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Deep Neural Networks (DINNs) are becoming an important tool in modern computing applications. Accelerating
their training is a major challenge and techniques range from distributed algorithms to low-level circuit
design. In this survey, we describe the problem from a theoretical perspective, followed by approaches
for its parallelization. Specifically, we present trends in DNN architectures and the resulting implications
on parallelization strategies. We discuss the different types of concurrency in DNNs; synchronous and
asynchronous stochastic pradient descent; distributed system architectures; communication schemes; and
performance modeling. Based on these approaches, we extrapolate potential directions for parallelism in deep
learning.
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1 INTRODUCTION

Machine Learning, and in particular Deep Learning |LeCun et al. 2015], is a field that is rapidly
taking over a variety of aspects in our daily lives. In the core of deep learning lies the Deep Neural
Network (DNN), a construct inspired by the interconnected nature of the human brain. Trained
properly, the expressiveness of DNNs provides accurate solutions for problems previously thought
to be unsolvable, simply by observing large amounts of data. Deep learning has been successfully
implemented for a plethora of subjects, ranging from image classification [Huang et al. 2017],
through speech recognition [Amodei et al. 2016] and medical diagnosis [Ciresan et al. 2013], to
autonomous driving [Bojarski et al. 2016] and defeating human players in complex games [Silver
et al. 2017] (see Fig. 1 for more examples).
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A very active area of research!

23 papers per day!
Year 2012 2013 2014 2015 2016 2017

cs.AI 1,081 1,765 1,022 1,105 1,929 2,790
cs.CV 577 852 1,349 2,261 3,627 5,693
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How does Deep Learning work?

SpeEDRA
aem:

= |mageNet (1k): 180 GB
= |mageNet (22k): A few TB
" |ndustry: Much larger

Canziani et al. 2017

w
w

AlexNet

layer-wise weight update

= 100-200 layers deep
= ~100M-2B parameters
= (0.1-8 GiB parameter storage

What is Deep Learning used for?

2012 2013

Deep Learning is Supercomputing!

= 10-22k labels
= growing (e.g., face recognition)
= weeks to train
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A brief theory of supervised deep learning
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Stochastic Gradient Descent w* = argmin,, cpa Ex p[f(w,x)]
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T. Ben-Nun, T. Hoefler: Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis, arXiv Feb 2018
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Trends in deep learning: hardware and multi-node

The field is moving fast — trying everything imaginable — survey results from 227 papers in the area of parallel deep learning
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Deep Learning is largely on distributed memory today!

T. Ben-Nun, T. Hoefler: Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis, arXiv Feb 2018
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Trends in distributed deep learning: node count and communication

The field is moving fast — trying everything imaginable — survey results from 227 papers in the area of parallel deep learning
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Deep Learning research is converging to MPI!

T. Ben-Nun, T. Hoefler: Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis, arXiv Feb 2018
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A primer of relevant parallelism

t‘ﬁ‘t
t‘/( t\\Q

Work W = 39 DepthD =7

: w
Average parallelism = r

and communication theory

Parallel Reductions for Parameter Updates
Yy=x1D9x2®Dx3-® Xp-1 D xp.

Small vectors
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Large vectors

g

AN

Tree Butterfly Pipeline RedScat+Gat
T =2Llog, P + T=Llog,P+ T=2L(P—-1)+ T =2Llog,P+
2ymG log, P ymG log, P 2ymG(P —1)/P  2ymG(P —1)/P

Lower bound: T = Llog, P + 2ymG(P — 1) /P

E. Chan et al.: Collective communication: theory, practice, and experience. CCPE'07

| TH, D. Moor: Energy, Memory, and Runtime Tradeoffs for Implementing Collective Communication Operations, JSFI'14
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Parallelism in Deep Learning

= Individual operators
= Network parallelism
= Optimization algorithm
= Distributed training

= |
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Operators Networks Training
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Parallelism in the different layer types

Layer Type Eval. Work (W) Depth (D)

W is linear and D logarithmic — large average parallelism

T. Ben-Nun, T. Hoefler: Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis, arXiv Feb 2018 -



spcl.inf.ethz.ch oo o
v oo ETH ZUrich

Example: Options for computing convolutional layers

Method Work (W) Depth (D)

Direct N - Cout -H" - W - Cin - Ky - Kx [log, Cin | + [log, Ky | + [log, K |
im2col N - Cout -H" - W’ -Cin - Ky - K [log, Cin | + [log, Ky | + [log, K |
FFT ¢+ HW log,(HW) - (Cout - Cin+ 2|log, HW | + [log, Cin |

N - an + N - Cout) + HWN - CIH ’ COMf

Winograd
(m X m tiles,
rxrkernels) (ea=m-r+1, P=N-[H/m|-[W/m])

a(r® + ar + 2a° + am + m?) + Cout - Cin - P 2|log, r| + 4[log, a| + [log, Cin |

K. Chellapilla et al.: High Performance Convolutional Neural Networks for Document Processing, Int’| Workshop on Frontiers in Handwriting Recognition 2016
M. Mathieu et al.: Fast Training of Convolutional Networks through FFTs, ICLR’14
A. Lavin and S. Gray: Fast Algorithms for Convolutional Neural Networks, CVPR’16
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T. Ben-Nun, T. Hoefler: Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis, arXiv Feb 2018
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Microbatching (1-cuDNN) — how to implement layers best in practice?

