spcl_eth

17

Hybrid parallelism

A. Krizhevsky: One weird trick for parallelizing convolutional neural networks, arXiv 2014
J. Dean et al.: Large scale distributed deep networks, NIPS’12.
T. Ben-Nun, T. Hoefler: Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis, arXiv Feb 2018

▪ Layers/parameters can be distributed across processors

▪ Can distribute minibatch

▪ Often specific to layer-types (e.g., distribute fc layers but handle conv layers data-parallel)

▪ Enables arbitrary combinations of data, model, and pipeline parallelism – very powerful!

Model
Parallelism

Data
Parallelism

Layer (pipeline) Parallelism

…
…

…
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Updating parameters in distributed data parallelism

C
en

tral

Decentral

parameter server (sharded) 𝑤’ = 𝑢(𝑤, 𝛻𝑤)

𝑤𝛻𝑤

Training Agent Training Agent Training Agent Training Agent

Training Agent Training Agent Training Agent Training Agent

collective allreduce of 𝒘

𝑇 = 2𝐿 log2 𝑃 +
2𝛾𝑚𝐺(𝑃 − 1)/𝑃

𝑇 = 2𝐿 + 2𝑃 𝛾𝑚/𝑠 𝐺 - Collective operations
- Topologies
- Neighborhood collectives
- RMA?

Hierarchical Parameter Server
S. Gupta et al.: Model Accuracy and 

Runtime Tradeoff in Distributed Deep 
Learning: A Systematic

Study. ICDM’16

Adaptive Minibatch Size
S. L. Smith et al.: Don't Decay the 

Learning Rate, Increase the Batch Size, 
arXiv 2017
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▪ Started with Hogwild! [Niu et al. 2011] – shared memory, by chance

▪ DistBelief [Dean et al. 2012] moved the idea to distributed

▪ Trades off “statistical performance” for “hardware performance”

19

Parameter (and Model) consistency - centralized 
parameter server (sharded) 𝑤’ = 𝑢(𝑤, 𝛻𝑤)

𝑤𝛻𝑤

Training Agent Training Agent Training Agent Training Agent

Synchronous Stale Synchronous / Bounded 
Asynchronous

Asynchronous

𝑤 1

𝑤 1

Time

Parameter Server

Synchronization

𝑤 2

𝑤 2

Agent 1

Agent m

. . . 

𝑤 𝑇𝑤 0 …

Sync.

Time

Parameter Server

Agent 1

Agent m

. . . 
𝑤 𝑇𝑤 0 …

𝑤 1,𝑚 𝑤 2,𝑚

𝑤 2,1𝑤 1,1 𝑤 3,1

𝑤 3,𝑚

J. Dean et al.: Large scale distributed deep networks, NIPS’12.
F. Niu et al.: Hogwild: A lock-free approach to parallelizing stochastic gradient descent, NIPS’11.

Max. Staleness

Time

Agent 1

Agent m

. . . 

𝑤 1,1

𝑤 1,𝑚 𝑤 2,𝑚

𝑤 2,1 𝑤 3,1 𝑤 4,1

Parameter Server𝑤 0 𝑤 𝑇…

Sync.

▪ Parameter exchange frequency can be controlled, while still 
attaining convergence:
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▪ Parameter exchange frequency can be controlled, while still 
attaining convergence:

▪ May also consider limited/slower distribution – gossip [Jin et al. 2016]

20

Synchronous Stale Synchronous / Bounded Asynchronous Asynchronous

Training Agent Training Agent Training Agent Training Agent

collective allreduce of 𝒘

Time

All-
Reduce

Agent 1

Agent m

. . . 

…

…

.

.

. M
er

ge

𝑤 1,1

𝑤 1,𝑚 𝑤 2,𝑚

Max. Staleness

𝑤(0) 𝑤(𝑇)

𝑤 2,1 𝑤 3,1 𝑤 4,1

All-
Reduce

𝑤 1

Time

𝑤(0) All-
Reduce

𝑤 𝑇𝑤 2

𝑤 2

Agent 1

Agent m

. . . 