Fast (up to 4.54x faster on DeepBench)

Microbatching Strategy

none (undivided) u

powers-of-two only P

@ IMPLICIT PRECOMP_GEMM
B FFT_TILING

any (unrestricted) a Il WINOGRAD_ NONFUSED
! | | | | | |
0 1 2 3 4 5 6 7
Time [mg]

Yosuke Oyama, Tal Ben-Nun, TH and Satoshi Matsuoka: u-cuDNN: Accelerating Deep Learning Frameworks with Micro-Batching, Cluster 2018 13
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Model parallelism — limited by network size
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= Parameters can be distributed across processors

=  Mini-batch has to be copied to all processors
= Backpropagation requires all-to-all communication every layer

U.A. Muller and A. Gunzinger: Neural Net Simulation on Parallel Computers, IEEE Int’l Conf. on Neural Networks 1994
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Pipeline parallelism — limited by network size
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Layers/parameters can be distributed across processors

Sparse communication pattern (only pipeline stages)

Mini-batch has to be copied through all processors

15

G. Blelloch and C.R. Rosenberg: Network Learning on the Connection Machine, IJCAI’'87
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Data parallelism — limited by batch-size

16

Simple and efficient solution, easy to implement

Duplicate parameters at all processors

|
X. Zhang et al.: An Efficient Implementation of the Back-propagation Algorithm on the Connection Machine CM-2, NIPS’89
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Data Model
Parallelism Parallelism
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Layer (pipeline) Parallelism

= Layers/parameters can be distributed across processors
= Can distribute minibatch

= Often specific to layer-types (e.g., distribute fc layers but handle conv layers data-parallel)
= Enables arbitrary combinations of data, model, and pipeline parallelism — very powerful!

A. Krizhevsky: One weird trick for parallelizing convolutional neural networks, arXiv 2014
J. Dean et al.: Large scale distributed deep networks, NIPS’12. 17
T. Ben-Nun, T. Hoefler: Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis, arXiv Feb 2018
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Updating parameters in distributed data parallelism

Decentral

collective allreduce of w

b

i1

Training Agent Training Agent  Training Agent Training Agent

L Ty

ee9e
Collective operations

parameter server (sharded) w’ = u(w, Vw)

T=2L+2Pym/sG

- Topologies
Vvwi [ w - Neighborhood collectives T =2Llog, P +
- RMA? 2ymG(P — 1)/P
Hierarchical Parameter Server Adaptive Minibatch Size
S. Gupta et al.: Model Accuracy and S. L. Smith et al.: Don't Decay the
Runtime Tradeoff in Distributed Deep Learning Rate, Increase the Batch Size,
Learning: A Systematic arXiv 2017

Study. ICDM’16
Training Agent Training Agent  Training Agent Training Agent
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Parameter (and Model) consistency - centralized

= Parameter exchange frequency can be controlled, while still
attaining convergence:

Max. Staleness

- > - >
Time Time

Stale Synchronous / Bounded
Asynchronous

Synchronous

= Started with Hogwild! [Niu et al. 2011] — shared memory, by chance
= DistBelief [Dean et al. 2012] moved the idea to distributed
= Trades off “statistical performance” for “hardware performance”

J. Dean et al.: Large scale distributed deep networks, NIPS'12.
F. Niu et al.: Hogwild: A lock-free approach to parallelizing stochastic gradient descent, NIPS’11.

Training Agent  Training Agent Training Agent Training Agent

Agent 1
T .
e w® Parameter Server BV
i /
Agentm
Time >
Asynchronous
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Parameter (and Model) consistency - decentralized

collective allreduce of w

= Parameter exchange frequency can be controlled, while still
attaining convergence: Training Agent Training Agent Training Agent Training Agent

Max. Staleness

Agent 1
Agent 1 rocn 1. (RO | BRI |- sent
) ZO) ATII ATII : 0y Al Al- 80 (T Agent r
- W Reduce Reduce - W Reduce Reduce @ W
& l l \‘ l S Agent k
) ° .
Agent m Agent m ﬁ Agent m
. > >
Time Time
Synchronous Stale Synchronous / Bounded Asynchronous Asynchronous

= May also consider limited/slower distribution — gossip [Jin et al. 2016]

Peter H. Jin et al., “How to scale distributed deep learning?”, NIPS MLSystems 2016
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Parameter consistency in deep learning

Sync.

i

Using physical forces between
different versions of w:

/ W(t+1_i) — W(t,i) _ r]VW(t'i) _ a(w(t.i) _ Wt)

Elastic

Agent m i Average Wesr = (1= )W, +%ZW(”)
- —
Time
Synchronous Stale-Synchronous Asynchronous Model Ensemble
SGD SGD SGD (HOGWILD!) Averaging Learning

(e.g., elastic)

S. Zhang et al.: Deep learning with Elastic Averaging SGD, NIPS’15 21
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Parameter consistency in deep learning
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Synchronous Stale-Synchronous Asynchronous Model Ensemble
SGD SGD SGD (HOGWILD!) Averaging Learning
(e.g., elastic)
Consistent Inconsistent

T. G. Dietterich: Ensemble Methods in Machine Learning, MCS 2000
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Communication optimizations

= Different options how to optimize updates

= Send Vw, receive w

= Send FC factors (0;_1, 0;), compute Vw on parameter server

Training Agent  Training Agent Training Agent Training Agent
Broadcast factors to not receive full w

(a) Fixed point (b) Fixed point (c) Binary (d) Floating point

= Use lossy compression when sending, accumulate error locally!