𝑤 1

𝑤 𝑇

…

…

All-
Reduce

Time

Agent 1

Agent m 𝑤 1,𝑚 𝑤 2,𝑚

𝑤 2,1𝑤 1,1 𝑤 3,1

𝑤 3,𝑚

Agent r

Agent k

𝑤 1,𝑟 𝑤 2,𝑟 𝑤 3,𝑟 𝑤 4,𝑟 𝑤 5,𝑟

𝑤 1,𝑘 𝑤 2,𝑘 𝑤 3,𝑘

Peter H. Jin et al., “How to scale distributed deep learning?”, NIPS MLSystems 2016

Parameter (and Model) consistency - decentralized 
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Parameter consistency in deep learning

Inconsistent

Ensemble
Learning

Synchronous
SGD

Consistent

Stale-Synchronous
SGD

Model
Averaging

(e.g., elastic)

Asynchronous
SGD (HOGWILD!)

𝑤 𝑡+1,𝑖 = 𝑤 𝑡,𝑖 − 𝜂𝛻𝑤 𝑡,𝑖 − 𝛼 𝑤 𝑡,𝑖 − ෥𝑤𝑡

෥𝑤𝑡+1 = 1− 𝛽 ෥𝑤𝑡 +
𝛽

𝑚
෍

𝑖=1

𝑚

𝑤 𝑡,𝑖

𝑤 1,1

Time

Parameter Server

Agent 1

Agent m

. . . 

𝑤 𝑇𝑤 0 …

Sync.

𝑤 2,1 𝑤 3,1 𝑤 4,1 𝑤 5,1 𝑤 6,1

𝑤 1,𝑚 𝑤 2,𝑚 𝑤 3,𝑚 𝑤 4,𝑚 𝑤 5,𝑚 𝑤 6,𝑚

Elastic
Average

S. Zhang et al.: Deep learning with Elastic Averaging SGD, NIPS’15

Using physical forces between
different versions of 𝑤:
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Parameter consistency in deep learning

Inconsistent

Ensemble
Learning

Synchronous
SGD

Consistent

Stale-Synchronous
SGD

Model
Averaging

(e.g., elastic)

Asynchronous
SGD (HOGWILD!)

Avg.

0.54

0.28

0.02

0.07

0.33

0.04

0.02

Cat

Dog

Airplane

Truck

Horse

Bicycle

T. G. Dietterich: Ensemble Methods in Machine Learning, MCS 2000
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▪ Different options how to optimize updates

▪ Send 𝛻𝑤, receive 𝑤

▪ Send FC factors (𝑜𝑙−1, 𝑜𝑙), compute 𝛻𝑤 on parameter server

Broadcast factors to not receive full w

▪ Use lossy compression when sending, accumulate error locally!

▪ Quantization

▪ Quantize weight updates and potentially weights

▪ Main trick is stochastic rounding [1] – expectation is more accurate

Enables low precision (half, quarter) to become standard

▪ TernGrad - ternary weights [2], 1-bit SGD [3], …

▪ Sparsification

▪ Do not send small weight updates or only send top-k [4]

Accumulate omitted gradients locally

23

Communication optimizations
parameter server (sharded) 𝑤’ = 𝑢(𝑤, 𝛻𝑤)

𝑤𝛻𝑤

Training Agent Training Agent Training Agent Training Agent

[1] S. Gupta et al. Deep Learning with Limited Numerical Precision, ICML’15
[2] F. Li and B. Liu. Ternary Weight Networks, arXiv 2016
[3] F. Seide et al. 1-Bit Stochastic Gradient Descent and Application to Data-Parallel Distributed Training of Speech DNNs, In Interspeech 2014
[4] C. Renggli et al. SparCML: High-Performance Sparse Communication for Machine Learning, arXiv 2018

source: ai.intel.com
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▪ Pick the k-largest elements of the vector at each node!

▪ Accumulate the remainder locally (convergence proof, similar to async. SGD with implicit staleness bounds [1])

24

Sparsification – top-k Stochastic Gradient Descent

[1] Dan Alistarh, TH, et al.: “The Convergence of Sparsified Gradient Methods”, NIPS’18 
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SparCML – Quantified sparse allreduce for decentral updates

𝛻𝑤1 𝛻𝑤2 𝛻𝑤3 𝛻𝑤4

+ +

+ +

C. Renggli, TH et al. SparCML: High-Performance Sparse Communication for Machine Learning, arXiv 2018

Microsoft Speech Production Workload Results – 2 weeks → 2 days!