= Quantization
= Quantize weight updates and potentially weights

Quantized value

Raw value Raw value Raw value Raw value

= Main trick is stochastic rounding [1] — expectation is more accurate source: ai.intel.com
Enables low precision (half, quarter) to become standard
= TernGrad - ternary weights [2], 1-bit SGD [3], ...

= Sparsification

Original Network Pruning

= Do not send small weight updates or only send top-k [4]
Accumulate omitted gradients locally

[1] S. Gupta et al. Deep Learning with Limited Numerical Precision, ICML' 15
[2] F. Li and B. Liu. Ternary Weight Networks, arXiv 2016

[3] F. Seide et al. 1-Bit Stochastic Gradient Descent and Application to Data-Parallel Distributed Training of Speech DNNs, In Interspeech 2014
[4] C. Renggli et al. SparCML: High-Performance Sparse Communication for Machine Learning, arXiv 2018
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Sparsification — top-k Stochastic Gradient Descent

= Pick the k-largest elements of the vector at each node!
= Accumulate the remainder locally (convergence proof, similar to async. SGD with implicit staleness bounds [1])

Assumption 1. There exists a (small) constant & such that, for every iterationt > 0, we have:
1 "1
TopK B Z (f.}:'G?(I.Tf) + f_f) — Z j—)TﬂpK (aGf(z.'t) + ff) < &||laGy(ve)]|.

p=1 p=1

Discussion. We validate Assumption 1 experimentally on a number of different learning tasks in
Section 6 (see also Figure 1). In addition, we emphasize the following points:

0.700
— Top¥ [K=0.1%] — Topk [K=0.1%] ~ —— Topk [K=0.025%]
0.6751 —— TopK [K=1.0%] 2001 Topk [K=1.0%] 2.01 —— TopK [K=0.1%]
0.5501 —— Top# [K=10.03%] — Top¥ [K=10.0%%] —_— Top [K=0.2%]
: _— - 15
— Baseline _— —— Baseline _ = Baseline
5 0.6251 5 190 2
] i w10
05001 100 1
0.5754 037
0.5504 301 0.0
0 10 20 30 40 50 0 10 20 20 40 S0 0 25 50 75 100 125 150
Epoch Epoch Epoch
(a) RCV1 convergence. (b) Linear regression. (c) ResNetl 10 on CIFARI10.

[1] Dan Alistarh, TH, et al.: “The Convergence of Sparsified Gradient Methods”, NIPS’18
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SparCML — Quantified sparse allreduce for decentral updates

VW]_ VWZ VW3 VW4

Six epochs, 60 million params

1.225 A1 — 16-GPU BMUF 128 | === Linear Scalability
32-GPU SparcmL —&— SparCML
—— 64-GPU SparcML

1.200 4 —— 128-GPU SparCML

1.175 4

1.150 A

w

w

S

= 1125 A 64
(]

1.100 4

a 200 400 600 800 1000 1200
time {min)
1.075 4

1.050 T .

8
10251 . y . r . . . 1
0 2500 5000 7500 10000 12500 15000 17500
time (min)

148 16 32 64 128

Microsoft Speech Production Workload Results — 2 weeks = 2 days!

System Dataset | Model # of nodes | Algorithm Speedup
Piz Daint | ImageNet | VGG19 8 | Q4 1.55 (3.31)
Piz Daint | ImageNet | AlexNet 16 | Q4 1.30 (1.36)
Piz Daint . . | Topl6_Q4 3.65 (4.53)
EC2 MNIST MLP 8 Topl6.Q4 | 19.12 (22.97)

C. Renggli, TH et al. SparCML: High-Performance Sparse Communication for Machine Learning, arXiv 2018
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Deep500: An HPC Deep Learning Benchmark and Competition

Fzageit

500 ways to train DNNs

= |ntegrates tensorflow, pytorch, caffee2 into a single benchmarking framework
= Separate definition of benchmark metrics, shared across all levels

= Lean reference implementations — simple to understand and change
= QOperators (layer computations)
= Optimizers (SGD etc.)
= Distribution schemes (cf. Horovod)

A Modular Benchmarking Infrastructure for
High-Performance and Reproducible Deep Learning

Tal Ben-Nun, Simon Huber, Maciej Besta, Alexandros Nikolaos Ziogas, Daniel Peter, Torsten Hoefler
Department of Computer Science, ETH Zurich

Similar to reference LINPACK benchmark

Supports optimization of components

= E.g., no need to reimplement an optimizer to replace gradient compression!

Easily compare to all frameworks!

Abstract—We introduce Deep500: the first customizable bench-
marking infrastructure that enables fair comparison of the
plethora of deep learning frameworks, algorithms, libraries,
and techniques. The key idea behind DeepS00 Is its modular
deslgn, where deep learning Is factorized Into four distinct levels:
operators, network processing, training, and distributed training,
Our evaluation illustrates that DeepS00 s cusfomizable (enables
combining and benchmarking different deep learning codes)
and fair (uses earefully selected metrics). Moreaver, DeepS00 Is
Jfast (Incurs negligible overheads), verifiable (offers infrastructure
o analyze correciness), and reproducible. Finally, as the first
distributed and reproducible benchmarking system for deep
learning, DeepS00 provides software Infrastructure o utllize the
st powerful supercompuiers fo csireme.scale workloads,

index Terms—Distributed Deep Learning,

Deep Learning, Parallel Daep Learning, Benchmarking

DeepS00 code for

. INTRODUCTION
Deep Leaning (DL) has transformed the world and is now
ubiquitous in areas such as speech recognition, image classi-
fication, or autonomous driving [3]. Its central concept is a

on different platforms, and executing custom algorithms. To
achieve this, we design DeepS00 to be a meta-framework that
can be straightforwardly extended to benchmark any DL code.
Table I illustrates how various DL framewarks, libraries, and
frontends can be integrated in DeepS00 to enable easier and
faster DL programming. @ “Metrics” indicales that DeepS00
embraces a complex nature of DL that, unlike benchmarks
such as TopS00 [15], makes a single number such as FLOPS an
insufficient measure. To this end, we propose metries that con-
sider the accuracy-related aspects of DL (e.g., time required
to ensure a specific test-set accuracy) and performance-related
issues (.g.. communication volume). ® “Performance” means
that DeepS00 is the first DL benchmarking infrastructure that
can be inkegrated with parallel and distributed DL codes. @
“Validation” indicates that DeepS00 provides infrastructure to
ensure correctness of aspects such as convergence. Finally,
Deep500 embraces & “Reproducibility” as specified in recent
HPC initiatives [18] to help developing reproducible DL codes.

Table 11 compares DeepS00 to other benchmarking infras-
tructures with respect to the offered functionalities. DeepS00

Deep Neural Network (DNN), a structure modeled after the
1000 -jAllreduce: C++/MPI'SGD buman brain. Thanks (o rigorous training, DNNs are able to 15 e 0nly system that focuses on performance, accuracy, and
ASGD: Async SGD ) solve various problems, previously deemed unsolvable. ;?':;:i’;‘:ﬂ;’::;é:“r;ﬁ::ﬁﬁ:;‘“fﬁ:hm: Zpectrum
Conv s GEMM PSSGD: Centralized SGD) ASG Recent years saw an unprecedented growth in the number iy o6 qocion and considering a diversity of workloads,
baseline: DSGD: D tralized of schemes, algorith platforms, g
0.05000 { kernel 5.0e-011kernel : Decentralize -
. NVIDIA GPU . [] ] and frameworks for DL. First, DL computations can aim at  System Opersiors _Networks __Tranng _Dist. Tramng
b btained with 2.5e-01 | l . ] 0, inference or training, Second, hardware platforms can vary Sta Cus Dol Eag Com Tra Dat Opt Cus 75 DecAsy Cus
0.02500 optained wi ! l significantly, including CPUs, GPUs, or FPGAs. Third, L) cuDh FEEEEEEEEEEEE)
° . DeepBench 1.0e-01 [ ] ! (0] ators can be computed using different methods, {0 ML ONN CE LB ELLEEELEE]
. [} [ [ ] E SG or Winograd [26] in convolutions. Next, DL B oo 1] g 833239m3233
0.01000 i + 5.0e-02 ° = 1004 PS have been deployed in a variety of frameworks, such a5 (i 050 & & 123332532333
’ 256-02 — TensorFlow [14] or Caffe [20]. These functionalities may in- (1)t ) 2 B Gl SR
° ° ) Se- corporate many parallel and distributed optimizations, such as  (F) Thean [4 feotoydyren
0.00500 * < DSGD data, model, and pipeline parallelism. Finally, DL workloads (el 0 8 3 8 3 3 04 S % 0% 3
] 1.0e-02 [&) are executed in wildly varying environments, such as mobile (F) DL&j[a2] 233332432333
 0.00250 [ 5.06-03 o) phones, mult-GPU chusirs, or lge-seale supercompuers. ISTUE 9 % 9 w3 muna e s.
£ 2> o This richness of the DL domain raises 3 question we (BTVME] et ———
= E 25¢-03 have not scen addressed so far HOW can one ensure a (6 Kers (8] EELEEELErEEEE]
e R L IEEREEErEERFER]
0.00100 - leveled, falr ground for and B » = )
1.0e-03 benchmarking in Deep Learning” The key issue here is that (6] Lassons’ | 4 & % @ @ % 3053 5% %
the recent benchmarking approaches such as DAWNBench [9] E\Fleamill & % 9 W 8 90w 99w % %
0.00050 5.0e-04 : ar MLPerf [30] are merely lists of results that do not directly ;ffﬂ;';[';';""_';mo O AL B ABEAAA OB
y consider the rich nature of today's DL efforts.
0.00025 2.5e-04 8 16 32 64 To snswer this question, we propose DAePSOD: 3 berch-  gred i Cepets 0 e of s et %‘E"...:
marking system that enables fair analysis and of 2 spaciic bak tey st plaiec i moce ciai i Backgrou
1.0e-04 . Number of nodes diverse DL efforts. DeepS00 is based on the following f1ve  Def betired Eevio toch: Eay: Exai Sroautn Mods (oo sahed
. o tabon, T, Traraiormale, Det: Deacet Ne
0.00010 5.0e-05 baseline: plllars: @ C . @ Metrics, © Performance, ® Pl Som! mm:r.nm P Parr Savier Do, Beirabis.
256-05 NVIDIA GPU Validation, and @ Reproducibility. @ “C - wooon S5 U Updae ke s 5  ghen s s
-5e- H f dicates that Deep300 enables benchmarking of arbitrary com-  Ster @ gven fesurs G v e s g s
; " ; W 2y [
X : the average X : the average °B§;BS‘3an'ﬁ“ (a) Strong scaling (Wide ResNet 28x10). binatons f DL clemant, such o varios Tamoworke g 2o 0% 0% 3y e (sl € o e 7