Six epochs, 60 million params
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Optimizing parallel deep learning systems is a bit like navigating Tokyo by public transit
--- at first glance impossibly complex but eventually doable with the right guidelines ---
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Deep500: An HPC Deep Learning Benchmark and Competition

500 ways to train DNNs

▪ Integrates tensorflow, pytorch, caffee2 into a single benchmarking framework

▪ Separate definition of benchmark metrics, shared across all levels

▪ Lean reference implementations – simple to understand and change

▪ Operators (layer computations)

▪ Optimizers (SGD etc.)

▪ Distribution schemes (cf. Horovod)

Similar to reference LINPACK benchmark

▪ Supports optimization of components

▪ E.g., no need to reimplement an optimizer to replace gradient compression!

Easily compare to all frameworks!
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How to not do this

“Twelve ways to fool the masses when reporting performance of deep learning workloads”
(my humorous guide to floptimize deep learning, blog post Nov. 2018)

https://htor.inf.ethz.ch/blog/index.php/2018/11/08/twelve-ways-to-fool-the-masses-when-reporting-performance-of-deep-learning-workloads/
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▪ Too obvious for this audience

▪ Was very popular in 2015!

▪ Surprisingly many (still) do this

29

1) Ignore accuracy when scaling up!

1) Ignore accuracy when scaling up!

Learning community’s 
self-correction

(Y. LeCun)

HPC picking up!

Scalability without 
a good baseline? 

(D. Bailey)

https://htor.inf.ethz.ch/blog/index.php/2018/11/08/twelve-ways-to-fool-the-masses-when-reporting-performance-of-deep-learning-workloads/
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▪ Training accuracy is sufficient isn’t it?

30

2) Do not report test accuracy!

Source: quora.com

https://htor.inf.ethz.ch/blog/index.php/2018/11/08/twelve-ways-to-fool-the-masses-when-reporting-performance-of-deep-learning-workloads/
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▪ Report the best run – SGD is a bit fragile, so don’t worry

At the end, the minutes for the final run matter most!

31

3) Do not report all training runs needed to tune hyperparameters!

flop/s!

https://htor.inf.ethz.ch/blog/index.php/2018/11/08/twelve-ways-to-fool-the-masses-when-reporting-performance-of-deep-learning-workloads/
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“Twelve ways to fool the masses when reporting performance of deep learning workloads”
(my humorous guide to floptimize deep learning, blog post Nov. 2018)

https://htor.inf.ethz.ch/blog/index.php/2018/11/08/twelve-ways-to-fool-the-masses-when-reporting-performance-of-deep-learning-workloads/

How to not do this
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▪ Deep learning is HPC – very similar computational structure, in fact very friendly

▪ Amenable to specialization, static scheduling, all established tricks - microbatching

▪ Main bottleneck is communication – reduction by trading off

▪ Very different environment from traditional HPC

▪ Trade-off accuracy for performance!

▪ Performance-centric view in HPC can be harmful for accuracy!

T. Hoefler: “Twelve ways to fool the masses when reporting performance of deep learning workloads”

(my humorous guide to floptimization in deep learning will be published this week during IPAM)

33

HPC for Deep Learning – Summary

• Bounded synchronous SGD
• Central vs. distributed parameter server
• EASGD to ensemble learning

Parameter Consistency

• Lossless compression of gradient updates
• Quantization of gradient updates
• Sparsification of gradient updates

Parameter Accuracy
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▪ In 2017, GitHub reports 1 billion git commits in 337 languages!

▪ Can DNNs understand code?