Caffe2 TensorFIow PyTorch Dee
Native Deep500 Native Deep500 Native Deep500 Bench

Caffe2 TensorFlow PyTorch Deep
Native Deep500 Native Deep500 Native Deep500 Bench

Fig. 11: Scaling Analysis of Level 3
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How to NOt do this

“Twelve ways to fool the masses when reporting performance of deep learning workloads”
(my humorous guide to floptimize deep learning, blog post Nov. 2018)

/ 3 /
X "2
/ A Nl
\ S "
. g ‘ | A “ .

https://htor.inf.ethz.ch/blog/index.php/2018/11/08/twelve-ways-to-fool-the-masses-when-reporting-performance-of-deep-learning-workloads/
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1) Ignore accuracy when scaling up!

HPC picking up!
= Too obvious for this audience

= Was very popular in 2015!

—e— Median 25th/75th Percentile <--- Min/Max
= Surprisingly many (still) do this O
| -
) _ A Titan Supercomgter ~ ¢
Learning community’s | DistBelief y
\
self-correction 1000 i Proiect Ad o /
= \
(Y. LeCun) c N Fejacs.Adam 4
[T
o g
5 100 -
2 ]
£
3 ]
Scalability without 10
a good baseline? 5
(D. Bailey) 4 |
Pre- 2013 2014 2015 2016 2017-
2013 Present
Year

https://htor.inf.ethz.ch/blog/index.php/2018/11/08/twelve-ways-to-fool-the-masses-when-reporting-performance-of-deep-learning-workloads/
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2) Do not report test accuracy!

= Training accuracy is sufficient isn’t it?

— - Tralning error

IUnderfitting zone |Overfitting zone o .
— (eneralization error

Error

—

N, I Generalization gap

——
o

S —

0 Optimal Capacity Source: guora.com
Capacity

https://htor.inf.ethz.ch/blog/index.php/2018/11/08/twelve-ways-to-fool-the-masses-when-reporting-performance-of-deep-learning-workloads/
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3) Do not report all training runs needed to tune hyperparameters!

= Report the best run — SGD is a bit fragile, so don’t worry
At the end, the minutes for the final run matter most!
" Observed model O.

o performance °

Your model

Suggested
Hyperparameters

https://htor.inf.ethz.ch/blog/index.php/2018/11/08/twelve-ways-to-fool-the-masses-when-reporting-performance-of-deep-learning-workloads/
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How to NOt do this

“Twelve ways to fool the masses when reporting performance of deep learning workloads”
(my humorous guide to floptimize deep learning, blog post Nov. 2018)

/ 3 /
X "2
/ A Nl
\ S "
. g ‘ | A “ .

https://htor.inf.ethz.ch/blog/index.php/2018/11/08/twelve-ways-to-fool-the-masses-when-reporting-performance-of-deep-learning-workloads/
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HPC for Deep Learning — Summary

= Deep learning is HPC — very similar computational structure, in fact very friendly
= Amenable to specialization, static scheduling, all established tricks - microbatching

= Main bottleneck is communication — reduction by trading off

Parameter Consistency Parameter Accuracy

* Bounded synchronous SGD * Lossless compression of gradient updates
e Central vs. distributed parameter server * Quantization of gradient updates
* EASGD to ensemble learning * Sparsification of gradient updates

= Very different environment from traditional HPC
= Trade-off accuracy for performance!

= Performance-centric view in HPC can be harmful for accuracy!

T. Hoefler: “Twelve ways to fool the masses when reporting performance of deep learning workloads”
(my humorous guide to floptimization in deep learning will be published this week during IPAM)
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Turning 180-degree — Deep Learning for HPC — Neural Code Comprehension

= |n 2017, GitHub reports 1 billion git commits in 337 languages!
= Can DNNs understand code?