▪ Previous approaches read the code directly → suboptimal (loops, functions)

34

Turning 180-degree – Deep Learning for HPC – Neural Code Comprehension 

Ben-Nun, Jakobovits, TH: Neural Code Comprehension: A Learnable Representation of Code Semantics, NIPS 2018

C/C++ FORTRAN

Python Java

CUDA OpenCL

double thres = 5.0;

if (x < thres)
x = y * y;

else
x = 2.0 * y;

x += 1.0;

%cmp = fcmp olt double %x, 5.0

br i1 %cmp, label %LT, label %GE
LT:
%2 = fmul double %y, %y

GE:
%3 = fmul double 2.0, %y

AFTER:
%4 = phi double [%2,%LT], [%3,%GE]
%5 = fadd double %4, 1.0

. . .

%0

5.0 %cmp

%LT %GE
%2 %3

%AFTER

%y 2.0 %y

1.0

%5%3

%2
%4

%x

%x

%y

%LT

%cmp

%AFTER

%5

%4

fadd

phi

%3%2

%GE

fmul

brbr

fcmp

phi

Dataflow (basic blocks) conteXtual Flow Graph
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▪ Embedding space (using the Skip-gram model)

35

Deep Learning for HPC – Neural Code Comprehension

%x
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%LT

%cmp
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Ben-Nun, Jakobovits, TH: Neural Code Comprehension: A Learnable Representation of Code Semantics, NIPS 2018
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▪ Embedding space (using the Skip-gram model)

36

Deep Learning for HPC – Neural Code Comprehension
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▪ Full details in the survey (60 pages)

▪ Parallelism, distribution, synchronization

▪ Newest developments at NIPS’18

▪ Top-K and neural code comprehension (inst2vec)

▪ Call to action to the HPC and ML/DL 
communities to join forces!

▪ Need more joint events!

▪ Establish benchmarking discipline, SC18 BoF: 
“Deep500: An HPC Deep Learning Benchmark and 
Competition” – to be continued …
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Outlook https://www.arxiv.org/abs/1802.09941

47

https://sc18.supercomputing.org/?post_type=page&p=3479&id=bof153&sess=sess416
https://www.arxiv.org/abs/1802.09941
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T. HOEFLER

Twelve ways to fool the masses when reporting performance of deep learning 
workloads! (not to be taken too seriously)
RWTH Aachen, Jan. 2019

https://www.arxiv.org/abs/1802.09941

http://htor.inf.ethz.ch/blog/index.php/2018/11/08/twelve-ways-to-fool-the-masses-when-reporting-performance-of-deep-learning-workloads/

All images belong to the respective owners!

https://www.arxiv.org/abs/1802.09941


spcl.inf.ethz.ch

@spcl_eth

▪ Deep learning is HPC

▪ In fact, it’s probably (soon?) bigger than traditional HPC

Definitely more money …

▪ Interest in the HPC community is tremendous

▪ Number of learning papers at HPC conferences seems to be 
growing exponentially

Besides at SC18, whut!?

▪ Risk of unrealism

▪ HPC people know how to do HPC

▪ And deep learning is HPC, right?

Not quite … while it’s really similar (tensor contractions)

But it’s also quite different!
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Deep learning and HPC
Yann LeCun’s conclusion slide yesterday!
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▪ Tradeoffs between those two

▪ Very weird for HPC people – we always operated in double precision

Mostly out of fear of rounding issues 

▪ Deep learning shows how little accuracy one can get away with

▪ Well, examples are drawn randomly from some distribution we don’t know …

▪ Usually, noise is quite high …

▪ So the computation doesn’t need to be higher precision than that noise 

Pretty obvious! In fact, it’s similar in scientific computing but in tighter bounds and not as well known

▪ But we HPC folks like flop/s! Or maybe now just ops or even aiops? Whatever, fast compute!

▪ A humorous guide to floptimization

▪ Twelve rules to help present your (not so great?) results in a much better light

40

“Statistical performance” vs. “hardware performance”
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▪ Too obvious for this audience

▪ Was very popular in 2015!

▪ Surprisingly many (still) do this
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1) Ignore accuracy when scaling up!

1) Ignore accuracy when scaling up!

Learning community’s 
self-correction

(Y. LeCun)

HPC picking up!

Scalability without 
a good baseline? 

(D. Bailey)
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▪ Training accuracy is sufficient isn’t it?
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2) Do not report test accuracy!