= Previous approaches read the code directly 2 suboptimal (loops, functions)

double thres = 5.0; %cmp = fcmp olt double %x, 5.0
if (X < thr‘es) br il %cmp, label %LT, label %GE 5.0 %
X =y *y; gl s
a ? %2 = fmul double %y, %y %X
else GE: %0
X =2.0 *y; %3 = fmul double 2.0, %y /\
%y
AFTER:
X += 1.0; % = phi double [%2,%LT], [%3,%GE] %
%5 = fadd double %4, 1.0 %GE
C/C++ FORTRAN 1.0
Python Java » %AFTER
(0]
CUDA OpenCL
Dataflow (basic blocks) conteXtual Flow Graph

Ben-Nun, Jakobovits, TH: Neural Code Comprehension: A Learnable Representation of Code Semantics, NIPS 2018
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Deep Learning for HPC — Neural Code Comprehension

= Embedding space (using the Skip-gram model)

% 0 C
. 00 >
¥ 0 O\ "
¢ 10 k
2 0 O ' (]
© 0 . 5'
500 8 Vocabulary
= 0 Q Sige (#stmts)
¢ . O | =
ey .
= - O :
2 0 A

Embedding

Dimensions

Ben-Nun, Jakobovits, TH: Neural Code Comprehension: A Learnable Representation of Code Semantics, NIPS 2018
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Deep Learning for HPC — Neural Code Comprehension

Table 3: Algorithm classification test accuracy

N
Metric Surface Features [46] RNN [46] TBCNN [46] /inst2vec
(RBF SVM + Bag-of-Trees)
Test Accuracy [%] 88.2 84.8 940\ 9483 /
N
Predicts which device is faster (CPU or GPU) Optimal tiling
Table 4: Heterogeneous device mapping results Table 5: Speedups achieved by coarsening threads
Architecture Prediction Accuracy [%) Speedup Computing Platform Magni et al. [43] DeepTune [17] DeepTune-TL [17] inst2vec
Grewe et al. [27)] DeepTune [17] inst2vec  Grewe et al. DeepTune  inst2vec AMD Radeon HD 5900 1.21 1.10 117 1.25
AMD Tahiti 7970 1.01 1.05 1.23 1.07
AMD Tahiti 7970 73.38 83.68 82.79 291 3.34 342 NVIDIA GTX 480 0.86 1.10 1.14 1.02
NVIDIA GTX 970 72.94 80.29 81.76 1.26 1.41 1.39 NVIDIA Tesla K20c 0.94 0.99 0.93 1.03
100
Table 2: Analogy and test scores for inst2vec
&g Context Syntactic Analogies Semantic Analogies Semantic Distance Test
Si
e Types Options Conversions Data Structures
0 1 101 (18.04%) 13 (24.53%) 100 (6.63%) 3 (37.50%) 60.98%
2 226 (40.36%)  45(84.91%) 134 (8.89%) 7 (87.50%) 79.12%
3 125 (22.32%) 24 (45.28%) 48 (3.18%) 7 (87.50%) 62.56%
-50
-100

-50 0 50

Ben-Nun, Jakobovits, TH: Neural Code Comprehension: A Learnable Representation of Code Semantics, NIPS 2018
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https://www.arxiv.org/abs/1802.09941

Outlook
a7

] FuII details in the Survey (% pages) gemFStIfYIHg:ar;i”E‘[ and Distributed DEEP Learning: An Iﬂ'DEpth
oncurrency Analysis

= Parallelism, distribution, synchronization
TAL BEN-NUN* and TORSTEN HOEFLER, ETH Zurich

’ Deep Neural Networks (DININs) are becoming an important tool in modern computing applications. Acceleratin
[ | ep E p puling app i)
NeweSt developments at N I PS 18 their training is a major challenge and technigques range from distributed algorithms to low-level circnit
. . design. In this survey, we describe the problem from a theoretical perspective, lollowed by approaches
" Top-K an d neu ral COd e compre h ension (inst2vec for its parallelization. Specifically, we present trends in DNM architectures and the resulting implications
I 1 ¥ 1 £ iy

on parallelization strategies. We discuss the different types of concurrency in DNMs; synchronous and
asynchronous stochastic pradient descent; distributed system architectures; communication schemes; and
performance modeling, Based on these approaches, we extrapolate potential directions for parallelism in deep

= (Call to action to the HPC and ML/DL learning.

CCS Concepls: » General and reference — Surveys and overviews; = Computing methodologies — Neo-

commmun ities to jOi 1] fo rces ! ral networks; Distributed computing methodologies; Parallel computing methodologies; Machine
learning;
= N ee d more JOi nt eve nts ! Additional Key Words and Phrases: Deep Learning, Distributed Computing, Parallel Algonthms
. . . . . ACM Reference format:
" ESta b I IS h b enc h ma rkl n g d ISCI p I In el SC 1 8 B O F : Tal Ben-Nun and Torsten Hoefler. 2018, Demystifying Paralle] and Distributed Deep Learning: An In-Depth

Concurrency Analysis. 60 pages.

“Deep500: An HPC Deep Learning Benchmark and
Competition” — to be continued ...

1 INTRODUCTION

Machine Learning, and in particular Deep Learning |LeCun et al. 2015], is a field that is rapidly
taking over a variety of aspects in our daily lives. In the core of deep learning lies the Deep Neural
MNetworlk (DNN), a construct inspired by the interconnected nature of the human brain. Trained
properly, the expressiveness of DNNs provides accurate solutions for problems previously thought
to be unsolvable, simply by observing large amounts of data. Deep learning has been successtully
implemented for a plethora of subjects, ranging from image classification [Huang et al. 2017],
through speech recognition [Amodei et al. 2016] and medical diagnosis [Ciresan et al. 2013], to
autonomous driving [Bojarski et al. 2016] and defeating human players in complex games [Silver
et al. 2017] (see Fig, 1 for more examples).
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Yann LeCun’s conclusion slide yesterday!

Deep learning and HPC

\
= Deep learning is HPC /

= |n fact, it’s probably (soon?) bigger than traditional HPC

.. Hardware Requi
Definitely more money ... equirement

» DL Research and Development: HPC!
» Compute power, flexibility, programmability, numerical accuracy
» Cluster of nodes with multiple GPGPU. 32bit FP. low-latency network

= |nterest in the HPC community is tremendous > Training Production systems

» High speed, 16bit FP usually enough.

= Number of learning papers at HPC conferences seems to be ;leSheia"‘ss:r';srsmjl :13232:; ! (n:ci )
g rOWI ng expo ne ntla I Iy » Low power dissipation, reduced precision, exotic number systems
» Enormous volumes! Facebook today: 300e12 predictions per day.

BESideS at SCl 8, Wh Utl ? » Inference on mobile devices and consumer electronics

» Super low power dissipation, exotic number systems (e.g- Log)
» Very low cost. AR/VR. cameras, appliances, toys....

= Risk of unrealism
= HPC people know how to do HPC
= And deep learning is HPC, right?
Not quite ... while it’s really similar (tensor contractions)
But it’s also quite different!
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STATISTICS

DONE WRONG
= Tradeoffs between those two T

“Statistical performance” vs. “hardware performance”

= Very weird for HPC people — we always operated in double precision
Mostly out of fear of rounding issues

= Deep learning shows how little accuracy one can get away with
= Well, examples are drawn randomly from some distribution we don’t know ...
= Usually, noise is quite high ...

= So the computation doesn’t need to be higher precision than that noise
Pretty obvious! In fact, it’s similar in scientific computing but in tighter bounds and not as well known

=  But we HPC folks like flop/s! Or maybe now just ops or even aiops? Whatever, fast compute!
= A humorous guide to floptimization
= Twelve rules to help present your (not so great?) results in a much better light
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1) Ignore accuracy when scaling up!

HPC picking up!
= Too obvious for this audience

= Was very popular in 2015!

—e— Median 25th/75th Percentile <~-—- Min/Max
= Surprisingly many (still) do this O
_' v
_ _ faReal Titan Supercompgter ™ 7
Learning community’s | DistBelief 4
self-correction o0l D Proiect Ad o /
(Y. LeCun) 2 1N D FOjRcE AGAIN 4
[T
o .
5 100+
Q2 ]
£ :
2 ]
Scalability without 10
a good baseline? 5
(D. Bailey) i '
Pre- 2013 2014 2015 2016 2017-
2013 Present

Year



spcl.inf.ethz.ch oo o
v oo ETH ZUrich

2) Do not report test accuracy!

= Training accuracy is sufficient isn’t it?

— - Tralning error

lUnderfitting zone |Overfitting zone T
— Generalization error

Error

. . ——
T — — — — — — — — —

0 Optimal Capacity Source: guora.com

42
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3) Do not report all training runs needed to tune hyperparameters!

= Report the best run — SGD is a bit fragile, so don’t worry
At the end, the minutes for the final run matter most!
" Observed model O.

o performance °

Your model

Suggested
Hyperparameters
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4) Compare outdated hardware with special-purpose hardware!

= Tesla K20 in 2018!?
Even though the older machines would win the beauty contest!

VS.




spcl.inf.ethz.ch oo o
v oo ETH ZUrich

5) Show only kernels/subsets when scaling!

= Run layers or communication kernels in isolation
= Avoids issues with accuracy completely ©
Doesn’t that look a bit like GoogLeNet?

VS.
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6) Do not consider 1/O!

= Reading the data? Nah, make sure it’s staged in memory when the benchmark starts!
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7) Report highest ops numbers (whatever that means)!

= Yes, we're talking ops today, 64-bit flops was so yesterday!
= |f we don’t achieve a target fast enough, let’s redefine it!

And never talk about how many more of those ops one needs to find a solution, it’s all about the rate, op/s!
= Actually, my laptop achieves an “exaop”:
= each of the 3e9 transistors switching a binary digit each at 2.4e9 Hz

VS.
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8) Show performance when enabling option set A and show accuracy when
enabling option set B!

= Pretty cool idea isn’t it? Hyperparameters sometimes conflict
So always tune the to show the best result, whatever the result shall be!

Speedup O Utopia
64 O Excellent
Neat
55 O Good Accuracy
O So-so —
T — ac...
0 46 O Not Good
g - 97.95%
o £
g 37 % 97.85%
éL 28 ;
97.75%
B
o
97 .65%
“ 19 BATCH_SIZE=64 BATCH_SIZE=256
BATCH_SIZE=128 BATCH_SIZE=512
10

8 16 24 32 40 48 656 64
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9) Train on (unreasonably) large inputs!

= The pinnacle of floptimization! Very hard to catch!
But Dr. Catlock Holmes below can catch it.

VS.

Low-resolution cat (244x244 — 1 Gflop/example)

R\ g
High-resolution cat (8kx8x — 1 Tflop/example)
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10) Run training just for the right time! Error

. ° . . v lda 3 9
= Train for fixed wall-time when scaling processors alidation set

= so when you use twice as many processors you get twice as many flop/s!

But who cares about application speedup?