Source: quora.com
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▪ Report the best run – SGD is a bit fragile, so don’t worry

At the end, the minutes for the final run matter most!
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3) Do not report all training runs needed to tune hyperparameters!

flop/s!
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▪ Tesla K20 in 2018!?

Even though the older machines would win the beauty contest!
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4) Compare outdated hardware with special-purpose hardware!

vs.
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▪ Run layers or communication kernels in isolation

▪ Avoids issues with accuracy completely ☺

Doesn’t that look a bit like GoogLeNet?

45

5) Show only kernels/subsets when scaling!

vs.
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▪ Reading the data? Nah, make sure it’s staged in memory when the benchmark starts!
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6) Do not consider I/O!
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▪ Yes, we’re talking ops today, 64-bit flops was so yesterday!

▪ If we don’t achieve a target fast enough, let’s redefine it!

And never talk about how many more of those ops one needs to find a solution, it’s all about the rate, op/s!

▪ Actually, my laptop achieves an “exaop”: 

▪ each of the 3e9 transistors switching a binary digit each at 2.4e9 Hz

47

7) Report highest ops numbers (whatever that means)!

vs.
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▪ Pretty cool idea isn’t it? Hyperparameters sometimes conflict

So always tune the to show the best result, whatever the result shall be!
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8) Show performance when enabling option set A and show accuracy when 
enabling option set B!
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▪ The pinnacle of floptimization! Very hard to catch!

But Dr. Catlock Holmes below can catch it.
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9) Train on (unreasonably) large inputs!

Low-resolution cat (244x244 – 1 Gflop/example)

vs.

High-resolution cat (8kx8x – 1 Tflop/example)
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▪ Train for fixed wall-time when scaling processors

▪ so when you use twice as many processors you get twice as many flop/s!

But who cares about application speedup?
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10) Run training just for the right time!
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▪ All DL is strong scaling – limited model and limited data

▪ So just redefine the terms relative to minibatches:

▪ Weak scaling keeps MB size per process constant – overall grows (less iterations per epoch, duh!)

▪ Strong scaling keeps overall MB size constant (better but harder)

▪ Microbatching is not a problem!

51

11) Minibatch sizing for fun and profit – weak vs. strong scaling.
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▪ Compare either time to solution or accuracy if both together don’t look strong!

There used to be conventions but let’s redefine them.
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12) Select carefully how to compare to the state of the art!
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Hyperparameter and Architecture search

Reinforcement Learning [1] Evolutionary Algorithms [4]

▪ Meta-optimization of hyper-parameters (momentum) and DNN architecture

▪ Using Reinforcement Learning [1] (explore/exploit different configurations)

▪ Genetic Algorithms with modified (specialized) mutations [2]

▪ Particle Swarm Optimization [3] and other meta-heuristics

[1] M. Jaderberg et al.: Population Based Training of Neural Networks, arXiv 2017
[2] E. Real et al.: Regularized Evolution for Image Classifier Architecture Search, arXiv 2018
[3] P. R. Lorenzo et al.: Hyper-parameter Selection in Deep Neural Networks Using Parallel Particle Swarm Optimization, GECCO’17
[4] H. Liu et al.: Hierarchical Representations for Efficient Architecture Search, ICLR’18
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GoogLeNet in more detail

C. Szegedy et al. Going Deeper with Convolutions, CVPR’15

▪ ~6.8M parameters

▪ 22 layers deep
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Computing fully connected layers
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Indirect
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Computing convolutional layers

Direct

𝑤 ℱ

ℱ

ℱ−1

=

×
ෝ𝑤

FFT
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=
Winograd

X. Liu et al.: Efficient Sparse-Winograd
Convolutional Neural Networks, ICLR’17 Workshop

S. Chetlur et al.: cuDNN: Efficient Primitives for Deep Learning, arXiv 2014

Direct

im2col

K. Chellapilla et al.: High Performance Convolutional Neural Networks for Document Processing, Int’l Workshop on Frontiers in Handwriting Recognition 2016
M. Mathieu et al.: Fast Training of Convolutional Networks through FFTs, ICLR’14
A. Lavin and S. Gray: Fast Algorithms for Convolutional Neural Networks, CVPR’16