Training set
0 Early Number of
stopping iterations
point
I'VE BEEN GIVING YOU I SAID
THEA gi-:-{: %gg pgAVE INCORRECT DATA FOR WHAT? THE DATA
) YEARS. THIS IS THE FIRST IS TOTALLY
ME IS CORRECT? LL
TIME YOU'VE ASKED. ACCURATE.

L

/ULl

Dilbert.com DilbertCartoonist@gmail.com

5-7-14 ©2014 Scott Adams, Inc. /Dist. by Universal Uchick
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11) Minibatch sizing for fun and profit — weak vs. strong scaling.

= All DL is strong scaling — limited model and limited data

= So just redefine the terms relative to minibatches:
= Weak scaling keeps MB size per process constant — overall grows (less iterations per epoch, duh!)
= Strong scaling keeps overall MB size constant (better but harder)

= Microbatching is not a problem!

BN
o
1

W
(8]
T

W
o
T

n
(o))
l

ImageNet top-1 validation error

64 128 256 512 1k 2k 4k 8k 16k 32k 64k
mini-batch size

n
o
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12) Select carefully how to compare to the state of the art!

=  Compare either time to solution or accuracy if both together don’t look strong!
There used to be conventions but let’s redefine them.

T™M NOT YOUR BUT YOU SPEND TWICE AS MUcH | YOUR MATH 1S
BOYFRIEND! TIME WITH ME AS WITH ANYONE | IRREFUTABLE.
ﬂEM;E;EﬂEW [ You TOTRLY ARE. ELSE. IM ACLAR OUTLER FACE IT—IM
| TM CAsvALLY YouR STATISTICALLY
\ DATING A NUMBER SIGNIFICANT OTHER.
OF PEOPLE. HH - )
RO q ) %
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Hyperparameter and Architecture search

= Meta-optimization of hyper-parameters (momentum) and DNN architecture
= Using Reinforcement Learning [1] (explore/exploit different configurations)
= Genetic Algorithms with modified (specialized) mutations [2]
= Particle Swarm Optimization [3] and other meta-heuristics

(a) Sequential Optimisation
Performance

%I- Hyperpamnmrslﬁl—’%l—._ %I—’%I %I 151 3x3

e | | [ e — 10 e 3 @ assembie

Weights 1x1 X X
(b) Parallel Random/Grid Search (c) Population Based Training pooling 1x1 e e
s T T T e 0i? 05! 05! (3)
e BN o I e Q.| O Q. O “

EI .EI IEI IEI Weights [] " ‘.,[] ..... K [:] ,D " £g = THETQE(OSU(CEQ), oél)(fl )

O O O-. : @) b exploit 01

U .................... U .................... D ..... (S U _ _[J _ e o 0(21) Ixt conv 33 conv  3x3 maxpooling asse:m>ble 1x1 3
— — _— _— - Q| g e OROA (1) (1) (1) )
5 T T ° 0-—0) 0 00 O 0} o} pooling
D AAAAAAAAAAAAAA D AAAAAA eeeeeeonay D JT ,D Ggg) ng)

Reinforcement Learning [1] Evolutionary Algorithms [4]

[1] M. Jaderberg et al.: Population Based Training of Neural Networks, arXiv 2017

[2] E. Real et al.: Regularized Evolution for Image Classifier Architecture Search, arXiv 2018

[3] P. R. Lorenzo et al.: Hyper-parameter Selection in Deep Neural Networks Using Parallel Particle Swarm Optimization, GECCO’17
[4] H. Liu et al.: Hierarchical Representations for Efficient Architecture Search, ICLR’18
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GooglLeNet in more detail

= ~6.8M parameters

Filt
concalenatin = 22 layers deep
3x3 convolutions 5x5 convolutions 1x1 convolutions
1x1 convolutions [) [) [}

Qtions 1x1 convolutions 3x3 max pooling
P a—_——"“S e

Previous layer

(b) Inception module with dimensionality reduction

C. Szegedy et al. Going Deeper with Convolutions, CVPR’15 54
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. fi(x) O(Cout - Cin - N) O(log Cip)
Computing fully connected layers W O(Cin N -Cous) OllogN)

VOl O{Cin 'CDHI N] O{lﬂgcﬂuf]

Wi 2

)

Ws 2

)

W3 o

)
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Computing convolutional layers

Method Work (W) Depth (D)

Direct N - Cout -H" - W - Cin - Ky - Kx [log, Cin | + [log, Ky | + [log, K |
im2col N - Cout -H" - W’ -Cin - Ky - K [log, Cin | + [log, Ky | + [log, K |
FFT ¢+ HW log,(HW) - (Cout - Cin+ 2|log, HW | + [log, Cin |

N - an + N - Cout) + HWN - CIH ’ COMf

Winograd
(m X m tiles,
rxrkernels) (ea=m-r+1, P=N-[H/m|-[W/m])

a(r® + ar + 2a° + am + m?) + Cout - Cin - P 2|log, r| + 4[log, a| + [log, Cin |

K. Chellapilla et al.: High Performance Convolutional Neural Networks for Document Processing, Int’| Workshop on Frontiers in Handwriting Recognition 2016
M. Mathieu et al.: Fast Training of Convolutional Networks through FFTs, ICLR’14
A. Lavin and S. Gray: Fast Algorithms for Convolutional Neural Networks, CVPR’16



